JP2013013896A - Anaerobiotic treatment method and device of organic waste - Google Patents

Anaerobiotic treatment method and device of organic waste Download PDF

Info

Publication number
JP2013013896A
JP2013013896A JP2012207186A JP2012207186A JP2013013896A JP 2013013896 A JP2013013896 A JP 2013013896A JP 2012207186 A JP2012207186 A JP 2012207186A JP 2012207186 A JP2012207186 A JP 2012207186A JP 2013013896 A JP2013013896 A JP 2013013896A
Authority
JP
Japan
Prior art keywords
hydrogen
fermentation
methane
solubilization
organic waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012207186A
Other languages
Japanese (ja)
Other versions
JP5711192B2 (en
Inventor
Naoaki Kataoka
直明 片岡
Shohei Shobu
昌平 菖蒲
Akiko Miya
晶子 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2012207186A priority Critical patent/JP5711192B2/en
Publication of JP2013013896A publication Critical patent/JP2013013896A/en
Application granted granted Critical
Publication of JP5711192B2 publication Critical patent/JP5711192B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To optimize a biological treatment process which easily and efficiently makes an organic solid soluble and decomposes it into a low molecule in a short time by utilizing a reaction characteristic of an anaerobiotic microorganism, to a hydrogen-methane two-stage fermentation treatment process of garbage-based organic waste.SOLUTION: In this anaerobiotic treatment process and its device, in garbage-based organic waste treatment in which sugar-based waste is a main component or in garbage-based organic waste treatment including a cellulose solid, hydrogen and methane are biologically recovered which are returned to a process in which complete-mixture type solubilization and hydrogen fermentation for treating a raw material which is refined and homogenized in a preceding process and whose density is VS 5 to 15 wt.% by a biological reaction at 30 to 70°C, pH 5 to 8.5 and at a hydraulic retention time of 2 to 3 days in a font stage are combinedly performed, and a process in which a two-stage fermentation method composed of a complete-mixture type methane fermentation process at a succeeding rear stage is performed, and the anaerobiotic solubilization and hydrogen fermentation for solubilizing and fermenting a part of a flow-out component from a methane fermentation process are combinedly performed.

Description

本発明は、下水汚泥、余剰汚泥、家畜糞尿、生ごみ、食品製造廃棄物などの有機性廃棄物を水素発酵とメタン発酵の二段発酵法により嫌気性処理する方法及び装置に関し、特に、嫌気性微生物の反応特性を利用して、有機性固形分を短時間で簡便に効率良く可溶化・低分子化する、生物処理プロセスと水素発酵プロセスを併せ持つことを特徴とする有機性廃棄物の嫌気性処理方法及び装置に関するものである。   The present invention relates to a method and apparatus for anaerobic treatment of organic waste such as sewage sludge, surplus sludge, livestock manure, food waste, food production waste, etc., by a two-stage fermentation method of hydrogen fermentation and methane fermentation, and in particular, anaerobic Organic waste anaerobic, characterized by having both a biological treatment process and a hydrogen fermentation process that easily and efficiently solubilizes and lowers the molecular weight of organic solids in a short period of time using the reaction characteristics of microbial microorganisms The present invention relates to a sex processing method and apparatus.

近年、資源循環型社会の構築を目指して、有機性廃水・廃棄物(バイオマス)を対象とした嫌気性処理法(メタン発酵法)が注目されてきている。これは、廃水・廃棄物からメタンガスや水素ガスなどのバイオマスエネルギーを生物学的に変換できる点、液体肥料やコンポスト資源を回収できる点、温和な生物反応を利用する点、焼却処理に依存しない点、化石燃料由来のCO削減に寄与できる点などの特徴を有するためである。 In recent years, anaerobic treatment methods (methane fermentation methods) targeting organic wastewater and waste (biomass) have been attracting attention with the aim of building a resource recycling society. This means that biomass energy such as methane gas and hydrogen gas can be biologically converted from wastewater / waste, that liquid fertilizers and compost resources can be recovered, that mild biological reactions are used, and that they do not depend on incineration. This is because it has features such as that it can contribute to CO 2 reduction derived from fossil fuels.

一方、メタン発酵技術においては、有機性廃水系では高速化と廃水種類の適用拡大が研究開発課題であり、有機性廃棄物においては固形物可溶化とメタンガス転換率の向上が研究開発課題として挙げられ、種々の技術が提案されている。現段階においては、UASB(上向流式嫌気性スラッジブランケット)法による有機性廃水の高速処理、有機性廃棄物の高温メタン発酵法の適用によって技術革新は進歩しつつあるものの、固形物の可溶化技術に関しては依然として十分な解決には到っていない。特に、資源循環の中で将来的に最も重要となる未利用のバイオマス資源に関して、その多くを占めるセルロース成分や汚泥に対する可溶化・低分子化技術については未確立な状況にある。   On the other hand, in the methane fermentation technology, in organic wastewater systems, speeding up and expanding the use of wastewater are R & D issues, and in organic waste, solid solubilization and improvement in methane gas conversion rate are listed as R & D issues. Various techniques have been proposed. At the present stage, although technological innovation is progressing by applying high-speed organic wastewater treatment by UASB (upward flow anaerobic sludge blanket) method and high-temperature methane fermentation method of organic waste, There is still no sufficient solution for solubilization technology. In particular, regarding the unused biomass resources that will become the most important in the future in the resource circulation, the solubilization and low molecular weight technologies for cellulose components and sludge, which occupy most of them, are not yet established.

また、水素発酵技術における研究開発課題としては、Clostridium属細菌、Enterobacter属細菌、Bacillus属細菌、嫌気性集積培養菌を用いてグルコースやデンプン、ショ糖などの可溶性の糖質から水素発酵する技術は種々提案されている。また、有機性固形廃棄物を対象とした水素発酵技術が未確立である点、水素ガスに変換できる対象有機物がグルコースやデンプンに限定されている点、有機性固形廃棄物を対象とした水素発酵の制御技術が未確立である点など多くの研究開発課題を残している。   In addition, research and development issues in hydrogen fermentation technology include technologies for hydrogen fermentation from soluble carbohydrates such as glucose, starch, and sucrose using Clostridium bacteria, Enterobacter bacteria, Bacillus bacteria, and anaerobic enrichment cultures. Various proposals have been made. In addition, hydrogen fermentation technology for organic solid waste is not established, target organic matter that can be converted to hydrogen gas is limited to glucose and starch, hydrogen fermentation for organic solid waste Many research and development issues remain, such as the lack of control technology.

更に、有機性廃液を対象として、水素発酵とメタン発酵を配管を介して組合わせたバイオガス発生装置によって、水素ガスとメタンガスを嫌気的に回収する方法が提案されているが、有機性固形廃棄物を対象とした場合の効率的な技術提案はなされていない(例えば、特許文献1参照)。
また、濃厚な有機性排水や汚泥、下水汚泥等を嫌気性処理して無機安定化する際に、水素とメタンとを別々に生産回収してエネルギーの有効利用を図ると共に、処理効率の改善及び運転の安定化を可能とする嫌気性処理装置に関する技術が特許登録されている(特許第3191400号)。これは、有機性排水を受け入れ酸生成するための酸生成槽と、酸生成槽の流出液の一部を受け入れメタン生成を行なうためのメタン生成槽と、酸生成槽の流出液の一部を受け入れ、減圧して溶存ガスを気相に移行させるための減圧槽と、減圧槽内の液を酸生成槽に戻す手段と、減圧槽から排出される気相から、水系吸蔵合金により水素を回収する手段とを備えたことを特徴とする嫌気性処理装置を特徴としているが、本発明の1つの主題である可溶化・水素発酵技術に関する提案ではない。
Furthermore, for organic waste liquids, a method for anaerobically recovering hydrogen gas and methane gas using a biogas generator that combines hydrogen fermentation and methane fermentation via piping has been proposed. No efficient technical proposal has been made for objects (see, for example, Patent Document 1).
In addition, when anaerobically treating dense organic wastewater, sludge, sewage sludge, etc. to stabilize minerals, hydrogen and methane are separately produced and recovered for effective use of energy and improved treatment efficiency and A technology related to an anaerobic treatment device that enables stabilization of operation is registered as a patent (Japanese Patent No. 3191400). This consists of an acid generation tank for receiving organic wastewater and generating acid, a methane generation tank for receiving a part of the effluent of the acid generation tank and generating methane, and a part of the effluent of the acid generation tank. Receiving and reducing pressure to transfer the dissolved gas to the gas phase, means for returning the liquid in the pressure reduction tank to the acid generation tank, and recovering hydrogen from the gas phase discharged from the pressure reducing tank with an aqueous storage alloy An anaerobic treatment device characterized in that it is provided with a means for carrying out the above, but is not a proposal relating to the solubilization / hydrogen fermentation technology which is one of the subjects of the present invention.

このような有機性廃棄物を対象とした場合において、従来から知られている有機性固形物の可溶化・低分子化技術(以下、前処理と呼ぶ)方法としては、物理化学的処理として爆砕法、超音波破砕法、湿式酸化法、湿式ミル法、熱処理法、アルカリ処理法、熱アルカリ処理法、オゾン処理法など多数知られている。また、生物学的処理法としては、微生物処理法、酵素処理法などが知られている。   In the case of targeting such organic waste, conventionally known methods for solubilizing and reducing the molecular weight of organic solids (hereinafter referred to as pretreatment) include physicochemical treatment as blasting. There are many known methods such as a method, an ultrasonic crushing method, a wet oxidation method, a wet mill method, a heat treatment method, an alkali treatment method, a thermal alkali treatment method, and an ozone treatment method. As biological treatment methods, microbial treatment methods, enzyme treatment methods and the like are known.

これらの内、物理化学的な前処理は、投入エネルギー量が多いこと、酸・アルカリなどの薬品の消費が多いこと、設備面でコスト負担や維持管理負担が大きいことなどから、廃棄物処理での水素発酵・メタン発酵システムとして見た場合、費用対効果としては十分満足するものでないのが現状である。一方、生物学的な前処理としては、代表的なものに酵素処理法と微生物処理法が挙げられる。前者は、近年の遺伝子組換技術等の駆使によって、各種工業用酵素は高活性・低廉化になりつつあるものの、その使用に際しては、(1)対象固形物が限定されること、(2)固形物の性状によって作用効果が異なること、(3)比較的易分解牲の固形物には作用が進行し易い反面、難分解性の固形物には依然として問題点も残されている。微生物処理法では、先に挙げたようなClostridium属細菌、Enterobacter属細菌、Bacillus属細菌、嫌気性集積培養菌等の特定の有用な微生物種または微生物群を添加する方法(バイオオーグメンテーション)、有用微生物群の栄養要求や生育環境を整えることで増殖を活発化する方法(バイオスティムレーション)が知られているが、実用的に適用される技術にまでは到っていないのが現状である。   Among these, physicochemical pretreatment is a waste treatment because of the large amount of energy input, the consumption of chemicals such as acids and alkalis, and the heavy burden of cost and maintenance on equipment. The current situation is that it is not fully satisfactory in terms of cost effectiveness when viewed as a hydrogen fermentation / methane fermentation system. On the other hand, representative examples of biological pretreatment include enzyme treatment and microbial treatment. In the former, although various industrial enzymes are becoming highly active and inexpensive due to the recent use of gene recombination technology, (1) the target solids are limited, (2) The action and effect differ depending on the properties of the solid, and (3) the action is likely to proceed with relatively easily degradable solids, but problems still remain with persistent solids. In the microorganism treatment method, a method of adding a specific useful microorganism species or group of microorganisms such as Clostridium bacterium, Enterobacter bacterium, Bacillus bacterium, anaerobic enrichment culture, etc. (bioaugmentation), There is a known method (biostimulation) that activates multiplication by adjusting the nutritional requirements and growth environment of useful microorganisms, but it has not reached a practically applicable technology. .

