JP2013014701A - Powder coating and powder coating method - Google Patents

Powder coating and powder coating method Download PDF

Info

Publication number
JP2013014701A
JP2013014701A JP2011148988A JP2011148988A JP2013014701A JP 2013014701 A JP2013014701 A JP 2013014701A JP 2011148988 A JP2011148988 A JP 2011148988A JP 2011148988 A JP2011148988 A JP 2011148988A JP 2013014701 A JP2013014701 A JP 2013014701A
Authority
JP
Japan
Prior art keywords
powder coating
chemical conversion
coating material
coating
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011148988A
Other languages
Japanese (ja)
Other versions
JP5806016B2 (en
Inventor
Akinobu Hashimoto
顕宣 橋本
Masanori Kato
正規 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Brake Industry Co Ltd
Original Assignee
Akebono Brake Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Brake Industry Co Ltd filed Critical Akebono Brake Industry Co Ltd
Priority to JP2011148988A priority Critical patent/JP5806016B2/en
Publication of JP2013014701A publication Critical patent/JP2013014701A/en
Application granted granted Critical
Publication of JP5806016B2 publication Critical patent/JP5806016B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a powder coating excellent in adhesiveness of a coated film to a metal member, which can solve problems with the appearance and the film defect in the coated film, and can provide a coated product whose corrosion resistance is improved; and to provide a coating method using the powder coating.SOLUTION: The powder coating contains an aluminum flake subjected to chemical conversion treatment. The powder coating method includes electrostatically coating the powder coating to the metallic member.

Description

本発明は、粉体塗料および粉体塗装方法に関する。さらに詳しくは、本発明は、金属部材への塗膜の密着性に優れ、かつ耐食性の向上した塗装品を与えることが可能な粉体塗料、および該粉体塗料を用いる金属部材の粉体塗装方法に関するものである。   The present invention relates to a powder coating material and a powder coating method. More specifically, the present invention relates to a powder coating that can provide a coated product having excellent adhesion to a metal member and improved corrosion resistance, and powder coating of a metal member using the powder coating. It is about the method.

金属への耐食性付与技術として、環境を配慮した粉体塗装が広く行われている。この粉体塗装に用いられる粉体塗料は、有機溶剤または水のような液体溶剤を使用せずに粉末の状態で塗装する塗料で、しいていえば空気を溶剤とした塗料であるともいえる。   As a technique for imparting corrosion resistance to metals, environment-friendly powder coating is widely used. The powder coating used for this powder coating is a coating that is applied in a powder state without using an organic solvent or a liquid solvent such as water, and can be said to be a coating using air as a solvent.

粉体塗料は、溶剤類を一切使用しないため火災の危険がなく、固形分100%の塗料であり、塗料は回収して再使用できるので、塗装に際して塗料の損失が少ない。また粉体塗料は、一度に厚く塗れ、100〜1000μmの塗膜厚が1回塗りで得られるなどの長所を持っている。したがって、使用分野、適用範囲も徐々に拡大しており、使用される粉体塗料についても、各種防食顔料、フィラーが添加され、性能向上が図られている。
例えば、特許文献1には、フィラーとしてアルミニウムフレークを含有し、メッキ調のメタリック色を発色させるのに適した粉体塗料組成物が開示されている。
Since powder paint does not use any solvents, there is no danger of fire and it is a paint with a solid content of 100%. Since the paint can be recovered and reused, there is little loss of paint during painting. Further, the powder coating has advantages such that it can be applied thickly at a time, and a coating thickness of 100 to 1000 μm can be obtained by a single application. Accordingly, the field of use and application range are gradually expanding, and various anticorrosive pigments and fillers are added to the powder coating used to improve performance.
For example, Patent Document 1 discloses a powder coating composition containing aluminum flakes as a filler and suitable for developing a metallic color with a plating tone.

しかしながら、フィラーとしてアルミニウムフレークを用いた粉体塗料組成物においては、塗料成分とフィラー粒子であるアルミニウムフレーク表面との親和性が低いことに起因して、フィラー粒子間に塗料成分が流入しにくく、塗膜とした際の欠陥の形成や、耐食性低下、塗膜と被塗物(金属部材)との密着性低下などが生じやすいという問題があり、その解決が求められている。   However, in the powder coating composition using aluminum flakes as the filler, due to the low affinity between the coating component and the surface of the aluminum flakes that are filler particles, it is difficult for the coating component to flow between the filler particles, There are problems such as formation of defects when formed into a coating film, reduction in corrosion resistance, and decrease in adhesion between the coating film and an object to be coated (metal member), and there is a need to solve them.

特開2010−189598号公報JP 2010-189598 A

本発明は、このような事情のもとで、塗膜の金属部材との密着性に優れ、塗膜外観上の問題および塗膜欠陥の問題も解決し、かつ耐食性の向上した塗装品を与えることが可能な粉体塗料、および該粉体塗料を用いる金属部材の塗装方法を提供することを目的とするものである。   Under such circumstances, the present invention provides a coated product having excellent adhesion to the metal member of the coating film, solving problems of coating film appearance and coating film defects, and having improved corrosion resistance. It is an object of the present invention to provide a powder coating that can be applied, and a method for coating a metal member using the powder coating.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、化成処理されたアルミニウムフレークを含む粉体塗料、および該粉体塗料を用いて、金属部材を静電塗装する粉体塗装方法により、その目的を達成し得ることを見出し、この知見に基づいて本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the inventors of the present invention have developed a powder coating containing a chemically treated aluminum flake, and a powder for electrostatically coating a metal member using the powder coating. It has been found that the object can be achieved by a coating method, and the present invention has been completed based on this finding.

すなわち、本発明は、
(1) 化成処理されたアルミニウムフレークを含むことを特徴とする粉体塗料、
(2) 化成処理されたアルミニウムフレークが、平均厚み(t)0.01〜1μm、平均長径5〜40μmである、(1)項に記載の粉体塗料、
(3) 化成処理されたアルミニウムフレークの含有量が粉体塗料100体積%に対して1.0〜3.5体積%である、(1)項または(2)項に記載の粉体塗料、
(4) さらに亜鉛粒子を含む、(1)〜(3)項のいずれか1項に記載の粉体塗料、
(5) 亜鉛粒子が化成処理されていないものまたは化成処理されたものである、(4)項に記載の粉体塗料、
(6) 化成処理されたアルミニウムフレークと亜鉛粒子との合計含有量が粉体塗料100体積%に対して6〜28体積%である、(4)項または(5)項に記載の粉体塗料、
(7) 化成処理されたアルミニウムフレークの体積VAlに対する亜鉛粒子の体積VZnの比率VZn/VAlが1/1〜17/1である、(4)〜(6)項のいずれか1項に記載の粉体塗料、
(8) 化成処理がリン酸塩処理である、(1)〜(3)、(5)〜(7)項のいずれか1項に記載の粉体塗料、
(9) リン酸塩処理がリン酸亜鉛処理またはリン酸アルミニウム処理である、(8)項に記載の粉体塗料、
(10) (1)〜(9)項のいずれか1項に記載の粉体塗料を金属部材に静電塗装することを特徴とする粉体塗装方法、
(11) 金属部材が化成処理されたものである、(10)項に記載の粉体塗装方法、および
(12) 金属部材が鋼材である、(10)項または(11)項に記載の粉体塗装方法、
を提供するものである。
That is, the present invention
(1) A powder coating characterized by containing a chemically treated aluminum flake,
(2) The powder coating material according to (1), wherein the aluminum flakes subjected to chemical conversion treatment have an average thickness (t) of 0.01 to 1 μm and an average major axis of 5 to 40 μm,
(3) The powder coating material according to (1) or (2), wherein the content of the chemically treated aluminum flake is 1.0 to 3.5% by volume with respect to 100% by volume of the powder coating material,
(4) The powder coating material according to any one of (1) to (3), further comprising zinc particles,
(5) The powder coating according to (4), wherein the zinc particles are not subjected to chemical conversion treatment or are subjected to chemical conversion treatment,
(6) The powder paint according to (4) or (5), wherein the total content of the chemically treated aluminum flakes and zinc particles is 6 to 28% by volume with respect to 100% by volume of the powder paint. ,
(7) Any one of the items (4) to (6), wherein the ratio V Zn / V Al of the volume V Zn of zinc particles to the volume V Al of the chemically treated aluminum flakes is 1/1 to 17/1. Powder coatings according to paragraphs,
(8) The powder coating according to any one of (1) to (3) and (5) to (7), wherein the chemical conversion treatment is a phosphate treatment,
(9) The powder paint according to item (8), wherein the phosphate treatment is zinc phosphate treatment or aluminum phosphate treatment,
(10) A powder coating method, wherein the powder coating material according to any one of (1) to (9) is electrostatically coated on a metal member,
(11) The powder coating method according to (10), wherein the metal member is subjected to chemical conversion treatment, and (12) the powder according to (10) or (11), wherein the metal member is a steel material. Body painting method,
Is to provide.

本発明によれば、塗膜の金属部材との密着性に優れ、塗膜外観上の問題および塗膜欠陥の問題も解決し、かつ耐食性の向上した塗装品を与えることが可能な粉体塗料、および該粉体塗料を金属部材に静電塗装する粉体塗装方法を提供することができた。   According to the present invention, a powder coating material that is excellent in adhesion of a coating film to a metal member, solves problems of coating film appearance and coating film defects, and can provide a coated product with improved corrosion resistance. And a powder coating method for electrostatically coating the metal coating on the metal member.

[粉体塗料]
まず、本発明の粉体塗料について説明する。
本発明の粉体塗料は、化成処理されたアルミニウムフレーク(以下、化成処理アルミニウムフレークと称することがある)を含むことを特徴とする。
[Powder paint]
First, the powder coating material of the present invention will be described.
The powder coating material of the present invention is characterized by containing a chemically treated aluminum flake (hereinafter sometimes referred to as a chemically treated aluminum flake).

本発明の粉体塗料において必須成分として用いられる化成処理アルミニウムフレークは、特定の薬剤を用いてアルミニウムフレークを化成処理して得られたものであり、特に薬剤としてリン酸塩を用いてアルミニウムフレークを化成処理して得られたものが好ましい。リン酸塩としてはリン酸アルミニウム、リン酸亜鉛などが好ましく用いられる。   The chemical conversion treatment aluminum flake used as an essential component in the powder coating material of the present invention is obtained by chemical conversion treatment of aluminum flake using a specific chemical, and in particular, using aluminum phosphate as a chemical. What was obtained by chemical conversion treatment is preferable. As the phosphate, aluminum phosphate, zinc phosphate or the like is preferably used.

アルミニウムフレークのリン酸塩を用いる化成処理は、例えばアルミニウムフレークをアセトンなどの有機溶剤で脱脂処理し、乾燥した後、適宜量のアルミニウムフレークをリン酸塩含有処理液中に加え、常温〜50℃の温度で、1〜5分間程度浸漬処理した後、乾燥させることにより行うのが好ましい。   The chemical conversion treatment using phosphate of aluminum flakes, for example, after degreasing aluminum flakes with an organic solvent such as acetone and drying, an appropriate amount of aluminum flakes is added to the phosphate-containing treatment solution, and the normal temperature to 50C It is preferable to carry out by immersing at a temperature of about 1 to 5 minutes and then drying.

このようにして得られた化成処理アルミニウムフレーク表面の化成処理皮膜の厚さは化成処理条件により変動するが、通常0.05〜3μm、好ましくは0.1〜1μmである。   The thickness of the chemical conversion treatment film on the surface of the chemical conversion treatment aluminum flakes thus obtained varies depending on the chemical conversion treatment conditions, but is usually 0.05 to 3 μm, preferably 0.1 to 1 μm.

本発明の粉体塗料は、アルミニウムフレークを化成処理して得た化成処理アルミニウムフレークを用いることにより、アルミニウムフレークの表面と粉体塗料における塗膜形成成分である樹脂との親和性が向上し、塗装品の塗膜欠陥発生を抑制すると共に、アルミニウムフレークの表面が保護されて変質しにくいので、塗膜の耐食性が向上し塗膜の光沢を長時間保持することができる。   The powder coating of the present invention uses a chemical conversion-treated aluminum flake obtained by chemical conversion of aluminum flake, thereby improving the affinity between the surface of the aluminum flake and the resin that is a coating film forming component in the powder coating, In addition to suppressing the occurrence of coating film defects in the coated product, the surface of the aluminum flake is protected and hardly deteriorates, so that the corrosion resistance of the coating film is improved and the gloss of the coating film can be maintained for a long time.