更には、分解槽(反応槽)内の嫌気性の汚泥又は微生物の濃度を分離膜を用いて高濃度に保持することにより、固形物の可溶化・低分子化を促進する手法もある。これは、工学的には、HRT(水理学的滞留時間)を変えずに、SRT(汚泥滞留時間)を長くとることによって微生物分解を促進することを狙うものである。しかしながら、有機性廃棄物を対象として分離膜技術を適用した場合、分離膜の閉塞や発泡間題などの実用上のトラブルが多く、初期コスト、ランニングコストも高いことから、汎用性のある技術とはなっていない。   Furthermore, there is also a technique for promoting solubilization and low molecular weight solids by maintaining the concentration of anaerobic sludge or microorganisms in the decomposition tank (reaction tank) at a high concentration using a separation membrane. From an engineering point of view, the aim is to promote microbial degradation by increasing the SRT (sludge residence time) without changing the HRT (hydraulic residence time). However, when separation membrane technology is applied to organic waste, there are many practical problems such as clogging of the separation membrane and foaming problems, and the initial cost and running cost are also high. It is not.

特開2001−149983号公報JP 2001-149983 A

このように、有機性廃棄物の水素発酵・メタン発酵の二段発酵処理においては、固形物の水素ガス・メタンガスヘの効率的変換がポイントであるが、その変換工程では、固形物の可溶化・低分子化の技術が発酵処理性能を制する最大の鍵となっている。したがって、より効率的な可溶化・低分子化工程を備えた、水素・メタン二段発酵処理プロセスの構築が求められている。   Thus, in the two-stage fermentation process of organic waste hydrogen fermentation and methane fermentation, the key is efficient conversion of solids to hydrogen gas and methane gas.・ Low molecular weight technology is the biggest key to controlling fermentation performance. Accordingly, there is a demand for the construction of a hydrogen / methane two-stage fermentation process with more efficient solubilization and molecular weight reduction processes.

本発明は、このような従来の問題点に鑑みて、下水汚泥、余剰汚泥、家畜糞尿、生ごみ、食品製造廃棄物などの固形分を含む有機性廃棄物を水素発酵・メタン発酵処理する方法において、特に、嫌気性微生物の反応特性を利用して有機性固形物を短時間で簡便に効率良く可溶化・低分子化する生物処理プロセスを、水素・メタン二段発酵処理プロセスに最適化する方法を提供することを目的とするものである。   In view of such conventional problems, the present invention is a method for subjecting organic waste containing solids such as sewage sludge, surplus sludge, livestock manure, garbage, food production waste, etc., to hydrogen fermentation and methane fermentation In particular, the biological treatment process that efficiently and efficiently solubilizes and lowers the molecular weight of organic solids in a short time using the reaction characteristics of anaerobic microorganisms is optimized for the hydrogen / methane two-stage fermentation process It is intended to provide a method.

本発明者らは、有機性固形物に焦点を当て、その効率的な可溶化方法と水素発酵手法について鋭意検討を行った。先ず、有機性廃棄物の高温メタン発酵法の研究事例を基に、そこでの有機物分解反応と微生物的特性を解析・考察した。そして、その嫌気的微生物的特性を活用した可溶化・水素発酵プロセスを考案して本発明を完成するに至った。   The inventors of the present invention focused on organic solids and intensively studied the efficient solubilization method and hydrogen fermentation method. First, based on a case study of high-temperature methane fermentation of organic waste, we analyzed and considered the organic matter decomposition reaction and microbial characteristics. The inventors have devised a solubilization / hydrogen fermentation process utilizing the anaerobic microbiological characteristics to complete the present invention.

すなわち、本発明は下記の構成により上記の目的を達成するものである。
(1)糖質系廃棄物が主体の生ごみ系有機性廃棄物処理もしくはセルロース性固形物を含む生ごみ系有機性廃棄物処理において、前処理工程で微細化、均質化されると共に濃度がVS 5〜15wt%の原料に対して、前段に30〜70℃、pH5〜8.5、水理学的滞留時間2〜3日の生物反応で処理する完全混合型の嫌気性可溶化と水素発酵とを併せ持つ工程、それに引き続く後段に完全混合型のメタン発酵工程からなる二段発酵法を行い、メタン発酵工程からの流出成分の一部を前記嫌気性可溶化と水素発酵とを併せ持つ工程に返送することを特徴とする生物学的に水素とメタンを回収する嫌気性処理方法。
That is, the present invention achieves the above object with the following configuration.
(1) In garbage-based organic waste processing mainly consisting of saccharide-based waste or garbage-based organic waste processing containing cellulosic solids, the concentration is reduced and homogenized in the pretreatment process. Completely mixed anaerobic solubilization and hydrogen fermentation treated with a biological reaction of 30 to 70 ° C., pH 5 to 8.5, hydraulic residence time 2 to 3 days for the raw material of VS 5 to 15 wt% And a two-stage fermentation method consisting of a fully mixed methane fermentation process in the subsequent stage, and a part of the effluent from the methane fermentation process is returned to the process that combines anaerobic solubilization and hydrogen fermentation. An anaerobic treatment method for biologically recovering hydrogen and methane, characterized by:

(2)糖質系糖質系廃棄物が主体の生ごみ系有機性廃棄物処理もしくはセルロース性固形物を含む生ごみ系有機性廃棄物処理装置において、前処理工程で微細化、均質化されると共に濃度をVS 5〜15wt%に調整した原料を置く原料槽、前段に30〜70℃、pH5〜8.5、水理学的滞留時間2〜3日の生物反応で処理する嫌気性可溶化と水素発酵とを併せ持つ工程を行う完全混合型の嫌気性可溶化・水素発酵槽、それに引き続いた後段に完全混合型のメタン発酵工程を行うメタン発酵槽を設けてなる二段発酵法を行う装置であって、メタン発酵槽からの流出成分の一部を前記嫌気性可溶化と水素発酵とを併せ持つ工程を行う前記嫌気性可溶化・水素発酵槽に返送する返送管を設けることを特徴とする生物学的に水素とメタンを回収する嫌気性処理装置。   (2) Garbage organic waste treatment mainly composed of saccharide-based sugar waste or garbage organic waste treatment equipment containing cellulosic solids, which is refined and homogenized in the pretreatment process An anaerobic solubilization process in which a raw material tank in which a raw material whose concentration is adjusted to 5 to 15 wt% is placed, and a biological reaction is performed at 30 to 70 ° C., pH 5 to 8.5, hydraulic residence time 2 to 3 days in the previous stage A two-stage fermentation method with a fully mixed anaerobic solubilization / hydrogen fermenter that performs a process that combines hydrogen fermentation and a methane fermenter that performs a fully mixed methane fermentation process at the subsequent stage A return pipe is provided for returning a part of the effluent component from the methane fermenter to the anaerobic solubilization / hydrogen fermenter for performing a process having both anaerobic solubilization and hydrogen fermentation. Biologically recover hydrogen and methane That anaerobic treatment apparatus.

本発明の有機性廃棄物の嫌気性処理方法及び装置によれば、有機性廃棄物の処理の前段に嫌気性可溶化と水素発酵とを併せ持つ工程、それに引き続く後段にメタン発酵工程からなる二段発酵法によって、生物学的に水素とメタンを回収するようにしたので、有機性固形物を短時間で簡便に効率良く可溶化・低分子化することができ、有機性廃棄物処理に伴い生じる有機性廃液のBODやCODを低減させるとともに、バイオガスとして水素及びメタンを生成することができる。原水中の有機物の大部分が糖質系有機性廃棄物、あるいはセルロース等の固形物であっても、嫌気性可溶化・水素発酵工程での水理学的滞留時間が2〜3日で同様に処理可能である。   According to the method and apparatus for anaerobic treatment of organic waste of the present invention, a step having both anaerobic solubilization and hydrogen fermentation in the previous stage of the treatment of organic waste, followed by a two-stage consisting of a methane fermentation process in the subsequent stage Biologically recovering hydrogen and methane by fermentation, organic solids can be easily and efficiently solubilized and reduced in molecular weight in a short time, resulting from organic waste treatment While reducing BOD and COD of organic waste liquid, hydrogen and methane can be produced as biogas. Even if most of the organic matter in the raw water is carbohydrate organic waste or solid matter such as cellulose, the hydraulic residence time in the anaerobic solubilization / hydrogen fermentation process is 2 to 3 days. It can be processed.

以下に、本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。以降、便宜的に可溶化・水素発酵方法及びメタン発酵方法について説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in more detail, but the present invention is not limited thereto. Hereinafter, the solubilization / hydrogen fermentation method and the methane fermentation method will be described for convenience, but the present invention is not limited thereto.

(1)前処理条件
本発明に係わる有機性廃棄物処理方法では、嫌気性可溶化と水素発酵とを併せ持つ工程(簡便のために以下「可溶化・水素発酵工程」ともいう)の前段には物理的破砕によって原料を微細化、均質化することが、後段の可溶化・水素発酵工程やメタン発酵工程での生物反応に非常に効果的である。特に、生ごみ、食品加工廃棄物、調理加工残渣、紙ごみのような固形状で大きさが種々異なる有機性廃棄物に対しては、石臼式破砕、ミンチ破砕、シュレッダー破砕、カッターポンプ破砕などを設けて固形物形状を微細化しておくことが好ましい。破砕工程としては、原料を粗破砕後、水中攪拌機を備えた原料調整槽で下水、排水、水道水、水素・メタン発酵プロセス処理水などを用いて有機物濃度(VS濃度、Volatile Solids)1〜20wt%、好ましくは5〜15wt%にスラリー化して微細化、均質化しておくことが好ましい。更には、そのスラリーを石臼式摩砕機などで微細化、均質化しておくことが好ましい。こういった破砕工程に用いる機械装置としては、例えば、粗破砕機しては高速粉砕機RSCシリーズ(日本イーリング(株)製)で粒径5〜20mmに粗破砕でき、水中ミキサSMシリーズ(新明和工業(株)製)でVS濃度1〜15%にスラリー化と均質化ができ、石臼式摩砕機セレンディピターMKCAシリーズ(増幸産業(株)製)を使用して、高速に粒径1〜0.1mmに湿式微細化ができる。
(1) Pretreatment conditions In the organic waste treatment method according to the present invention, the step preceding the step having both anaerobic solubilization and hydrogen fermentation (hereinafter also referred to as “solubilization / hydrogen fermentation step” for the sake of simplicity) Refinement and homogenization of raw materials by physical crushing is very effective for biological reactions in the subsequent solubilization / hydrogen fermentation process and methane fermentation process. Especially for solid organic wastes of different sizes, such as food waste, food processing waste, cooking residue, and paper waste, stone mill crushing, minc crushing, shredder crushing, cutter pump crushing, etc. It is preferable to refine the solid shape by providing a solid. As a crushing process, after roughly crushing the raw material, the organic substance concentration (VS concentration, volatile solids) is 1 to 20 wt.% Using a sewage, drainage, tap water, hydrogen / methane fermentation process treated water, etc. in a raw material adjustment tank equipped with an underwater stirrer. %, Preferably 5 to 15 wt%, and is preferably refined and homogenized. Furthermore, the slurry is preferably refined and homogenized with a stone mill type grinder or the like. As a mechanical device used for such a crushing process, for example, a coarse crusher can be roughly crushed to a particle size of 5 to 20 mm with a high-speed crusher RSC series (manufactured by Nippon Ealing Co., Ltd.), and an underwater mixer SM series ( Shin Meiwa Kogyo Co., Ltd.) can be slurried and homogenized to a VS concentration of 1-15%, and using a stone mill grinder Serendipita MKCA series (Masuyuki Sangyo Co., Ltd.), the particle size can be increased at high speed. Wet refinement can be performed to 1 to 0.1 mm.