化成処理が施されるアルミニウムフレークとしては、特に限定されるものではなく塗料用として用いられるものの純度は99.5%以上が好適である。   The aluminum flakes subjected to the chemical conversion treatment are not particularly limited, and the purity of those used for paints is preferably 99.5% or more.

化成処理アルミニウムフレークは、平均厚み(t)が0.01〜1μm、平均長径が5〜40μmであるものが好ましい。   The chemical conversion-treated aluminum flakes preferably have an average thickness (t) of 0.01 to 1 μm and an average major axis of 5 to 40 μm.

平均厚み(t)の好ましい範囲が0.01〜1μmである理由は、0.01μm未満であると、機械的強度が不足してアルミニウムフレークが折れやすくなり、一方、1μmを超えると、光の反射を弱め、光沢性が低下するのに対し、0.01〜1μmであると、このような問題が少ないからである。平均厚み(t)は0.05〜0.8μmであるのがより好ましく、0.1〜0.5μmであるのが特に好ましい。ここに平均厚み(t)は、電子顕微鏡を用いて測定されるものである。   The reason why the preferable range of the average thickness (t) is 0.01 to 1 μm is that when it is less than 0.01 μm, the mechanical strength is insufficient and the aluminum flakes are easily broken. This is because the reflection is weakened and the glossiness is lowered, whereas when the thickness is 0.01 to 1 μm, there are few such problems. The average thickness (t) is more preferably 0.05 to 0.8 μm, and particularly preferably 0.1 to 0.5 μm. Here, the average thickness (t) is measured using an electron microscope.

平均長径の好ましい範囲が5〜40μmである理由は、5μm未満であると、光沢性が不十分であり、一方、40μmを超えると、塗膜表面にブツが生じるのに対し、5〜40μmであると、このような問題が少ないからである。平均長径は5〜30μmであるのがより好ましく、5〜20μmであるのが特に好ましい。ここに平均長径は、電子顕微鏡を用いて測定されるものである。   The reason why the preferred range of the average major axis is 5 to 40 μm is that glossiness is insufficient if it is less than 5 μm. This is because there are few such problems. The average major axis is more preferably 5 to 30 μm, and particularly preferably 5 to 20 μm. Here, the average major axis is measured using an electron microscope.

化成処理アルミニウムフレークの含有量は粉体塗料100体積%に対して1.0〜3.5体積%であるのが好ましい。   The content of the chemical conversion treatment aluminum flakes is preferably 1.0 to 3.5% by volume with respect to 100% by volume of the powder coating material.

化成処理アルミニウムフレークの含有量が1.0体積%未満であると、塗膜外観上の問題が生じやすく、一方、3.5体積%を超えると、塗膜欠陥が形成しやすくなるのに対し、1.0〜3.5体積%であるとこのような問題が少ないからである。   If the content of the chemical conversion treatment aluminum flakes is less than 1.0% by volume, problems in the appearance of the coating film are likely to occur. On the other hand, if it exceeds 3.5% by volume, defects in the coating film are likely to be formed. This is because there are few such problems when the content is 1.0 to 3.5% by volume.

本発明の粉体塗料は、必須成分である化成処理アルミニウムフレークとともに、必要により亜鉛粒子を含むことができる。   The powder coating material of the present invention can contain zinc particles as necessary together with chemical conversion treatment aluminum flakes which are essential components.

この亜鉛粒子の平均粒子径(D50)は、1〜15μm程度であることが好ましい。平均粒子径(D50)が1μm未満であると、必要な膜厚が得られなくなり、一方、15μmを超えると、耐食性が低下するのに対し、1〜15μmであると、このような問題が少ないからである。より好ましい平均粒子径(D50)は1〜10μmの範囲である。 The average particle diameter (D 50 ) of the zinc particles is preferably about 1 to 15 μm. When the average particle diameter (D 50 ) is less than 1 μm, the required film thickness cannot be obtained. On the other hand, when it exceeds 15 μm, the corrosion resistance decreases, whereas when it is 1 to 15 μm, such a problem occurs. Because there are few. A more preferable average particle diameter (D 50 ) is in the range of 1 to 10 μm.

本発明の粉体塗料に必要に応じて含有される亜鉛粒子は、化成処理されていないものおよび化成処理されたもののいずれも用いることができる。   As the zinc particles contained in the powder coating material of the present invention as required, both of those not subjected to chemical conversion treatment and those subjected to chemical conversion treatment can be used.

亜鉛粒子の化成処理は、上述のアルミニウムフレークの化成処理と同様に、リン酸亜鉛、リン酸アルミニウムを用いて行うのが好ましく、亜鉛粒子の前処理および化成処理の条件も、アルミニウムフレークの代わりに亜鉛粒子を用いたこと以外はアルミニウムフレークの前処理および化成処理の条件と同様である。   The conversion treatment of zinc particles is preferably carried out using zinc phosphate and aluminum phosphate in the same manner as the above-described conversion treatment of aluminum flakes, and the conditions for the pretreatment and conversion treatment of zinc particles are also used instead of aluminum flakes. Except for using zinc particles, the conditions are the same as those for pretreatment and chemical conversion treatment of aluminum flakes.

このようにして得られた化成処理された亜鉛粒子表面の化成処理皮膜の厚さは、通常0.05〜3μm、好ましくは0.1〜1μmである。   The thickness of the chemical conversion coating on the surface of the zinc particles thus obtained is usually 0.05 to 3 μm, preferably 0.1 to 1 μm.

本発明の粉体塗料において、化成処理アルミニウムフレークと亜鉛粒子とを用いる場合、化成処理アルミニウムフレークと亜鉛粒子との合計含有量が粉体塗料100体積%に対して6〜28体積%であるのが好ましい。6体積%未満では、耐食性の向上が期待できず、28体積%を超えると、塗膜欠陥が形成しやすくなるのに対し、6〜28体積%であると、このような問題が少ないからである。化成処理アルミニウムフレークと亜鉛粒子との合計含有量は10〜24体積%であるのがより好ましく、14〜22体積%であるのが特に好ましい。   In the powder coating of the present invention, when chemical conversion treated aluminum flakes and zinc particles are used, the total content of the chemical conversion treated aluminum flakes and zinc particles is 6 to 28% by volume with respect to 100% by volume of the powder coating. Is preferred. If it is less than 6% by volume, improvement in corrosion resistance cannot be expected, and if it exceeds 28% by volume, coating film defects are likely to be formed, whereas if it is 6 to 28% by volume, such problems are few. is there. The total content of the chemical conversion-treated aluminum flakes and zinc particles is more preferably 10 to 24% by volume, and particularly preferably 14 to 22% by volume.

また化成処理アルミニウムフレークの体積VAlに対する亜鉛粒子の体積VZnの比率VZn/VAlは、化成処理アルミニウムフレークの含有量が少ないと塗膜外観上の問題が生じやすく、アルミニウムフレークの含有量が多い場合には塗膜欠陥が発生しやすいことから、1/1〜17/1であることが好ましく、1/1〜14/1がより好ましく、1/1〜10/1が特に好ましい。 The ratio V Zn / V Al volume V Zn of zinc particles to the volume V Al chemical conversion treated aluminum flakes, chemical conversion treatment with a small amount of aluminum flake tends to occur appearance of the coating film problems, the content of aluminum flake When there are many, since a coating-film defect will generate | occur | produce easily, it is preferable that it is 1 / 1-17 / 1, 1 / 1-1 / 14 are more preferable, and 1 / 1-1 / 10 are especially preferable.

本発明の粉体塗料は、必須成分として、前述の化成処理アルミニウムフレークを、任意成分として亜鉛粒子を含むものであるが、塗膜形成成分として、熱可塑性樹脂または熱硬化性樹脂が通常用いられる。熱可塑性樹脂としては、例えばポリエチレンやポリプロピレンなどのポリオレフィン系樹脂、塩化ビニル系樹脂、ポリアミド系樹脂、アクリル系樹脂などが挙げられ、熱硬化性樹脂としては、例えばエポキシ樹脂、熱硬化性ポリウレタン系樹脂、熱硬化性アクリル系樹脂などが挙げられるが、防湿性、さび止め性、防食性の持続性の観点から、金属部材表面への焼付け硬化が行える点で、熱硬化性樹脂が好ましい。なお、熱硬化性樹脂を含む粉体塗料においては、必要に応じ、含有される熱硬化性樹脂に応じた硬化剤を含むことができる。   The powder coating material of the present invention contains the above-mentioned chemical conversion treated aluminum flakes as essential components and zinc particles as optional components, but a thermoplastic resin or a thermosetting resin is usually used as a coating film forming component. Examples of the thermoplastic resin include polyolefin resins such as polyethylene and polypropylene, vinyl chloride resins, polyamide resins, and acrylic resins. Examples of the thermosetting resins include epoxy resins and thermosetting polyurethane resins. And thermosetting acrylic resins. From the viewpoint of moisture resistance, rust prevention, and corrosion resistance, thermosetting resins are preferred in that they can be baked and cured on the surface of metal members. In addition, in the powder coating material containing a thermosetting resin, the hardening | curing agent according to the thermosetting resin contained can be included as needed.

本発明の粉体塗料の平均粒径は、静電塗装性、塗膜形成性の観点から、10〜100μmであることが好ましく、20〜80μmであることがより好ましく、30〜60μmであることがさらに好ましい。   The average particle diameter of the powder coating material of the present invention is preferably 10 to 100 μm, more preferably 20 to 80 μm, and more preferably 30 to 60 μm from the viewpoints of electrostatic coating properties and coating film formability. Is more preferable.

[粉体塗装方法]
次に、本発明の粉体塗装方法について説明する。
本発明の粉体塗装方法は、前述した本発明の粉体塗料を金属部材に静電塗装することを特徴とする。
[Powder coating method]
Next, the powder coating method of the present invention will be described.
The powder coating method of the present invention is characterized in that the powder coating of the present invention described above is electrostatically coated on a metal member.

本発明の粉体塗装方法が適用される金属部材を構成する金属としては、構造材、機械部品などとして使用される全ての金属や合金などが挙げられるが、特に多量に使用される鉄、アルミニウム、銅が好適であり、中でも鉄(鋼材)が代表的な金属である。   Examples of the metal constituting the metal member to which the powder coating method of the present invention is applied include all metals and alloys used as structural materials, machine parts, etc., but particularly iron and aluminum used in large quantities. Copper is preferred, and iron (steel) is a typical metal.

これらの金属部材は、粉体塗装が施される前に表面に付着している油分を除去するための脱脂処理、脱脂後の水洗処理、後工程である化成処理における化成皮膜の形成を良好に行うための表面調整処理、および、防食性や耐摩耗性を向上させるための化成処理(例えばリン酸塩化成処理)、および化成処理後の水洗処理という塗装前処理工程が通常施される。本発明の粉体塗装方法においては、金属部材として、化成処理されたものを用いることができる。   These metal members have excellent degreasing treatment to remove oil adhering to the surface before powder coating, water washing treatment after degreasing, and formation of a chemical conversion film in chemical conversion treatment as a post process. A surface pretreatment process such as a surface conditioning treatment to be performed, a chemical conversion treatment (for example, a phosphate chemical conversion treatment) for improving corrosion resistance and wear resistance, and a water washing treatment after the chemical conversion treatment is usually performed. In the powder coating method of the present invention, a metal member that has been subjected to chemical conversion treatment can be used.

粉体塗装方法としては、静電塗装法および流動浸漬塗装法があるが、塗着効率が高く、また均一に塗装できる点などから、本発明の粉体塗装方法においては、静電塗装法が用いられる。この静電塗装法は、接地した被塗物(金属部材)を陽極、塗料噴霧装置を陰極として高電圧を与え、両極間に静電場を作り、その中に塗料を飛散させて帯電せしめ、反対極である被塗物に吸引させて塗膜を作る方法である。   As the powder coating method, there are an electrostatic coating method and a fluidized dip coating method, but the electrostatic coating method is used in the powder coating method of the present invention because of high coating efficiency and uniform coating. Used. In this electrostatic coating method, a grounded object (metal member) is used as an anode, a paint spraying device is used as a cathode, a high voltage is applied, an electrostatic field is created between the two electrodes, paint is scattered in it and charged, and the opposite This is a method of making a coating film by sucking an object to be coated, which is a pole.