(2)可溶化・水素発酵条件
本発明に係わる有機性廃棄物処理の可溶化・水素発酵工程では、反応温度30〜70℃、pH5〜8.5、水理学的滞留時間(HRT)0.2〜5日で行うことが好ましい。特に、有機性廃棄物の種類によっては可溶化段階が反応律速となりやすいことから、反応温度45〜70℃の高温反応でHRTを3〜5日で行うことが好ましい。これは、高温反応による熱処理と好熱性生物による可溶化が同時に達成され、さらには、この工程をHRT制御することによって通常は高い増殖速度能を有する水素生産微生物を選択的に優占化することができ、嫌気的な可溶化・水素発酵工程が可能となる。
(2) Solubilization / hydrogen fermentation conditions In the solubilization / hydrogen fermentation process of the organic waste treatment according to the present invention, the reaction temperature is 30 to 70 ° C., the pH is 5 to 8.5, and the hydraulic residence time (HRT) is 0. It is preferable to carry out in 2 to 5 days. In particular, depending on the type of organic waste, the solubilization stage tends to be rate-determining. Therefore, it is preferable to perform HRT for 3 to 5 days by a high-temperature reaction at a reaction temperature of 45 to 70 ° C. This is because heat treatment by high-temperature reaction and solubilization by thermophilic organisms are achieved at the same time, and furthermore, by selectively controlling HRT in this process, hydrogen producing microorganisms that usually have high growth rate ability are selectively dominant. This enables an anaerobic solubilization and hydrogen fermentation process.

この可溶化・水素発酵工程においては、有機性廃棄物の可溶化物は速やかに加水分解や酸発酵へと進んでいくことから、乳酸発酵、酸発酵、水素発酵などの嫌気性発酵がほぼ同時に進行する形となる。したがって、可溶化・水素発酵工程では可溶化菌と水素生産菌とが優占的に共存した発酵環境条件が必要となる。しかしながら、有機性廃棄物の種類によっては、乳酸発酵菌が優占化したり、プロピオン酸生成菌が作用してしまうことが多い。こういった環境下で嫌気的水素生産菌を優占化させて水素ガス回収を促進するためには、多くの嫌気的水素生産菌の倍加時間が4〜24hと非常に早い増殖速度を有することを応用して、可溶化・水素発酵槽内部をHRT制御条件に基づいて可溶化相と水素発酵相の2室に分けて発酵運転することが最適となる。この場合、有機性廃棄物の種類によって、可溶化・水素発酵槽内部の可溶化相と水素発酵相の設定条件が異なってくるが、糖質系廃棄物が主体の可溶化・水素発酵槽では水素発酵工程のHRTを0.2〜2日、好ましくは0.2〜1日、可溶化工程のHRTを3〜4.8日、好ましくは1.5〜2.5日として運転することが好適である。   In this solubilization / hydrogen fermentation process, the solubilized organic waste quickly proceeds to hydrolysis and acid fermentation, so anaerobic fermentation such as lactic acid fermentation, acid fermentation, and hydrogen fermentation is almost simultaneously performed. It will be a progressive form. Therefore, the solubilization / hydrogen fermentation process requires fermentation environment conditions in which solubilized bacteria and hydrogen-producing bacteria predominately coexist. However, depending on the type of organic waste, lactic acid-fermenting bacteria predominate or propionic acid-producing bacteria often act. In order to promote the recovery of hydrogen gas by dominating anaerobic hydrogen-producing bacteria in such an environment, the doubling time of many anaerobic hydrogen-producing bacteria must have a very fast growth rate of 4 to 24 hours. It is optimal to perform fermentation operation by dividing the inside of the solubilization / hydrogen fermenter into two chambers of a solubilization phase and a hydrogen fermentation phase based on the HRT control conditions. In this case, the setting conditions of the solubilization phase and hydrogen fermentation phase inside the solubilization / hydrogen fermenter differ depending on the type of organic waste. The hydrogen fermentation process may be operated with an HRT of 0.2 to 2 days, preferably 0.2 to 1 day, and a solubilization process with an HRT of 3 to 4.8 days, preferably 1.5 to 2.5 days. Is preferred.

さらに水素発酵菌を優占化するために、クロストリジウム属の嫌気性水素生成微生物を可溶化・水素発酵槽に導入する方法も有効である。例えば、嫌気性水素生産菌クロストリジウム・ブチリカム(Clostridium butyricum)SC−E1株(受託番号 菌寄第FERM P−14790)を用いることが有効である。嫌気性水素発酵菌を発酵槽に導入する場合、当該菌体を液状又は粉末状で添加するのが良い。添加率は有機性廃棄物の種類や当該菌体濃度によっても異なるが、目安として水素発酵の反応容積部分に対して0.01〜0.5vol%、好ましくは0.02〜0.2vol%である   Furthermore, in order to dominate hydrogen-fermenting bacteria, a method of introducing an anaerobic hydrogen-producing microorganism belonging to the genus Clostridium into a solubilizing / hydrogen-fermenting tank is also effective. For example, it is effective to use an anaerobic hydrogen-producing bacterium Clostridium butyricum SC-E1 strain (Accession No .: FERM P-14790). When introducing an anaerobic hydrogen-fermenting bacterium into a fermenter, it is preferable to add the microbial cell in liquid or powder form. The rate of addition varies depending on the type of organic waste and the concentration of the cells, but as a guideline, it is 0.01 to 0.5 vol%, preferably 0.02 to 0.2 vol% with respect to the reaction volume of hydrogen fermentation. is there

(3)メタン発酵条件
本発発明に係わる有機性廃棄物処理のメタン発酵工程では、反応処理形式として、浮遊床型、固定床型、流動床型、UASB(上向流式嫌気性スラッジブランケット)型のいずれにおいても適用可能であるが、可溶化・水素発酵工程から供給される原料性状に応じて選択する必要がある。この選択に際しては、特にSS濃度(Suspended Solids)、油脂濃度に注意を払う必要がある。具体的には、SS濃度2,000mg/リットル以上の場合には浮遊床型メタン発酵を適用することが好ましい。また、油脂濃度としては、1,000mg/リットル以上の場合には浮遊床型メタン発酵を適用することが好ましい。
(3) Methane fermentation conditions In the methane fermentation process of organic waste treatment according to the present invention, the reaction treatment format is floating bed type, fixed bed type, fluidized bed type, UASB (upflow anaerobic sludge blanket). Although it is applicable to any type, it is necessary to select according to the raw material properties supplied from the solubilization / hydrogen fermentation process. In this selection, it is necessary to pay particular attention to the SS concentration (Suspended Solids) and the oil and fat concentration. Specifically, when the SS concentration is 2,000 mg / liter or more, it is preferable to apply floating bed type methane fermentation. In addition, when the oil and fat concentration is 1,000 mg / liter or more, it is preferable to apply floating bed type methane fermentation.

メタン発酵工程での運転方法に関しては、発酵温度は30〜70℃、好ましくは50〜65℃の高温性メタン発酵領域であり、最も好ましくは50〜60℃で行う。これは、多くの高温性メタン生成微生物群やその他の嫌気性細菌群の生育至適温度がこれらの範囲内にあるためである。なお、発酵槽内においては中性脂肪や高級脂肪酸は温度が高いほうが分散性が増すため、油脂成分が多く含まれる廃棄物原料を適用する場合には、50〜65℃の高温メタン発酵方法を選択することが好ましい。また、メタン発酵時の好適なpHはpH5〜8.5、最も好ましくはpH6.5〜8.5である。   Regarding the operation method in a methane fermentation process, fermentation temperature is 30-70 degreeC, Preferably it is a high temperature methane fermentation area | region of 50-65 degreeC, Most preferably, it carries out at 50-60 degreeC. This is because the optimum temperature for growth of many thermophilic methanogenic microorganisms and other anaerobic bacteria is within these ranges. In the fermenter, neutral fats and higher fatty acids have higher dispersibility at higher temperatures. Therefore, when applying waste materials that contain a large amount of fat and oil components, a high-temperature methane fermentation method of 50 to 65 ° C. It is preferable to select. Moreover, the suitable pH at the time of methane fermentation is pH 5-8.5, Most preferably, it is pH 6.5-8.5.

固定床型、流動床型といった微生物保持担体を充填したメタン発酵方法では、微生物を担体に結合する方法として結合法や包括法を適用できるが、本発明でのメタン発酵工程における微生物反応においては砂、珪砂、活性炭、セラミックス、合成樹脂、プラスチックビーズ、ガラスビーズ、ポリエチレングリコール、ポリビニルアルコール、ポリウレタン、ポリプロピレン、汚泥焼却灰、木炭粉末、石炭灰フライアッシュのような粒子表面に微生物群を付着させて生物膜を形成させることが有利である。これらの保持担体の嫌気性処理槽内での存在形態、流動状態によって固定床と流動床に大別されるが、本発明ではどちらのタイプも適用が可能である。ただし、固定床タイプでは油脂分の過剰付着による固定化担体の閉塞や汚泥の浮上が、流動床タイプでは担体同士のぶつかり合いによる付着した汚泥微生物群の剥離が問題となりやすいため、発酵原料中の油脂分濃度や固形物濃度などの性状、発酵槽運転時の原水供給方法や有機物負荷、汚泥濃度や汚泥性状などに注意が必要である。これらの操作条件を決めるに際しては、原水性状、水量変動、目標処理水質を加味した上で決定されるものである。   In a methane fermentation method packed with a microorganism-supporting carrier such as a fixed bed type or a fluidized bed type, a binding method or a comprehensive method can be applied as a method for binding microorganisms to the carrier, but in the microbial reaction in the methane fermentation process of the present invention, sand is used. Organisms by attaching microbes to particles such as silica sand, activated carbon, ceramics, synthetic resin, plastic beads, glass beads, polyethylene glycol, polyvinyl alcohol, polyurethane, polypropylene, sludge incineration ash, charcoal powder, coal ash fly ash It is advantageous to form a film. These holding carriers are roughly classified into a fixed bed and a fluidized bed depending on the form of existence in the anaerobic treatment tank and the flow state, but both types can be applied in the present invention. However, in the fixed bed type, clogging of the immobilized carrier and sludge levitation due to excessive adhesion of oils and fats, and in the fluidized bed type, separation of sludge microorganisms adhering to each other due to collision between the carriers is likely to be a problem. It is necessary to pay attention to properties such as fat and oil concentration and solid matter concentration, raw water supply method during fermentor operation, organic matter load, sludge concentration and sludge properties. In determining these operating conditions, the operating conditions are determined in consideration of the raw water condition, the amount of water fluctuation, and the target treated water quality.

(4)返送方法
メタン発酵工程からの流出成分の一部を可溶化・水素発酵工程に返送する方法は、嫌気性処理工程より流出した可溶化・水素発酵汚泥もしくはメタン発酵汚泥などの嫌気汚泥をそのまま返送する方法、流出した嫌気汚泥を重力沈降濃縮あるいは機械濃縮により濃縮し、その濃縮汚泥を可溶化・水素発酵槽に返送する方法が適用される。この汚泥濃縮工程においては、流出汚泥にSS当たり0.1〜1.0wt%の高分子凝集剤等の汚泥凝集用薬剤を添加することで、汚泥濃縮・凝集を促進する手法も有効である。また、機械濃縮の手法としては、遠心脱水機、スクリュープレス式脱水機などの汚泥用脱水機として使用されるものを適用できる。また、脱水汚泥を可溶化・水素発酵槽に返送する場合、これらの脱水機で脱水された汚泥を投入することも何ら問題はない。
(4) Return method The method of returning part of the effluent components from the methane fermentation process to the solubilization / hydrogen fermentation process is to remove anaerobic sludge such as solubilized / hydrogen fermentation sludge or methane fermentation sludge that has flowed out of the anaerobic treatment process. The method of returning as it is and the method of concentrating the discharged anaerobic sludge by gravity sedimentation or mechanical concentration and returning the concentrated sludge to the solubilization / hydrogen fermenter are applied. In this sludge concentration step, a method for promoting sludge concentration / aggregation by adding 0.1 to 1.0 wt% of a polymer coagulant such as a polymer coagulant per SS to the spilled sludge is also effective. In addition, as a mechanical concentration method, those used as a sludge dehydrator such as a centrifugal dehydrator or a screw press dehydrator can be applied. Moreover, when dewatered sludge is returned to the solubilization / hydrogen fermenter, there is no problem in introducing the sludge dehydrated by these dehydrators.

更には、余剰活性汚泥などの様な好気性汚泥を外部から導入することも有効である。これは、余剰活性汚泥などの微生物体が主体の汚泥は、嫌気性処理での微生物の栄養源としても作用することから、有機物分解反応の効率化、消化促進にも効果的となる。この場合、微生物体の導入において、汚泥を超音波破砕、湿式ミル破砕、ボールミル破砕、ホモジナイズ破砕、熱処理、高温高圧処理、水熱処理、超臨界もしくは亜臨界域での水熱処理、酸やアルカリ処理、オゾン酸化などに代表とされる物理的、化学的破砕処理を施した後に可溶化・水素発酵工程に導入することが一層効果的である。   It is also effective to introduce aerobic sludge such as surplus activated sludge from the outside. This is because sludge mainly composed of microorganisms such as surplus activated sludge also acts as a nutrient source for microorganisms in anaerobic treatment, and thus is effective in improving the efficiency of organic matter decomposition and promoting digestion. In this case, in the introduction of microorganisms, sludge is subjected to ultrasonic crushing, wet mill crushing, ball mill crushing, homogenizing crushing, heat treatment, high-temperature high-pressure treatment, hydrothermal treatment, hydrothermal treatment in a supercritical or subcritical region, acid or alkali treatment, It is more effective to introduce into the solubilization / hydrogen fermentation process after performing physical and chemical crushing treatments typified by ozone oxidation.

一方、可溶化・水素発酵工程にアルカリ補給するという目的で、メタン発酵工程からの流出成分の一部を可溶化・水素発酵工程に返送する場合には、上記の濃縮汚泥、脱水汚泥の他に、濃縮分離水(上澄液)や脱水ろ液を返送することも効果がある。特に、可溶化・水素発酵工程では大量の低級脂肪酸(蟻酸、酢酸、プロピオン酸、乳酸、酪酸、吉草酸、カプロン酸など)が生成されるために、pH3〜5程度に低下する場合が大半であるため、メタン発酵工程からの濃縮分離水(上澄液)や脱水ろ液を返送する効果は大きい。   On the other hand, when returning a part of the effluent from the methane fermentation process to the solubilization / hydrogen fermentation process for the purpose of supplying alkali to the solubilization / hydrogen fermentation process, It is also effective to return concentrated separated water (supernatant) or dehydrated filtrate. In particular, in the solubilization / hydrogen fermentation process, a large amount of lower fatty acids (formic acid, acetic acid, propionic acid, lactic acid, butyric acid, valeric acid, caproic acid, etc.) are produced, and in most cases, the pH drops to about 3 to 5. Therefore, the effect of returning concentrated separated water (supernatant) and dehydrated filtrate from the methane fermentation process is great.

次に、本発明の実施の形態を図面について説明する。
なお、実施の形態を説明するための全図において、同一機能を有するものは同一符号を用いて示す。
Next, embodiments of the present invention will be described with reference to the drawings.
Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments.

図8は、従来の有機性廃棄物メタン発酵を示すブロック図である。
すなわち、図8は、従来の一段発酵法であるメタン発酵法を説明するブロック図であって、生ごみ10t/日の処理例の物質収支も併せて示すブロック図でもある。
一段発酵法では、生ごみ4を希釈水8とともにメタン発酵槽2に導入し、メタン生成菌によってバイオガス9を発生させるとともに、発酵残渣10を系外へ排出する。生ごみを10t/日処理する場合を例にとって説明すると、生ごみ4はメタン発酵槽2中でメタン生成菌を用いて、55℃の高温メタン発酵を水理学的滞留時間(HRT)20〜25日でメタン発酵されて、バイオガス9を850〜1000m/日発生する。バイオガス9中のメタンの割合は60%であった。
FIG. 8 is a block diagram showing conventional organic waste methane fermentation.
That is, FIG. 8 is a block diagram for explaining a methane fermentation method, which is a conventional one-stage fermentation method, and is also a block diagram showing a material balance of a processing example of garbage 10 t / day.
In the one-stage fermentation method, the garbage 4 is introduced into the methane fermentation tank 2 together with the dilution water 8 to generate the biogas 9 by the methane-producing bacteria and discharge the fermentation residue 10 out of the system. The case where the garbage is treated at 10 t / day will be described as an example. The garbage 4 uses a methane-producing fungus in the methane fermentation tank 2 and is subjected to high temperature methane fermentation at 55 ° C. for a hydraulic residence time (HRT) of 20 to 25. Methane is fermented in a day to generate biogas 9 at 850 to 1000 m 3 / day. The proportion of methane in biogas 9 was 60%.

図1は、本発明に係わる有機性廃棄物の水素・メタン二段発酵装置の一つの実施形態を示すブロック図である。
図1において、有機性廃棄物処理の前段として可溶化・水素発酵槽1が、それに引き続く後段としてメタン発酵槽2が設けられていることが特徴である。
FIG. 1 is a block diagram showing one embodiment of an organic waste hydrogen / methane two-stage fermentation apparatus according to the present invention.
In FIG. 1, a solubilization / hydrogen fermentation tank 1 is provided as a preceding stage of the organic waste treatment, and a methane fermentation tank 2 is provided as a subsequent stage.

水素・メタン二段発酵法では、生ごみ4を希釈水8とともに先ず可溶化・水素発酵槽1に導入し、嫌気性発酵されて有機物を分解して、水素とメタン原料有機物、例えば有機酸やアルコールを生成する。可溶化・水素発酵槽1で生成したメタン原料有機物をメタン発酵槽2に導入して、メタン生成菌によってメタン原料有機物を分解してメタンと二酸化炭素を生成し、発酵残渣10を系外に排出する。生ごみを10t/日を処理する場合を例に説明すると、生ごみ4は温度30℃の可溶化・水素発酵槽1でHRT1〜3日嫌気性処理され、水素とメタン原料有機物を生成する。可溶化・水素発酵槽1で生成したメタン原料有機物をメタン発酵槽2に導入し、55℃の高温メタン発酵をHRT10〜15日間行い、バイオガス9を1,100〜1,300m/日発生する。バイオガス9中のメタンの割合は60%で、水素の割合は2〜3%であった。 In the hydrogen / methane two-stage fermentation method, the garbage 4 is first introduced into the solubilization / hydrogen fermenter 1 together with the diluting water 8 and subjected to anaerobic fermentation to decompose organic matter, and hydrogen and methane raw material organic matter such as organic acid or Produces alcohol. The methane raw material organic matter generated in the solubilization / hydrogen fermenter 1 is introduced into the methane fermenter 2, and the methane raw organic matter is decomposed by the methane-producing bacteria to produce methane and carbon dioxide, and the fermentation residue 10 is discharged out of the system. To do. If the case where a garbage is processed 10t / day is demonstrated to an example, the garbage 4 will be anaerobic-treated for HRT 1-3 days in the solubilization and hydrogen fermenter 1 of the temperature of 30 degreeC, and hydrogen and a methane raw material organic substance will be produced | generated. Methane raw material organic matter generated in the solubilization / hydrogen fermenter 1 is introduced into the methane fermenter 2, high temperature methane fermentation at 55 ° C. is carried out for 10 to 15 days, and biogas 9 is generated at 1,100 to 1,300 m 3 / day. To do. The proportion of methane in biogas 9 was 60% and the proportion of hydrogen was 2-3%.

図2は、本発明の参考例に係わる有機性廃棄物の可溶化・水素発酵装置の実施形態を示すブロック図である。
水素・メタン二段発酵装置は、可溶化発酵部1Aと水素発酵部1Bに区分された可溶化・水素リアクタ1とメタン発酵を行うメタンリアクタ2で構成されている。有機性廃棄物7は可溶化・水素リアクタ1に導入されるが、易分解性廃棄物5は水素発酵部1Bに、難分解性廃棄物6は可溶化部1Aに導入することもできる。なお、メタンリアクタ2の後段に更に物理化学的リアクタを設け、発生する水素をバイオガスとして利用するとともに、一部を水素発酵部1B及びメタンリアクタ2に返送し、それぞれ水素発酵及びメタン発酵に利用するように構成することもできる。なお、発酵残渣10は発酵残渣処理工程で更なる処理を受けても良いことは言うまでもない。
FIG. 2 is a block diagram showing an embodiment of an organic waste solubilization / hydrogen fermentation apparatus according to a reference example of the present invention.
The hydrogen / methane two-stage fermentation apparatus includes a solubilization / hydrogen reactor 1 divided into a solubilization fermentation unit 1A and a hydrogen fermentation unit 1B, and a methane reactor 2 that performs methane fermentation. The organic waste 7 is introduced into the solubilization / hydrogen reactor 1, but the easily decomposable waste 5 can be introduced into the hydrogen fermentation unit 1B, and the hardly decomposable waste 6 can be introduced into the solubilization unit 1A. In addition, a physicochemical reactor is provided after the methane reactor 2, and the generated hydrogen is used as biogas, and part of it is returned to the hydrogen fermentation unit 1B and the methane reactor 2 for use in hydrogen fermentation and methane fermentation, respectively. It can also be configured to. In addition, it cannot be overemphasized that the fermentation residue 10 may receive the further process by a fermentation residue processing process.