静電塗装法は、電気的吸引作用によって塗料を付着させることから、塗料のロスが少なく、肉のりの悪い突出部や周辺部で厚い塗膜が得られる上、作業に人手をほとんど要しないなどの利点がある。静電粉体塗装機としては、市販のものを利用することができる。またその後の粉体塗装後の焼付け処理は、大気中で、150〜200℃で20〜60分行えばよい。   In the electrostatic coating method, the paint is adhered by the electric suction action, so there is little paint loss, thick coating is obtained at the protruding part and the peripheral part where the meat is poor, and the work requires little manual operation. There are advantages. A commercially available electrostatic powder coating machine can be used. Moreover, what is necessary is just to perform the baking process after the powder coating after that for 20 to 60 minutes at 150-200 degreeC in air | atmosphere.

このようにして、金属部材上に、密着性および耐食性に優れた塗膜を形成することができる。この塗膜の厚さは、用途によって異なるが、通常20〜150μm程度、好ましくは30〜100μmである。   In this way, a coating film excellent in adhesion and corrosion resistance can be formed on the metal member. Although the thickness of this coating film changes with uses, it is about 20-150 micrometers normally, Preferably it is 30-100 micrometers.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these Examples.

なお、実施例、比較例で得られた塗膜の性能は、以下に示す方法に従って評価した。
(1)密着性
JIS K 5600−5−6に準拠して基盤目試験を行い、密着性を評価した。
(2)耐食性
JIS K 2371に準拠して、240時間の塩水噴霧試験を行い、耐食性を評価した。
(3)光沢度
JIS Z 8741、JIS K 5600−4−7に準拠して、ハンディ型光沢計(日本電色工業社製、機種名「PG−1M」)を用い、角度60°にて測定した。光沢保持率は、上記耐食性試験前後の光沢度測定結果を用いて以下の式より求めた。
光沢保持率(%)=(試験後の光沢度/試験前の光沢度)×100
(4)塗膜外観
目視観察により、優れて良好(◎)、良好(○)、不良(×)の評価を行った。
In addition, the performance of the coating film obtained by the Example and the comparative example was evaluated in accordance with the method shown below.
(1) Adhesiveness A foundation eye test was performed in accordance with JIS K 5600-5-6 to evaluate the adhesiveness.
(2) Corrosion resistance Based on JIS K 2371, the salt spray test for 240 hours was done and corrosion resistance was evaluated.
(3) Glossiness In accordance with JIS Z 8741 and JIS K 5600-4-7, a handy gloss meter (manufactured by Nippon Denshoku Industries Co., Ltd., model name “PG-1M”) was measured at an angle of 60 °. did. The gloss retention was determined from the following equation using the gloss measurement results before and after the corrosion resistance test.
Gloss retention (%) = (Glossiness after test / Glossiness before test) × 100
(4) Evaluation of the coating film appearance by visual observation was excellent and excellent (、), good (◯), and defective (×).

実施例1
(1)粉体塗料の作製
アルミニウムフレーク(平均長径15μm、平均厚み(t)0.2μm、大和金属粉工業社製、商品名「スーパーファインNo.22000」) 50gをアセトンにて脱脂処理し、乾燥後、リン酸亜鉛処理液(日本パーカライジング社製、商品名「BT−3004」)250ml中に40℃で2分間浸漬したのち、純水で洗浄し、次いで80℃で8時間乾燥処理して、化成処理アルミニウムフレークを得た。
次に、この化成処理アルミニウムフレークをエポキシ樹脂(トウペ社製、商品名「トアパウダー♯1000」)に二軸押出機にて110℃で混練して分散混合し、化成処理アルミニウムフレーク1.0体積%を含有する塊状樹脂を得た。この塊状樹脂をピンミルにて粉砕し、平均粒径55μmの粉体塗料を作製した。
Example 1
(1) Preparation of powder coating material Aluminum flakes (average major axis 15 μm, average thickness (t) 0.2 μm, manufactured by Daiwa Metal Powder Co., Ltd., trade name “Superfine No. 22000”) 50 g were degreased with acetone, After drying, it is immersed in 250 ml of zinc phosphate treatment solution (trade name “BT-3004” manufactured by Nihon Parkerizing Co., Ltd.) at 40 ° C. for 2 minutes, washed with pure water, and then dried at 80 ° C. for 8 hours. Then, chemical conversion treated aluminum flakes were obtained.
Next, this chemical conversion-treated aluminum flake was kneaded with an epoxy resin (trade name “Toa Powder # 1000” manufactured by Tope Co., Ltd.) at 110 ° C. with a twin-screw extruder, and dispersed and mixed. A bulk resin containing% was obtained. This bulk resin was pulverized by a pin mill to prepare a powder coating material having an average particle diameter of 55 μm.

(2)粉体塗料塗装品の作製
被塗物である金属部材として、鉄系部材である熱間圧延鋼板(SPHC板:100mm×100mm×3.6mm)を用い、これをアセトンで洗浄した後、表面調整処理(日本パーカライジング社製、商品名「PL−4031」液中に25℃30秒浸漬)、次いでリン酸亜鉛処理(日本パーカライジング社製、商品名「BT−3004」液中に45℃3分浸漬)を行って皮膜質量3g/mのリン酸亜鉛皮膜を形成させた。
次に、リン酸亜鉛処理後の熱間圧延鋼板に上記(1)で作製した粉体塗料を、コロナ自動ガン(旭サナック社製、機種名「X−2a」、コロナ帯電方式)にて、塗付したのち、大気加熱炉にて、180℃、30分間焼付け処理を行い、厚さ70μmの塗膜を有する粉体塗料塗装品を得た。塗膜の性能評価結果を表1に示す。
(2) Production of powder coating product After using a hot rolled steel plate (SPHC plate: 100 mm × 100 mm × 3.6 mm) as an iron-based member as a metal member to be coated, this is washed with acetone. , Surface conditioning treatment (manufactured by Nihon Parkerizing Co., Ltd., trade name “PL-4031”, immersion at 25 ° C. for 30 seconds), then zinc phosphate treatment (Nihon Parkerizing Co., Ltd., trade name “BT-3004”, 45 ° C. in liquid Immersion for 3 minutes) to form a zinc phosphate coating having a coating mass of 3 g / m 2 .
Next, the powder coating prepared in (1) above on the hot-rolled steel sheet after the zinc phosphate treatment is performed using a corona automatic gun (manufactured by Asahi Sunac Corporation, model name “X-2a”, corona charging method). After the application, a baking treatment was performed at 180 ° C. for 30 minutes in an atmospheric heating furnace to obtain a powder coating product having a coating film having a thickness of 70 μm. Table 1 shows the performance evaluation results of the coating film.