図3は、本発明に係わる有機性廃棄物の可溶化・水素発酵装置の別の実施形態を示す概略図である。
図3に示す実施形態は、上記の生ごみ4の代わりに有機性廃棄物7を含有する原水4Aを処理するプロセスのブロック図である。原水4A中の有機性廃棄物を破砕してから可溶化・水素発酵槽1へ導入し、水素発酵槽1内の処理を効率化するために、メタン発酵槽2の嫌気汚泥12を可溶化・水素発酵槽1へ返送する手段を有することが特徴である。なお、可溶化・水素発酵槽1での可溶化及び水素生成菌等による水素発酵を効率的に行うために、槽1のpHを5.5〜7程度に維持するのが一般的である。
FIG. 3 is a schematic view showing another embodiment of the organic waste solubilization / hydrogen fermentation apparatus according to the present invention.
The embodiment shown in FIG. 3 is a block diagram of a process for treating raw water 4A containing organic waste 7 instead of the above-described garbage 4. Solubilization of the organic waste in the raw water 4A is introduced into the hydrogen fermenter 1 and the anaerobic sludge 12 in the methane fermenter 2 is solubilized in order to make the treatment in the hydrogen fermenter 1 efficient. It is characterized by having means for returning to the hydrogen fermenter 1. In order to efficiently perform solubilization in the solubilization / hydrogen fermenter 1 and hydrogen fermentation by hydrogen-producing bacteria or the like, the pH of the tank 1 is generally maintained at about 5.5 to 7.

図4は、本発明に係わる有機性廃棄物の水素・メタン二段発酵装置を用いた室内実験の第一の実施形態を示す概略図である。
図4に示す実施形態は、図3に示したメタン発酵槽2を高温メタン発酵槽2Aに変え、処理日数すなわちHRTの短縮を計ったもので、高温メタン発酵槽2Aからの嫌気汚泥12を汚泥液13と固形分14に分けて、それぞれ可溶化・水素発酵槽1へ別々に返戻するとともに、槽1のpHをpH6程度に維持し、上澄液11だけを高温メタン発酵槽2へ導入し、二段発酵の効率の一層の向上を計ったものである。
FIG. 4 is a schematic diagram showing a first embodiment of an indoor experiment using the organic waste hydrogen / methane two-stage fermentation apparatus according to the present invention.
In the embodiment shown in FIG. 4, the methane fermentation tank 2 shown in FIG. 3 is changed to a high-temperature methane fermentation tank 2A, and the treatment days, that is, the HRT is shortened. The anaerobic sludge 12 from the high-temperature methane fermentation tank 2A is sludge. Divided into liquid 13 and solid content 14 and returned separately to the solubilization / hydrogen fermentation tank 1, while maintaining the pH of the tank 1 at about pH 6 and introducing only the supernatant 11 into the high-temperature methane fermentation tank 2. This is a further improvement in the efficiency of two-stage fermentation.

図5は、本発明の参考例に係わる有機性廃棄物の水素・メタン二段発酵装置を用いた室内実験の第二の実施形態を示す概略図である。
図5に示す実施形態は、図4に示す工程において、可溶化・水素発酵槽1の処理効率の一層の向上を計るために、水素生成菌としてClostridium butyrium SC−El株を用いた例を説明するためのプロセス概要図である。
図6は、本発明に係わる有機性廃棄物の水素・メタン二段発酵装置を用いた屋外実験の実施形態を示す概略図である。
FIG. 5 is a schematic view showing a second embodiment of the laboratory experiment using the organic waste hydrogen / methane two-stage fermentation apparatus according to the reference example of the present invention.
The embodiment shown in FIG. 5 illustrates an example in which the Clostridium butyrium SC-El strain is used as a hydrogen-producing bacterium in order to further improve the treatment efficiency of the solubilization / hydrogen fermenter 1 in the step shown in FIG. It is a process outline figure for doing.
FIG. 6 is a schematic view showing an embodiment of an outdoor experiment using the organic waste hydrogen / methane two-stage fermentation apparatus according to the present invention.

以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例により何等制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not restrict | limited at all by these Examples.

実施例1
模擬生ごみ(第1表)および食堂残飯(A工場 3,000人規模、第2表)を使って、水素・メタン二段発酵の連続実験を行った。実験材料の調整は、模擬生ごみまたは食堂残飯:水道水=1:1(重量比)で混合し、ブレンダー(Model LBC-10型; ワーリング社)でHighモード約3分間破砕処理した。第3表に破砕処理で調整した原料の水質性状を示す。
実験装置は、完全混合型の可溶化・水素発酵槽(東京理化器械(株)製ジャーファーメンターMBF、総容積2.5L、運転時の容積1.0L、ジャケット温水循環式)およびメタン発酵槽(円筒型、塩化ビニル製、総容積4.5L、有効容積3.5L、ジャケット温水循環式)を用いた。実験では、55℃高温発酵条件で可溶化・水素発酵およびメタン発酵の連続運転を行った。実験装置の運転条件は、可溶化・水素発酵槽、メタン発酵槽ともに55℃で行った。原水投入量は300mL/日で、水理学的滞留時間(HRT)は可溶化・水素発酵は2.5-3日、メタン発酵は12日で行った。
なお、比較実験として、模擬生ごみおよび食堂残飯を1段の高温メタン発酵でHRT18日での連続運転を行った。
Example 1
Continuous experiments of hydrogen / methane two-stage fermentation were conducted using simulated food waste (Table 1) and food leftovers (factory A, 3,000 people, Table 2). For the preparation of the experimental materials, the mixture was mixed with simulated garbage or canned food: tap water = 1: 1 (weight ratio), and crushed with a blender (Model LBC-10 type; Waring) for about 3 minutes. Table 3 shows the water quality of the raw materials adjusted by crushing treatment.
The experimental equipment is a fully mixed solubilization / hydrogen fermenter (Tokyo Rika Kikai Co., Ltd. Jar Fermenter MBF, total volume 2.5L, operating volume 1.0L, jacket hot water circulation type) and methane fermenter (cylindrical) Type, made of vinyl chloride, total volume 4.5L, effective volume 3.5L, jacket hot water circulation type). In the experiment, continuous operation of solubilization / hydrogen fermentation and methane fermentation was performed under high temperature fermentation conditions at 55 ° C. The operating conditions of the experimental apparatus were 55 ° C. for both the solubilization / hydrogen fermenter and the methane fermenter. The raw water input was 300 mL / day, the hydraulic residence time (HRT) was 2.5-3 days for solubilization / hydrogen fermentation, and 12 days for methane fermentation.
In addition, as a comparative experiment, simulated garbage and leftovers from the cafeteria were continuously operated on a HRT 18 day by one-stage high-temperature methane fermentation.

分析は下記の方法で行った。
・ TS(Total Solids、全蒸発残留物):105℃蒸発残留物重量(JIS K 0102)
・ VS(Volatile Solids、強熱減量):600℃強熱減量(JIS K 0102)
・ CODCr(化学的酸素要求量):重クロム酸カリウム法(JIS K 0102)
・ BOD(生物化学的酸素要求量):ウインクラー・アジ化ナトリウム変法(JIS K 0102)
・ TOC(Total Organic Carbon、全有機性炭素):島津TOC-500計
・ タンパク質:(ケルダール窒素−アンモニア性窒素)×6.25
・ 全還元糖類:フェノール-硫酸法(吸光度488nm)
The analysis was performed by the following method.
・ TS (Total Solids): 105 ℃ evaporation residue weight (JIS K 0102)
・ VS (Volatile Solids, loss on ignition): 600 ° C loss on ignition (JIS K 0102)
COD Cr (chemical oxygen demand): potassium dichromate method (JIS K 0102)
・ BOD (Biochemical Oxygen Demand): Winkler ・ Modified Sodium Azide (JIS K 0102)
・ TOC (Total Organic Carbon): Shimadzu TOC-500 meter ・ Protein: (Kjeldahl Nitrogen-Ammonia Nitrogen) x 6.25
・ Total reducing sugars: phenol-sulfuric acid method (absorbance 488nm)

・ セルロース性物質:エタノール・ベンゼン抽出法による重量測定
・ 脂質:ヘキサン:イソプロパノール(5:3)混合溶媒による抽出法(ヘキサン抽出液80℃乾燥後の抽出物質重量からヘキサン抽出物質濃度を算出)
・ 揮発性有機酸(VFA):高速液体クロマトグラフ(エルマ光学ERC-8710、検出器 RI、カラムShodex Ionpack KC-811、カラム温度60℃、移動相0.1%りん酸 0.7ml/min)
・ メタンガス・炭酸ガス:ガスクロマトグラフ(GLサイエンスGC-320、検出器TCD、TCD電流値120mA、分離カラム Active Carbon 30/60、カラム温度 95℃、キャリアガス He 35ml/min)
・ 水素ガス:ガスクロマトグラフ(GLサイエンスGC-320、検出器TCD、TCD電流値70mA、分離カラム Molecular sieve 13X、カラム温度 40℃、キャリアガス Ar 25ml/min)
・ 硫化水素、アンモニア:ガス検知管法((株)ガステック製)
・ 溶解性画分:GF/B(1μm)でのろ液
・ Cellulose substance: Weight measurement by ethanol / benzene extraction method ・ Lipid: Hexane: Isopropanol (5: 3) extraction method using mixed solvent (hexane extract is calculated from the weight of the extracted substance after drying at 80 ℃)
・ Volatile organic acid (VFA): High performance liquid chromatograph (Elmer Optics ERC-8710, detector RI, column Shodex Ionpack KC-811, column temperature 60 ° C, mobile phase 0.1% phosphoric acid 0.7ml / min)
・ Methane gas and carbon dioxide gas chromatograph (GL Science GC-320, detector TCD, TCD current value 120mA, separation column Active Carbon 30/60, column temperature 95 ℃, carrier gas He 35ml / min)
・ Hydrogen gas: Gas chromatograph (GL Science GC-320, detector TCD, TCD current value 70mA, separation column Molecular sieve 13X, column temperature 40 ℃, carrier gas Ar 25ml / min)
・ Hydrogen sulfide, ammonia: Gas detector tube method (manufactured by Gastec Co., Ltd.)
・ Solubility fraction: Filtrate in GF / B (1μm)

模擬生ごみ及び食堂残飯を水素・メタン二段発酵した実験結果を第4表に示す。また、比較実験として、模擬生ごみ及び食堂残飯を1段式の高温メタン発酵で連続実験した結果を第5表に示す。これらの結果より、本発明による水素・メタン二段発酵法によれば模擬生ごみや食堂残飯から水素ガスとメタンガスとを回収できることが明らかであり、さらに、水素・メタン二段発酵法によってこれらの有機性廃棄物を安定かつ高速に処理可能なことも明らかである。すなわち、本発明に基づく可溶化・水素発酵工程の効果が示されている。   Table 4 shows the experimental results of two-stage fermentation of simulated raw garbage and food leftovers from hydrogen / methane. In addition, as a comparative experiment, Table 5 shows the results of continuous experiments using simulated raw garbage and leftovers from the cafeteria by one-stage high-temperature methane fermentation. From these results, it is clear that the hydrogen and methane two-stage fermentation method according to the present invention can recover hydrogen gas and methane gas from simulated garbage and food leftovers. It is also clear that organic waste can be processed stably and at high speed. That is, the effect of the solubilization / hydrogen fermentation process based on the present invention is shown.

Figure 2013013896
Figure 2013013896

Figure 2013013896
Figure 2013013896

Figure 2013013896
Figure 2013013896

Figure 2013013896
Figure 2013013896

Figure 2013013896
Figure 2013013896

実施例2
セルロース性の固形物に対する水素・メタン二段発酵プロセスの処理性能を調べた。
模擬生ごみのスラリー1リットルにトイレットペーパー20.6gを混合した実験材料を使って水素・メタン二段発酵の連続実験を行った。
実験材料は、模擬生ごみ(第1表)とトイレットペーパー(丸富製紙株式会社製ペンギン(登録商標)トイレットペーパー)(以下、T.P.と略す)を用いた。T.Pの前処理として、T.P.を鋏で適度な大きさに切断し、ステレンレス製バット上に重ならないように広げ、アルミホイルで覆い、実験器具乾燥機で1日以上65℃乾燥した。
Example 2
The processing performance of hydrogen / methane two-stage fermentation process for cellulosic solids was investigated.
A series of hydrogen and methane two-stage fermentation experiments were conducted using experimental materials prepared by mixing 10.6 liters of simulated garbage with 20.6 g of toilet paper.
As experimental materials, simulated garbage (Table 1) and toilet paper (Penguin (registered trademark) toilet paper manufactured by Marutomi Paper Co., Ltd.) (hereinafter abbreviated as TP) were used. As a pretreatment of TP, the TP was cut into a suitable size with a scissors, spread so as not to overlap on the stellenless bat, covered with aluminum foil, and dried at 65 ° C. for 1 day or more with a laboratory drier.

本実験で用いた生ごみ+T.P.原水は、以下の手順で作成した。
・模擬生ごみ: 水=1:3(重量比)で混合
・ブレンダー(Model LBC-10型; ワーリング社)でHighモード約3分間破砕処理
・模擬生ごみスラリーに乾燥T.P.20.6g(セルロース当量18.8g)/L(生ごみスラリー)添加
・ブレンダーのHighモードで約3分間破砕処理
The garbage + T.P. raw water used in this experiment was prepared by the following procedure.
-Simulated garbage: Mixing with water = 1: 3 (weight ratio)-Crushing in High mode for about 3 minutes with blender (Model LBC-10 type; Waring)-Dry TP20.6g (cellulose equivalent 18.8) in simulated garbage slurry g) / L (garbage slurry) added ・ Crushing process for about 3 minutes in High mode of the blender

実験装置は完全混合型の可溶化・水素発酵槽(東京理化器械(株)製ジャーファーメンターMBF、総容積5.0L、有効容積4.0L、ジャケット式温水循環、温水循環装置HS-1)およびメタン発酵槽(円筒型、塩化ビニル製、総容積30L、有効容積25L、ジャケット温水循環式)を用いた。実験装置の運転条件は、可溶化・水素発酵槽は55-70℃、攪拌速度100r/min、メタン発酵槽は55℃、攪拌速度80r/minで行った。原水投入量は2L/日で、水理学的滞留時間は可溶化・水素発酵は2-2.5日、メタン発酵は13日で行った(第6表)。原水性状を第7表に示す。なお、本実験ではメタン発酵槽からのオーバーフロー液の一部1.0-2.0L/日を可溶化・水素発酵槽に返送ながら連続運転した。返送操作にはローラーポンプ(東京理化器械(株)製RP-1000型)を用い、1日4回に分割してタイマー運転で行った。   The experimental equipment is a fully mixed solubilization / hydrogen fermenter (Tokyo Rika Kikai Co., Ltd. Jar Fermenter MBF, total volume 5.0L, effective volume 4.0L, jacket type hot water circulation, hot water circulation device HS-1) and methane. A fermenter (cylindrical type, made of vinyl chloride, total volume 30 L, effective volume 25 L, jacket hot water circulation type) was used. The operating conditions of the experimental apparatus were 55-70 ° C. for the solubilization / hydrogen fermenter, stirring speed 100 r / min, 55 ° C. for the methane fermentation tank, and stirring speed 80 r / min. The raw water input was 2 L / day, the hydraulic residence time was 2-2.5 days for solubilization / hydrogen fermentation, and 13 days for methane fermentation (Table 6). Table 7 shows the raw aqueous state. In this experiment, a part of the overflow liquid from the methane fermentation tank was continuously operated while returning 1.0-2.0 L / day to the solubilization / hydrogen fermentation tank. For the return operation, a roller pump (RP-1000 type, manufactured by Tokyo Rika Kikai Co., Ltd.) was used, and the operation was performed by timer operation divided into four times a day.

模擬生ごみ+T.P.を実験材料として水素・メタン二段発酵した実験結果を第8表と第9表に示す。これらの結果より、本発明による水素・メタン二段発酵法によればセルロース性物質を多量に含む有機性廃棄物であっても水素ガスおよびメタンガスを回収できることが明らかである。特に、メタン発酵槽からの流出成分の一部を可溶化・水素発酵工程に返送しながら二段発酵することで、原水中の有機物の大部分がセルロース等の固形物であっても、実施例1で実験した水理学的滞留時間(可溶化・水素発酵2.5-3日、メタン発酵12日)とほぼ同等条件にて処理可能であることが示された。すなわち、本発明に基づく可溶化・水素発酵工程の効果が明確に示されている。なお、本発明による水素・メタン二段発酵法でのセルロース性物質の分解率は91%以上であった(フェノール・硫酸法による全糖量基準)。   Tables 8 and 9 show the experimental results of two-stage fermentation of hydrogen and methane using simulated food waste + T.P. as experimental materials. From these results, it is clear that according to the hydrogen / methane two-stage fermentation method of the present invention, hydrogen gas and methane gas can be recovered even with organic waste containing a large amount of cellulosic substances. In particular, by carrying out two-stage fermentation while returning a part of the effluent component from the methane fermenter to the solubilization / hydrogen fermentation process, even if most of the organic matter in the raw water is a solid matter such as cellulose, the embodiment It was shown that the treatment can be performed under substantially the same conditions as the hydraulic residence time (solubilization / hydrogen fermentation 2.5-3 days, methane fermentation 12 days) tested in 1. That is, the effect of the solubilization / hydrogen fermentation process based on the present invention is clearly shown. The decomposition rate of the cellulosic substance in the hydrogen / methane two-stage fermentation method according to the present invention was 91% or more (based on the total sugar amount based on the phenol / sulfuric acid method).

Figure 2013013896
Figure 2013013896

Figure 2013013896
Figure 2013013896

Figure 2013013896
Figure 2013013896

Figure 2013013896
Figure 2013013896

参考例1
食品系廃棄物としてコーヒー粕を実験原料に水素・メタン二段発酵試験を行った。この際、可溶化・水素発酵槽での水素発酵反応を促進するため、可溶化・水素発酵槽に嫌気性水素生成微生物を導入してその性能効果も調べた。
実験では、工場事務所から排出されたコーヒー抽出残渣(以下、コーヒー粕と称す)を回収し、固形物濃度(TS濃度)10%となるように水道水で濃度調整後、石臼式の湿式粉砕機(高速摩砕機セレンディピター(登録商標)MKCA6-3型(増幸産業株式会社製))で粉砕処理した。この水質性状を第10表に示す。実験には、原水pHの調整のために粉砕処理した原水1リットルに対してNaHCO310gを添加して連続実験に供した。また、メタン生成活性を安定に保持するために、必要に応じてFe/Ni/Co混合液〔FeCl3(29g/L)、NiCl2・6H2O(4.4g/L)、CoSO4・7H2O(4.7g/L)〕1.0mlを原水1Lに対して添加した。
Reference example 1
A two-stage fermentation test with hydrogen and methane was conducted using coffee lees as food waste. At this time, in order to promote the hydrogen fermentation reaction in the solubilization / hydrogen fermenter, anaerobic hydrogen-producing microorganisms were introduced into the solubilization / hydrogen fermenter, and the performance effect was also investigated.
In the experiment, the coffee extraction residue (hereinafter referred to as coffee mash) discharged from the factory office is collected, adjusted with tap water to a solids concentration (TS concentration) of 10%, and then milled wet milling The mixture was pulverized with a high-speed mill (high-speed grinder Serendipeater (registered trademark) MKCA6-3 (manufactured by Masuko Sangyo Co., Ltd.)). Table 10 shows the water quality. In the experiment, 10 g of NaHCO 3 was added to 1 liter of raw water ground to adjust the raw water pH and subjected to continuous experiments. Also, in order to maintain stable methane production activity, Fe / Ni / Co mixed solution [FeCl 3 (29 g / L), NiCl 2 · 6H 2 O (4.4 g / L), CoSO 4 · 7H as required 2 O (4.7 g / L)] 1.0 ml was added to 1 L of raw water.

実験装置は図5に示される2相仕切り型の可溶化・水素発酵槽(塩化ビニル製、総容積5.5L、有効容積5.0L、ジャケット式温水循環)および完全混合型のメタン発酵槽(円筒型、塩化ビニル製、総容積30L、有効容積25L、ジャケット温水循環式)を用いた。可溶化・水素発酵槽の内部構成は、槽内下方部が可溶化相、上方部が水素発酵相となり、容積比で水素発酵相40%、可溶化相60%とした。実験装置の運転条件は、可溶化・水素発酵槽は37-55℃、メタン発酵槽は55℃、攪拌速度80r/minで行った。可溶化・水素発酵槽の攪拌についてはチューブポンプRP-60型(東京理化器械株式会社製)を使った液循環による攪拌方式とし、発酵槽下部液1.2Lを引抜いて槽上部から注入する操作を1日2回、タイマー運転で行った。原水投入量は1.2L/日、水理学的滞留時間は可溶化・水素発酵は約4日、メタン発酵は約20日で行った。可溶化・水素発酵槽への原水投入はチューブポンプRP-60型で発酵槽側面の下部から注入し、可溶化・水素発酵槽からのオーバーフロー液をメタン発酵槽に流入する送液フローとした。また、メタン発酵槽からのオーバーフロー液の一部0.6-1.2L/日を可溶化・水素発酵槽に返送ながら連続運転した。返送操作にはローラーポンプ(東京理化器械株式会社製RP-1000型)を用い、1日4回に分割してタイマー運転で可溶化・水素発酵槽に発酵槽底部から上向流式に注入した。   The experimental equipment is a two-phase partition type solubilization / hydrogen fermentation tank (made of vinyl chloride, total volume 5.5L, effective volume 5.0L, jacketed hot water circulation) and a fully mixed methane fermentation tank (cylindrical type) as shown in FIG. , Made of vinyl chloride, total volume 30L, effective volume 25L, jacket warm water circulation type). The internal configuration of the solubilization / hydrogen fermenter was a solubilized phase in the lower part of the tank and a hydrogen fermented phase in the upper part, and the hydrogen fermentation phase was 40% and the solubilized phase was 60% in volume ratio. The operating conditions of the experimental apparatus were 37-55 ° C for the solubilization / hydrogen fermenter, 55 ° C for the methane fermenter, and a stirring speed of 80 r / min. For the solubilization and agitation of the hydrogen fermenter, the stirring method is based on liquid circulation using a tube pump RP-60 (manufactured by Tokyo Rika Kikai Co., Ltd.). It was done by timer operation twice a day. The raw water input was 1.2 L / day, the hydraulic residence time was about 4 days for solubilization and hydrogen fermentation, and about 20 days for methane fermentation. The raw water input to the solubilization / hydrogen fermenter was injected from the lower part of the side of the fermenter with a tube pump RP-60 type, and the overflow flow from the solubilization / hydrogen fermenter flowed into the methane fermenter. Moreover, continuous operation was carried out while returning a part of the overflow liquid from the methane fermenter 0.6-1.2 L / day to the solubilization / hydrogen fermenter. Use a roller pump (RP-1000 model manufactured by Tokyo Rika Kikai Co., Ltd.) for the return operation. Divide into 4 times a day, solubilize by timer operation, and inject into the hydrogen fermenter from the bottom of the fermenter in an upward flow manner. .