比較例1
実施例1の(1)において、リン酸亜鉛処理アルミニウムフレークの代わりに、リン酸亜鉛処理をしていないアルミニウムフレークを用いた以外は、実施例1と同様な操作を行い、厚さ70μmの塗膜を有する粉体塗料塗装品を得た。塗膜の性能評価結果を表1に示す。
Comparative Example 1
In Example 1 (1), the same operation as in Example 1 was performed, except that aluminum flakes not treated with zinc phosphate were used instead of zinc phosphate-treated aluminum flakes, and a coating having a thickness of 70 μm was applied. A powder coating product having a film was obtained. Table 1 shows the performance evaluation results of the coating film.

Figure 2013014701
Figure 2013014701

実施例1および比較例1の結果より、化成処理アルミニウムフレークを用いた塗装品は、化成処理していないアルミニウムフレークを用いた塗装品に比べて、光沢保持率が優れていることが明らかとなった。   From the results of Example 1 and Comparative Example 1, it is clear that the coated product using the chemical conversion treated aluminum flakes has a higher gloss retention than the coated product using the aluminum flakes not subjected to chemical conversion treatment. It was.

実施例2
実施例1において、化成処理アルミニウムフレークの代わりに、化成処理アルミニウムフレークとともに、アセトンにて脱脂処理し乾燥して得た亜鉛粒子(平均粒子径7μm、高純度化学研究所社製、商品名「ZNE01PB」)を用い、化成処理アルミニウムフレークの含有量(VAl体積%)、亜鉛粒子の含有量(VZn体積%)、両者の合計含有量(VAl+VZn)および両者の比率(VZn/VAl)を表2に示すように設定した以外は、実施例1と同様な操作を行って7種類の粉体塗料を作製し、得られた粉体塗料を用いて、厚さ70μmの塗膜を有する粉体塗料塗装品を得た。塗膜の性能評価結果を表2に示す。
Example 2
In Example 1, instead of the chemically treated aluminum flakes, zinc particles obtained by degreasing and drying with acetone together with the chemically treated aluminum flakes (average particle diameter 7 μm, manufactured by Kojundo Chemical Laboratory Co., Ltd., trade name “ZNE01PB”) )), The content of chemical conversion treated aluminum flakes (V Al volume%), the content of zinc particles (V Zn volume%), the total content of both (V Al + V Zn ) and the ratio of both (V Zn / Except that V Al ) was set as shown in Table 2, the same operation as in Example 1 was performed to prepare seven types of powder paints. Using the obtained powder paints, a coating having a thickness of 70 μm was made. A powder coating product having a film was obtained. Table 2 shows the performance evaluation results of the coating film.

Figure 2013014701
Figure 2013014701

実施例3
実施例2において、化成処理をしていない亜鉛粒子の代わりに、実施例1におけるアルミニウムフレークの化成処理と同様なリン酸亜鉛処理(亜鉛粉末150gに対して、リン酸亜鉛処理液250ml使用)を行って得た化成処理亜鉛粒子を用いた以外は、実施例1と同様な操作を行って7種類の粉体塗料を作製し、得られた粉体塗料を用いて、厚さ70μmの塗膜を有する粉体塗料塗装品を得た。塗膜の性能評価結果を表3に示す。
Example 3
In Example 2, instead of zinc particles that were not subjected to chemical conversion treatment, the same zinc phosphate treatment as that of aluminum flakes in Example 1 (using 250 ml of zinc phosphate treatment solution for 150 g of zinc powder) was performed. Except for using the chemical conversion-treated zinc particles obtained in this way, the same operation as in Example 1 was carried out to prepare 7 types of powder paints. Using the obtained powder paints, a coating film having a thickness of 70 μm was prepared. A powder coating product having the following was obtained. The performance evaluation results of the coating film are shown in Table 3.

Figure 2013014701
Figure 2013014701

比較例2
実施例2において、化成処理アルミニウムフレークの代わりに、アセトンで脱脂処理後、化成処理をしていないアルミニウムフレークを用いた以外は、実施例2と同様な操作を行って5種類の粉体塗料を作製し、得られた粉体塗料を用いて、厚さ70μmの塗膜を有する粉体塗料塗装品を得た。塗膜の性能評価結果を表4に示す。
Comparative Example 2
In Example 2, instead of chemical conversion treatment aluminum flakes, the same operation as in Example 2 was performed except that aluminum flakes that had not been subjected to chemical conversion treatment after degreasing with acetone were used to obtain five types of powder paints. A powder coating product having a 70 μm-thick coating film was obtained using the powder coating thus prepared. The performance evaluation results of the coating film are shown in Table 4.

Figure 2013014701
Figure 2013014701

表2、表3および表4の結果より、下記のことが明らかとなった。
(i)化成処理アルミニウムフレークの体積%(VAl)と亜鉛粒子の体積%(VZn)との合計含有量(VAl+VZn)が、本発明の所望範囲6〜28体積%に含まれる6.0〜28.0体積%であり、比率(VZn/VAl)が、本発明の所望範囲である1/1〜17/1に含まれる1.4/1〜16.7/1である実施例2および実施例3においては、亜鉛粒子が化成処理されていない場合(表2の実施例2)および化成処理されている場合(表3の実施例3)のいずれにおいても塗膜の密着性試験、耐食性試験、塗膜外観、耐食性試験前と後の光沢度、光沢保持率のいずれにおいても優れているが、化成処理した亜鉛粒子を用いた表3の実施例3が化成処理されていない亜鉛粒子を用いた表2の実施例2よりも耐食性試験後の光沢度、光沢保持率に優れている。
From the results of Table 2, Table 3, and Table 4, the following became clear.
(I) The total content (V Al + V Zn ) of the volume% (V Al ) of the chemical conversion-treated aluminum flakes and the volume% (V Zn ) of the zinc particles is included in the desired range of 6 to 28% by volume of the present invention. 6.0 to 28.0 is the volume% ratio (V Zn / V Al) is 1.4 / 1 to 16.7 / 1 contained in the desired range of the present invention 1 / 1-17 / 1 In Examples 2 and 3, the coating film was used in both cases where the zinc particles were not chemically treated (Example 2 in Table 2) and when the zinc particles were chemically treated (Example 3 in Table 3). The adhesion test, corrosion resistance test, coating film appearance, glossiness before and after the corrosion resistance test, and gloss retention are all excellent, but Example 3 in Table 3 using the chemically treated zinc particles is a chemical conversion treatment. More corrosion resistance test than Example 2 in Table 2 using untreated zinc particles Gloss, it is excellent in gloss retention.

(ii)実施例2において、化成処理アルミニウムフレークの代わりに化成処理されていないアルミニウムフレークを用いた表4の比較例2においては、すべての試験項目が実施例2に比べて劣っていた。 (Ii) In the comparative example 2 of Table 4 using the aluminum flakes not subjected to chemical conversion treatment instead of the chemical conversion treated aluminum flakes in Example 2, all the test items were inferior to those of the second example.

本発明の粉体塗料は、塗膜の金属部材との密着性に優れ、塗膜外観上および塗膜欠陥も解決し、かつ耐食性の向上した塗装品を与えることが可能であり、例えば自動車用ディスクブレーキのブレーキパッドやドラムブレーキのバッキングプレートなどの塗装に好適に適用できる。   The powder coating material of the present invention is excellent in adhesion of a coating film to a metal member, can solve a coating film appearance and a coating film defect, and can provide a coated product having improved corrosion resistance. It can be suitably applied to painting of brake pads for disc brakes and backing plates for drum brakes.

Claims (12)

化成処理されたアルミニウムフレークを含むことを特徴とする粉体塗料。   A powder coating material comprising a chemically treated aluminum flake. 化成処理されたアルミニウムフレークが、平均厚み(t)0.01〜1μm、平均長径5〜40μmである、請求項1に記載の粉体塗料。   The powder coating material according to claim 1, wherein the chemical-treated aluminum flakes have an average thickness (t) of 0.01 to 1 μm and an average major axis of 5 to 40 μm. 化成処理されたアルミニウムフレークの含有量が粉体塗料100体積%に対して1.0〜3.5体積%である、請求項1または2に記載の粉体塗料。   The powder coating material according to claim 1 or 2, wherein the content of the chemical-treated aluminum flake is 1.0 to 3.5% by volume with respect to 100% by volume of the powder coating material. さらに亜鉛粒子を含む、請求項1〜3のいずれか1項に記載の粉体塗料。   Furthermore, the powder coating material of any one of Claims 1-3 containing a zinc particle. 亜鉛粒子が化成処理されていないものまたは化成処理されたものである、請求項4に記載の粉体塗料。   The powder coating material according to claim 4, wherein the zinc particles are not subjected to chemical conversion treatment or are subjected to chemical conversion treatment. 化成処理されたアルミニウムフレークと亜鉛粒子との合計含有量が粉体塗料100体積%に対して6〜28体積%である、請求項4または5に記載の粉体塗料。   The powder coating material according to claim 4 or 5, wherein the total content of the chemically treated aluminum flakes and zinc particles is 6 to 28% by volume with respect to 100% by volume of the powder coating material. 化成処理されたアルミニウムフレークの体積VAlに対する亜鉛粒子の体積VZnの比率VZn/VAlが1/1〜17/1である、請求項4〜6のいずれか1項に記載の粉体塗料。 Chemical conversion treated the ratio V Zn / V Al is 1 / 1-17 / 1 volume V Zn of zinc particles to the volume V Al of aluminum flakes, powders according to any one of claims 4-6 paint. 化成処理がリン酸塩処理である、請求項1〜3、5〜7のいずれか1項に記載の粉体塗料。   The powder coating material according to claim 1, wherein the chemical conversion treatment is a phosphate treatment. リン酸塩処理がリン酸亜鉛処理またはリン酸アルミニウム処理である、請求項8に記載の粉体塗料。   The powder coating material according to claim 8, wherein the phosphate treatment is a zinc phosphate treatment or an aluminum phosphate treatment. 請求項1〜9のいずれか1項に記載の粉体塗料を金属部材に静電塗装することを特徴とする粉体塗装方法。   A powder coating method comprising electrostatically coating a metal member with the powder coating material according to any one of claims 1 to 9. 金属部材が化成処理されたものである、請求項10に記載の粉体塗装方法。   The powder coating method according to claim 10, wherein the metal member has been subjected to chemical conversion treatment. 金属部材が鋼材である、請求項10または11に記載の粉体塗装方法。   The powder coating method according to claim 10 or 11, wherein the metal member is a steel material.
JP2011148988A 2011-07-05 2011-07-05 Powder coating and powder coating method Expired - Fee Related JP5806016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011148988A JP5806016B2 (en) 2011-07-05 2011-07-05 Powder coating and powder coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011148988A JP5806016B2 (en) 2011-07-05 2011-07-05 Powder coating and powder coating method

Publications (2)

Publication Number Publication Date
JP2013014701A true JP2013014701A (en) 2013-01-24
JP5806016B2 JP5806016B2 (en) 2015-11-10

Family

ID=47687675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011148988A Expired - Fee Related JP5806016B2 (en) 2011-07-05 2011-07-05 Powder coating and powder coating method

Country Status (1)

Country Link
JP (1) JP5806016B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090675A (en) * 2016-11-30 2018-06-14 キヤノン株式会社 Metallic pigment, ink composition containing the same, and method for producing metallic pigment
WO2022118539A1 (en) * 2020-12-02 2022-06-09 Nofメタルコーティングス株式会社 Rust preventive coating composition, rust preventive film, and article, and zinc-based composite particles and composition containing zinc-based composite particles