さらに本実験では、水素発酵反応を促進するために嫌気性水素生成微生物Clostridium butyricum SC-E1株(菌寄第FERM P−14790)を導入した。SC-E1株の菌液導入には培養菌液の遠心濃縮液を調整し(3,000r/min、5min)、ローラーポンプ(東京理化器械株式会社製RP-1000型)を用いて1日4回に分割してタイマー運転で可溶化・水素発酵槽に発酵槽上部から下向流式に導入した。菌液導入量は20-40mL/日とした。SC-E1株の培養菌液作成には、無機塩類溶液1.0Lにグルコース5.0g; ポリペプトン(日本製薬株式会社) 5.0g; 酵母エキス(Difco)0.1g; l-cysteine・HCl・H2O 0.5g; Na2S・9H2O 0.5 g; レサズリン1.0 を調整した水素発酵用培地を用いた(pH6.7-6.8)。また、無機塩類の組成は以下の通りである。(NH4)2SO43.0g/L; KH2PO4 0.2g/L; K2HPO4 1.6g/L; MgSO4・7H2O 0.2/L g; NaCl 0.1g/L; CaCl2・2H2O 0.02g/L; FeSO4・7H2O 0.01g/L; MnCl2・4H2O 0.5mg/L; l-cysteine・HCl・H2O 0.25g/L; Na2S・9H2O 0.25g/L; レサズリン1mg/L; pH 7.0。SC-E1株の培養は東京理化器械株式会社製ジャーファーメンターMBFを用い(総容積5.0L、有効容積4.0L、ジャケット式温水循環)、培養開始時の発酵槽気相部は窒素ガス100%、水素発酵温度37℃、HRT40hで行った。 Furthermore, in this experiment, an anaerobic hydrogen-producing microorganism Clostridium butyricum SC-E1 strain (Fukui No. FERM P-14790) was introduced to promote the hydrogen fermentation reaction. For the introduction of the SC-E1 strain, adjust the centrifugal concentration of the culture solution (3,000r / min, 5min) and use a roller pump (RP-1000, manufactured by Tokyo Rika Kikai Co., Ltd.) four times a day. It was divided into two, and it was introduced into the solubilization / hydrogen fermenter by the timer operation from the upper part of the fermenter in a downward flow manner. The amount of introduced bacterial solution was 20-40 mL / day. SC-E1 strain was prepared using 1.0 g of inorganic salt solution and 5.0 g glucose; Polypeptone (Nippon Pharmaceutical Co., Ltd.) 5.0 g; Yeast extract (Difco) 0.1 g; l-cysteine · HCl · H 2 O 0.5 g; Na 2 S · 9H 2 O 0.5 g; A medium for hydrogen fermentation adjusted to resazurin 1.0 was used (pH 6.7-6.8). The composition of the inorganic salts is as follows. (NH 4 ) 2 SO 4 3.0 g / L; KH 2 PO 4 0.2 g / L; K 2 HPO 4 1.6 g / L; MgSO 4 7H 2 O 0.2 / L g; NaCl 0.1 g / L; CaCl 2 2H 2 O 0.02g / L; FeSO 4・ 7H 2 O 0.01g / L; MnCl 2・ 4H 2 O 0.5mg / L; l-cysteine ・ HCl ・ H 2 O 0.25g / L; Na 2 S ・ 9H 2 O 0.25 g / L; Resazurin 1 mg / L; pH 7.0. The SC-E1 strain is cultured using a jar fermenter MBF manufactured by Tokyo Rika Kikai Co., Ltd. (total volume 5.0L, effective volume 4.0L, jacketed hot water circulation), and the fermenter gas phase at the start of the culture is 100% nitrogen gas The hydrogen fermentation temperature was 37 ° C. and the HRT was 40 h.

コーヒー粕粉砕液を実験材料として水素・メタン二段発酵した実験結果を第11表に示す。本発明での水素・メタン二段発酵法によれば、難分解性の有機性廃棄物であっても水素ガスおよびメタンガスを回収でき、可溶化・水素発酵工程の処理効果が示された。特に、可溶化・水素発酵槽に嫌気性水素生成微生物を導入することで水素発酵は促進され、メタン発酵工程でも有機酸を蓄積することなく安定処理が可能であった。なお、本発明による水素・メタン二段発酵法でのコーヒー粕のVS分解率は59%であった。   Table 11 shows the experimental results of two-stage hydrogen / methane fermentation using coffee grounds as an experimental material. According to the hydrogen / methane two-stage fermentation method of the present invention, hydrogen gas and methane gas can be recovered even with hardly decomposable organic waste, and the treatment effect of the solubilization / hydrogen fermentation process was shown. In particular, hydrogen fermentation was promoted by introducing anaerobic hydrogen-producing microorganisms into the solubilization / hydrogen fermenter, and stable treatment was possible without accumulating organic acids even in the methane fermentation process. In addition, the VS decomposition rate of coffee koji in the hydrogen / methane two-stage fermentation method according to the present invention was 59%.

Figure 2013013896
Figure 2013013896

Figure 2013013896
Figure 2013013896

本発明の有機性廃棄物の嫌気性処理方法は、有機性固形物を短時間で簡便に効率良く可溶化・低分子化することができるので、下水汚泥、余剰汚泥、家畜糞尿、生ごみ、食品製造廃棄物などの有機性廃棄物の処理産業など、環境保護産業に特に有用である。   The organic waste anaerobic treatment method of the present invention can easily solubilize and reduce the molecular weight of organic solids in a short time, so that sewage sludge, surplus sludge, livestock manure, garbage, It is particularly useful in environmental protection industries such as organic waste processing industries such as food manufacturing waste.

本発明に係わる有機性廃棄物の水素・メタン二段発酵装置の一つの実施形態を示すブロック図。The block diagram which shows one Embodiment of the hydrogen and methane two-stage fermentation apparatus of the organic waste concerning this invention. 本発明の参考例に当たる有機性廃棄物の可溶化・水素発酵装置の実施形態を示すブロック図。The block diagram which shows embodiment of the solubilization and hydrogen fermentation apparatus of the organic waste which corresponds to the reference example of this invention. 本発明に係わる有機性廃棄物の可溶化・水素発酵装置の別の実施形態を示す概略図。Schematic which shows another embodiment of the solubilization and hydrogen fermentation apparatus of the organic waste concerning this invention. 本発明に係わる有機性廃棄物の水素・メタン二段発酵装置を用いた室内実験の第一の実施形態を示す概略図。Schematic which shows 1st embodiment of the laboratory experiment using the hydrogen and methane two-stage fermentation apparatus of the organic waste concerning this invention. 本発明の参考例に係わる有機性廃棄物の水素・メタン二段発酵装置を用いた室内実験の第二の実施形態を示す概略図。Schematic which shows 2nd embodiment of the laboratory experiment using the hydrogen and methane two-stage fermentation apparatus of the organic waste concerning the reference example of this invention. 本発明に係わる有機性廃棄物の水素・メタン二段発酵装置を用いた屋外実験の実施形態を示す概略図。Schematic which shows embodiment of the outdoor experiment using the hydrogen and methane two-stage fermentation apparatus of the organic waste concerning this invention. 水素・メタン二段発酵プロセスの物質収支を示す。The material balance of the hydrogen / methane two-stage fermentation process is shown. 従来の有機性廃棄物メタン発酵を示すブロック図。The block diagram which shows the conventional organic waste methane fermentation.

1 可溶化・水素発酵槽(可溶化・水素発酵リアクタ)
1A 可溶化発酵部
1B 水素発酵部
2 メタン発酵槽(メタン発酵リアクタ)
2A 高温メタン発酵槽
3 物理化学的リアクタ
4 生ごみ
4A 原水
5 易分解性廃棄物
6 難分解性廃棄物
7 有機性廃棄物
8 希釈水
9 バイオガス
10 発酵残渣
11 上澄液
12 嫌気汚泥
13 汚泥液
14 固形分
15 水素
16 メタン
17 前処理槽
18 原料貯留槽
19 可溶化・水素発酵リアクタ
20 完全混合型メタン発酵リアクタ
21 発酵残渣貯留槽
22 水素タンク
23 メタンタンク
24、25 脱硫塔
1 Solubilization / hydrogen fermentation tank (solubilization / hydrogen fermentation reactor)
1A Solubilization fermentation section 1B Hydrogen fermentation section 2 Methane fermentation tank (methane fermentation reactor)
2A High-temperature methane fermentation tank 3 Physicochemical reactor 4 Garbage 4A Raw water 5 Easy degradable waste 6 Refractory waste 7 Organic waste 8 Diluted water 9 Biogas 10 Fermentation residue 11 Supernatant liquid 12 Anaerobic sludge 13 Sludge Liquid 14 Solid 15 Hydrogen 16 Methane 17 Pretreatment tank 18 Raw material storage tank 19 Solubilization / hydrogen fermentation reactor 20 Completely mixed methane fermentation reactor 21 Fermentation residue storage tank 22 Hydrogen tank 23 Methane tank 24, 25 Desulfurization tower

Claims (2)

糖質系廃棄物が主体の生ごみ系有機性廃棄物処理もしくはセルロース性固形物を含む生ごみ系有機性廃棄物処理において、前処理工程で微細化、均質化されると共に濃度がVS 5〜15wt%の原料に対して、前段に30〜70℃、pH5〜8.5、水理学的滞留時間2〜3日の生物反応で処理する完全混合型の嫌気性可溶化と水素発酵とを併せ持つ工程、それに引き続く後段に完全混合型のメタン発酵工程からなる二段発酵法を行い、メタン発酵工程からの流出成分の一部を前記嫌気性可溶化と水素発酵とを併せ持つ工程に返送することを特徴とする生物学的に水素とメタンを回収する嫌気性処理方法。   In the waste organic waste treatment mainly including carbohydrate waste or the waste organic waste treatment containing cellulosic solids, it is refined and homogenized in the pretreatment step and the concentration is VS 5 Combines anaerobic solubilization and hydrogen fermentation of a fully mixed type that is processed in a biological reaction of 30 to 70 ° C., pH 5 to 8.5, hydraulic residence time 2 to 3 days, with respect to 15 wt% of the raw material. Performing a two-stage fermentation method consisting of a fully mixed methane fermentation process in the subsequent stage, and returning a part of the effluent components from the methane fermentation process to the process having both anaerobic solubilization and hydrogen fermentation. Biologically anaerobic treatment method to recover hydrogen and methane. 糖質系廃棄物が主体の生ごみ系有機性廃棄物処理もしくはセルロース性固形物を含む生ごみ系有機性廃棄物処理装置において、前処理工程で微細化、均質化されると共に濃度をVS 5〜15wt%に調整した原料を置く原料槽、前段に30〜70℃、pH5〜8.5、水理学的滞留時間2〜3日の生物反応で処理する嫌気性可溶化と水素発酵とを併せ持つ工程を行う完全混合型の嫌気性可溶化・水素発酵槽、それに引き続いた後段に完全混合型のメタン発酵工程を行うメタン発酵槽を設けてなる二段発酵法を行う装置であって、メタン発酵槽からの流出成分の一部を前記嫌気性可溶化と水素発酵とを併せ持つ工程を行う前記嫌気性可溶化・水素発酵槽に返送する返送管を設けることを特徴とする生物学的に水素とメタンを回収する嫌気性処理装置。   In a garbage-based organic waste treatment apparatus mainly comprising a sugar-based waste or a garbage-based organic waste treatment apparatus containing cellulosic solids, the concentration is reduced to VS 5 while being refined and homogenized in a pretreatment process. A raw material tank in which raw materials adjusted to ˜15 wt% are put together, and anaerobic solubilization and hydrogen fermentation treated in a biological reaction at 30 to 70 ° C., pH 5 to 8.5, hydraulic residence time 2 to 3 days are combined in the previous stage An apparatus for performing a two-stage fermentation method comprising a fully mixed type anaerobic solubilization / hydrogen fermenter that performs a process, and a methane fermenter that performs a fully mixed type methane fermentation process in the subsequent stage. Biologically, hydrogen is provided with a return pipe for returning a part of the outflow component from the tank to the anaerobic solubilization / hydrogen fermentation tank for performing a process having both anaerobic solubilization and hydrogen fermentation. Anaerobic treatment to recover methane Apparatus.
JP2012207186A 2012-09-20 2012-09-20 Method and apparatus for anaerobic treatment of organic waste Expired - Lifetime JP5711192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012207186A JP5711192B2 (en) 2012-09-20 2012-09-20 Method and apparatus for anaerobic treatment of organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012207186A JP5711192B2 (en) 2012-09-20 2012-09-20 Method and apparatus for anaerobic treatment of organic waste

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003360718A Division JP5121111B2 (en) 2003-10-21 2003-10-21 Method and apparatus for anaerobic treatment of organic waste

Publications (2)

Publication Number Publication Date
JP2013013896A true JP2013013896A (en) 2013-01-24
JP5711192B2 JP5711192B2 (en) 2015-04-30

Family

ID=47687104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012207186A Expired - Lifetime JP5711192B2 (en) 2012-09-20 2012-09-20 Method and apparatus for anaerobic treatment of organic waste

Country Status (1)

Country Link
JP (1) JP5711192B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588403A (en) * 2013-11-01 2015-05-06 徐小芹 Method for sorting and recovering garbage
JP2016055216A (en) * 2014-09-05 2016-04-21 栗田工業株式会社 Method and apparatus for anaerobically digesting sewage treatment sludge
CN105617830A (en) * 2014-12-30 2016-06-01 浙江大学 Method for producing automotive biological hydrogen-alkane gas from urban and rural organic waste through fermentation and purification as well as refinement
JP6122232B1 (en) * 2016-05-27 2017-04-26 鹿島建設株式会社 Methane fermentation treatment system and methane fermentation treatment method
JP2017154082A (en) * 2016-03-02 2017-09-07 住友重機械工業株式会社 Anaerobic wastewater treatment device
JP2018176005A (en) * 2017-04-03 2018-11-15 三井E&S環境エンジニアリング株式会社 Methane fermentation treatment system of garbage
WO2020255439A1 (en) * 2019-06-17 2020-12-24 株式会社太洋サービス Method and system for storing biomass raw material
JP2021007949A (en) * 2020-10-16 2021-01-28 三井E&S環境エンジニアリング株式会社 Methane fermentation treatment system of garbage
CN115385534A (en) * 2022-09-05 2022-11-25 同济大学 Method for enhancing hydrogen production by anaerobic fermentation of excess sludge by using cation exchange resin

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174092A (en) * 1981-04-21 1982-10-26 Osaka Gas Co Ltd Preparation of hydrogen gas
JPH11228475A (en) * 1998-02-09 1999-08-24 Shimadzu Corp Apparatus for producing dimethyl ether utilizing organic waste
JPH11276185A (en) * 1998-03-30 1999-10-12 Tokyo Gas Co Ltd Hydrogen production unit using plant
JP2000153259A (en) * 1998-11-24 2000-06-06 Kubota Corp Methane fermentation method of easily degradable organic waste
JP2001157595A (en) * 1999-12-01 2001-06-12 Densei:Kk Method for production of hydrogen
JP2002086196A (en) * 2000-09-14 2002-03-26 Mitsubishi Heavy Ind Ltd Waste water treating method and device
JP2002272491A (en) * 2001-03-22 2002-09-24 Kajima Corp Method for producing hydrogen by microbial group and the same hydrogen-fermenting microbial group
JP2002355022A (en) * 2001-06-01 2002-12-10 Densei:Kk Equipment and method for producing hydrogen
JP2003135089A (en) * 2001-11-06 2003-05-13 Takuma Co Ltd Method and apparatus for producing hydrogen and methane using microorganism
JP2003250519A (en) * 2002-02-28 2003-09-09 Sanyo Electric Co Ltd Method for producing hydrogen and apparatus for producing hydrogen
JP2003284543A (en) * 2002-03-29 2003-10-07 Matsushita Electric Ind Co Ltd Apparatus for producing hydrogen
JP2005066420A (en) * 2003-08-20 2005-03-17 Japan Science & Technology Agency Hydrogen and methane two-stage fermentation treatment method for waste bread

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174092A (en) * 1981-04-21 1982-10-26 Osaka Gas Co Ltd Preparation of hydrogen gas
JPH11228475A (en) * 1998-02-09 1999-08-24 Shimadzu Corp Apparatus for producing dimethyl ether utilizing organic waste
JPH11276185A (en) * 1998-03-30 1999-10-12 Tokyo Gas Co Ltd Hydrogen production unit using plant
JP2000153259A (en) * 1998-11-24 2000-06-06 Kubota Corp Methane fermentation method of easily degradable organic waste
JP2001157595A (en) * 1999-12-01 2001-06-12 Densei:Kk Method for production of hydrogen
JP2002086196A (en) * 2000-09-14 2002-03-26 Mitsubishi Heavy Ind Ltd Waste water treating method and device
JP2002272491A (en) * 2001-03-22 2002-09-24 Kajima Corp Method for producing hydrogen by microbial group and the same hydrogen-fermenting microbial group
JP2002355022A (en) * 2001-06-01 2002-12-10 Densei:Kk Equipment and method for producing hydrogen
JP2003135089A (en) * 2001-11-06 2003-05-13 Takuma Co Ltd Method and apparatus for producing hydrogen and methane using microorganism
JP2003250519A (en) * 2002-02-28 2003-09-09 Sanyo Electric Co Ltd Method for producing hydrogen and apparatus for producing hydrogen
JP2003284543A (en) * 2002-03-29 2003-10-07 Matsushita Electric Ind Co Ltd Apparatus for producing hydrogen
JP2005066420A (en) * 2003-08-20 2005-03-17 Japan Science & Technology Agency Hydrogen and methane two-stage fermentation treatment method for waste bread

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014001509; 高木 啓行ら: '嫌気性細菌を用いた水素生成に及ぼす固形物濃度の影響' 工業用水 第484号 1月号, 19990120, pp.26-32, 社団法人日本工業用水協会 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588403A (en) * 2013-11-01 2015-05-06 徐小芹 Method for sorting and recovering garbage
JP2016055216A (en) * 2014-09-05 2016-04-21 栗田工業株式会社 Method and apparatus for anaerobically digesting sewage treatment sludge
CN105617830A (en) * 2014-12-30 2016-06-01 浙江大学 Method for producing automotive biological hydrogen-alkane gas from urban and rural organic waste through fermentation and purification as well as refinement
CN105617830B (en) * 2014-12-30 2018-05-25 浙江大学 The method that town and country fermentation of organic wastes purification produces automobile-used biological hydrogen alkane gas
JP2017154082A (en) * 2016-03-02 2017-09-07 住友重機械工業株式会社 Anaerobic wastewater treatment device
JP6122232B1 (en) * 2016-05-27 2017-04-26 鹿島建設株式会社 Methane fermentation treatment system and methane fermentation treatment method
WO2017203684A1 (en) * 2016-05-27 2017-11-30 鹿島建設株式会社 Methane fermentation treatment system and methane fermentation treatment method
JP2018176005A (en) * 2017-04-03 2018-11-15 三井E&S環境エンジニアリング株式会社 Methane fermentation treatment system of garbage
WO2020255439A1 (en) * 2019-06-17 2020-12-24 株式会社太洋サービス Method and system for storing biomass raw material
JP2021007949A (en) * 2020-10-16 2021-01-28 三井E&S環境エンジニアリング株式会社 Methane fermentation treatment system of garbage
JP7015893B2 (en) 2020-10-16 2022-02-03 Jfe環境テクノロジー株式会社 Swill methane fermentation processing system
CN115385534A (en) * 2022-09-05 2022-11-25 同济大学 Method for enhancing hydrogen production by anaerobic fermentation of excess sludge by using cation exchange resin

Also Published As

Publication number Publication date
JP5711192B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP5711192B2 (en) Method and apparatus for anaerobic treatment of organic waste
Ferreira et al. Combining biotechnology with circular bioeconomy: From poultry, swine, cattle, brewery, dairy and urban wastewaters to biohydrogen
Tsapekos et al. Bioaugmentation with hydrolytic microbes to improve the anaerobic biodegradability of lignocellulosic agricultural residues
Wu et al. Biohydrogen production by mesophilic fermentation of food wastewater
Wang et al. Producing hydrogen from wastewater sludge by Clostridium bifermentans
Lavagnolo et al. Two-stage anaerobic digestion of the organic fraction of municipal solid waste–Effects of process conditions during batch tests
Kim et al. Fermentative hydrogen production from tofu-processing waste and anaerobic digester sludge using microbial consortium
US7556737B2 (en) Anaerobic phased solids digester for biogas production from organic solid wastes
Kargi et al. Hydrogen gas production from cheese whey powder (CWP) solution by thermophilic dark fermentation
Alzate-Gaviria et al. Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater
JP5121111B2 (en) Method and apparatus for anaerobic treatment of organic waste
Ghasimi et al. Microbial population dynamics during long-term sludge adaptation of thermophilic and mesophilic sequencing batch digesters treating sewage fine sieved fraction at varying organic loading rates
Handous et al. Two-stage anaerobic digestion of meat processing solid wastes: methane potential improvement with wastewater addition and solid substrate fermentation
CN103509829B (en) A kind of method of changing food waste associating excess sludge fermentation acetic acid and butyric acid
Hassan et al. Utilization of food waste for bio-hydrogen and bio-methane production: influences of temperature, OLR, and in situ aeration
Kang et al. Enhanced anaerobic digestion of organic waste
CN102367455B (en) Method for producing hydrogen by improving anaerobic digestion of kitchen waste through controlling ammonia nitrogen concentration
Tagne et al. Optimization of biohydrogen production by dark fermentation of African food-processing waste streams
JP2006314920A (en) Method for recovering energy from biomass
Giwa et al. The resource recovery potential of blackwater and foodwaste: anaerobic co-digestion in serial semi-continuous stirred tank reactors
JP2006255538A (en) Method and apparatus for treatment of food waste
JP4844951B2 (en) Processing method and apparatus for garbage and paper waste
Siddique et al. A mini-review on dark-photo fermentation
KR101756446B1 (en) Reduction and Biogas Production System Using Anaerobic Digestion of Organic Waste and Livestock manure and Operation Method Using the Same
CN113980933B (en) Complex enzyme preparation and method for treating wastewater and sludge by using complex enzyme

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150305

R150 Certificate of patent or registration of utility model

Ref document number: 5711192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term