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354475A (en) * 1986-04-04 1988-03-08 Toyo Alum Kk Aluminum flake pigment composition for water-based paint
JPH073183A (en) * 1992-11-27 1995-01-06 Basf Corp Copolymer dispersant composition for inorganic pigment
JPH10130545A (en) * 1996-10-29 1998-05-19 Asahi Chem Ind Co Ltd Water-based aluminum pigment composition
US5912283A (en) * 1995-07-19 1999-06-15 Toyo Aluminium Kabushiki Kaisha Surface-treated color pigment, colored substrate particles and production process thereof
JP2002121423A (en) * 2000-10-12 2002-04-23 Showa Aluminum Powder Kk Resin-coated aluminum pigment and method for producing the same
US20040151940A1 (en) * 2001-05-24 2004-08-05 Yasushi Takano Powder coating compositon, process for producing the same, and coating film made from the same
WO2005007755A1 (en) * 2003-07-18 2005-01-27 Toyo Aluminium Kabushiki Kaisha Flake pigment, coating material and powder coating composition each containing the same, and surface-treating agent for flaky particle for use therein
US20060014858A1 (en) * 2002-11-22 2006-01-19 Yasushi Takano Powder coating composition
JP2008031349A (en) * 2006-07-31 2008-02-14 Nippon Paint Co Ltd Manufacturing method of powder coating composition
US20090324983A1 (en) * 2006-12-28 2009-12-31 Henkel Ag & Co. Kgaa Composition and process for coating metal surfaces
JP2010121048A (en) * 2008-11-20 2010-06-03 Akebono Brake Ind Co Ltd Powder coating material and powder coating method
JP2010189597A (en) * 2009-02-20 2010-09-02 Toyo Aluminium Kk Method for producing powder coating composition
JP2011074251A (en) * 2009-09-30 2011-04-14 Dainippon Toryo Co Ltd Rust prevention primer for aluminum member and aluminum member

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354475A (en) * 1986-04-04 1988-03-08 Toyo Alum Kk Aluminum flake pigment composition for water-based paint
JPH073183A (en) * 1992-11-27 1995-01-06 Basf Corp Copolymer dispersant composition for inorganic pigment
US5912283A (en) * 1995-07-19 1999-06-15 Toyo Aluminium Kabushiki Kaisha Surface-treated color pigment, colored substrate particles and production process thereof
JPH10130545A (en) * 1996-10-29 1998-05-19 Asahi Chem Ind Co Ltd Water-based aluminum pigment composition
JP2002121423A (en) * 2000-10-12 2002-04-23 Showa Aluminum Powder Kk Resin-coated aluminum pigment and method for producing the same
US20040151940A1 (en) * 2001-05-24 2004-08-05 Yasushi Takano Powder coating compositon, process for producing the same, and coating film made from the same
US20060014858A1 (en) * 2002-11-22 2006-01-19 Yasushi Takano Powder coating composition
WO2005007755A1 (en) * 2003-07-18 2005-01-27 Toyo Aluminium Kabushiki Kaisha Flake pigment, coating material and powder coating composition each containing the same, and surface-treating agent for flaky particle for use therein
JP2008031349A (en) * 2006-07-31 2008-02-14 Nippon Paint Co Ltd Manufacturing method of powder coating composition
US20090324983A1 (en) * 2006-12-28 2009-12-31 Henkel Ag & Co. Kgaa Composition and process for coating metal surfaces
JP2010121048A (en) * 2008-11-20 2010-06-03 Akebono Brake Ind Co Ltd Powder coating material and powder coating method
JP2010189597A (en) * 2009-02-20 2010-09-02 Toyo Aluminium Kk Method for producing powder coating composition
JP2011074251A (en) * 2009-09-30 2011-04-14 Dainippon Toryo Co Ltd Rust prevention primer for aluminum member and aluminum member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090675A (en) * 2016-11-30 2018-06-14 キヤノン株式会社 Metallic pigment, ink composition containing the same, and method for producing metallic pigment
WO2022118539A1 (en) * 2020-12-02 2022-06-09 Nofメタルコーティングス株式会社 Rust preventive coating composition, rust preventive film, and article, and zinc-based composite particles and composition containing zinc-based composite particles

Also Published As

Publication number Publication date
JP5806016B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
Hosseini et al. The performance improvement of Zr conversion coating through Mn incorporation: With and without organic coating
JPH10502884A (en) Metal substrate coated with two layers and method for producing the same
JP5172526B2 (en) Rust-proof metal parts and coat paint
JP2020164999A (en) Method for coating metal surface of base material, and aqueous composition
JP5607179B2 (en) Resin composition for precoated steel sheet having excellent weldability, workability, and corrosion resistance, method for producing precoated steel sheet using the same, and steel sheet
EP0119608B1 (en) Coating composite for extended corrosion resistance
JPS6383172A (en) Weldable rust-inhibiting lubricating film-forming composition and production of surface-treated steel sheet using the same
JP5492401B2 (en) Powder coating and powder coating method
JP5806016B2 (en) Powder coating and powder coating method
JP5981636B2 (en) Zinc-based composite materials and use thereof
JP2006083464A (en) Rust-preventive metallic component, and its manufacturing method
JP2010247347A (en) Precoated cold-rolled steel sheet and method for manufacturing the same
JP2002105393A (en) Anticorrosive powder coating composition for steel material, steel material coated with the coating and method for producing the coated steel material
JP2004099808A (en) Powder coating composition, coating method and steel material for automotive
JPS60219265A (en) Method for treating metallic surface
WO2019146163A1 (en) Anticorrosion-treated metallic member and coating paint
BR112016017018B1 (en) METHOD FOR COATING METALLIC SURFACES, THEIR COATED SUBSTRATES AND THEIR USE
JPH0994916A (en) Organic composite coated steel
JP2001199003A (en) Organic composite coated steel panel excellent in solvent resistance
JP2010126536A (en) Powder coating composition, coating film using the same and method for producing the coating film
JP3503194B2 (en) Organic composite coated steel sheet
JP3993815B2 (en) Coated metal plate with excellent conductivity, corrosion resistance and formability
JP2016204692A (en) Organic resin coated steel
JP3458553B2 (en) Organic composite coated steel sheet with excellent water-resistant secondary adhesion and post-processing corrosion resistance
JP2022140340A (en) Iron-based metal pipe having corrosion-resistant layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150903

R150 Certificate of patent or registration of utility model

Ref document number: 5806016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees