JP2013013847A - Gas-liquid contact process and water-deoxidization process utilizing the same - Google Patents

Gas-liquid contact process and water-deoxidization process utilizing the same Download PDF

Info

Publication number
JP2013013847A
JP2013013847A JP2011147584A JP2011147584A JP2013013847A JP 2013013847 A JP2013013847 A JP 2013013847A JP 2011147584 A JP2011147584 A JP 2011147584A JP 2011147584 A JP2011147584 A JP 2011147584A JP 2013013847 A JP2013013847 A JP 2013013847A
Authority
JP
Japan
Prior art keywords
gas
water
liquid contact
treated water
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011147584A
Other languages
Japanese (ja)
Inventor
Shinichi Sekiguchi
申一 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIGUCHI KK
Original Assignee
SEKIGUCHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIGUCHI KK filed Critical SEKIGUCHI KK
Priority to JP2011147584A priority Critical patent/JP2013013847A/en
Publication of JP2013013847A publication Critical patent/JP2013013847A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that the nitrogen substitution-multistage contact process is considered to be practical for general industrial use but the nitrogen consumption required in this process is not greatly reduced, even when the contact is made in three or more stages and the process has limitations on nitrogen consumption.SOLUTION: The gas-liquid contact process controls the nitrogen consumption close to the theoretical efficiency level in a multistage contact even in three or more stages, because the oversaturation of dissolved gas is completely avoided in each of the stages.

Description

本発明は、水中の溶存酸素等を窒素やアルゴン等の不活性ガスと置換することで除去するストリッピング技術による気液接触方法、及びそれを応用した水の脱酸素方法に関する。   The present invention relates to a gas-liquid contact method using a stripping technique for removing dissolved oxygen in water by replacing it with an inert gas such as nitrogen or argon, and a water deoxygenation method using the same.

〔ガスストリッピング技術〕
ガスストリッピング技術とは、液相と気相のガス組成の比率を等しくすることで、液体中のガス成分の調整を行う方法である。
〔脱酸素技術〕
(蒸気式脱気法)
従来からボイラの給水の脱気で実施されていた方法であり、高所に設置された脱気槽中に、蒸気を吹込み、給水を大気圧下で沸点付近の温度に保つことにより、水中のガス成分を脱気する。
(真空脱気法)
水を沸点に保つに当たり、大気圧よりも低い圧力中で実施する方法である。
(膜脱気法)
酸素透過膜と呼ばれる酸素が溶解しやすい膜を用い、膜の反対側を低圧にすることで、水中の溶存酸素が膜を通過して、低圧側に移行することを利用して脱酸素を行う方法である。
[Gas stripping technology]
The gas stripping technique is a method of adjusting the gas component in the liquid by equalizing the ratio of the gas composition of the liquid phase to the gas phase.
[Deoxygenation technology]
(Steam type deaeration method)
This method has been practiced by deaeration of boiler feedwater in the past. The gas component is degassed.
(Vacuum degassing method)
In order to keep water at the boiling point, the method is carried out at a pressure lower than atmospheric pressure.
(Membrane degassing method)
Oxygen permeable membrane called oxygen permeable membrane is used, and the other side of the membrane is made low pressure, so that dissolved oxygen in water passes through the membrane and moves to the low pressure side to perform deoxygenation Is the method.

(窒素置換法)
リアクターと呼ばれる接触器若しくはエアレーターと呼ばれる散水器等を用いて、水中の溶存酸素と窒素をヘンリーの法則に従って置換することにより、水中の溶存酸素を減少させる方法で、ガスストリッピング技術の一形態である。
(窒素置換−気中水滴接触型)
静止型リアクターや分散板等を配置した接触塔の上部から水を散水し、塔内に窒素を吹き込むことで、霧状になった水滴と気液接触させる方法である。
(窒素置換−水中気泡接触型)
エアレーターと呼ばれる機械式の攪拌機により水を運動させると供に、水中に微細気泡を分散させるものや、圧縮気体を水中に噴出させる際に微細気泡を発生させる方法である。
(窒素置換−単段接触法)
窒素ガスと水との接触を1つの接触装置で行い、純度の低下した窒素ガスを外部に排出する方法である。
装置がコンパクトになり、装置も簡単に構成できるが、水中の酸素濃度を低下させる為には、大量の窒素が必要になる。
(窒素置換−多段接触法)
窒素ガスと水との接触を複数の接触装置で行い、最終段の接触装置の窒素ガスをその前段の接触装置のガスとして再利用することで、窒素の消費量を抑制できるが、装置が大型化し装置も複雑化する(例えば、特許文献1)。
(Nitrogen replacement method)
Using a contactor called a reactor or a sprinkler called an aerator, etc., by replacing dissolved oxygen and nitrogen in the water according to Henry's law, a method of reducing dissolved oxygen in the water, one form of gas stripping technology It is.
(Nitrogen replacement-in-air contact type)
In this method, water is sprinkled from the upper part of the contact tower in which a stationary reactor, a dispersion plate, and the like are arranged, and nitrogen is blown into the tower to bring it into contact with mist-like water droplets.
(Nitrogen substitution-underwater bubble contact type)
This is a method in which fine bubbles are generated when water is moved by a mechanical stirrer called an aerator and fine bubbles are dispersed in water or when compressed gas is jetted into water.
(Nitrogen substitution-single-stage contact method)
In this method, nitrogen gas and water are brought into contact with one contact device, and the nitrogen gas with reduced purity is discharged to the outside.
Although the apparatus becomes compact and the apparatus can be easily configured, a large amount of nitrogen is required to reduce the oxygen concentration in water.
(Nitrogen substitution-multistage contact method)
Nitrogen gas and water can be contacted by multiple contact devices, and the nitrogen gas in the final stage contact device can be reused as the gas for the previous contact device, thereby reducing nitrogen consumption. The device becomes complicated (for example, Patent Document 1).

〔過飽和〕
溶液の中に溶質が過剰に含まれた状態を言い、本発明においては、水の中にその温度及び圧力条件下でヘンリーの法則に従った溶存気体の存在量より過剰に溶存気体が含まれている状態を言う。
例えば、廃水処理等で用いられる加圧浮上法は、高圧水の中に空気を溶存させ、常圧に戻すことで、過飽和状態の空気が微細気泡を発生する原理を利用している。
エネルギーの出入りが無い安定状態では、過飽和を解消することは熱吸収反応である為、10倍程度までの過飽和状態は比較的安定しやすい特徴を持つ。
〔気体の溶解性〕
気体の種類に応じて、水に対する溶解度が異なる。一般に20℃1気圧におけるガスが1mlの水に溶解する体積を溶解度と言い、最も少ないHeが0.009(ml/ml)で、窒素0.016、酸素0.031等となり、CO2では0.88と大きくなる。本発明において対象となるガスは、概ね炭酸ガスよりも溶解度が低いガス成分(難溶解性ガス)を対象とする。
〔インゼクター/エゼクター〕
高速の流体のエネルギーを利用して、負圧を生み出すことの出来る器具のことを言う。例えば、空気や蒸気等を駆動気体として用いる気体インゼクター(エゼクター)や、アスピレーターと呼ばれる水を駆動流体とした負圧発生装置が一般的である。
〔液体霧化装置〕
気体のエネルギーを利用して、液体を霧状に霧化させる装置のことを言う。液体燃料燃焼の場合には、蒸気噴霧式や空気噴霧式のバーナーを採用する例が少なくない。水でも同様の原理にて、蒸気若しくは空気等の圧縮気体を利用して、液体を霧化させることができる。
[Supersaturated]
A state in which a solute is excessively contained in a solution. Say that state.
For example, a pressurized flotation method used in wastewater treatment or the like uses the principle that supersaturated air generates fine bubbles by dissolving air in high-pressure water and returning to normal pressure.
In a stable state where no energy enters and exits, eliminating supersaturation is a heat absorption reaction.
[Gas solubility]
The solubility in water varies depending on the type of gas. In general, the volume at which gas at 20 ° C. and 1 atm is dissolved in 1 ml of water is referred to as solubility. Increases to 88. In the present invention, the target gas is a gas component (hardly soluble gas) whose solubility is generally lower than that of carbon dioxide gas.
[Injector / Ejector]
An instrument that can generate negative pressure using the energy of high-speed fluid. For example, a gas injector (ejector) that uses air, steam, or the like as a driving gas, or a negative pressure generator that uses water as a driving fluid, called an aspirator, is common.
[Liquid atomizer]
It refers to a device that uses gas energy to atomize a liquid in a mist form. In the case of liquid fuel combustion, there are many examples that employ a steam spray type or air spray type burner. Water can be atomized using compressed gas such as steam or air on the same principle.

〔気体混合手段〕
気体混合手段とは、2つ以上の気体を混合する為の装置や機構である。
気体は分子の運動量が大きいので、密度や温度が極端に違わない限り、閉空間に閉じ込めた状態で混合状態となる。
しかし、温度や密度が異なる場合には、完全に混合するには時間がかかるので、一般には管路内を乱流状態の速度まで上昇させたり、オリフィスで絞ったり、スタティックミキサーと呼ばれる螺旋羽根を持つ管路内を通過させたり、動力式の羽根を持つ攪拌機等で混合する等の方法がある。
又、送風機やコンプレッサー、真空ポンプ等の圧縮や膨張を行う装置を通過させることでも、気体混合は可能である。
〔水中への気体噴射手段〕
水中への気体噴霧手段は、一般的には、(i)細孔を持つ金属板や、微細な粒子を結合させた焼結体、気泡が連続した構造を持つ発泡体、微細な穴を有する有機質膜等を解して気体を水中に噴射する水中気泡型噴射方法、(ii)気体をノズル状の噴射管から噴射し、噴射の運動エネルギーにより気泡を水中で微細化させ、更に周囲の水を循環させ混合促進を図る水中気流型噴射方法、(iii)回転羽根等を水中で回転させ、遠心力により負圧になった中心部分から気体をいれることで水中に気泡を拡散させるエアレーターやポンプ等のサクション側に気体を入れる動力併用水中気流型噴射方法等がある。
[Gas mixing means]
The gas mixing means is a device or mechanism for mixing two or more gases.
Since gas has a large momentum of molecules, it will be mixed in a confined space unless the density and temperature are extremely different.
However, when the temperature and density are different, it takes time to mix completely. Generally, the temperature in the pipe is increased to a turbulent speed, the orifice is squeezed, and a spiral blade called a static mixer is used. There are methods such as passing through a pipe line having mixing or mixing with a stirrer having a power blade.
Gas mixing is also possible by passing through a device that performs compression and expansion, such as a blower, a compressor, and a vacuum pump.
[Gas injection means into water]
The means for spraying gas into water generally has (i) a metal plate having pores, a sintered body in which fine particles are bonded, a foam having a continuous structure of bubbles, and fine holes. A submerged bubble injection method that injects gas into water through an organic film, etc. (ii) Injects gas from a nozzle-like injection tube, refines the bubbles in water by the kinetic energy of the injection, and further the surrounding water (Iii) An aerator that diffuses bubbles in the water by rotating the rotating blades etc. in water and introducing gas from the central part that has become negative pressure due to centrifugal force. There is a power combined use underwater air flow type injection method that puts gas into the suction side of a pump or the like.

〔液体噴射手段〕
液体噴射手段は、一般的には、(i)圧力水をノズルから噴霧させる方法、(ii)多孔板等を介して水を散水する方法、(iii)動力による回転円盤等の遠心力を利用する方法、(iv)前述の気体のエネルギーを利用した2流体ノズル等を利用する方法等の噴霧式液体噴射方法、(v)流下エネルギーを利用して、障害物と衝突させ水滴を飛散させる方法、(vi)固体表面の濡れ性を利用して、固体表面を流下させ接触面積と接触時間を拡大する流下式液体噴射方法等がある。
〔ボイラの給水予熱〕
ボイラは、近年高効率化が進み、エコノマイザーと呼ばれる排ガスを給水と熱交換することで、効率を上昇させる機能が併設される場合が殆どである。
エコノマイザーは、給水温度が低いほど熱交換効率が上昇し、ボイラ効率の上昇に繋がるが、水温が低すぎる場合には排ガス中の水分が結露してしまう。
結露自体は潜熱の回収になるので、効率的には望ましいが、排ガス中に含まれている硫酸分により低温腐食の原因になったり、結露水がボイラ運用の妨げになる場合があり、適正な水温に保つことが望ましい。
使用する燃料中の硫黄濃度や排ガス中の水分比率により異なるが、液体燃料として一般的な低硫黄A重油の場合で約40℃、気体燃料の13Aガスの場合には約30℃が適正水温と考えられている。
[Liquid ejecting means]
The liquid ejecting means generally uses (i) a method in which pressure water is sprayed from a nozzle, (ii) a method in which water is sprinkled through a perforated plate, etc. (iii) a centrifugal force such as a rotating disk driven by power. (Iv) A spray type liquid injection method such as a method using a two-fluid nozzle using the gas energy described above, and (v) a method of splashing water droplets by colliding with an obstacle using flowing energy. (Vi) There is a flow-down type liquid jet method that uses the wettability of the solid surface to flow down the solid surface and expand the contact area and contact time.
[Boiler water preheating]
In recent years, boilers have been improved in efficiency, and most of them are provided with a function for increasing efficiency by exchanging heat of exhaust gas called economizer with water supply.
In the economizer, the lower the water supply temperature, the higher the heat exchange efficiency and the higher the boiler efficiency. However, when the water temperature is too low, the moisture in the exhaust gas is condensed.
Condensation itself is a recovery of latent heat, which is desirable in terms of efficiency, but it may cause low-temperature corrosion due to sulfuric acid contained in the exhaust gas, and the condensed water may interfere with boiler operation. It is desirable to keep the water temperature.
Although it depends on the sulfur concentration in the fuel used and the moisture ratio in the exhaust gas, the appropriate water temperature is about 40 ° C for the low-sulfur A heavy oil, which is a typical liquid fuel, and about 30 ° C for the 13A gas fuel. It is considered.

〔不活性ガス〕
不活性ガスとは、対象となる環境下において、酸化や還元或いは酸性やアルカリ性等を示さず、且つ他の元素等との結合等を行うことの無いガスを示し、代表的なガスはヘリウム、ネオン、アルゴン等の希ガス族元素であるが、窒素ガスも一般的な環境下においては、不活性ガスとして用いることができる。
〔気体圧縮手段〕
気体圧縮手段とは、一般的には回転動力を利用したコンプレッサー(レシプロ式、スクリュー式、スクロール式等)を示すが、流体の持つエネルギーを利用して、ダイヤフラムやピストン等の往復動を直接利用するものやインゼクターも低圧領域ではあるが、気体の圧縮作用を持たせることが可能である。
〔流体吸引手段〕
気体吸引手段とは、一般的には回転動力を利用した真空ポンプ(水流式、レシプロ式、スクリュー式、スクロール式等)を示すが、流体の持つエネルギーを利用して、ダイヤフラムやピストン等の往復動を直接利用するものや、インゼクターも性能の優れた気体吸引手段である。
[Inert gas]
Inert gas refers to a gas that does not exhibit oxidation, reduction, acidity, alkalinity, or the like and does not bind to other elements in a target environment, and representative gas is helium, Although it is a rare gas group element such as neon or argon, nitrogen gas can also be used as an inert gas in a general environment.
[Gas compression means]
The gas compression means generally indicates a compressor (reciprocating type, screw type, scroll type, etc.) that uses rotational power, but directly utilizes the reciprocating motion of a diaphragm, piston, etc., using the energy of the fluid. Although it is also in the low pressure region, it is possible to give a gas compression action.
[Fluid suction means]
The gas suction means generally refers to a vacuum pump (water flow type, reciprocating type, screw type, scroll type, etc.) that uses rotational power, but reciprocating a diaphragm, piston, etc. using the energy of the fluid. Directly using motion and injectors are gas suction means with excellent performance.

〔液体移送手段〕
液体移送手段とは、一般的に回転動力により駆動されるポンプを示すが、気体エネルギーを利用したダイヤフラムやピストン等の往復動を利用したポンプや高速気流による吸引力を利用したインゼクター等も液体移送能力を持つ。
〔液体攪拌手段〕
液体攪拌手段とは、一般的に攪拌機、ミキサー等と呼ばれる回転動力で駆動される液体同士、或いは液体と気体の攪拌を行う装置であるが、静止型ミキサーと呼ばれる液体の流速を利用して混合させる装置や、液体中に、高圧気体や高圧液体等を吹き込んで水流や乱流を発生させる方法もある。
〔温度検出手段〕
温度検出手段としては、白金測温対、熱電対、サーミスター等の温度センサーとそのアンプから構成され、温度信号を電気的な信号に変換したり、予め設定された温度に到達した時にON・OFFする信号を出力するタイプの電気的検出手段の他、バイメタルや流体の温度膨張を利用した機械的動作により、予め設定された温度に到達した時にON・OFFの信号を出力する機械的検出手段等がある。
[Liquid transfer means]
The liquid transfer means generally indicates a pump driven by rotational power. However, a pump using a reciprocating motion such as a diaphragm using a gas energy or a piston, an injector using a suction force by a high-speed air flow, or the like is also a liquid. Has transfer capability.
[Liquid stirring means]
The liquid agitation means is a device for stirring liquids or liquids and gases that are generally driven by rotational power called a stirrer, a mixer, etc., but is mixed using a liquid flow rate called a static mixer. There is also a method of generating a water flow or a turbulent flow by blowing a high-pressure gas or a high-pressure liquid into the liquid.
[Temperature detection means]
The temperature detection means consists of a temperature sensor such as a platinum temperature measuring pair, thermocouple, thermistor, etc. and its amplifier, which converts the temperature signal into an electrical signal or turns on when a preset temperature is reached. In addition to electrical detection means that outputs a signal that turns off, mechanical detection means that outputs an ON / OFF signal when a preset temperature is reached by a mechanical operation utilizing the temperature expansion of bimetal or fluid. Etc.

〔蒸気検出手段〕
蒸気検出手段としては、一般的には圧力スイッチの接点信号や、圧力センサーからのアナログ信号により一定圧力を検出する手段の他、温度検出手段により検出する手段がある。
〔流量検出手段〕
流量検出手段としては、流体の差圧、流速、容積、質量等を検出して電気的な信号に変換する流量計と呼ばれるものの他、一定容量のタンクの減量や増量を検出したり、ポンプの規定流量から作動時間等により流量を推定する方法によるもの等がある。
〔流体制御手段〕
流体制御手段としては、流体を弁の開閉によりコントロールする電磁弁やモーター弁・空気作動等のON・OFF制御のものと、電気的空気計装的信号により弁開度をリニアーに制御する制御弁方式のものがある。
[Vapor detection means]
As the steam detection means, there is generally a means for detecting by a temperature detection means in addition to a means for detecting a constant pressure by a contact signal of a pressure switch or an analog signal from a pressure sensor.
[Flow detection means]
As the flow rate detection means, in addition to what is called a flow meter that detects the differential pressure, flow rate, volume, mass, etc. of the fluid and converts it into an electrical signal, it detects the decrease or increase of a fixed capacity tank, There are methods that estimate the flow rate from the specified flow rate based on the operating time.
[Fluid control means]
Fluid control means include solenoid valves that control fluid by opening and closing of valves, motor valves, air valves and other ON / OFF control valves, and control valves that linearly control valve opening using electrical air instrumentation signals There is a method.

〔流体切替手段〕
流体切替手段は、通常は三方弁と呼ばれる1の入口と2の出口を持つ弁の出口を切り替えることで実現する。しかし、バルブを2ケ用意し、片方を閉止、片方を開とすることでも同様の機能が実現できる。
それらを、空気や電気的に遠隔で切り替えたり、手動で切替を行う。
その他、出口の片側を安全弁の様にクラッキング圧が必要なバルブにして、片方の弁の開閉のみで、切り替える方法等もある。
〔ガス混合手段〕
ガス混合手段としては、2種以上のガスを、オリフィス部を通過させたり、スタティックミキサー等のミキサーにより混合させる方法によるものが一般的である。
その他、インゼクターを利用すると、高圧気体と、低圧気体を中圧にして混合させることも可能である。
[Fluid switching means]
The fluid switching means is realized by switching the outlet of a valve having one inlet and two outlets, usually called a three-way valve. However, the same function can be realized by preparing two valves, closing one and opening one.
They can be switched remotely by air or electrically, or manually.
In addition, there is a method in which one side of the outlet is a valve that requires cracking pressure, such as a safety valve, and switching is performed only by opening and closing one valve.
[Gas mixing means]
As the gas mixing means, there is generally used a method in which two or more kinds of gases are passed through an orifice part or mixed by a mixer such as a static mixer.
In addition, when an injector is used, high pressure gas and low pressure gas can be mixed at a medium pressure.

〔蒸気供給手段〕
蒸気供給手段とは、元蒸気を受け入れた後、スチームトラップや減圧弁、安全弁、ストレーナーの他、手動弁や電磁弁やモーター弁、制御弁等を組み合わせ、手動若しくは自動的に蒸気を供給する為の装置一式を指すが、元蒸気圧や使用する側の蒸気圧等により機器構成等が異なる場合もある。
〔水蒸気凝縮手段〕
水蒸気凝縮手段は、水蒸気を水と接触させて凝縮させる為の手段の総称であり、アスピレーターと呼ばれるインゼクターと同様であるが、駆動流体が水である装置の吸引口から蒸気を吸わせることで、温水とする方法が一般的である。
その他、水中に蒸気をオリフィスを経由させて凝縮させたり、流下水に蒸気を吸収させる方法、蒸気中に水を噴霧する方法、水と蒸気の接触表面を増やす方法であれば、水蒸気凝縮を行うことができる。
〔ポンプの吸込み能力〕
ポンプの吸込み能力とは、どの程度の高低差のある液面から液体をくみ上げることができるかの能力のことを言う。
水蒸気圧、若しくは対象液体の蒸気圧を無視すれば、大気圧を液体の密度で除した値が対象とする液体の最大の吸込み能力となる。
100000(Pa)÷1000(kg/m)÷9.8(m/s)=10.2(m)
これは、蒸気圧を無視した値であるので、これに吸込む液温における蒸気圧を減じた値を密度で除した値が、吸込み能力の理論値となる。
実際には、ポンプ内部で発生するキャビテーションにより、前記の能力より+50KPa以上高い値が、実用上の吸込み能力である。
[Vapor supply means]
The steam supply means is to supply steam manually or automatically after receiving the original steam in combination with steam trap, pressure reducing valve, safety valve, strainer, manual valve, solenoid valve, motor valve, control valve, etc. However, the device configuration may differ depending on the original vapor pressure, the vapor pressure on the use side, or the like.
[Water vapor condensing means]
The water vapor condensing means is a general term for means for condensing water vapor in contact with water, and is similar to an injector called an aspirator. The method of using warm water is common.
In addition, steam condensation is performed if steam is condensed in water via an orifice, steam is absorbed by flowing water, water is sprayed into steam, or the contact surface between water and steam is increased. be able to.
[Pump suction capacity]
The suction capacity of the pump refers to the ability of the liquid that can be pumped up from a liquid surface with a difference in height.
If the water vapor pressure or the vapor pressure of the target liquid is ignored, the value obtained by dividing the atmospheric pressure by the density of the liquid is the maximum suction capacity of the target liquid.
100000 (Pa) ÷ 1000 (kg / m 3 ) ÷ 9.8 (m / s 2 ) = 10.2 (m)
Since this is a value ignoring the vapor pressure, a value obtained by dividing the value obtained by subtracting the vapor pressure at the liquid temperature to be absorbed by the density is a theoretical value of the suction capacity.
In practice, due to cavitation generated inside the pump, a value higher than the above-mentioned ability by +50 KPa is a practical suction ability.

特開2009−106943号公報JP 2009-106943 A

〔脱気方法の分類〕
(蒸気式脱気法)
蒸気式脱気法は、歴史の古い信頼性の高いシステムであるが、非連続操業の場合には熱効率が悪いことや脱気タンクの設置等に特別なスペースが必要となる為、現在では大型のボイラに採用されるだけで、汎用のボイラに使われるケースは少ない。
(真空脱気法)
真空脱気法は、常温付近の給水を脱気することも可能であるが、脱気効率を上げようとすると、大量の水蒸気を真空ポンプが吸い込む必要があり、真空ポンプに大きな動力を必要とする。
(膜脱気法)
膜脱気法は、酸素が選択的に透過しやすい膜を用い、水と接触する反対側を真空とすることで、水中の溶存酸素を除去する方法であり、理論上では真空ポンプは水中に溶け込んでいる酸素を排出するだけであるので、小型で動力も少なくなる。
しかし、気体透過膜は微細な分子レベルの細孔を経由して気体のみを通過させる方法であるので、原理上汚染や温度変化に弱く、蒸気のドレンを回収する場合の給水には適用が出来ない等の課題がある。
(窒素置換−気中水滴接触型)
気中水滴接触型は、気体分子の運動量が、気中では早く水中では遅いことから、微細水滴とすることで、置換効率を上昇させる特徴を持つが、微細水滴を発生させる為に、処理水量に対して大きな接触空間が必要であることから装置が大型化することがある。
又、水量に対する窒素の使用量が少ないことから、大きな容積空間を持つ接触装置内の窒素の純度管理が難しく、特に水量を低下させたり、装置を停止させた場合に、接触装置内の窒素純度が低下し溶存酸素の除去効率が十分では無くなる。
[Classification of degassing methods]
(Steam type deaeration method)
The steam degassing method is an old and highly reliable system, but in the case of discontinuous operation, it is currently large in size due to poor thermal efficiency and special space required for installation of degassing tanks, etc. It is only used for general-purpose boilers and is rarely used for general-purpose boilers.
(Vacuum degassing method)
The vacuum degassing method can also degas the feed water near room temperature. However, in order to increase the degassing efficiency, the vacuum pump needs to suck in a large amount of water vapor and requires a large amount of power for the vacuum pump. To do.
(Membrane degassing method)
Membrane deaeration is a method of removing dissolved oxygen in water by using a membrane that is easy to selectively permeate oxygen and making the opposite side in contact with water vacuum, and theoretically the vacuum pump is submerged in water. Since it only discharges dissolved oxygen, it is small and requires less power.
However, since the gas permeable membrane is a method that allows only gas to pass through fine pores at the molecular level, it is not susceptible to contamination and temperature changes in principle, and it can be applied to water supply when recovering steam drainage. There are problems such as not.
(Nitrogen replacement-in-air contact type)
In the air-droplet contact type, the momentum of gas molecules is fast in the air and slow in water, so it has the feature of increasing the replacement efficiency by making fine water droplets. On the other hand, a large contact space is required, so that the apparatus may be enlarged.
In addition, since the amount of nitrogen used relative to the amount of water is small, it is difficult to control the purity of nitrogen in a contact device having a large volume space. Especially when the amount of water is reduced or the device is stopped, the nitrogen purity in the contact device And the removal efficiency of dissolved oxygen is not sufficient.

(窒素置換−水中気泡接触型)
水中気泡接触型は、微細気泡を水中に分散させる方法であるが、水中気泡型は、気体の運動量の大きい微細気泡中の気体が、気泡周辺の溶存気体と直ちに飽和されてしまい、より遠くの水中の溶存気体と飽和するには時間がかかる。
(窒素置換−単段接触法)
単段接触法では、装置がコンパクトになり、制御も容易であるが、10ppmの溶存酸素を含んだ1mの水中の溶存酸素を0.5ppm以下に低下させるには、接触効率を100%と仮定しても、窒素純度99.9%の窒素を用いた場合凡そ700Lもの大量の窒素を必要とする。
(窒素置換−多段接触法)
前記の問題を解決する方法として、最終段の置換ガスをその前段の塔で用いる多段式の場合には、前記と同様の条件で、理論上2段式では140L、3段式では80L、4段式では60L程度まで窒素量を削減可能である。しかし、実際には2段以上の多段で処理を行っても、置換ガス量が200L以下になると、処理効率が頭打ちになり、2段以上に段数を増やしても装置が複雑化するだけでメリットが無いと判断され、実用装置として2段を超えるストリッピング装置は今まで存在していない。
(Nitrogen substitution-underwater bubble contact type)
The underwater bubble contact type is a method of dispersing fine bubbles in water, but the underwater bubble type is that the gas in the fine bubbles with a large momentum of the gas is immediately saturated with the dissolved gas around the bubbles, which is farther away. It takes time to saturate with dissolved gas in water.
(Nitrogen substitution-single-stage contact method)
In the single-stage contact method, the apparatus is compact and easy to control, but in order to reduce the dissolved oxygen in 1 m 3 water containing 10 ppm of dissolved oxygen to 0.5 ppm or less, the contact efficiency is set to 100%. Even assuming that a nitrogen purity of 99.9% is used, as much as 700 L of nitrogen is required.
(Nitrogen substitution-multistage contact method)
As a method for solving the above problem, in the case of a multistage system in which the last stage replacement gas is used in the tower in the preceding stage, theoretically the same conditions as described above, 140L for the two-stage system, 80L for the 3-stage system, 4L In the stage type, the amount of nitrogen can be reduced to about 60L. However, even if processing is actually performed in multiple stages of two or more stages, if the amount of replacement gas is 200 L or less, the processing efficiency will reach its peak, and even if the number of stages is increased to two or more stages, the equipment will only be complicated and the benefits will be increased. There is no stripping apparatus exceeding two stages as a practical apparatus until now.

〔解決しようとする課題〕
脱酸素方法を検討した場合に、清浄な水質である場合には、処理効率、部分負荷での運用、窒素等の置換ガスが不要なことを考慮すると膜脱気装置が有利である。
しかし、一般産業用で用いられる水質では水に含まれる様々な不純物により膜の性能が劣化したり、温水では使用できないなどの制約があり、普及は極めて限定的である。
従って、一般産業用レベルの脱酸素プロセスにおいては、ガスストリッピング技術を応用した窒素置換による多段接触法が有利である。
本発明は、このガス置換の多段接触法の置換ガス量減少に伴う処理効率の悪化と、それを改善しながら装置をコンパクト化し、安価で高性能なガスストリッピング装置を提供することにある。
[Problems to be solved]
When considering a deoxygenation method, if the water quality is clean, a membrane deaerator is advantageous in consideration of treatment efficiency, operation at a partial load, and the need for a replacement gas such as nitrogen.
However, the use of water for general industrial purposes is extremely limited due to restrictions such as deterioration of membrane performance due to various impurities contained in water and the inability to use hot water.
Therefore, in the general industrial level deoxygenation process, a multi-stage contact method by nitrogen substitution using gas stripping technology is advantageous.
It is an object of the present invention to provide a gas stripping apparatus that is inexpensive and has high performance by reducing the processing efficiency associated with a decrease in the amount of replacement gas in the multistage contact method of gas replacement and making the apparatus compact while improving it.

〔窒素置換−多段接触法の接触効率の向上〕
(接触効率の向上の目的)
本発明においては、一般産業用において実用的であると考えられる窒素置換−多段接触法の前記の課題を克服し、置換ガスの消費量を抑制しコンパクトな脱酸素技術を提供することにある。
(窒素置換による脱酸素作用の課題)
ヘンリーの法則に基づく、脱酸素を行う為に窒素ガスを用いたストリッピングを行う時、通常は気液接触部において、ヘンリーの法則に基づく気液交換が行われ、水側と気体側のバランス比に従って、水側の溶解ガス比率が決定されると考えられていた。
しかし、従来方法の気液接触を行い、多段構成を行った試験装置にて、ガス量を減少させ、水1m当たり200L以下のガス量になると、処理効率が大幅に低下することが判った。
その理由を説明する為に、ヘンリーの法則に従った窒素置換による脱酸素の理論計算を行うと、常温(15℃)状態の水に対する空気バランスした酸素と窒素の溶解度は、次の様になる。
酸素:10.15ppm(7.1NL)
窒素:16.7ppm(13.4NL)
単段処理で、溶存酸素を0.5ppm以下に低下させる理論的な窒素必要量は、気相中の酸素濃度を1%にすることで、達成できるので下記の式で求められる。
1(%)=溶存酸素体積/(溶存酸素体積+溶存窒素体積+必要窒素量)*100
これを必要窒素量を求める式とすると
必要窒素量=(溶存酸素体積−(溶存酸素体積+溶存窒素体積)/100)*100
=688.9NL
ところが、純度の高い窒素ガスが溶存酸素量に対して十分な存在比である場合、窒素ガスの過飽和が解消される際に、気泡周囲の溶存酸素との局部的なヘンリーの法則によるガス置換が行われる。これを、仮に窒素パージと言う。
このパージ後の溶存酸素を1ppm(0.71NL)程度まで減少させれば、窒素ガスが10倍過飽和になっていることで、過飽和が解消され易くなり、過飽和解消される際に、処理水中から分離する気体の酸素濃度は0.3%まで低下し、溶存酸素も0.17ppm程度まで低下させることができる。
即ち、従来の気液接触方法で、単段や2段程度の処理段数の場合には、気相全体とバランスするマクロ的なヘンリーの法則に従ったガス交換を行うより、ミクロ的なヘンリーの法則に従ったパージを利用することで、窒素ガスの消費量が減少し、見かけの処理効率が向上することになる。
しかし、3段以上の処理段数となると、事情は全く異なるものになることが判った。
下記は4段処理の効率100%の理論値の、各段の溶存酸素と処理ガス酸素濃度を示している。
前提条件:
水温:15.5℃
溶存酸素:10.04ppm(7NL)
溶存窒素:16.64ppm(13.3NL)
理論窒素ガス量:60NL
水一段目出口 溶存酸素:5.4ppm、処理ガス酸素11.25%
水二段目出口 溶存酸素:2.8ppm 処理ガス酸素5.8%
水三段目出口 溶存酸素:1.3ppm 処理ガス酸素2.8%
水四段目出口 溶存酸素:0.5ppm 処理ガス酸素1.1%
即ち、
(i)処理ガス量が溶存窒素の5倍以下であり、過飽和状態になると全て吸収されてしまいパージ効果が期待できない。
(ii)水一段目出口を考えると、酸素濃度は11.25%にも上昇し、これは2倍過飽和しただけで、原水の溶存酸素を上回る処理水を後段に送ることになりあり得ない。
従来方法で実用的な4段処理設備が無かったのは、純度の高い最後段のガスが処理水に過飽和して流出し、前断の処理水には後段処理ガスが供給され難くなることにより処理効率が急激に悪化することに起因する。
つまり、多段処理において処理ガス量を200NL以下に抑制しようとすると、それ以上の使用量の場合には、有用であった窒素パージ効果が期待できず、各処理段にて確実に過飽和解消を行い、マクロ的なヘンリーの法則により忠実な処理方法にする必要があった。
200NL以下と言う値は、一般的な水質の難溶解性成分である溶存酸素と溶存窒素の総量20.3NLの約10倍に相当し、その量を下回るガスでストリッピングを行おうとすると、過飽和状態が解消され難くなる為と考えられる。
[Nitrogen substitution-Improvement of contact efficiency of multi-stage contact method]
(Purpose of improving contact efficiency)
An object of the present invention is to provide a compact deoxygenation technique that overcomes the above-described problems of the nitrogen substitution-multistage contact method, which is considered to be practical in general industrial applications, and suppresses the consumption of substitution gas.
(Problems of deoxygenation by nitrogen substitution)
When stripping with nitrogen gas for deoxygenation based on Henry's law, gas-liquid exchange based on Henry's law is usually performed at the gas-liquid contact part, and the balance between the water side and the gas side It was believed that the dissolved gas ratio on the water side was determined according to the ratio.
However, it has been found that the processing efficiency is greatly reduced when the gas amount is reduced to 200 L or less per 1 m 3 of water in a test apparatus that performs gas-liquid contact according to the conventional method and has a multi-stage configuration. .
To explain the reason, the theoretical calculation of deoxygenation by nitrogen replacement according to Henry's law is performed. The solubility of air-balanced oxygen and nitrogen in water at room temperature (15 ° C) is as follows: .
Oxygen: 10.15 ppm (7.1 NL)
Nitrogen: 16.7 ppm (13.4 NL)
The theoretical nitrogen requirement for lowering dissolved oxygen to 0.5 ppm or less in a single stage treatment can be achieved by setting the oxygen concentration in the gas phase to 1%, and can be obtained by the following formula.
1 (%) = dissolved oxygen volume / (dissolved oxygen volume + dissolved nitrogen volume + required nitrogen amount) * 100
If this is an equation for determining the amount of necessary nitrogen, the amount of necessary nitrogen = (dissolved oxygen volume− (dissolved oxygen volume + dissolved nitrogen volume) / 100) * 100
= 688.9NL
However, when the high purity nitrogen gas has a sufficient abundance ratio with respect to the amount of dissolved oxygen, when the supersaturation of the nitrogen gas is eliminated, the gas replacement by the local Henry's law with the dissolved oxygen around the bubbles is performed. Done. This is temporarily called nitrogen purge.
If the dissolved oxygen after this purge is reduced to about 1 ppm (0.71 NL), the nitrogen gas is oversaturated 10 times, so that the oversaturation is easily eliminated. The oxygen concentration of the gas to be separated can be reduced to 0.3%, and the dissolved oxygen can also be reduced to about 0.17 ppm.
That is, in the conventional gas-liquid contact method, in the case of the number of processing stages of about one or two stages, the micro-Henry is more effective than the gas exchange according to the macro Henry's law that balances the entire gas phase. By using purging according to the law, consumption of nitrogen gas is reduced and apparent processing efficiency is improved.
However, it has been found that the situation is completely different when the number of processing stages is three or more.
The following shows the dissolved oxygen and process gas oxygen concentrations of each stage, with a theoretical value of 100% efficiency of the four-stage process.
Prerequisite:
Water temperature: 15.5 ° C
Dissolved oxygen: 10.04 ppm (7 NL)
Dissolved nitrogen: 16.64 ppm (13.3 NL)
Theoretical nitrogen gas amount: 60NL
First stage outlet of water Dissolved oxygen: 5.4 ppm, treatment gas oxygen 11.25%
Second stage water outlet Dissolved oxygen: 2.8 ppm Process gas oxygen 5.8%
3rd stage water outlet Dissolved oxygen: 1.3ppm Process gas oxygen 2.8%
Water 4th stage outlet Dissolved oxygen: 0.5ppm Process gas oxygen 1.1%
That is,
(I) The amount of treatment gas is 5 times or less of the dissolved nitrogen, and when it is supersaturated, it is completely absorbed and a purge effect cannot be expected.
(Ii) Considering the first-stage outlet of water, the oxygen concentration rises to 11.25%, which is only twice supersaturated, and it is impossible to send treated water exceeding the dissolved oxygen of raw water to the subsequent stage. .
The reason why there was no practical four-stage treatment facility in the conventional method is that the last-stage gas with high purity is supersaturated and flows out into the treated water, and it is difficult to supply the latter-stage treated gas to the pre-treated water. This is because the processing efficiency is rapidly deteriorated.
In other words, if it is attempted to suppress the amount of processing gas to 200 NL or less in multi-stage processing, a useful nitrogen purge effect cannot be expected when the amount used is more than that, and the oversaturation is surely eliminated at each processing stage. It was necessary to make the processing method more faithful to the macro Henry's law.
The value of 200 NL or less corresponds to about 10 times the total amount of dissolved oxygen and dissolved nitrogen, which is a general poorly soluble component of water quality, 20.3 NL. This is thought to be because the condition is difficult to be resolved.

(過飽和解消の条件)
過飽和は、急速な気液接触を行おうとした場合には、必ず生じてしまう現象であると言える。
気体が水に吸収される状況は、水が熱を受け取る反応であり、気体の運動エネルギーが水中でほぼゼロになる値と等しいエネルギーが水に吸収される。
これは、対象気体の凝縮熱とほぼ等しい。
この為、水に対して熱の出入りが殆ど無い場合には、気体が吸収された熱エネルギーが逆に液体中の気体放出エネルギーとなり、気相と水相の濃度バランスが平衡すると考えられる。この場合、気液バランスする為に泡などの発生は無く、気液接触面で直接ガス交換が行われる。
しかし、より大きなエネルギーを加えて気液接触を行うと、その加えたエネルギーは水が蒸発することで相殺され、気液接触の運動が収まった状態では、過飽和となった気体分子の運動エネルギーが安定してしまう。
つまり、過飽和状態の溶存気体が気体になる為にはエネルギーが必要になるが、水の蒸発により温度が低下すると、そのエネルギーを受け取ることが難しくなる為である。
従って、過飽和を解消する為には、運動エネルギーを与えて、過飽和気体が気体となる為に必要な運動エネルギーを与える必要があることが判る。
(過飽和解消の手段)
過飽和の解消には、過飽和を超える気体を泡として水中に存在させると共に、特定のトリガーで、過飽和状態の気体を微細気泡として分離させ、それを親となる気泡に吸収させることで、効率よく過飽和の解消を行うことができる。
この為、まず親となる泡を存在させる為には、200NL(全難溶解性気体の10倍)以上のガスを接触させる必要があるが、多段処理とすることで、供給されるガス量がこれを下回るので、気液分離したガスを繰り返し利用することが不可欠となる。
しかし、これは前述の様に、処理水の溶存酸素濃度を下げる為には、リスクの高い方法であり、僅かでも過飽和状態で後段処理やプロセスに供給されると、後段に送る処理水の溶存酸素濃度を上昇させてしまうこととなる。
(Conditions for oversaturation elimination)
It can be said that supersaturation is a phenomenon that always occurs when rapid gas-liquid contact is attempted.
The situation in which gas is absorbed by water is a reaction in which water receives heat, and energy equal to the value at which the kinetic energy of the gas becomes almost zero in water is absorbed by water.
This is almost equal to the heat of condensation of the target gas.
For this reason, when there is almost no heat in and out of water, it is considered that the thermal energy absorbed by the gas becomes the gas release energy in the liquid, and the concentration balance between the gas phase and the water phase is balanced. In this case, bubbles are not generated for gas-liquid balance, and gas exchange is performed directly on the gas-liquid contact surface.
However, if a larger amount of energy is applied to perform gas-liquid contact, the added energy is offset by the evaporation of water, and in the state where the motion of gas-liquid contact has subsided, the kinetic energy of supersaturated gas molecules is reduced. It will be stable.
That is, energy is required for the supersaturated dissolved gas to become a gas, but it is difficult to receive the energy when the temperature decreases due to evaporation of water.
Therefore, it can be seen that in order to eliminate the supersaturation, it is necessary to give kinetic energy and to give the kinetic energy necessary for the supersaturated gas to become a gas.
(Means for eliminating supersaturation)
To eliminate supersaturation, the supersaturated gas is allowed to exist in water as a bubble, and the supersaturated gas is separated into fine bubbles by a specific trigger and absorbed into the parent bubble, allowing efficient supersaturation. Can be eliminated.
For this reason, in order to make the foam as a parent first, it is necessary to contact 200 NL (10 times the total hardly soluble gas) or more of the gas, but the amount of gas supplied can be reduced by multi-stage treatment. Since it is below this, it is indispensable to repeatedly use the gas-liquid separated gas.
However, as described above, this is a risky method for reducing the dissolved oxygen concentration in treated water. If it is supplied to the subsequent treatment or process in a slightly supersaturated state, the dissolved treatment water sent to the latter is dissolved. This will increase the oxygen concentration.

(気液接触における気圧変動効果)
気圧変動効果とは、気液接触部及びそれと連通する処理水槽の気圧を±10KPa程度振らせ、且つ常温水温の場合には、大気圧に対して最も低い場合の気圧を−10Kpa以下に下げる。この様な気液接触条件下では、水中の気泡も含めた気室は相対湿度がほぼ100%の状態であることが特徴である。この為、加圧時には、親となる気泡の周囲で中の気体成分が過飽和となると同時に、気室側で飽和状態にある水蒸気が、圧縮により水に凝縮するので、そのエネルギーを過飽和気体の運動エネルギーとし、次の減圧過程で親となる気泡の体積が増加すると共に、微小気泡を生じるのであるが、その時に親となる気泡間隔も狭まるので、大きな気泡に微小気泡が吸収されやすくなるのである。
この程度の気圧変化で生じる微細気泡は、通常条件では次の加圧時には消滅してしまうのであるが、水蒸気の凝縮熱を与えられ、且つ周囲に大きな気泡が存在することで、僅かな気圧変化でも効率的に過飽和を解消することができる。
(Atmospheric pressure fluctuation effect in gas-liquid contact)
The atmospheric pressure fluctuation effect means that the atmospheric pressure of the gas-liquid contact portion and the treated water tank communicating therewith is shaken by about ± 10 KPa, and the atmospheric pressure at the lowest temperature with respect to the atmospheric pressure is lowered to −10 Kpa or less in the case of room temperature water temperature. Under such gas-liquid contact conditions, the air chamber including bubbles in water is characterized by a relative humidity of approximately 100%. For this reason, during pressurization, the gas component inside the surrounding bubbles becomes supersaturated, and at the same time, water vapor saturated in the air chamber side condenses into water by compression, so that the energy of the supersaturated gas moves In the next decompression process, the volume of the bubble that becomes the parent increases and microbubbles are generated. However, since the space between the bubbles that become the parent is narrowed at that time, the bubbles are easily absorbed by the large bubbles. .
Microbubbles generated by this level of pressure change disappear at the time of the next pressurization under normal conditions, but given the heat of condensation of water vapor and the presence of large bubbles in the surroundings, a slight pressure change But supersaturation can be eliminated efficiently.

(気液接触における水蒸気凝縮効果)
又、もう一つの解決方法として、気液接触部を水蒸気過飽和とすることで、次の理由により溶存気体の過飽和を防止することが可能であることが判った。
ここで言う水蒸気過飽和とは、処理水に対する水蒸気の過飽和のことを指し、その温度における処理ガスとバランスする飽和蒸気圧よりも、高い水蒸気圧を気相に加えることで実現できる。
(i)気液接触部において、水蒸気が過飽和状態であると、処理水と接触した蒸気は直ちに凝縮し、処理水に熱エネルギーを伝える。この熱は溶存気体が気相に移行する為に必要な熱量を大幅に上回るので、過飽和状態で不安定な溶存気体にエネルギーを与えることが出来、過飽和気体は液体から分離可能なエネルギーを持つことができる。
(ii)凝縮された熱により処理水温度が上昇し、溶存気体の溶解度を低下させるので、必要ガス量を抑制することができる。
(iii)蒸気の急激な凝縮に伴い気液接触面では微細な気圧変化を生じ、接触面から離れた位置にある気泡に対しても前記の気圧変動効果を与えることで、気液接触の促進効果がある。
(iv)処理水に熱的なアンバランスが生じることにより、処理水に対流が生じ、気液接触が促進される。
これらの効果を総称して、気液接触における水蒸気凝縮効果と言う。
(水蒸気凝縮効果と気圧変動効果)
上記の水蒸気凝縮効果は、気圧変動効果と組み合わせることにより、更に効果的に過飽和を解消することができる。
即ち、水中に過溶解している溶存気体は、気圧変動効果の加圧工程においては溶解を生じやすい条件になるが、水蒸気凝縮効果により運動エネルギーが与えられているので、微細気泡は吸収され難く、親となる気泡が存在しなくても、減圧工程における微細気泡の結合を促進させる為である。これは、気圧変化を与えずに微細気泡が成長する時間より短時間に気泡の成長を促進できる。
勿論、対象気体を循環利用し、親となる気泡が存在した状況下においても、水蒸気凝縮効果と気圧変動効果は夫々相乗して、過飽和を防止することができる。
(Water vapor condensation effect in gas-liquid contact)
Further, as another solution, it has been found that the supersaturation of the dissolved gas can be prevented by the following reason by making the gas-liquid contact portion supersaturated with water vapor.
The water vapor supersaturation referred to here means supersaturation of water vapor with respect to the treated water, and can be realized by applying a water vapor pressure higher than the saturated vapor pressure balanced with the treatment gas at that temperature to the gas phase.
(I) If the water vapor is supersaturated in the gas-liquid contact portion, the steam that has come into contact with the treated water is immediately condensed and transfers thermal energy to the treated water. This heat greatly exceeds the amount of heat required for the dissolved gas to move to the gas phase, so it can give energy to the dissolved gas that is unstable in a supersaturated state, and the supersaturated gas must have energy that can be separated from the liquid. Can do.
(Ii) The treated water temperature rises due to the condensed heat and the solubility of the dissolved gas is lowered, so that the required gas amount can be suppressed.
(Iii) The gas-liquid contact surface undergoes a minute change in atmospheric pressure due to the rapid condensation of vapor, and the above-mentioned pressure fluctuation effect is applied to bubbles located at a position away from the contact surface, thereby promoting gas-liquid contact. effective.
(Iv) When a thermal imbalance occurs in the treated water, convection occurs in the treated water and gas-liquid contact is promoted.
These effects are collectively referred to as a water vapor condensation effect in gas-liquid contact.
(Water vapor condensation effect and atmospheric pressure fluctuation effect)
The above-mentioned water vapor condensation effect can be more effectively canceled by combining with the atmospheric pressure fluctuation effect.
In other words, dissolved gas that is over-dissolved in water is in a condition that tends to cause dissolution in the pressurizing process of atmospheric pressure fluctuation effect, but because kinetic energy is given by the water vapor condensation effect, fine bubbles are difficult to be absorbed. This is because the bonding of fine bubbles in the decompression step is promoted even if there is no parent bubble. This can accelerate the bubble growth in a shorter time than the time during which the fine bubbles grow without changing the atmospheric pressure.
Of course, even in a situation where the target gas is circulated and a parent bubble is present, the water vapor condensation effect and the atmospheric pressure fluctuation effect can be combined to prevent oversaturation.

(窒素ガス以外のガスへの応用)
この方法による過飽和の解消による多段処理における気液接触効率の改善効果は、ヘンリーの法則に従うガスのストリッピングにも有効である。
(過飽和解消の手段のまとめ)
前記の気圧変動効果は、処理ガスの処理水に対する容積比が20%以上の処理系においては、単独で用いても効果があるが、それ以下の容積比の場合には処理ガスの循環利用を行うことで効果が期待できる。
水蒸気凝縮効果は、単独に用いても効果があるが、気圧変動効果や処理ガスの循環利用を組み合わせることで、相乗効果により、更に高い処理効率が期待できる。
(Application to gases other than nitrogen gas)
The effect of improving the gas-liquid contact efficiency in multistage processing by eliminating supersaturation by this method is also effective for gas stripping according to Henry's law.
(Summary of means for eliminating supersaturation)
The atmospheric pressure fluctuation effect is effective even when used alone in a treatment system in which the volume ratio of the treatment gas to the treated water is 20% or more. The effect can be expected by doing.
The water vapor condensing effect is effective even when used alone, but higher processing efficiency can be expected due to a synergistic effect by combining the atmospheric pressure fluctuation effect and the circulation utilization of the processing gas.

(水蒸気のエネルギーと特徴)
気液接触部において水蒸気過飽和の条件を達成するのに一番容易な方法は、気液接触部に水蒸気を供給することである。
処理水が、ボイラ用給水である場合には、発生した水蒸気により給水温度を高くすることは、蒸気の持つエネルギーをそのまま回収できるので、給水予熱と言う方法で従来から一般的に実施されている。
給水予熱を行うことで、ボイラの排気ガスの熱回収を行うエコノマイザーと言う給水加熱器のガス側の結露が防止できる他、水温の上昇と共に溶存酸素濃度も低下する。
この様に、ボイラ給水に水蒸気を使用して予熱を行うことは一般的である。
しかし、この使用方法では水蒸気の持つ運動エネルギーと凝縮効果と言う2つの効果を有効利用していない。
水蒸気は、僅か質量1kg圧力0.5MPaの水蒸気でも、コンプレッサー換算で0.3kwの圧縮空気と同等の運動エネルギーを持つ。
又、冷却されると急激に体積を失い凝縮し、大量の凝縮熱を発生する特殊な気体である。
(水蒸気の気液接触効率改善への利用)
不活性ガス気体と溶存酸素の水中接触法においては、水蒸気中に予め必要量の不活性ガスを混合した混合気体を、水中に吹き込むことで、水蒸気の運動エネルギーと熱エネルギーにより、水の混合が良好になると共に、水蒸気が急激に体積を失う際に、予め混合されていた不活性ガスが、水蒸気気泡の周りの処理水のウォーターハンマーの様な衝撃的な圧縮を受け、処理水中に過飽和状態で溶け込む作用がある。
同時に、この時に吸収された熱は周囲の溶存気体にエネルギーを与え、過飽和を解消する為のエネルギーを与える凝縮効果を期待できる。
又、気中接触法においては、流下する水流に水蒸気を噴射したり、処理水を水蒸気を用いて霧化させたりする運動エネルギーとして使用できる他、水蒸気が不活性ガスの温度を上げることにより分子運動が活発になる効果、水蒸気が凝縮する際に、水蒸気混合気体中の不活性ガス分子を水との界面に集め効率よく気液接触させる効果、気体側に含まれる除去ガスの分圧が、水蒸気により希釈される効果、水蒸気が急激に体積を失うことによる気圧の変化が、周囲の処理水と不活性ガス接触面に振動を与え、前述の凝縮効果と相乗して気液接触効率を高め極めて短時間に気液接触を完了できることが判った。
(Water vapor energy and characteristics)
The easiest way to achieve the water vapor supersaturation condition in the gas-liquid contact portion is to supply water vapor to the gas-liquid contact portion.
When the treated water is boiler feed water, increasing the feed water temperature with the generated steam can recover the energy of the steam as it is, so that it has been generally carried out by a method called feed water preheating. .
By performing preheating of the feed water, condensation on the gas side of the feed water heater, which is an economizer that recovers the heat of the exhaust gas from the boiler, can be prevented, and the dissolved oxygen concentration also decreases as the water temperature rises.
Thus, it is common to perform preheating using steam for boiler feed water.
However, this method of use does not effectively use the two effects of kinetic energy and condensation effect of water vapor.
Water vapor has a kinetic energy equivalent to that of compressed air of 0.3 kW in terms of compressor, even with a mass of 1 kg and a water pressure of 0.5 MPa.
In addition, it is a special gas that rapidly loses volume and condenses when cooled, generating a large amount of condensation heat.
(Use of steam to improve gas-liquid contact efficiency)
In the underwater contact method of an inert gas gas and dissolved oxygen, water is mixed by the kinetic energy and heat energy of the water vapor by blowing a mixed gas in which a necessary amount of inert gas is mixed into the water vapor into the water in advance. When the water vapor suddenly loses its volume, the pre-mixed inert gas is subjected to shock compression like the water hammer around the water vapor bubbles and is supersaturated in the water. There is an action to melt in.
At the same time, the heat absorbed at this time gives energy to the surrounding dissolved gas, and a condensing effect that gives energy for eliminating supersaturation can be expected.
In the air contact method, water vapor can be used as kinetic energy to inject water vapor into a flowing water stream or to atomize treated water with water vapor. In addition, water vapor increases molecular weight by increasing the temperature of the inert gas. The effect of active movement, the effect of gathering inert gas molecules in the water vapor mixture at the interface with water when the water vapor condenses, and the gas-liquid contact efficiently, the partial pressure of the removal gas contained on the gas side, The effect of dilution with water vapor and the change in atmospheric pressure due to the sudden loss of water volume causes vibrations in the contact surface of the surrounding treated water and the inert gas, and synergizes with the condensation effect described above to increase gas-liquid contact efficiency. It was found that gas-liquid contact can be completed in a very short time.

(水蒸気の動力源としての積極利用)
水蒸気を動力源とする機関は、インゼクターと呼ばれる流体吸引装置や、液体霧化装置と、蒸気タービン機関、蒸気ピストン機関、蒸気モーター機関等がある。
蒸気インゼクターや液体霧化装置は前述しているが、他の機関においては、電気動力と同様に回転や往復等の機械的運動が可能である。
ただ、一般的に低圧飽和蒸気を動力源とする機械的な運動機関は、低圧蒸気の持つエネルギーの大半が熱エネルギーである為、エネルギー効率が極めて低いので、現在の様に電気的エネルギーが普及している状況下では採用例は殆ど考えられない。
しかし、残余の熱エネルギーの有効利用が可能な場合には、発電を行う場合熱エネルギーからの電気的エネルギーへの転換効率が最高でも50%程度であることを考慮すると極めて高効率である。
そして、蒸気機関は排気側を低温の水と熱交換させ凝縮させることで減圧し、作動媒体である気体の体積が増加するので、常圧の外気に放出するよりも、機械的エネルギーをより多く取り出すことが可能になる。
(Active use as a power source of water vapor)
Engines that use steam as a power source include fluid suction devices called injectors, liquid atomizers, steam turbine engines, steam piston engines, steam motor engines, and the like.
Although the steam injector and the liquid atomizer are described above, in other engines, mechanical motion such as rotation and reciprocation is possible as in the case of electric power.
However, in general, mechanical motion engines that use low-pressure saturated steam as a power source are mostly low-pressure steam, because the majority of the energy that low-pressure steam has is thermal energy, so the energy efficiency is extremely low. Under such circumstances, there are hardly any examples of adoption.
However, when the remaining heat energy can be used effectively, it is extremely high considering that the conversion efficiency from heat energy to electrical energy is about 50% at the maximum when generating electricity.
And the steam engine reduces the pressure by exchanging heat with the low-temperature water and condensing the exhaust side, and the volume of the gas that is the working medium increases, so more mechanical energy is released than it is released into the atmospheric air It becomes possible to take out.

本発明の請求項1にかかる気液接触方法は、気液接触装置の気液接触部にて、対象ガスと処理水とを接触させる気液接触方法において、新たに供給される対象ガス量が処理水に含まれる難溶解性ガス総量の10倍以下である場合に、下記処理(i)〜(iii):
(i)気液接触部の気相を水蒸気過飽和とする処理、
(ii)分離ガスを循環利用し、処理水に対する気体の容積混合比を20%とする処理、
(iii)気液接触部及びそれと連通した貯留槽の気相圧力を、処理水の平均水温における水蒸気圧に95KPaを加えた圧力よりも下回る減圧工程と、その減圧工程圧力よりも少なくとも10KPa望ましくは20KPa以上高い加圧工程を1サイクルとして、処理水が各単位の気液接触部及び貯留槽に存在している間に1サイクル以上行う処理、
の内、前記処理(i)については単独で又は前記処理(ii)若しくは(iii)と併せて実施するか、前記処理(ii)については前記処理(iii)と併せて実施するか、或いは、前記処理(i)〜(iii)の全てを実施することを特徴とする。
The gas-liquid contact method according to claim 1 of the present invention is the gas-liquid contact method in which the target gas and the treated water are brought into contact with each other at the gas-liquid contact portion of the gas-liquid contact device. When the total amount of the hardly soluble gas contained in the treated water is 10 times or less, the following treatments (i) to (iii):
(I) treatment to make the gas phase of the gas-liquid contact portion supersaturated with water vapor,
(Ii) A process in which the separation gas is recycled and the volume mixing ratio of the gas to the treated water is 20%
(Iii) A depressurization step in which the gas phase pressure of the gas-liquid contact portion and the storage tank communicating therewith is lower than the pressure obtained by adding 95 KPa to the water vapor pressure at the average water temperature of the treated water, and preferably at least 10 KPa than the depressurization step pressure A process of performing one cycle or more while the treated water is present in the gas-liquid contact portion and the storage tank of each unit, with a pressurization step higher than 20 KPa as one cycle,
Among them, the process (i) is performed alone or in combination with the process (ii) or (iii), the process (ii) is performed in combination with the process (iii), or All the processes (i) to (iii) are performed.

本発明によれば、上記のように、対象ガスの過飽和状態を解消できるので、多段処理で対象ガス量が少なくなった場合でも、処理効率を向上させることができる。なお、処理(i)によって水蒸気凝縮効果を利用でき、処理(ii)によってガス循環利用ができ、処理(iii)によって気圧変動効果を利用できる。   According to the present invention, since the supersaturated state of the target gas can be eliminated as described above, the processing efficiency can be improved even when the amount of the target gas is reduced by the multistage processing. In addition, the water vapor condensation effect can be used by the process (i), the gas circulation can be used by the process (ii), and the pressure fluctuation effect can be used by the process (iii).

本発明の請求項2にかかる気液接触方法は、請求項1に記載の気液接触方法において、前記処理(iii)を実施する場合、前記気液接触装置は、一次側の圧力が二次側の圧力より高くなるか、予め設定された圧力になると処理ガスを系外に排出し、それ以下の圧力では処理ガスの排出及び逆流を防止する逆流防止手段若しくは圧力調整逆流防止手段を備えた排気手段を持つ気密型の気液接触部を備え、該気液接触部の原水入口部に原水制御手段を備えるか、給水源の圧力を下限圧力以下とした原水供給手段を備え、該処理水出口部には、吸込み能力が1m以上の給水移送手段を備え、給水移送手段の最大流量より多い流量と、最小流量より少ない流量か遮断する様に原水流量を、前記原水制御手段若しくは原水供給手段でコントロールすることで、前記気液接触部における気相と水相の容積比を変化させ、気圧変化を生じさせることを特徴とする。   The gas-liquid contact method according to claim 2 of the present invention is the gas-liquid contact method according to claim 1, wherein the gas-liquid contact device is configured such that when the treatment (iii) is performed, the pressure on the primary side is secondary. When the pressure becomes higher than the pressure on the side or reaches a preset pressure, the processing gas is discharged out of the system, and at a pressure lower than that, there is provided a backflow prevention means for preventing discharge or backflow of the processing gas or a pressure adjusting backflow prevention means. An airtight gas-liquid contact portion having an exhaust means, and a raw water control means at the raw water inlet of the gas-liquid contact portion, or a raw water supply means in which the pressure of the water supply source is lower than the lower limit pressure, and the treated water The outlet portion is provided with feed water transfer means having a suction capacity of 1 m or more, and the raw water flow rate is controlled by the raw water control means or the raw water supply means so that the flow rate is higher than the maximum flow rate of the feed water transfer means and less than the minimum flow rate. Control with , By changing the volume ratio of gas phase and the aqueous phase in the gas-liquid contact portion, and wherein the generating the air pressure change.

本発明では、取扱が難しく高価な真空ポンプやコンプレッサーを用いずに処理(iii)を実施(気圧変動効果の利用)に必要な減圧工程と加圧工程を実現できる。   In the present invention, it is possible to realize a decompression step and a pressurization step necessary for carrying out the treatment (iii) without using an expensive vacuum pump or compressor which is difficult to handle (utilization of atmospheric pressure fluctuation effect).

本発明の請求項3にかかる気液接触方法は、請求項1及び2に記載の気液接触方法において、前記気液接触部と、前記気液接触部に前記処理水を供給する処理水供給手段と、前記気液接触部に前記対象ガスを供給する対象ガス供給手段と、前記気液接触部から前記処理水を外部に流出させる処理水取水手段と、前記気液接触部から前記対象ガスを排出する対象ガス排出手段と、から構成される気液接触手段を1構成要素とし、その処理水ラインを複数段直列に接続し、処理水の最後段の構成要素に高純度の対象ガスを供給し、そこで排出された対象ガスを前段の構成要素の供給ガスとすることで、対象ガスの消費量を削減する多段気液接触処理において、前記処理水の原水に含まれる溶存気体が、原水温度の飽和状態と概ね一致し、かつ、原水の平均温度が比較的安定している場合には、前記平均温度が55℃以下である場合には4段、前記平均温度が55℃超80℃以下である場合には3段、前記平均温度が80℃超90℃未満である場合には2段、前記平均温度が90℃以上である場合には多段処理を選択しない、と言う処理段数基準に基づいて、処理段数を調整し、前記処理水の原水の平均温度の変化が大きい場合には、最低温度から前記処理段数基準に基づく処理段数の設備とし、各処理段の処理水流路をバイパスするバイパス手段、及び、気液接触の為の動力源遮断手段のうちの少なくとも一つと、前記処理水の温度を検出する温度検出手段と、を備え、該温度検出手段で検出された前記処理水の温度が予め設定された水温に達した場合に、前記バイパス手段及び前記動力源遮断手段のうちの少なくとも一つを制御し、処理段数を調整することを特徴とする。   The gas-liquid contact method according to claim 3 of the present invention is the gas-liquid contact method according to claim 1 or 2, wherein the gas-liquid contact portion and the treated water supply for supplying the treated water to the gas-liquid contact portion. Means, target gas supply means for supplying the target gas to the gas-liquid contact portion, treated water intake means for flowing the treated water out of the gas-liquid contact portion, and the target gas from the gas-liquid contact portion The gas-liquid contact means composed of the target gas discharge means for discharging the waste water is made one component, the treated water lines are connected in series in a plurality of stages, and the high-purity target gas is fed to the last component of the treated water. In the multi-stage gas-liquid contact process for reducing the consumption of the target gas by supplying the target gas discharged there to the component gas of the previous stage, the dissolved gas contained in the raw water of the treated water is the raw water It almost matches the saturation state of temperature and When the average temperature is relatively stable, there are four stages when the average temperature is 55 ° C. or less, and three stages when the average temperature is more than 55 ° C. and 80 ° C. or less. If the temperature is more than 80 ° C. and less than 90 ° C., the number of processing steps is adjusted based on the processing step number criterion that multi-stage processing is not selected when the average temperature is 90 ° C. or higher, and the processing When the change in the average temperature of the raw water of the water is large, the equipment should have the number of treatment stages based on the treatment stage number criterion from the lowest temperature, and the bypass means for bypassing the treatment water flow path of each treatment stage, and for the gas-liquid contact When the temperature of the treated water detected by the temperature detecting means has reached a preset water temperature, comprising at least one of power source shut-off means and temperature detecting means for detecting the temperature of the treated water The bypass means and the motion. Controlling at least one of the source interrupting means, and adjusting the number of processing stages.

本発明によれば、処理水の温度の上昇と共に気体溶解度が減少することで、対象ガスの使用量も減少するので、処理段数を増加させても対象ガスの使用量の削減効果が少なく、同時に水温が高い場合には処理段数が増加することで、放熱面積も増加し熱エネルギーの損失が大きくなる。
その為、水温が安定している場合には平均温度に応じてランニングコストとイニシャルコストから判断して最もパフォーマンスの良い処理段数決定が可能となる。
しかし、季節変動等により平均水温が変化する様な場合には、最低水温を基準として処理段数を決定した設備とし、水温に応じて処理段数を動的に変化させることで、動力の無駄と放熱損失を低減できるので、経済的効果が高いシステムとなる。
According to the present invention, the gas solubility decreases as the temperature of the treated water decreases, so that the amount of target gas used also decreases. Therefore, even if the number of processing stages is increased, the effect of reducing the amount of target gas used is small, and at the same time When the water temperature is high, the number of processing stages increases, so that the heat radiation area increases and the loss of heat energy increases.
Therefore, when the water temperature is stable, the number of processing stages with the best performance can be determined by judging from the running cost and the initial cost according to the average temperature.
However, if the average water temperature changes due to seasonal fluctuations, etc., the equipment should have the number of treatment stages determined based on the minimum water temperature, and the number of treatment stages can be changed dynamically according to the water temperature, resulting in wasted power and heat dissipation. Since the loss can be reduced, the system is highly economical.

本発明の請求項4にかかる気液接触方法は、請求項1乃至3に記載の気液接触方法において、前記処理(i)を実施する場合、前記気液接触装置は、前記水蒸気を供給する水蒸気供給手段と、外部より供給される対象ガス、又は気液分離した接触済み対象ガスのうちの少なくとも一つを供給する対象ガス供給手段と、を備え、さらに、前記水蒸気供給手段及び前記対象ガス供給手段からの水蒸気及び対象ガスを予め混合する水蒸気対象ガス混合手段、並びに、該水蒸気対象ガス混合手段からの混合蒸気を、前記気液接触部内の処理水に吸収させる混合蒸気凝縮手段を備えるか、処理水と対象ガスが前記気液接触部において予め混合状態である場合には、前記水蒸気供給手段からの水蒸気を、混合状態である処理水及び対象ガスに吸収させる水蒸気凝縮手段を備えるか、或いは、前記両方の蒸気凝縮手段を備え、前記気液接触部内の処理水に、前記混合蒸気または前記水蒸気を凝縮させることを特徴とする。   The gas-liquid contact method according to claim 4 of the present invention is the gas-liquid contact method according to claims 1 to 3, wherein the gas-liquid contact device supplies the water vapor when the processing (i) is performed. A water vapor supply means; and a target gas supply means for supplying at least one of a target gas supplied from the outside or a contacted target gas separated from gas and liquid, and further comprising the water vapor supply means and the target gas Is it provided with steam target gas mixing means for preliminarily mixing steam and target gas from the supply means, and mixed steam condensing means for absorbing the mixed steam from the steam target gas mixing means into the treated water in the gas-liquid contact portion? In the case where the treated water and the target gas are mixed in advance in the gas-liquid contact section, the steam from the steam supply means is absorbed in the treated water and the target gas in the mixed state. A gas condensing means is provided, or both the steam condensing means are provided, and the mixed steam or the water vapor is condensed in the treated water in the gas-liquid contact portion.

本発明によれば、水蒸気が凝縮する際に、水蒸気凝縮効果に加えて流体の攪拌効果、気体分圧低下効果、気体分子の巻き込み効果等が複合的に作用し、極めて高い接触効率を得られることと、目的が脱酸素である場合には、水温の上昇効果により対象ガス消費量を抑制することができるので、コンパクトで経済性に優れた気液接触方法を実現できる。   According to the present invention, when water vapor condenses, in addition to the water vapor condensing effect, a fluid stirring effect, a gas partial pressure lowering effect, a gas molecule entrainment effect, and the like act in combination, and extremely high contact efficiency can be obtained. In addition, when the purpose is deoxygenation, the consumption of the target gas can be suppressed by the effect of increasing the water temperature, so that a compact and economical gas-liquid contact method can be realized.

本発明の請求項5にかかる気液接触方法は、請求項1乃至3に記載の気液接触方法において、前記処理(i)〜(iii)の全てを実施する場合、前記気液接触装置は、前記気液接触部内へ処理水を供給する液体移送手段として、水蒸気を駆動エネルギーとする蒸気駆動液体移送手段を備えるか、前記気液接触部内の対象ガスの移送手段として、水蒸気を駆動エネルギーとする蒸気駆動ガス移送手段を備えるか、或いは、前記気液接触部内の処理水と対象ガスの攪拌手段として、水蒸気を駆動エネルギーとする蒸気駆動攪拌手段を備え、さらに、前記蒸気駆動液体移送手段、前記蒸気駆動ガス移送手段及び前記蒸気駆動攪拌手段のうちの少なくとも一つの水蒸気駆動手段からの運動エネルギーの低下した水蒸気を処理水に吸収させる蒸気凝縮手段を備え、下記(i)〜(iii)の方法:
(i)駆動用の水蒸気に予め対象ガスを混合する方法、
(ii)前記蒸気凝縮手段に流入する前に対象ガスを混合する方法、
(iii)水蒸気を吸収させる処理水を対象ガスと予め混合状態にしておく方法、
のうちのいずれかの方法で、前記気液接触部内に、水蒸気過飽和の状態を存在させることを特徴とする。
The gas-liquid contact method according to claim 5 of the present invention is the gas-liquid contact method according to claim 1, wherein when performing all of the treatments (i) to (iii), the gas-liquid contact device is The liquid transfer means for supplying treated water into the gas-liquid contact section includes vapor-driven liquid transfer means using steam as drive energy, or the target gas transfer means in the gas-liquid contact section as steam drive energy Or a steam-driven stirring means using steam as driving energy as a stirring means for the treated water and the target gas in the gas-liquid contact portion, and further, the steam-driven liquid transfer means, Steam condensing means for absorbing treated water with steam having reduced kinetic energy from at least one of the steam-driven gas transfer means and the steam-driven stirring means. The following methods (i) to (iii):
(I) A method of previously mixing a target gas with water vapor for driving,
(Ii) a method of mixing the target gas before flowing into the vapor condensing means;
(Iii) A method in which treated water for absorbing water vapor is mixed with the target gas in advance.
The water vapor supersaturated state is caused to exist in the gas-liquid contact portion by any one of the methods.

本発明によれば、ガス循環利用を行う為に蒸気の持つ運動エネルギーを利用した後の、運動エネルギーの低下した水蒸気の蒸気凝縮効果により気液接触効率を上昇させることが出来、更に水温の上昇効果により、目的が脱酸素である場合には、対象ガスの消費量を抑制することができるので、極めてエネルギー効率に優れた気液接触方法を実現できる。
更に、蒸気の動力エネルギーを利用することで、圧力の低い状態にある処理済みガスを、高い状態の位置に供給できるので、ガスの循環利用に関しても、気圧変動効果との併用をより確実に実現することができる。
According to the present invention, the gas-liquid contact efficiency can be increased by the vapor condensation effect of water vapor with reduced kinetic energy after using the kinetic energy possessed by the steam to perform gas circulation utilization, and the water temperature is further increased. As a result, when the purpose is deoxygenation, the consumption of the target gas can be suppressed, so that a gas-liquid contact method with extremely excellent energy efficiency can be realized.
In addition, by using the kinetic energy of steam, processed gas in a low pressure state can be supplied to a high state position, so the combined use with the atmospheric pressure fluctuation effect can be realized more reliably for gas circulation use. can do.

本発明の請求項6にかかる気液接触方法は、請求項5に記載の気液接触方法において、前記気液接触装置は、処理水の流路の一部に、温度を検出できる温度検出手段、及び、処理水の流量を検出できる流量検出手段のうちの少なくとも一つの検出手段を備え、さらに、前記検出手段で検出された処理水の温度または流量に基づいて、前記水蒸気駆動手段への水蒸気の供給を制御する駆動用水蒸気制御手段、或いは、前記検出手段で検出された処理水の温度または流量に基づいて、前記蒸気凝縮手段への運動済み水蒸気の供給を制御する凝縮用水蒸気制御手段を備え、処理水の温度が予め設定された規定の温度以下である場合か、処理水の流量が予め規定された流量以上である場合、或いは、両方の条件を満たす場合に、前記水蒸気駆動手段への水蒸気の供給、若しくは運動済み水蒸気の処理水への凝縮を行うことを特徴とする。   The gas-liquid contact method according to claim 6 of the present invention is the gas-liquid contact method according to claim 5, wherein the gas-liquid contact device is capable of detecting temperature in a part of the flow path of the treated water. And at least one detection means of flow rate detection means capable of detecting the flow rate of the treated water, and further, based on the temperature or flow rate of the treated water detected by the detection means, the water vapor to the water vapor drive means A driving water vapor control means for controlling the supply of water, or a condensing water vapor control means for controlling the supply of exercised water vapor to the vapor condensation means based on the temperature or flow rate of the treated water detected by the detection means. Provided, when the temperature of the treated water is lower than a predetermined temperature set in advance, when the flow rate of the treated water is higher than a predetermined flow rate, or when both conditions are satisfied, to the steam driving means The supply of steam, or and performing condensation of the treated water movement already steam.

本発明によれば、元々水温が高い場合や、処理水流量が少なく、蒸気動力による気液接触処理が困難な場合に、水蒸気動力を停止し、処理ガスの循環利用と気圧変動効果による過飽和解消手段に変更することで、処理水への蒸気吸収を防止できるので、安全性が高い気液接触方法を実現できる。   According to the present invention, when the water temperature is originally high, or when the flow rate of the treated water is small and the gas-liquid contact treatment by the steam power is difficult, the steam power is stopped, and the supersaturation is eliminated by the circulation utilization of the processing gas and the pressure fluctuation effect. By changing to the means, vapor absorption into the treated water can be prevented, so that a highly safe gas-liquid contact method can be realized.

本発明の請求項7にかかる気液接触方法は、請求項1乃至6に記載の気液接触方法において、前記気液接触装置は、処理水の流路若しくは前記気液接触部に、温度を検出できる温度検出手段と、処理水の流量を検出できる流量検出手段と、を備え、さらに、水蒸気を使用する場合には、処理設備への供給蒸気の蒸気検出手段、循環対象ガス流量検出手段、及び凝縮蒸気流量検出手段のうちの少なくとも一つから判断されるシステム動作正常検出手段と、前記温度検出手段からの信号から飽和酸素濃度を求める飽和酸素濃度演算手段と、前記飽和酸素濃度、気液接触の処理段数、対象ガス純度、及び、システムの動作が正常である場合の気液接触処理効率から単位流量当たりに必要な対象ガス量を演算する必要対象ガス量演算手段と、該必要対象ガス量演算手段からの信号と、前記流量検出手段からの信号により処理水流量に応じて対象ガスの必要量を演算する比例演算手段と、該比例演算手段からの信号により、処理水流量に応じた対象ガス流量に調整する対象ガス流量調整手段と、を備え、処理水の流量、温度、処理段数、システム状態、ガス純度に応じて、対象ガス流量を自動調整することを特徴とする。   The gas-liquid contact method according to claim 7 of the present invention is the gas-liquid contact method according to any one of claims 1 to 6, wherein the gas-liquid contact device sets a temperature in a flow path of treated water or the gas-liquid contact portion. A temperature detecting means capable of detecting; a flow rate detecting means capable of detecting the flow rate of the treated water; and further, when using water vapor, a steam detecting means for supplying steam to the processing equipment, a circulation target gas flow rate detecting means, System operation normality detecting means determined from at least one of the condensed vapor flow rate detecting means, saturated oxygen concentration calculating means for obtaining a saturated oxygen concentration from a signal from the temperature detecting means, the saturated oxygen concentration, gas-liquid A required target gas amount calculating means for calculating a required target gas amount per unit flow rate from the number of contact processing stages, target gas purity, and gas-liquid contact processing efficiency when the system operation is normal; Proportional calculation means for calculating the required amount of the target gas according to the treated water flow rate from the signal from the gas amount calculating means and the signal from the flow rate detecting means, and according to the treated water flow rate by the signal from the proportional calculation means And a target gas flow rate adjusting means for adjusting the target gas flow rate, and automatically adjusting the target gas flow rate according to the flow rate of the treated water, the temperature, the number of processing stages, the system state, and the gas purity.

本発明によれば、水温の変化や、処理段数、蒸気供給の有無に合わせて、必要な対象ガス量を得ることができるので、対象ガスの過不足の無い効率的な運用が可能である。   According to the present invention, since the necessary target gas amount can be obtained in accordance with the change in the water temperature, the number of processing stages, and the presence or absence of steam supply, efficient operation without excess or deficiency of the target gas is possible.

本発明の請求項8にかかる気液接触方法は、請求項7に記載の気液接触方法において、前記システム動作正常検出手段からの信号により水蒸気凝縮効果を期待出来ない場合には、処理ガスの循環利用及び気圧変動効果のみで対応できる単位時間当たりの処理水量に応じて、前記必要対象ガス量演算手段の気液接触効率の値をシステムが正常な場合より少ない値に調整することを特徴とする。   In the gas-liquid contact method according to claim 8 of the present invention, in the gas-liquid contact method according to claim 7, when a water vapor condensation effect cannot be expected by a signal from the system operation normal detection means, The gas-liquid contact efficiency value of the required target gas amount calculation means is adjusted to a smaller value than when the system is normal according to the amount of treated water per unit time that can be dealt with only by the circulation use and atmospheric pressure fluctuation effect. To do.

本発明によれば、ボイラの起動前の水張り等、小流量の処理水利用用途においては、蒸気が無くても、規定の溶存酸素濃度の処理水を供給できるので、蒸気を使用しない脱気装置等を備える必要が無く、経済的である。   According to the present invention, in use of treated water with a small flow rate, such as water filling before the start of a boiler, treated water having a prescribed dissolved oxygen concentration can be supplied even without steam, so a deaeration device that does not use steam It is economical that there is no need to provide etc.

本発明の請求項9にかかる気液接触方法は、請求項7または請求項8に記載の気液接触方法において、前記気液接触装置は、垂直に配置された気液接触部と、該気液接触部の最上部よりも低い液面を持つ貯留槽から構成される気液接触手段において、該気液接触部処理水立下り部と貯留槽の気室を連通させたガス循環管路を備え、後段の気液接触手段若しくは処理水利用設備へ処理水を供給する処理水供給手段出口に、該処理水供給手段の処理水出口と気液接触手段への処理水入口を連通させる切替手段を備えるか、気液接触手段に処理水を供給する処理水供給手段の入口に、前段の気液接触手段からの処理水若しくは原水入口と、気液接触手段からの処理水出口を連通させる切替手段を備え、前記システム動作正常検出手段からの信号により蒸気供給が無い場合や、処理水の温度や流量が少なく、蒸気動力を遮断する場合には、前記切替手段により前記処理水供給手段の液体移送能力を利用して前記気液接触手段内の処理水を循環させ、且つ各段の気室圧力を前段からの切替手段及び後段への切替手段の調整により気圧変動を行い、気液接触部の立下り部に形成されるサイホン作用により分離済み処理ガスを循環させることを特徴とする。   The gas-liquid contact method according to claim 9 of the present invention is the gas-liquid contact method according to claim 7 or claim 8, wherein the gas-liquid contact device comprises a vertically arranged gas-liquid contact portion, and the gas-liquid contact method. In the gas-liquid contact means composed of a storage tank having a lower liquid level than the uppermost part of the liquid contact part, a gas circulation pipe that communicates the gas-liquid contact part treated water falling part and the air chamber of the storage tank. Switching means for connecting the treated water outlet of the treated water supply means and the treated water inlet to the gas-liquid contact means to the gas-liquid contact means of the latter stage or the treated water supply means outlet for supplying treated water to the treated water utilization facility Or switching the communication water supply means for supplying the treated water to the gas-liquid contact means to communicate the treated water or raw water inlet from the preceding gas-liquid contact means with the treated water outlet from the gas-liquid contact means Means according to a signal from the system operation normality detection means. When there is no steam supply, or when the temperature or flow rate of the treated water is low and the steam power is shut off, the processing in the gas-liquid contact means is performed by using the liquid transfer capability of the treated water supply means by the switching means. Water is circulated and the air pressure in each stage is changed by adjusting the switching means from the previous stage and the switching means to the subsequent stage, and the separation is completed by the siphon action formed at the falling part of the gas-liquid contact part It is characterized by circulating gas.

本発明によれば、蒸気動力が無い場合や、水温が高い場合、水流量が少なく蒸気動力の使用が困難な場合に、接触効率の低下を補う為に処理水の循環を行うことで、気圧変動効果と分離ガスの循環利用を行うことで、処理効率の低下を防止でき、対象ガスの使用量を削減でき経済的である。   According to the present invention, when there is no steam power, when the water temperature is high, when the flow rate of water is small and it is difficult to use steam power, the treated water is circulated to compensate for the decrease in contact efficiency. By performing the fluctuation effect and circulating use of the separated gas, it is possible to prevent a reduction in the processing efficiency and reduce the amount of the target gas used, which is economical.

本発明の請求項10にかかる気液接触方法は、請求項7乃至請求項9の気液接触装置において、前記気液接触装置は、原水入口から処理水出口までが連通した流路を備え、該連通流路の上流側に液体循環手段入口を連通し、気液接触部を経由して処理水槽に貯留した処理水を、該液体移送手段入口の下流側に戻す循環流路を備え、該気液接触装置の最大給水の流量より移送能力の大きい液体循環手段を備えた循環型気液接触装置を一段とし、該循環型気液接触装置を多段に構成し、該処理水槽の少なくとも一つに、液面検出手段を備え、該連通流路の再上流に流量制御手段を備えることを特徴とする
本発明によれば、水面制御が簡略化できること、処理段数の調整が液体循環手段のON/OFFのみで制御できることで装置を簡略化することができる。
The gas-liquid contact method according to claim 10 of the present invention is the gas-liquid contact device according to any one of claims 7 to 9, wherein the gas-liquid contact device includes a flow path communicating from the raw water inlet to the treated water outlet. A circulation passage for connecting the liquid circulation means inlet to the upstream side of the communication flow path and returning the treated water stored in the treated water tank via the gas-liquid contact portion to the downstream side of the liquid transfer means inlet; A circulation type gas-liquid contact device provided with a liquid circulation means having a transfer capacity larger than the flow rate of the maximum water supply of the gas-liquid contact device is formed in one stage, the circulation type gas-liquid contact apparatus is configured in multiple stages, and at least one of the treated water tanks According to the present invention, water level control can be simplified, and the number of processing stages can be adjusted by turning on the liquid circulation means. Simplify equipment by being able to control with only / OFF Can do.

本発明の請求項11にかかる水の脱酸素方法は、請求項1から請求項10のいずれか一項に記載の気液接触方法において、前記対象ガスとして不活性ガスを用い、前記処理水中のガス組成を前記不活性ガスのガス組成に置換させることを特徴とする。
本発明によれば、上記のように、対象ガスの過飽和による影響を排除できるので、置換ガスの利用効率が高くコンパクトな脱酸素技術を提供することができる。
更に、副次的な効果として、一般水中には遊離炭酸と呼ばれる過飽和状態の炭酸ガスが含まれている。これは炭酸イオンや重炭酸イオンとは異なり、本来はヘンリーの法則に従い、大気中の炭酸ガス濃度(約0.04%)と平衡して、1ppm以下の値である筈であるが、水源での過飽和を維持しやすく、地下水等では20〜50ppm程度含まれている場合が多い。
本発明は、ストリッピングを行う過程で過飽和を解消する技術でもある為、この過飽和状態の遊離炭酸も同時に過飽和解消する効果がり、特に蒸気ボイラの給水用途には好適である。
The water deoxygenation method according to claim 11 of the present invention is the gas-liquid contact method according to any one of claims 1 to 10, wherein an inert gas is used as the target gas, The gas composition is substituted with the gas composition of the inert gas.
According to the present invention, as described above, the influence due to the supersaturation of the target gas can be eliminated, and thus a compact deoxygenation technique with high use efficiency of the replacement gas can be provided.
Further, as a secondary effect, general water contains supersaturated carbon dioxide gas called free carbonic acid. Unlike carbonate ions and bicarbonate ions, this should be 1 ppm or less in equilibrium with the carbon dioxide concentration in the atmosphere (approximately 0.04%) according to Henry's law. It is easy to maintain the supersaturation, and in groundwater etc., it is often contained at about 20 to 50 ppm.
Since the present invention is also a technique for eliminating supersaturation in the process of stripping, this supersaturated free carbonic acid also has the effect of eliminating supersaturation at the same time, and is particularly suitable for water supply for steam boilers.

本発明の請求項12にかかる脱酸素方法は前記請求項11において、前段の処理単位から次段の処理単位に供給される排ガス若しくは大気に排出される排ガスの酸素濃度を計測する酸素濃度検出手段と、請求項7記載の処理ガス量演算手段(必要対象ガス量演算手段)に、予想される処理ガス中の酸素濃度演算回路を少なくとも一段分を備え、該酸素濃度検出手段の酸素濃度値と、同一場所の予想される酸素濃度演算値の比較を行う酸素濃度比較演算回路とを備え、該酸素濃度比較演算回路で、酸素濃度が高すぎる場合、酸素濃度が低すぎる場合に、何れか一方、若しくは両方の警報を出力することを特徴とする。
本発明によれば、水温が上昇すると計測を行うことが困難な水中溶存酸素計を用いること無く、信頼性の高いジルコニア式或いは磁気ダンベル式等の気体用の酸素濃度計を用いることができるので、装置の異常、即ち酸素濃度が高い場合には窒素ガスの不足や装置内への外気の混入、酸素濃度が低い場合には、窒素ガスの過剰や接触効率の低下等を間接的に監視でき、信頼性の高い装置を提供することができる。
The deoxygenation method according to claim 12 of the present invention is the oxygen concentration detection means according to claim 11, which measures the oxygen concentration of the exhaust gas supplied from the previous processing unit to the next processing unit or exhausted to the atmosphere. The processing gas amount calculation means (necessary target gas amount calculation means) according to claim 7 is provided with at least one stage of an expected oxygen concentration calculation circuit in the processing gas, and the oxygen concentration value of the oxygen concentration detection means An oxygen concentration comparison calculation circuit that compares the predicted oxygen concentration calculation values at the same location, and in the oxygen concentration comparison calculation circuit, either the oxygen concentration is too high or the oxygen concentration is too low Or both alarms are output.
According to the present invention, a highly reliable gas oximeter such as a zirconia type or a magnetic dumbbell type can be used without using an underwater dissolved oxygen meter that is difficult to measure when the water temperature rises. When the device is abnormal, that is, when the oxygen concentration is high, it is possible to indirectly monitor the shortage of nitrogen gas or the entry of outside air into the device, or when the oxygen concentration is low, excessive nitrogen gas or a decrease in contact efficiency. A highly reliable device can be provided.

〔処理水に対する水蒸気量の適正比率〕
(給水予熱が有用でないケース)
水道水供給系や冷水供給系の様に、水温を上昇させることが望ましく無い場合には、水蒸気の使用量は必要最低限に留めることが望ましく、処理水量に対して、0.005〜0.1倍程度の蒸気使用量が適正値である。
(給水予熱が有用なケース)
蒸気ボイラ、温水系統への給水等の場合は、水温を上げることが無駄にならないので、蒸気の利用比率を上げても、蒸気エネルギーが有効に利用できる。
この様な用途の場合には、本発明に係わる給水ラインの放熱を抑制することで、蒸気使用量を増加させても、エネルギーを再利用できるので、蒸気の使用量のエネルギー的な制約は少なくなる。
しかしながら、概ね処理水の水温が100℃を超える様な蒸気量の使用は、蒸気による脱気法に近くなることと、水温が飽和温度近くになると、ポンプ類の吸込み効率が悪くなったり、停止時の放熱ロスが大きくなるので経済的効果が低下する。
従って、水温20℃の処理水の場合の処理水に対する適正蒸気使用量は、質量比で、0.01〜20%が望ましい。
[Proper ratio of water vapor to treated water]
(Case where preheating water supply is not useful)
When it is not desirable to raise the water temperature as in a tap water supply system or a cold water supply system, it is desirable to keep the amount of water vapor used to the minimum necessary, and 0.005 to 0.00. About 1 time the amount of steam used is an appropriate value.
(Case where preheating water supply is useful)
In the case of water supply to a steam boiler, a hot water system, etc., it is not wasteful to raise the water temperature, so that the steam energy can be used effectively even if the utilization ratio of steam is increased.
In such a case, energy can be reused even if the amount of steam used is increased by suppressing heat dissipation of the water supply line according to the present invention, so there are few energy restrictions on the amount of steam used. Become.
However, the use of a steam amount such that the water temperature of the treated water generally exceeds 100 ° C is close to the deaeration method with steam, and when the water temperature is close to the saturation temperature, the suction efficiency of the pumps deteriorates or stops. Since the heat dissipation loss at the time increases, the economic effect decreases.
Therefore, the proper amount of steam used for the treated water in the case of treated water having a water temperature of 20 ° C. is preferably 0.01 to 20% in terms of mass ratio.

〔窒素ガス必要量の計算〕
本発明の第一の目的である脱酸素処理を行う場合の窒素ガスの必要量を求める計算式は次の様に求めることができる。
(溶存酸素を求める計算式)
酸素溶解度(mol)は下記式で求めることができる。
酸素溶解度=EXP(A+B/((温度(℃)+273)/100)+C*LN((温度(℃)+273)/100))
A:−66.73538
B:87.47547
C:24.45264
酸素溶解量(容量ppm)は下記式で求めることができる。
酸素溶解量=酸素溶解度*1000000*0.21*32/18
水蒸気分圧考慮酸素溶解量(容量ppm)は下記式で求めることができる。
水蒸気分圧考慮酸素溶解量=酸素溶解量*(1.033−水蒸気分圧(bar))/1.033
ここで、水蒸気分圧は蒸気表より求める。
(処理段数に応じて理論窒素消費量を求める計算方法)
これは、単段処理の場合であれば、処理水に含まれる溶存酸素濃度、窒素ガス純度、及び窒素ガス量の3点のパラメーターにより、処理水に含まれる、水酸素ガス容積及び水窒素ガス容積を求め、窒素ガス純度から、ガス酸素ガス容積及びガス窒素ガス容積を求め、さらに、全酸素ガス容積と全窒素容積を求める。
窒素溶解度(mol)は下記式で求めることができる。
窒素溶解度=EXP(A+B/((温度(℃)+273)/100)+C*LN((温度(℃)+273)/100))
A:−67.38765
B:86.32129
C:24.79808
窒素溶解量=窒素溶解度*1000000*0.79*28/18
水蒸気分圧考慮窒素溶解量=窒素溶解量*(1.033−水蒸気分圧)/1.033
処理後溶存酸素濃度(容量ppm)は下記式で求めることができる。
処理後溶存酸素濃度=初期溶存酸素濃度*(全酸素/(全酸素+全窒素))/(21/100)
処理後の窒素ガス純度(容量%)は下記式で求めることができる。
処理後の窒素ガス純度=(1−全酸素/(全酸素+全窒素))*100
2段以上の処理の場合には、各段の処理毎に上記の試算を行うが、前段の窒素ガス純度が後段の処理済みの窒素ガス純度となり、後段に送られる溶存酸素が前段の処理後の溶存酸素となる様に、再帰的に演算を行うと、排出される窒素ガス濃度及び処理水溶存酸素濃度が収束する。
窒素ガス量を変化させて、その収束した時の溶存酸素濃度が再帰演算により求められるので、窒素ガス量を変化させながら、溶存酸素濃度を試算することで、多段処理の場合の必要窒素ガス量を求めることができる。
しかし、制御上で用いるには、この演算方法は演算処理系統に負担が大きいので、それらをプロットした値から近似式を求めて利用したり、プロット点間を区間比例法等により求めることが一般的である。
参考に、図6a〜図6gに窒素純度99.9%における理論窒素消費量のグラフを記している。
[Calculation of nitrogen gas requirement]
A calculation formula for obtaining the necessary amount of nitrogen gas in performing the deoxygenation treatment which is the first object of the present invention can be obtained as follows.
(Calculation formula for obtaining dissolved oxygen)
The oxygen solubility (mol) can be determined by the following formula.
Oxygen solubility = EXP (A + B / ((temperature (° C.) + 273) / 100) + C * LN ((temperature (° C.) + 273) / 100))
A: -66.773538
B: 87.47547
C: 24.45264
The amount of dissolved oxygen (volume ppm) can be determined by the following formula.
Amount of dissolved oxygen = oxygen solubility * 1000000 * 0.21 * 32/18
The amount of dissolved oxygen (volume ppm) in consideration of the partial pressure of water vapor can be determined by the following equation.
The amount of dissolved oxygen in consideration of the partial pressure of water vapor = the amount of dissolved oxygen * (1.03-partial pressure of water vapor (bar)) / 1.033
Here, the water vapor partial pressure is obtained from the vapor table.
(Calculation method to obtain theoretical nitrogen consumption according to the number of processing stages)
In the case of a single-stage treatment, the water oxygen gas volume and water nitrogen gas contained in the treated water are determined according to the three parameters of dissolved oxygen concentration, nitrogen gas purity, and nitrogen gas amount contained in the treated water. The volume is determined, the gas oxygen gas volume and the gas nitrogen gas volume are determined from the nitrogen gas purity, and further, the total oxygen gas volume and the total nitrogen volume are determined.
The nitrogen solubility (mol) can be determined by the following formula.
Nitrogen solubility = EXP (A + B / ((temperature (° C.) + 273) / 100) + C * LN ((temperature (° C.) + 273) / 100))
A: -67.38765
B: 86.32129
C: 24.79808
Nitrogen solubility = nitrogen solubility * 1000000 * 0.79 * 28/18
Nitrogen dissolved amount considering water vapor partial pressure = nitrogen dissolved amount * (1.033−water vapor partial pressure) /1.033
The post-treatment dissolved oxygen concentration (volume ppm) can be determined by the following formula.
Dissolved oxygen concentration after treatment = initial dissolved oxygen concentration * (total oxygen / (total oxygen + total nitrogen)) / (21/100)
The nitrogen gas purity (volume%) after the treatment can be obtained by the following formula.
Nitrogen gas purity after treatment = (1−total oxygen / (total oxygen + total nitrogen)) * 100
In the case of two or more stages of treatment, the above calculation is performed for each stage of treatment, but the purity of the nitrogen gas in the previous stage becomes the purity of the nitrogen gas that has been treated in the subsequent stage, and the dissolved oxygen sent to the subsequent stage is the amount after the treatment in the previous stage. When the calculation is recursively performed so that the dissolved oxygen becomes, the exhausted nitrogen gas concentration and the treated aqueous oxygen concentration converge.
Since the dissolved oxygen concentration at the time of convergence is obtained by changing the amount of nitrogen gas by recursive calculation, the necessary amount of nitrogen gas in the case of multistage processing is calculated by changing the amount of nitrogen gas and calculating the dissolved oxygen concentration. Can be requested.
However, since this calculation method has a heavy burden on the calculation processing system for use in control, it is common to obtain and use an approximate expression from the values obtained by plotting them, or to obtain the interval between plot points by an interval proportional method or the like. Is.
For reference, graphs of theoretical nitrogen consumption at a nitrogen purity of 99.9% are shown in FIGS. 6a to 6g.

(処理効率を加味した実際必要窒素量の算定方法)
目標とする溶存酸素濃度に必要な窒素ガス量を、処理効率を加味して求めることは、前記の再帰演算の中で処理効率を加味して演算する必要があり、動的に求めることはやはり演算処理系統に負担が大きいので、処理条件に応じて接触率を加味した値を試算しておき、やはり処理パターンに応じて、プロット済みのデータを近似処理や比例法等により求めることが一般的である。
(必要窒素量を求めることの重要性)
窒素置換による脱酸素方法を初め、ガスストリッピング技術を利用する気液接触方法では、水温によって原水に含まれているガス成分濃度が大きく変化し、それに伴う対象ガス消費量も大きく変化する。
特に多段法においては、理論値や装置の性能に基づく実際必要量等が、水温によって大きく変化しやすいので、この様な演算に基づき管理することが装置の保守管理上も重要である。
(Calculation method of actual required nitrogen amount with treatment efficiency taken into account)
Obtaining the amount of nitrogen gas necessary for the target dissolved oxygen concentration in consideration of the processing efficiency requires calculation in consideration of the processing efficiency in the recursive calculation, and it is still necessary to obtain it dynamically. Since the calculation processing system is burdensome, it is common to calculate a value that considers the contact rate according to the processing conditions and find the plotted data according to the processing pattern by approximation processing, proportional method, etc. It is.
(Importance of determining the required amount of nitrogen)
In the gas-liquid contact method using the gas stripping technique such as the deoxygenation method by nitrogen substitution, the gas component concentration contained in the raw water greatly varies depending on the water temperature, and the amount of consumption of the target gas greatly varies accordingly.
In particular, in the multistage method, the actual required amount based on the theoretical value and the performance of the apparatus is likely to change greatly depending on the water temperature. Therefore, management based on such a calculation is important for the maintenance management of the apparatus.

タンク内の水中噴霧式の窒素置換法の一例を示す説明図。Explanatory drawing which shows an example of the nitrogen substitution method of the underwater spray type in a tank. 管路内の水中噴霧式の窒素置換法の一例を示す説明図。Explanatory drawing which shows an example of the water spray type nitrogen substitution method in a pipe line. 水蒸気窒素混合ガスを用いた気中接触型の窒素置換法の一例を示す説明図。Explanatory drawing which shows an example of the nitrogen substitution method of the air contact type using water vapor | steam nitrogen mixed gas. 水蒸気窒素分離型気中接触型の窒素置換法の一例を示す説明図。Explanatory drawing which shows an example of the nitrogen substitution method of water vapor | steam separation type air contact type. 水蒸気窒素ガス混合噴霧式水ノズルを用いた気中接触型の窒素置換法の一例を示す説明図。Explanatory drawing which shows an example of the nitrogen replacement method of the air contact type | mold using the water vapor | steam nitrogen gas mixing spray type water nozzle. 水蒸気噴霧式水ノズルを用いた気中接触型の窒素置換法の一例を示す説明図。Explanatory drawing which shows an example of the nitrogen substitution method of the air contact type using a water vapor spray type water nozzle. 槽内対向流式気中接触型への応用の一例を示す説明図。Explanatory drawing which shows an example of the application to the counterflow type air contact type in a tank. 処理水ポンプの吸込み能力と給水制御弁を用いて、気圧変動効果を実現するフローの一例を示す説明図。Explanatory drawing which shows an example of the flow which implement | achieves an atmospheric | air pressure fluctuation effect using the suction capability of a treated water pump, and a water supply control valve. 給水源の圧力が、気圧変動効果に必要な下限圧よりも低い場合の、気圧変動効果を実現するフローの一例を示す説明図。Explanatory drawing which shows an example of the flow which implement | achieves a pressure fluctuation effect when the pressure of a water supply source is lower than the minimum pressure required for a pressure fluctuation effect. インゼクター式の水蒸気混合気体生成器の一例を示す説明図。Explanatory drawing which shows an example of an injector type water vapor mixed gas generator. 蒸気噴射ノズルの一例を示す説明図((A)側面図、(B)正面図)。Explanatory drawing which shows an example of a steam injection nozzle ((A) side view, (B) front view). 水蒸気噴霧式水ノズルの一例を示す説明図((A)一部断面側面図、(B)正面図)。Explanatory drawing which shows an example of a water vapor spray type water nozzle ((A) partial cross section side view, (B) front view). 多段式脱酸素装置のフローの一例を示す説明図。Explanatory drawing which shows an example of the flow of a multistage deoxygenation apparatus. 水温による処理段数の動的変更を行う多段式脱酸素装置のフローの一例を示す説明図。Explanatory drawing which shows an example of the flow of the multistage deoxygenation apparatus which performs the dynamic change of the process stage number by water temperature. 水蒸気駆動機関を用いた多段式脱酸素装置のフローの一例を示す説明図。Explanatory drawing which shows an example of the flow of the multistage type deoxygenation apparatus using a water vapor drive engine. 連通管式循環型気液接触装置を持つ多段式脱酸素装置のフローの一例を示す説明図。Explanatory drawing which shows an example of the flow of a multistage deoxygenation apparatus with a communication pipe type circulation type gas-liquid contact apparatus. 連通管式循環型気液接触装置を持つ多段式脱酸素装置のフローにおいて、連通管が処理水槽の一部を兼ねるフローの一例を示す説明図。Explanatory drawing which shows an example of the flow in which a communication pipe serves as a part of treated water tank in the flow of a multistage deoxygenation apparatus with a communication pipe-type circulation type gas-liquid contact apparatus. 連通管式循環型気液接触装置を持つ多段式脱酸素装置のフローにおいて、連通管に逆止弁を備え、処理水槽間の逆流を防止する一例を示す説明図。Explanatory drawing which shows an example which provides a check valve in a communicating pipe and prevents the backflow between treated water tanks in the flow of a multistage deoxygenation apparatus having a communicating pipe-type gas-liquid contact device. 水温検出式窒素量調整型の多段式脱酸素装置のフローの一例を示す説明図。Explanatory drawing which shows an example of the flow of a water temperature detection type nitrogen amount adjustment type multistage deoxygenation apparatus. 溶存酸素濃度2%の原水の理論窒素消費量を示すグラフ。The graph which shows the theoretical nitrogen consumption of raw | natural water of 2% of dissolved oxygen concentration. 溶存酸素濃度4%の原水の理論処理消費量を示すグラフ。The graph which shows the theoretical process consumption of raw | natural water of dissolved oxygen concentration 4%. 溶存酸素濃度6%の原水の理論処理消費量を示すグラフ。The graph which shows the theoretical process consumption of raw | natural water of 6% of dissolved oxygen concentration. 溶存酸素濃度8%の原水の理論処理消費量を示すグラフ。The graph which shows the theoretical process consumption of raw | natural water of 8% of dissolved oxygen concentration. 溶存酸素濃度10%の原水の理論処消費量を示すグラフ。The graph which shows the theoretical consumption of raw water with a dissolved oxygen concentration of 10%. 溶存酸素濃度12%の原水の理論処消費量を示すグラフ。The graph which shows the theoretical consumption of raw water with a dissolved oxygen concentration of 12%. 溶存酸素濃度14%の原水の理論処消費量を示すグラフ。The graph which shows the theoretical consumption of raw water with a dissolved oxygen concentration of 14%.

〔第1実施形態〕
以下、本発明の第1実施形態を図面に基づいて説明する。
図1aは、本実施形態に係わる水中噴霧式の窒素置換脱酸素装置の一例である。
処理水槽(1)の下部には、蒸気インゼクター(24)と緩衝室(27)が配置されており、蒸気インゼクター(24)には蒸気管(21)と窒素配管(11)が接続されている。
緩衝室(27)と処理水槽(1)は、スクリーン(28)で仕切られている。
スクリーン(28)は、微細な穴を持った焼結体や金属の多穴板等で作られているが、蒸気の熱に耐えられることと、スクリーン(28)から噴出した蒸気が体積を失う時に発生する振動に耐えられる構造であることが必要である。
原水配管(31)から流入した原水は、スクリーン出口を取り囲む様に設置されている内管(9)に流入する。
蒸気インゼクター(24)には、原水の流入と同時に蒸気と窒素を吹き込む、窒素量は原水の溶存酸素濃度と処理後の処理水に求められる溶存酸素濃度に応じて決定され、蒸気量は窒素量の50倍程度(質量比)を供給する。尚、蒸気量は窒素量の5〜200倍が好ましい。
スクリーン(28)から水蒸気混合ガスが噴霧されると、内管(9)の中に流入した原水と熱交換され、蒸気は微細穴出口付近で消滅する。
内管(9)に流れる原水の流速は10cm/s程度の低速な流量で良く、噴出蒸気による攪拌効果で、内管内の原水は均等に過飽和状態となり、処理水槽(1)内を上昇する。
内管(9)を出た辺りから微細な気泡が発生し、結合しながら気液分離が行われる。発生した置換済みのガスは、逆止弁(13)を経由して窒素排気管(12)から外部に排出され、処理水は処理水配管(32)を経由して脱酸素水利用機器へ供給される。
緩衝室(27)は、蒸気インゼクター(24)が噴出する蒸気の流速を落とすことにより、運動エネルギーを圧力に変換する為に必要な空間で、この緩衝室(27)により窒素配管部分を負圧に保つことも可能になる。
[First Embodiment]
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a first embodiment of the invention will be described with reference to the drawings.
FIG. 1a is an example of an underwater spray-type nitrogen displacement deoxygenation apparatus according to this embodiment.
A steam injector (24) and a buffer chamber (27) are arranged in the lower part of the treated water tank (1), and a steam pipe (21) and a nitrogen pipe (11) are connected to the steam injector (24). ing.
The buffer chamber (27) and the treated water tank (1) are partitioned by a screen (28).
The screen (28) is made of a sintered body having fine holes, a metal multi-hole plate, or the like. However, the screen (28) can withstand the heat of the steam and the steam ejected from the screen (28) loses its volume. It is necessary to have a structure that can withstand vibrations that sometimes occur.
The raw water flowing in from the raw water pipe (31) flows into the inner pipe (9) installed so as to surround the screen outlet.
Steam and nitrogen are blown into the steam injector (24) simultaneously with the inflow of raw water. The amount of nitrogen is determined according to the dissolved oxygen concentration of the raw water and the dissolved oxygen concentration required for the treated water after treatment, and the amount of steam is nitrogen. Supply about 50 times the mass (mass ratio). The vapor amount is preferably 5 to 200 times the nitrogen amount.
When the steam mixed gas is sprayed from the screen (28), heat is exchanged with the raw water flowing into the inner pipe (9), and the steam disappears in the vicinity of the outlet of the fine hole.
The flow rate of the raw water flowing into the inner pipe (9) may be a low flow rate of about 10 cm / s, and the raw water in the inner pipe is uniformly supersaturated by the stirring effect by the jetted steam, and rises in the treated water tank (1).
Fine bubbles are generated around the inside of the inner tube (9), and gas-liquid separation is performed while being combined. The generated replaced gas is discharged to the outside from the nitrogen exhaust pipe (12) via the check valve (13), and the treated water is supplied to the deoxygenated water utilization equipment via the treated water pipe (32). Is done.
The buffer chamber (27) is a space necessary for converting the kinetic energy into pressure by reducing the flow velocity of the steam ejected by the steam injector (24). It is also possible to keep the pressure.

図1bは、配管中でガス交換を行う場合の窒素置換脱酸素装置の一例である。
接触管(66)の上流側にスクリーン(28)で仕切られた緩衝室(27)とその緩衝室内に水蒸気のエネルギーにより窒素を吸入しながら緩衝室(27)に水蒸気混合ガスを供給する蒸気インゼクター(24)が配置されている。
処理水は、原水配管(31)を経由して接触管内を通過し、ガス分離室(29)を経由して、処理水配管(32)を通じて処理水が流出する。
ガス分離室上部には、自動ガス抜き弁(25)を経由して、窒素排気管(12)が連通している。
処理水は、接触管入口部で、スクリーン(28)を通過した水蒸気混合ガスと接触し、水蒸気が凝縮する際の気体の圧縮作用と、接触管内に伝わる衝撃により窒素ガスと処理水との気液混合が促進される。
蒸気接触点から距離が離れると、水中から分離した微細気泡同士が結合を始め、ガス分離室付近で上部にガスを分離し、分離されたガスは自動ガス抜き弁(25)を経由して系外に排気される。
尚、図1aにおいても、図1bにおいても、図面上は明記されていないが、窒素排気管(12)と窒素配管(11)を接続し、水中に吹き込まれる窒素ガスの体積を増加させながら、一部のガスを系外に排出する様なガスの循環利用を行うことも可能である。
この場合には、水蒸気の凝縮による水蒸気凝縮効果と同時に、水中に放出されたガスの運動効果と、核となる気泡が存在することにより、更に効率的に気液接触を行うことができる。
これは、エアレーターと呼ばれる回転式の羽根を持ち、その中心部を負圧として、エアレーションを行う装置と同様の効果であるが、負圧発生構造が簡単で、水流の拡散方向を一方向に限定することができるので小型化や高流速化が容易で、多段に構成しても設備コストを抑制することができる。
図3aは、本実施形態等で使用する蒸気インゼクターの構造図である。蒸気入口(61)から流入した蒸気が蒸気ノズル(62)で高速流となり、ディフューザ部(63)で速度が低下し圧力を取り戻し、出口部(64)を経由して排気される。
この時、吸込部(65)には負圧が発生し、気体や液体を吸引し、出口部から蒸気と共に排出される。
尚、水蒸気を使用した気液接触においては、水蒸気の運動エネルギーが大きい為、特別な接触板や接触材等の接触助材を用いること無く十分な接触効率を得ることができるが、それら気液の接触効率を高める効果のある機構を備えても、特に問題なく使用することができる。
FIG. 1 b is an example of a nitrogen substitution deoxygenation apparatus when performing gas exchange in a pipe.
A buffer chamber (27) partitioned by a screen (28) on the upstream side of the contact tube (66) and a steam inlet for supplying a steam mixed gas to the buffer chamber (27) while sucking nitrogen into the buffer chamber by the energy of steam. A zector (24) is arranged.
The treated water passes through the contact pipe via the raw water pipe (31), and the treated water flows out through the treated water pipe (32) via the gas separation chamber (29).
A nitrogen exhaust pipe (12) communicates with the upper part of the gas separation chamber via an automatic gas vent valve (25).
The treated water is brought into contact with the steam mixed gas that has passed through the screen (28) at the inlet of the contact pipe, and the gas compression action of the gas when the steam is condensed and the impact of the nitrogen gas and the treated water by the impact transmitted in the contact pipe. Liquid mixing is promoted.
When the distance from the vapor contact point increases, the fine bubbles separated from the water start to bond with each other, and the gas is separated into the upper part in the vicinity of the gas separation chamber. The separated gas passes through the automatic degassing valve (25). Exhausted outside.
In FIG. 1a and FIG. 1b, although not explicitly shown in the drawing, the nitrogen exhaust pipe (12) and the nitrogen pipe (11) are connected, and while increasing the volume of nitrogen gas blown into the water, It is also possible to circulate and use a gas so that a part of the gas is discharged out of the system.
In this case, the gas-liquid contact can be performed more efficiently due to the presence of the kinetic effect of the gas released into the water and the bubbles serving as nuclei simultaneously with the water vapor condensation effect due to the condensation of water vapor.
This is the same effect as an aerator that has a rotating blade called an aerator and has a negative pressure at the center, but the structure for generating negative pressure is simple, and the direction of water flow diffusion is unidirectional. Since it can limit, size reduction and high flow velocity are easy, and even if it comprises in multiple stages, installation cost can be suppressed.
FIG. 3a is a structural diagram of a steam injector used in the present embodiment and the like. The steam flowing in from the steam inlet (61) becomes a high-speed flow at the steam nozzle (62), the speed is reduced at the diffuser section (63), the pressure is recovered, and the steam is exhausted through the outlet section (64).
At this time, a negative pressure is generated in the suction part (65), and a gas or liquid is sucked and discharged from the outlet part together with the steam.
In gas-liquid contact using water vapor, since the kinetic energy of water vapor is large, sufficient contact efficiency can be obtained without using a contact aid such as a special contact plate or contact material. Even if a mechanism having an effect of increasing the contact efficiency is provided, it can be used without any problem.

〔第2実施形態〕
以下、本発明の第2実施形態を図面に基づいて説明する。
図2aは、本実施形態に係わる気中接触式の窒素置換脱酸素装置のフロー図である。
処理水槽(1)上部には、接触塔(6)が配置されており、接触塔下部は処理水槽の水面下で開放されている。
接触塔(6)には気体混合器(26)が接続されており、気体混合器(26)には蒸気配管(21)と窒素配管(11)が接続されている。
接触塔上部には散水板(7)を介して原水配管(31)が接続されている。
原水配管(31)から原水が通水されると、散水板(7)で分散された水流が、接触塔内に流下する。同時に、蒸気配管(21)と窒素配管(11)を経由して、蒸気と窒素が第1実施形態と同様の混合ガスが混合器内で生成され、接触塔(6)に供給される。尚、蒸気量は窒素量の5〜100倍(質量比)が好ましい。
流下した水流と水蒸気が接触すると、水蒸気は凝縮し体積を失うので、混合ガスは滴下された水滴に向かって高速流を形成する。
従って、水滴表面には窒素ガスが高濃度で滞留するが、水蒸気が凝縮することによる高速流で、気体分子の運動方向が制限され、過飽和状態で水滴に溶け込むことになる。
しかし、同時に水中の溶存気体分子は、水蒸気の凝縮熱により、過飽和を解消するのに十分なエネルギーを与えられており、
窒素ガスが過飽和状態で溶け込んだ水滴は、接触塔下部に落下し、気相中の水蒸気の過飽和度が低下し、水蒸気凝縮が弱まると直ちに気泡は処理水槽内で分離される。
気液分離された処理済みのガスは、窒素排気管(12)から排出される。
処理水は処理水配管(32)を経由して、脱酸素水利用機器へ供給される。
この場合の水蒸気の使用率は、単段で処理水1m当たり凡そ5kgである。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings.
FIG. 2A is a flow diagram of the air contact type nitrogen substitution deoxygenation apparatus according to the present embodiment.
A contact tower (6) is disposed in the upper part of the treated water tank (1), and the lower part of the contact tower is opened below the surface of the treated water tank.
A gas mixer (26) is connected to the contact tower (6), and a steam pipe (21) and a nitrogen pipe (11) are connected to the gas mixer (26).
A raw water pipe (31) is connected to the upper part of the contact tower via a water spray plate (7).
When raw water is passed through the raw water pipe (31), the water flow dispersed by the water spray plate (7) flows down into the contact tower. At the same time, a mixed gas similar to that of the first embodiment is generated in the mixer through the steam pipe (21) and the nitrogen pipe (11), and supplied to the contact tower (6). The vapor amount is preferably 5 to 100 times (mass ratio) of the nitrogen amount.
When the flowing water stream comes into contact with the water vapor, the water vapor condenses and loses its volume, so that the mixed gas forms a high-speed flow toward the dropped water droplets.
Therefore, nitrogen gas stays at a high concentration on the surface of the water droplet, but the movement direction of the gas molecules is limited by the high-speed flow caused by the condensation of water vapor, so that it dissolves in the water droplet in a supersaturated state.
However, at the same time, dissolved gas molecules in water are given enough energy to eliminate supersaturation due to the heat of condensation of water vapor.
Water droplets in which nitrogen gas is dissolved in a supersaturated state fall to the lower part of the contact tower, the supersaturation degree of water vapor in the gas phase is lowered, and as soon as water vapor condensation weakens, bubbles are separated in the treated water tank.
The treated gas that has been gas-liquid separated is discharged from the nitrogen exhaust pipe (12).
The treated water is supplied to the deoxygenated water utilization device via the treated water pipe (32).
In this case, the use rate of water vapor is approximately 5 kg per 1 m 3 of treated water in a single stage.

図2bは、図2aとほぼ同様の構成であるが、窒素ガスの流入点が接触塔(6)上部の散水板(7)手前の原水配管(31)であり、水滴状に落下する処理水の中段付近で蒸気ノズル(62)から蒸気を噴射することで、蒸気の運動効果と、蒸気が処理水に凝縮する際の周囲の不活性ガスの巻き込み効果により気液接触を促進させる。
図2bで使用する蒸気ノズル(62)は、図3bの様に、横型にスリットの入った扇型のスプレーパターンを持つノズルであると、円形の接触塔内を落下する処理水に均等に水蒸気が接触するので効率が良い。
この場合の蒸気の使用率は、単段で処理水1m当たり凡そ2kgである。
FIG. 2b has a configuration substantially similar to that of FIG. 2a, except that the inflow point of nitrogen gas is the raw water pipe (31) in front of the sprinkler plate (7) at the top of the contact tower (6), and the treated water falls in the form of water droplets By injecting the steam from the steam nozzle (62) in the vicinity of the middle stage, the gas-liquid contact is promoted by the effect of the steam movement and the effect of the surrounding inert gas when the steam condenses into the treated water.
The steam nozzle (62) used in FIG. 2b is a nozzle having a fan-shaped spray pattern with slits horizontally as shown in FIG. 3b. Is efficient because of contact.
In this case, the steam usage rate is approximately 2 kg per 1 m 3 of treated water in a single stage.

図2cは、蒸気インゼクター(24)を処理水の吸引と、窒素ガスの吸引に使用し、霧状になった処理水と窒素ガスを、水蒸気の凝縮作用により気液促進させる方法の一例である。
この実施例では、処理水を移送するポンプと窒素ガスを移送するコンプレッサーの両機能を一台の蒸気インゼクター(24)で行うことができ、インゼクター内でも処理水と窒素ガスの気液接触が行われ、接触塔内では水蒸気の凝縮作用により気液接触が促進される。
この場合には、水蒸気の使用量が多くなり、単段で水1m当たり凡そ30kgの水蒸気が必要になるので、給水予熱効果も期待できる。
FIG. 2c is an example of a method in which the steam injector (24) is used for suction of treated water and nitrogen gas, and the mist-like treated water and nitrogen gas are promoted to gas-liquid by the condensing action of water vapor. is there.
In this embodiment, both functions of a pump for transferring treated water and a compressor for transferring nitrogen gas can be performed by a single steam injector (24), and the gas-liquid contact between the treated water and nitrogen gas is also performed in the injector. In the contact tower, gas-liquid contact is promoted by the condensing action of water vapor.
In this case, the amount of water vapor used is increased, and approximately 30 kg of water vapor is required per 1 m 3 of water in a single stage, so that a water supply preheating effect can be expected.

図2dは、噴霧部により微細な水粒子を形成する蒸気式液体噴霧ノズル(70)を使用した例である。
数μmの微霧を形成し、窒素ガスと気液接触を行うと同時に、水蒸気凝縮に伴う促進効果で短時間に処理が可能である。
図3cは、蒸気式液体噴霧ノズル(70)の構造の一例である。蒸気入口部(61)から供給された蒸気は噴射穴(71)の入口部で高速流となり、原水配管(31)から供給される原水を霧吹きの原理で霧化させ、噴射穴(71)から微細な霧として噴霧される。
尚、この噴霧ノズル(70)の場合には、流体の吸引能力は無くポンプにて凡そ0.3MPaに上昇させる必要がある。又、蒸気の消費量は最も多く、単段で1m当たり凡そ50kgの0.5MPa程度の圧力の水蒸気が必要である。又、窒素ガスを予め蒸気の中に混合しておくことも可能である。
尚、この様な構成で、接触塔上部が処理水槽水面より低く設定されると、蒸気が無い場合に、原水又は処理水のみを供給すると、窒素配管(11)はサイホン作用で負圧となり、窒素排気管(12)と連通させることで、分離ガスの再循環が可能となる。
FIG. 2d is an example in which a vapor-type liquid spray nozzle (70) that forms fine water particles by the spray section is used.
A fine mist of several μm is formed and gas-liquid contact is made with nitrogen gas.
FIG. 3c is an example of the structure of the vapor-type liquid spray nozzle (70). The steam supplied from the steam inlet part (61) becomes a high-speed flow at the inlet part of the injection hole (71), and the raw water supplied from the raw water pipe (31) is atomized on the principle of spraying, from the injection hole (71). Sprayed as a fine mist.
In the case of the spray nozzle (70), there is no fluid suction capability, and it is necessary to raise it to about 0.3 MPa by a pump. In addition, the consumption of steam is the largest, and steam at a pressure of about 0.5 MPa of about 50 kg per 1 m 3 is required in a single stage. It is also possible to previously mix nitrogen gas into the steam.
In addition, in such a configuration, when the upper part of the contact tower is set lower than the surface of the treated water tank, when only the raw water or treated water is supplied when there is no steam, the nitrogen pipe (11) becomes a negative pressure due to siphon action, The separation gas can be recirculated by communicating with the nitrogen exhaust pipe (12).

図2eは、接触塔内対向流型の実施例である。
窒素は窒素配管(11)から貯留槽(1)上部に供給され通気管(8)を逆流しながら窒素排気管(12)を経由して系外に排気される。
原水は原水配管(31)から塔内に供給され、散水板(7)を経由して、窒素ガスとは逆に貯留槽(1)に流下する。
流下する処理水と上昇する窒素ガスが存在する空間に、蒸気ノズル(62)により蒸気を噴霧することで気液接触効率を上昇させる。
対向流型の特徴は、定格運転時には接触塔内で、窒素ガスと処理水との濃度勾配が出来ることで、多段構成と同様のガス利用の向上効果が期待できることである。
しかし、従来型の静止型リアクタータイプ(散水板)の場合には、静止型リアクターと呼ばれる流下水と上昇する気体とを対抗的に流通させる接触器が必要な為、処理水の流速を上げるのが困難で、装置が大型化すると同時に、十分な置換効率を得ることが難しかった。
本実施例では、流下する水流と上昇する窒素ガスに水蒸気を噴霧することで、運動エネルギーと水蒸気凝縮効果により処理効率が向上するので、流速を早めることが出来、装置をコンパクトに設計できる。
又、蒸気ノズル(62)を蒸気エゼクターに変更し通気管(8)を無くすことも出来、この場合下段の処理ガスを吸込み、蒸気エゼクターから混合ガスを吹き込む様に構成する、この場合には散水板の細孔を処理ガスが逆流し易くなる為、接触効率が向上し、処理室内が負圧傾向となるので、より過飽和の生じ難い条件となる。更に、蒸気を間欠的に供給することで、気圧変動効果を与えることもできる。
FIG. 2e is an example of a counter-flow type in a contact tower.
Nitrogen is supplied from the nitrogen pipe (11) to the upper part of the storage tank (1) and exhausted out of the system through the nitrogen exhaust pipe (12) while flowing back through the vent pipe (8).
The raw water is supplied into the tower from the raw water pipe (31), and flows down to the storage tank (1) through the watering plate (7), contrary to the nitrogen gas.
The vapor-liquid contact efficiency is increased by spraying the steam with the steam nozzle (62) in the space where the treated water flowing down and the rising nitrogen gas exist.
The characteristic of the counterflow type is that the gas utilization improvement effect similar to that of the multistage configuration can be expected because a concentration gradient between nitrogen gas and treated water can be formed in the contact tower during rated operation.
However, in the case of the conventional static reactor type (sprinkling plate), a contactor called a static reactor that circulates the flowing water and the rising gas is required to compete with each other. This makes it difficult to increase the size of the apparatus and at the same time to obtain sufficient replacement efficiency.
In this embodiment, by spraying water vapor on the flowing water stream and the rising nitrogen gas, the processing efficiency is improved by the kinetic energy and the water vapor condensation effect, so that the flow velocity can be increased and the apparatus can be designed compactly.
Also, the steam nozzle (62) can be changed to a steam ejector to eliminate the vent pipe (8). In this case, the lower processing gas is sucked and the mixed gas is blown from the steam ejector. Since the processing gas easily flows back through the pores of the plate, the contact efficiency is improved, and the processing chamber tends to have a negative pressure. Furthermore, an atmospheric pressure fluctuation effect can be provided by supplying steam intermittently.

図2fは、気圧変動効果を与える為の基本構成であり、原水タンク(2)の水面レベルが、接触塔(6)の最上部よりも高い場合を示している。尚、水面レベルの変動がある場合等は適宜ポンプを追加する場合も同一の効果が期待できる。
原水は、原水配管(3)を経由して、原水制御弁(45)において、フロートスイッチ(43)の処理水槽高液面(9a)で遮断し、処理水槽低液面(9b)で開となる制御になっている。
窒素ガス若しくは前段の処理済みガスは窒素配管(11)から、逆止弁(13)を経由して接触塔に供給される。
又、処理済みのガスは、窒素排気管(12)に接続された逆止弁(13)を経由し、外気若しくは次段の接触塔に排気される。
窒素ガスの供給量は、本発明の場合には処理水量の容積比20%以下であるので、処理水ポンプの水量が2t/hである場合、最大でも400NL/hであり、原水制御弁が閉じて、原水の補給が無い場合には、処理ガスの供給が不足するので、処理塔及び処理水槽の気室の圧力は低下する。
処理水槽低液面となって、原水制御弁が開いた時に、処理水ポンプの能力より大きい4t/hの水量が補給されると、気室が圧縮されることになり、気室の圧力は上昇し、外気に排気する場合には、窒素排気管に接続されている逆止弁を開弁させる為に必要な静圧より高くなると、外気に排気される。
この窒素排気管に接続された逆止弁を、安全弁の様に一定圧力で開弁することのできる圧力調整弁に変更すると、大気圧より高い圧力で処理ガスを排出する様にコントロールすることも可能である。
この様に大気圧より高い圧力で排出する場合は、水温が高くなることで、処理水ポンプの吸込み能力が低下することを防止する効果があり、水温に応じて圧力設定された複数の圧力調整弁を切替たり、圧力を温度信号等により制御できる制御弁等に変更することで、常温の水から高温水まで、ポンプに負担を掛けずに、気圧変動効果を得ることができる。
気圧変動の幅は、フロートスイッチの間隔と、気室容積で計算できるが、フロートスイッチの様なポイント式の液面検出器の代わりに、リニアーな水面検出を行う水面センサー等を用いて、自動制御で気圧変動の差圧をコントロールすることもできる。
FIG. 2 f shows a basic configuration for providing an atmospheric pressure fluctuation effect, and shows a case where the water surface level of the raw water tank (2) is higher than the uppermost part of the contact tower (6). The same effect can be expected even when a pump is added as appropriate when there is a fluctuation in the water level.
The raw water passes through the raw water pipe (3) and is blocked at the raw water control valve (45) at the high water level (9a) of the float water switch (43) and opened at the low water level (9b) of the water tank. It becomes the control which becomes.
Nitrogen gas or the pretreated gas is supplied from the nitrogen pipe (11) to the contact tower via the check valve (13).
The treated gas is exhausted to the outside air or the next-stage contact tower via a check valve (13) connected to the nitrogen exhaust pipe (12).
Since the supply amount of nitrogen gas is 20% or less of the volume ratio of the treated water in the present invention, when the treated water pump has a water amount of 2 t / h, it is at most 400 NL / h, and the raw water control valve is When it is closed and raw water is not replenished, the supply of the processing gas is insufficient, so the pressure in the air chambers of the processing tower and the processing water tank decreases.
When the water level of the treated water tank becomes low and the raw water control valve is opened, if the amount of water of 4 t / h larger than the capacity of the treated water pump is replenished, the air chamber will be compressed, and the pressure in the air chamber will be In the case of rising and exhausting to the outside air, if the pressure becomes higher than the static pressure necessary to open the check valve connected to the nitrogen exhaust pipe, the air is exhausted to the outside air.
If the check valve connected to this nitrogen exhaust pipe is changed to a pressure regulating valve that can be opened at a constant pressure, such as a safety valve, the control gas can be controlled to be discharged at a pressure higher than atmospheric pressure. Is possible.
In this way, when discharging at a pressure higher than the atmospheric pressure, the water temperature is increased, which has the effect of preventing the suction capacity of the treated water pump from being lowered, and a plurality of pressure adjustments set according to the water temperature. By switching the valve or changing to a control valve or the like whose pressure can be controlled by a temperature signal or the like, it is possible to obtain an atmospheric pressure fluctuation effect from normal temperature water to high temperature water without imposing a burden on the pump.
The range of air pressure fluctuation can be calculated by the float switch interval and the air chamber volume, but instead of using a point-type liquid level detector such as a float switch, it automatically uses a water level sensor that performs linear water level detection. It is also possible to control the differential pressure of atmospheric pressure variation by control.

図2gは、図2fと同様に気圧変動効果を与える為の基本構成であるが、原水タンク(2)の水面が、処理水槽(1)の水面より低い位置にある為、原水配管(3)には制御弁は不要で、逆止弁(13)があれば気圧変動効果を得ることができる。
原水補給が必要になった時点で、原水ポンプ(42)を運転し、上限水位になった場合に、原水ポンプを停止することで、原水ポンプ停止中は、原水タンクの水位に相当する圧力に減圧されるまでは新たな原水が供給されない為である。
尚、給水ポンプにスクリュー式やプランジャー式等の容積式ポンプを用いた場合には、ポンプと制御弁の両方の機能を一台の容積式ポンプで実現することもできる。
FIG. 2g is a basic configuration for providing an atmospheric pressure variation effect as in FIG. 2f, but the water surface of the raw water tank (2) is located lower than the water surface of the treated water tank (1), so that the raw water pipe (3) A control valve is not required for this, and if there is a check valve (13), an atmospheric pressure fluctuation effect can be obtained.
When raw water replenishment becomes necessary, the raw water pump (42) is operated, and when the upper water level is reached, the raw water pump is stopped so that the pressure corresponding to the water level of the raw water tank is maintained while the raw water pump is stopped. This is because new raw water is not supplied until the pressure is reduced.
In addition, when a positive displacement pump such as a screw type or a plunger type is used as the water supply pump, both functions of the pump and the control valve can be realized by a single positive displacement pump.

〔実施形態3〕
図4aは、インゼクター式気体混合器を用い、気液分離機構を多段に構成し、窒素の利用効率を高めた脱酸素装置のフロー図である。
本実施形態の特徴部分を明確化にする為に、本発明に関して付随的な制御関連の機能については図面上では省いてあり、動作説明として記載している。
(多段処理と処理段数)
本実施形態においては、窒素の有効利用を図る為、4段の処理段数としている。窒素過飽和を防止する手段としては、蒸気の凝縮効果と処理ガスの循環利用及び気圧変動効果を行っている。多段処理とは、純度の高い窒素ガスを最終段である四段目処理水槽(1d)で使用し、その使用済みの窒素ガスを三段目処理水槽(1c)に用いると言う様に、多段で処理することで少ない窒素ガス量で、脱酸素効率を向上させる為に有効な方法である。
ここで、単段処理の場合と2〜6段の場合の理論窒素必要量を記載すると表1の様になる。
前提条件としては、窒素ガスの純度99.9%、処理後の処理水の溶存酸素濃度0.5ppmとして計算してある。数値は処理水1mあたりに必要な窒素ガス量(NL)であり、単位はNL/mである。
[Embodiment 3]
FIG. 4a is a flow diagram of a deoxygenation apparatus using an injector type gas mixer, in which a gas-liquid separation mechanism is configured in multiple stages, and nitrogen utilization efficiency is increased.
In order to clarify the characterizing portion of the present embodiment, the control-related functions incidental to the present invention are omitted from the drawings and are described as operation descriptions.
(Multistage processing and number of processing stages)
In the present embodiment, the number of processing stages is four in order to effectively use nitrogen. As means for preventing nitrogen supersaturation, a vapor condensing effect, a processing gas circulation utilization and an atmospheric pressure fluctuation effect are performed. Multi-stage treatment means that high-purity nitrogen gas is used in the fourth-stage treated water tank (1d) as the final stage, and the used nitrogen gas is used in the third-stage treated water tank (1c). This is an effective method for improving the deoxygenation efficiency with a small amount of nitrogen gas.
Here, the theoretical nitrogen requirements for single-stage treatment and 2-6 stages are shown in Table 1.
As preconditions, the calculation is performed assuming that the purity of nitrogen gas is 99.9% and the dissolved oxygen concentration of the treated water after treatment is 0.5 ppm. The numerical value is the amount of nitrogen gas (NL) required per 1 m 3 of treated water, and the unit is NL / m 3 .

Figure 2013013847
処理段数が増加するに従い理論窒素量は減少するが、4段を超えた辺りから1段辺りの減少量が少なくなる。
又、初期の溶存酸素濃度が低下すると、窒素使用量も減少し、水温55℃付近では3段と4段処理の場合の使用量の差が小さくなり、水温80℃付近では、2段と3段との差が少なくなる。
Figure 2013013847
As the number of treatment stages increases, the theoretical nitrogen amount decreases, but the reduction amount from around four stages to one stage decreases.
In addition, when the initial dissolved oxygen concentration decreases, the amount of nitrogen used also decreases. When the water temperature is around 55 ° C., the difference between the amounts used in the three-stage and four-stage treatments becomes small. The difference with the stage is reduced.

(給水系統の説明)
給水系統は、原水タンク(2)に貯留されている原水を一段流路切替弁(33a)を経由して、一段目処理水槽ポンプ(41a)で吸込み、一段目処理塔(6a)に給水する。 一段目処理水槽(1a)にはフロートスイッチ(43)があり、その上限信号で一段流路切替弁が一段目処理水槽からの流路に切り替わる。
流入した原水は一段目接触塔(6a)に流入する。図では表記されていないが、接触塔上部には実施形態2の様な散水板が設置されており、原水を滴下させ接触効率を上昇させている。
水蒸気凝縮効果による接触効率は極めて高いので、特別な散水機構や、気液接触機構を設けなくても、十分な効果が期待できるが、水蒸気の無い場合の気液接触効率を向上させる為には、使用頻度や処理水量に応じて、性能の良い気液接触部を設けることも有効である。
流下した水は、一段目処理水槽(1a)に貯留される。
一段目処理水槽に貯留した水は、二段目流路切替弁(33b)から二段目処理水槽ポンプ(41b)により一段目処理水配管(31a)を経由して二段目処理水槽(1b)に移送される。
二段目処理水槽が上限となった場合か、一段目処理水槽が下限になった場合には、二段目流路切替弁の流路を二段目処理水槽(1b)からの流路に切り替えることで、タンクの液面制御が実現できる。
三段目流路切替弁(32c)も同様な制御を行い、三段目処理水槽(1c)の液面制御を行う。
四段目処理水槽(1d)は、外部に処理水を供給するバッファタンクを兼ねているので容量を大きくする為に、接触塔では無くタンク内処理としている。
尚、四段目処理水槽のフロートスイッチ(43)においては、極低水面になった時に外部に警報を送る等の方法で、ボイラが低水位にならない様な保護回路を設けることも出来る。
三段目処理水槽から四段目処理水槽への水移送に関しては、窒素ガスの圧力が高く、蒸気と窒素を予混合した上で、四段目蒸気エゼクター(24d)の駆動エネルギーにすることができるので、液体と気体を同時に吸入できるタイプに変更して、エゼクターにより移送を行っている。
この場合、四段目処理水槽の水面制御は、四段目蒸気遮断弁(22d)で行うことができる。
(Description of water supply system)
The water supply system sucks the raw water stored in the raw water tank (2) through the first-stage flow path switching valve (33a) by the first-stage treatment water tank pump (41a) and supplies the first-stage treatment tower (6a) with water. . The first-stage treated water tank (1a) has a float switch (43), and the upper-stage signal switches the first-stage flow path switching valve to the flow path from the first-stage treated water tank.
The raw | natural water which flowed in flows into a 1st stage contact tower (6a). Although not shown in the figure, a watering plate as in Embodiment 2 is installed at the upper part of the contact tower, and raw water is dropped to increase the contact efficiency.
The contact efficiency due to the steam condensation effect is extremely high, so even if a special watering mechanism or gas-liquid contact mechanism is not provided, a sufficient effect can be expected, but in order to improve the gas-liquid contact efficiency when there is no steam It is also effective to provide a gas-liquid contact portion with good performance according to the use frequency and the amount of treated water.
The water that has flowed down is stored in the first-stage treated water tank (1a).
The water stored in the first-stage treated water tank is supplied from the second-stage treated water tank (1b) through the first-stage treated water pipe (31a) by the second-stage treated water tank pump (41b) from the second-stage flow path switching valve (33b). ).
When the upper limit of the second-stage treated water tank is reached or the lower limit of the first-stage treated water tank is reached, the flow path of the second-stage flow path switching valve is changed to the flow path from the second-stage treated water tank (1b). By switching, the liquid level control of the tank can be realized.
The third-stage flow path switching valve (32c) performs the same control, and performs the liquid level control of the third-stage treated water tank (1c).
Since the fourth-stage treated water tank (1d) also serves as a buffer tank for supplying treated water to the outside, in order to increase the capacity, the treatment in the tank is used instead of the contact tower.
In the float switch (43) of the fourth stage water tank, a protection circuit can be provided to prevent the boiler from becoming a low water level by sending an alarm to the outside when the water level becomes extremely low.
Regarding the water transfer from the third-stage treated water tank to the fourth-stage treated water tank, the pressure of the nitrogen gas is high, and after premixing steam and nitrogen, the drive energy of the fourth-stage steam ejector (24d) can be used. Therefore, it is changed to a type that can inhale liquid and gas at the same time, and is transferred by an ejector.
In this case, the water surface control of the fourth stage treated water tank can be performed by the fourth stage steam cutoff valve (22d).

(窒素系統の説明)
窒素ラインの系統は、窒素ボンベ(14)に貯留されている窒素ガスを調圧後、窒素遮断弁(16)を経由して四段目蒸気遮断弁以降の蒸気管に供給される。
これは、初段の窒素はボンベから供給されるので圧力が高く、エゼクター作動のエネルギーとして利用する方が蒸気の消費量を減少させることができることと、エゼクター動作の際に、一部の蒸気が処理水に吸収されるが、その際にも気液接触を行うことが出来、処理効率が向上する為である。
尚、四段目処理ガス循環管(17d)は、四段目処理水槽で気液分離されたガスを再度、エゼクター部に戻すことにより気液接触を高める手段であるが、これは処理段数が四段程度になり、各段の処理効率が向上すると、窒素の処理系統への供給量が極端に減少する(1mの処理水に対して、窒素の処理系統への供給量が5容量%程度の量に低減する。)。気体量が減少すると、液相の容積が増加して気液接触の効率が悪くなる為、繰り返し循環を行うことで処理効率の低下を防止することが可能となる。
窒素ガス循環量は、概ね気体が液体の容積比で20%以上が適当である。
四段目処理水槽排気管(11c)は逆止弁(13)を経由して、三段目処理水槽ポンプ(41c)の出口に接続されている。
四段目処理水槽への処理水の流入により、四段目処理水槽の気圧が上昇すると、処理済みの窒素ガスは、三段目側に送られるが、処理水の補給が無く処理水が供給されると、水位は低下し、四段目処理水槽の気室圧力が低下するので、気圧変動効果を与えることができる。
接続点が、この位置にある理由は、三段目蒸気インゼクター(24c)が常に作動している場合には、三段目処理ガス循環管(17c)と接続しても全く問題無いが、水温の上昇やポンプ停止等により蒸気の供給を停止すると、三段目処理水槽排気管(11b)を経由して排気されてしまい、三段目接触塔内に供給されなくなる為である。
この様な経路を、二段目、一段目と純度の低下した窒素ガスが逆流して行き、窒素排気管(12)を経由して外気に排気される。
(Explanation of nitrogen system)
The nitrogen line system regulates the nitrogen gas stored in the nitrogen cylinder (14) and then supplies the nitrogen gas to the steam pipes after the fourth stage steam cutoff valve via the nitrogen cutoff valve (16).
This is because the first-stage nitrogen is supplied from a cylinder, so the pressure is high, and it is possible to reduce the consumption of steam by using it as energy for ejector operation, and some steam is processed during ejector operation. Although it is absorbed by water, gas-liquid contact can be performed at this time, and the processing efficiency is improved.
The fourth-stage treatment gas circulation pipe (17d) is a means for increasing the gas-liquid contact by returning the gas separated from the gas-liquid in the fourth-stage treatment water tank to the ejector section again. When the efficiency of each stage is improved, the supply amount of nitrogen to the treatment system decreases drastically (the supply amount of nitrogen to the treatment system is 5% by volume with respect to 1 m 3 of treated water). Reduced to an amount of about). When the amount of gas decreases, the volume of the liquid phase increases and the efficiency of gas-liquid contact deteriorates. Therefore, it is possible to prevent a reduction in processing efficiency by repeatedly performing circulation.
The amount of nitrogen gas circulation is generally 20% or more in terms of volume ratio of gas to liquid.
The fourth stage treated water tank exhaust pipe (11c) is connected to the outlet of the third stage treated water tank pump (41c) via the check valve (13).
When the atmospheric pressure of the 4th stage treated water tank rises due to the inflow of treated water into the 4th stage treated water tank, the treated nitrogen gas is sent to the 3rd stage side, but treated water is supplied without replenishment of treated water. Then, the water level is lowered, and the air chamber pressure of the fourth-stage treated water tank is lowered, so that an atmospheric pressure fluctuation effect can be provided.
The reason why the connection point is in this position is that when the third stage steam injector (24c) is always operating, there is no problem even if it is connected to the third stage processing gas circulation pipe (17c). This is because if the supply of steam is stopped due to an increase in the water temperature or the pump is stopped, the steam is exhausted via the third-stage treated water tank exhaust pipe (11b) and is not supplied into the third-stage contact tower.
In such a path, the nitrogen gas having a reduced purity flows back and forth in the second and first stages, and is exhausted to the outside air through the nitrogen exhaust pipe (12).

(蒸気系統の説明)
蒸気系統は、ボイラ(51)から発生した水蒸気を蒸気配管(21)を経由して、調圧された蒸気が、一段目蒸気遮断弁(22a)〜四段目蒸気遮断弁(22d)に並列に供給される。
蒸気遮断弁の開閉タイミングは、例えば一段目蒸気遮断弁(22a)の場合、原水ポンプ(42)が停止した場合や、一段目処理水槽(1a)の水温が上昇した場合等に停止を行う。
二段目〜三段目蒸気遮断弁もこれと同様の動作であるが、四段目蒸気遮断弁(22d)では、四段目蒸気インゼクター(24d)がポンプ機能も持っているので、水位制御動作に伴い開閉動作を行う。
本実施形態は、常温の原水をボイラ用給水として脱気することを想定している。
その為、給水予熱を行うことはボイラ運用有益であると共に、蒸気熱量の損失も無い。
四段目処理水槽(1d)は、ボイラ(51)に直接給水されるので、この水温を上記の基準に従い適正水温に保つことで、給気予熱効果を併用出来ることと、水温が上昇することによるヘンリーの法則に従った処理効率のアップを期待することが可能になる。
尚、使用済み蒸気のドレンを原水タンク(2)に回収する等の利用形態で、水温が上記の適正水温を超えている設備の場合には、四段目処理水槽(1d)を一段目〜三段目と同様の気中水滴型の気液接触方法に変更したり、水温上昇により溶存酸素が低下し、必要窒素量も減少するので、4段処理では無く3段処理等に変更することも可能である。
(窒素の供給形態)
本実施形態においては、窒素供給を窒素ボンベ(14)としているが、液体窒素や、窒素分離膜や分子篩活性炭を利用した窒素発生器からの窒素ガスを利用すること等も効果は同等である。
(Explanation of steam system)
In the steam system, steam that has been pressure-regulated from steam generated from the boiler (51) is connected in parallel to the first-stage steam cutoff valve (22a) to the fourth-stage steam cutoff valve (22d) via the steam pipe (21). To be supplied.
For example, in the case of the first stage steam cutoff valve (22a), the steam cutoff valve is opened or closed when the raw water pump (42) is stopped or when the water temperature of the first stage treated water tank (1a) is increased.
The second-stage to third-stage steam shut-off valves operate in the same manner, but in the fourth-stage steam shut-off valve (22d), the fourth-stage steam injector (24d) also has a pump function. Open / close operation is performed in accordance with the control operation.
In the present embodiment, it is assumed that raw water at room temperature is degassed as boiler feed water.
Therefore, preheating the feed water is beneficial for boiler operation and there is no loss of steam heat.
Since the fourth stage treated water tank (1d) is directly supplied to the boiler (51), maintaining the water temperature at an appropriate water temperature in accordance with the above-mentioned standard can be used together with the supply air preheating effect and the water temperature rises. It is possible to expect an increase in processing efficiency according to Henry's law.
In the case of a facility in which the drainage of used steam is recovered in the raw water tank (2) and the water temperature exceeds the above-mentioned appropriate water temperature, the fourth-stage treated water tank (1d) is placed in the first stage to Change to a water-drop type gas-liquid contact method similar to the third stage, or because the dissolved oxygen decreases and the required nitrogen amount also decreases due to a rise in water temperature, change to a three-stage process instead of a four-stage process. Is also possible.
(Nitrogen supply form)
In this embodiment, the nitrogen supply is a nitrogen cylinder (14). However, the use of liquid nitrogen or nitrogen gas from a nitrogen generator using a nitrogen separation membrane or molecular sieve activated carbon has the same effect.

(処理性能)
本実施形態による脱酸素処理の緒元は下記である。
一段目処理水槽〜三段目処理水槽有効容積:51L
四段目処理水槽有効容積:71L
処理流量:2500L/h
定格時通過時間:108秒
一段通過時間(平均):27秒
定格時蒸気使用量:10kg/h
窒素純度:99.9容量%
性能は下記の様な実測値が得られた。
入口水温:25℃
出口水温:27℃
入口溶存酸素:8.5容量ppm
処理水溶存酸素:0.5容量ppm
理論窒素消費量:48L/m
窒素消費量:50L/m
処理効率:98%
最終段出口排気酸素濃度:10.5容量%
尚、この時処理効率100%における予想最終段出口排気酸素濃度は、11.1容量%であり、処理効率を加味するとほぼ適正な酸素濃度であることが判る。
因みに処理効率が悪化すると、酸素濃度は更に低下し、外気混入等を生じると酸素濃度は上昇し、何れも溶存酸素の上昇要因となる。その為、酸素濃度が9容量%以下と酸素濃度が12容量%以上で警報を出すことで、信頼性や温度条件に制約のある溶存酸素計を用いること無く、ジルコニア式酸素濃度計や磁気ダンベル式酸素濃度計を用いて、異常の発見を迅速に行うことができる。
(Processing performance)
The origin of the deoxygenation treatment according to this embodiment is as follows.
1st stage treated water tank to 3rd stage treated water tank Effective volume: 51L
Fourth stage treated water tank effective volume: 71L
Processing flow rate: 2500 L / h
Rated transit time: 108 seconds Single-stage transit time (average): 27 seconds Rated steam consumption: 10 kg / h
Nitrogen purity: 99.9% by volume
The following measured values were obtained for performance.
Inlet water temperature: 25 ° C
Outlet water temperature: 27 ° C
Inlet dissolved oxygen: 8.5 vol ppm
Treated water-soluble oxygen: 0.5 volume ppm
Theoretical nitrogen consumption: 48 L / m 3
Nitrogen consumption: 50 L / m 3
Processing efficiency: 98%
Final stage outlet exhaust oxygen concentration: 10.5% by volume
At this time, the predicted final stage outlet exhaust oxygen concentration at a processing efficiency of 100% is 11.1% by volume, and it is understood that the oxygen concentration is almost appropriate considering the processing efficiency.
Incidentally, when the processing efficiency is deteriorated, the oxygen concentration is further lowered, and when the outside air is mixed, the oxygen concentration is increased, both of which are factors for increasing the dissolved oxygen. Therefore, by issuing an alarm when the oxygen concentration is 9% by volume or less and the oxygen concentration is 12% by volume or more, a zirconia oxygen concentration meter or magnetic dumbbell can be used without using a dissolved oxygen meter with restrictions on reliability and temperature conditions. Abnormalities can be quickly discovered using a portable oximeter.

(水温による動的処理段数変更の一例)
図4bは、図4aの脱酸素装置に水温に応じて、処理段数を動的に変更する場合のフローの一例である。
変更されている部分のみを説明する。
原水配管(3)の経路上に原水温度センサー(80)が設置されており、この水温が概ね50℃以下である場合には、一段バイパス切替弁(34a)、は一段処理水槽と二段流路切替弁を連通する流路を形成している。
水温が55℃を超えると、一段バイパス切替弁の流路が一段バイパス配管(35a)側に切り替わると共に、一段目蒸気遮断弁(22a)と一段目処理水槽ポンプ(41a)が動作を停止し、一段流路切替弁(33a)は一段目処理槽(1a)からの流路に切り替わる。
更に温度が上昇する場合には、二段目処理槽と三段目処理槽の間にバイパス切替弁を備えることで、更に処理段数を減らすことができる。
この様に構成されることで、水温が上昇し気体の溶解度が減少した場合に、多段処理によるメリットが少ない場合、接触塔や貯留槽からの無駄な放熱を防止することにより熱の損失を防止することができる。
水温が低い場合には、処理段数を増加させても放熱に伴う熱損失は少なく、逆に窒素ガスを減少させることによる多段処理のメリットが勝る。
尚、三段目処理水槽排気管(11b)のラインはそのままが望ましい。
即ち、処理段数の少ない場合の処理済みガスは、酸素濃度が低く処理塔及び処理水槽を通過して、外気に排出される過程で、休止中の塔内の処理水の溶存酸素濃度を低く保つことができる為である。
(Example of changing the number of dynamic processing stages depending on the water temperature)
FIG. 4b is an example of a flow in the case where the number of processing stages is dynamically changed according to the water temperature in the deoxygenation apparatus of FIG. 4a.
Only the parts that have changed are described.
When the raw water temperature sensor (80) is installed on the path of the raw water pipe (3) and the water temperature is approximately 50 ° C. or lower, the one-stage bypass switching valve (34a) is connected to the one-stage treated water tank and the two-stage flow. A flow path communicating with the path switching valve is formed.
When the water temperature exceeds 55 ° C, the flow path of the first-stage bypass switching valve is switched to the first-stage bypass pipe (35a) side, and the first-stage steam cutoff valve (22a) and the first-stage treated water tank pump (41a) stop operating, The first-stage flow path switching valve (33a) switches to the flow path from the first-stage treatment tank (1a).
When the temperature further increases, the number of processing stages can be further reduced by providing a bypass switching valve between the second stage processing tank and the third stage processing tank.
This configuration prevents heat loss by preventing wasteful heat dissipation from the contact tower and storage tank when the water temperature rises and gas solubility decreases and the benefits of multistage processing are small. can do.
When the water temperature is low, even if the number of processing stages is increased, heat loss due to heat dissipation is small, and conversely, the merit of multistage processing by reducing nitrogen gas is superior.
The line of the third stage treated water tank exhaust pipe (11b) is desirable as it is.
That is, the treated gas when the number of treatment stages is small has a low oxygen concentration, passes through the treatment tower and the treatment water tank, and keeps the dissolved oxygen concentration of the treatment water in the suspended tower low in the process of being discharged to the outside air. It is because it can.

(処理ガス循環ラインに蒸気動力機器を利用する場合の一例)
図4cは、図4aの蒸気インゼクターを蒸気式ターボコンプレッサーに変更した場合の一例を示し、説明を簡略化する為に一段目処理水槽部の構成要素のみを記載している。
給水系は、図4aと同一である。窒素ガス系統もほぼ同様であるが、蒸気式ターボコンプレッサー(72)を用いることができるので、圧力の高い原水出口に窒素ガスを注入することができる。
この為、二段目処理水槽排気管(11a)と一段目処理ガス循環管(17a)を合流させても、蒸気式ターボコンプレッサー(72)が停止時にもショートパスは生じない。
蒸気ラインは、一段目蒸気遮断弁(22a)を経由した蒸気が蒸気式ターボコンプレッサー(72)で処理ガスを循環させる動力となるが、その排気は蒸気排気切替弁(73)を経由して通常は、蒸気吸収管(74)を経由して一段目接触塔(6a)内を流下する原水に処理ガスが混合した流体に吸収される。
この部分は、サイホンを形成している為、圧力は負圧になっており、ここに排気蒸気が流入すると、負圧下で蒸気凝縮するので、気液接触効率が向上すると同時に、蒸気式コンプレッサーの効率も、大気中に排気するよりも取り出せるエネルギーが大きくなる。
しかし、水温が高い場合や原水供給が無い場合等は、蒸気排気切替弁(73)で蒸気排気管(75)側に排気することで、コンプレッサー機能のみを利用することもできる。
この他に、スクリュー、ピストン、ダイヤフラム等を駆動側とし、蒸気を利用した蒸気機関で、エアレーターを作動させたり、処理水ポンプを運転する等で、電気エネルギーの消費を抑えながら、処理効率の向上を実現することができる。
尚、蒸気が無い場合等は、本実施例の蒸気の変わりに、圧縮空気を用いて、外部排気することで蒸気の無い場合でも、窒素ガスの循環を行うことができるし、蒸気が無い場合や蒸気を用いたくない用途では、電動ファンや電動コンプレッサー等を用いて循環を行うことも可能である。
(Example of using steam power equipment in the processing gas circulation line)
FIG. 4c shows an example in which the steam injector of FIG. 4a is changed to a steam-type turbo compressor, and only the components of the first-stage treated water tank section are shown for simplifying the explanation.
The water supply system is the same as in FIG. 4a. The nitrogen gas system is substantially the same, but since a steam turbo compressor (72) can be used, nitrogen gas can be injected into the raw water outlet with high pressure.
Therefore, even if the second-stage treated water tank exhaust pipe (11a) and the first-stage treated gas circulation pipe (17a) are merged, no short path occurs even when the steam turbo compressor (72) is stopped.
In the steam line, steam that passes through the first-stage steam shut-off valve (22a) is used to circulate the processing gas in the steam turbo compressor (72). Is absorbed by the fluid in which the processing gas is mixed with the raw water flowing down through the first-stage contact tower (6a) via the vapor absorption pipe (74).
Since this part forms a siphon, the pressure is negative. When exhaust steam flows into this part, the steam condenses under negative pressure, improving the gas-liquid contact efficiency and at the same time the steam compressor. As for efficiency, the energy that can be taken out is larger than that exhausted into the atmosphere.
However, when the water temperature is high or when there is no raw water supply, it is possible to use only the compressor function by exhausting the steam exhaust switching valve (73) to the steam exhaust pipe (75) side.
In addition, with a screw, piston, diaphragm, etc. as the drive side, a steam engine that uses steam can operate an aerator or operate a treated water pump, etc. Improvements can be realized.
In addition, when there is no steam, nitrogen gas can be circulated even when there is no steam by exhausting outside using compressed air instead of steam in this embodiment, and when there is no steam In applications that do not want to use steam or steam, it is possible to circulate using an electric fan, an electric compressor, or the like.

図4dは、図4bの機能を処理水連通管(37)と一段目処理水槽ポンプ(41a)〜四段目処理水槽ポンプ(41d)を用いて、簡略化したものである。
処理水連通管は、一段目処理水槽(1a)からの一段目処理水配管(31a)と接続され、その上流側で一段目処理水槽ポンプが接続される一段目処理水循環配管(36a)と接続されると言う構成になっており、これが二段目以降も同様の接続となり、処理水ポンプ(46)に接続されて、プロセスに供給される。
原水は、原水ポンプ(42)で加圧され、原水制御弁(45)で水流制御される構成となっている。
この実施例の特徴は、一段目処理水槽ポンプ〜四段目処理水槽ポンプの循環流量が、処理水ポンプの吐出量及び原水制御弁の最大流量より大きいことである。
この為、各処理水槽ポンプが運転中は、処理水連通管の流れの方向は、各処理水循環配管に向かう流れとなり、原水若しくは前段からの水は処理水槽ポンプ、接触塔、処理水槽を経由して処理水配管へ流出すると言う経路を辿ることになり、ショートパスが発生しない。
つまり、後段へ処理水が供給される分だけ、処理水配管の接続点から、連通管を逆流する量が少なくなることで各処理槽の水位がバランスする。
この為、処理水槽のレベルのコントロールは、4段処理の場合でも、どれか一つの処理槽のレベルを検出してコントロールすることで良く、制御が簡略化できる。
又、原水温度センサー(80)からの信号により、処理段数を動的に増減させる場合でも、例えば一段目処理水槽ポンプを停止すると、一段目接触塔(6a)及び一段目処理水槽(1a)をバイパスして二段目処理水槽(41b)に直接給水されるので、バイパス回路も簡略化できる。
バイパスされる際には、一段目蒸気遮断弁(22a)を停止すれば、無駄な蒸気の消費が防止できるが、二段目処理水槽排気管(11a)は、一段目処理水槽の気相を経由して系外に排気されるので、一段目処理水槽の溶存酸素濃度を低めに保つことが出来、次の運用開始にも溶存酸素濃度の上昇等のリスクがなくなる。
処理済みガスの最終段は、窒素排気管(12)を経由して外部に排出されるが、排気電磁弁(47)により、排気圧力調整弁(48)経由か、直接排気かを制御できる様になっている。
これは、水温が上昇し水蒸気圧が上昇すると、処理水ポンプ(46)の吸込み能力が不足することによるキャビテーションを防止するもので、この様に二段でコントロールする他、水温から計算される水蒸気圧に応じて、リニアーに設定圧力を変更することも可能である。
水面コントロールは、フロートスイッチ(43)の上限で原水制御弁を閉として、下限で開とすることで、水位が変化することで気圧変動効果を与えることができる。
図4eは、図4dのフローと同様であるが、連通管が処理水槽の一部となっている構成である。図4dと同様、処理水ポンプが運転する時のみ気液接触動作が行われるが、処理水ポンプが動作していない場合でも、原水若しくは前段の処理水が処理槽内に流通する構成になっている。
この様な構成とすることで、バイパス動作が頻繁に生じる用途の場合には、処理を行わない処理水槽の水温と処理中の水温との温度差を小さくすることができるので、処理水の溶存酸素濃度を安定させることができる。
図4fは、図4dの連通管の経路の途中に逆止弁を配置したものである。この様に連通管の処理水配管接続部と次段の処理水ポンプの間に逆止弁を入れることにより、停止中や処理水流量が低い場合に、後段の処理水の逆流が防止できるので、処理水の供給が間欠的な場合や、供給を休止する場合に処理水の純度を保つことができる。
ただ、この様に処理水連通管(37)の経路上に逆止弁を入れると、循環ポンプが処理塔を経由して処理水槽に戻る圧力損失分だけ、後段の処理水槽の水位が上昇し、それが固定されてしまう。つまり一段目処理水槽の水位が最も低くなる状態になるので、この様な場合、水位の変動が許容できる様タンクの深さを調整するか、レベル調整排気電磁弁(49)で次段に供給される処理ガス量を調整することで、各段の水位を適正に保つことが可能になる。
レベル調整排気電磁弁は、小さな電磁弁で良いので設備コストは、水量調整弁を設けるより極めて低コストである。
FIG. 4d simplifies the function of FIG. 4b using the treated water communication pipe (37) and the first-stage treated water tank pump (41a) to the fourth-stage treated water tank pump (41d).
The treated water communication pipe is connected to the first-stage treated water circulation pipe (36a) connected to the first-stage treated water pipe (31a) from the first-stage treated water tank (1a) and connected to the first-stage treated water tank pump on the upstream side. This is the same structure in the second and subsequent stages, and is connected to the treated water pump (46) and supplied to the process.
The raw water is pressurized by the raw water pump (42), and the water flow is controlled by the raw water control valve (45).
The feature of this embodiment is that the circulation flow rate of the first-stage treated water tank pump to the fourth-stage treated water tank pump is larger than the discharge amount of the treated water pump and the maximum flow rate of the raw water control valve.
For this reason, while each treated water tank pump is in operation, the direction of the treated water communication pipe flows toward each treated water circulation pipe, and the raw water or water from the previous stage passes through the treated water tank pump, the contact tower, and the treated water tank. Therefore, it will follow the path that flows out to the treated water piping, and no short path will occur.
That is, the amount of water flowing back through the communication pipe from the connection point of the treated water pipe is reduced by the amount of treated water supplied to the subsequent stage, thereby balancing the water level of each treatment tank.
For this reason, control of the level of the treatment water tank may be performed by detecting and controlling the level of any one of the treatment tanks even in the case of four-stage treatment, and the control can be simplified.
Even when the number of treatment stages is dynamically increased or decreased by a signal from the raw water temperature sensor (80), for example, when the first-stage treatment water tank pump is stopped, the first-stage contact tower (6a) and the first-stage treatment water tank (1a) Bypassing and supplying water directly to the second stage treated water tank (41b), the bypass circuit can be simplified.
When bypassing, if the first stage steam shut-off valve (22a) is stopped, consumption of useless steam can be prevented, but the second stage treated water tank exhaust pipe (11a) Since it is exhausted to the outside via the system, the dissolved oxygen concentration in the first-stage treated water tank can be kept low, and the risk of the dissolved oxygen concentration rising at the start of the next operation is eliminated.
The final stage of the treated gas is discharged to the outside through the nitrogen exhaust pipe (12), but it can be controlled by the exhaust solenoid valve (47) whether it is through the exhaust pressure adjustment valve (48) or directly exhausted. It has become.
This is to prevent cavitation due to insufficient suction capacity of the treated water pump (46) when the water temperature rises and the water vapor pressure rises. In addition to being controlled in two stages in this way, the water vapor calculated from the water temperature It is also possible to change the set pressure linearly according to the pressure.
Water level control can provide an atmospheric pressure fluctuation effect by changing the water level by closing the raw water control valve at the upper limit of the float switch (43) and opening it at the lower limit.
FIG. 4e is the same as the flow of FIG. 4d, except that the communication pipe is part of the treated water tank. As in FIG. 4d, the gas-liquid contact operation is performed only when the treated water pump is operated. Even when the treated water pump is not operated, the raw water or the treated water in the previous stage is circulated in the treated tank. Yes.
With such a configuration, in applications where bypass operations frequently occur, the temperature difference between the water temperature of the treated water tank that is not treated and the temperature of the water being treated can be reduced. The oxygen concentration can be stabilized.
FIG. 4f shows a check valve arranged in the middle of the communication pipe path of FIG. 4d. In this way, by inserting a check valve between the treated water pipe connection part of the communication pipe and the treated water pump of the next stage, it is possible to prevent a back flow of treated water in the latter stage during stoppage or when the treated water flow rate is low. The purity of the treated water can be maintained when the treated water is intermittently supplied or when the supply is stopped.
However, if a check valve is inserted on the path of the treated water communication pipe (37) in this way, the water level in the subsequent treated water tank rises by the amount of pressure loss that the circulation pump returns to the treated water tank via the treatment tower. , It will be fixed. In other words, since the water level in the first-stage treated water tank becomes the lowest, in such a case, the tank depth is adjusted so that fluctuations in the water level can be tolerated, or supplied to the next stage by the level adjustment exhaust solenoid valve (49) By adjusting the amount of the processing gas to be produced, it becomes possible to maintain the water level at each stage appropriately.
Since the level adjustment exhaust solenoid valve may be a small solenoid valve, the equipment cost is much lower than that provided with the water amount adjustment valve.

〔実施形態4〕
以下、本発明の第4実施形態を図面に基づいて説明する。
図5は、処理水温度に応じて窒素ガス量を自動調整すると共に、蒸気が使用できないボイラの起動前にボイラに給水補給を行える機能を有するシステムの実施形態である。
尚、説明を簡単にする為に二段式の脱酸素装置のフローを示しているが、それ以上の段数で実施しても、全く問題なく、窒素ガスの消費量低減効果はより大きくなる。
(給水系)
給水系は、実施形態3の場合とほぼ同様であるが、蒸気ラインが使えない場合及び部分負荷時の処理効率を高くする為に、一段目処理水槽ポンプ(41a)の出口に、処理水循環弁(44)が設置されており、二段目処理水槽(1b)に補給する場合には、一段目処理水配管(31a)側に、循環が必要な場合には、処理水循環配管(36)側に流路が切り替わる様に構成されている。
尚、脱気装置への給水流量を出力する給水流量計(5)がユニットの入口に設置されている。
(窒素系)
窒素系配管は、窒素タンク(14)から窒素電磁弁(16)、窒素流量計(15)を経由して二段目接触塔(6b)に供給されている。
二段目処理水槽(1b)から排気された窒素ガスは二段目処理水槽排気管(11a)を経由して、一段目蒸気インゼクター(24a)に接続されている。
又、一段目処理水槽(1a)から分離されたガスは、一段目処理ガス循環管(17a)を経由してやはり、一段目蒸気インゼクター(24a)に接続されている。その為、二段目処理水槽(1b)の圧力が、一段目処理水槽(1a)の圧力より高くなると、その分の窒素ガスが一段目接触塔(6a)に供給されることになる。
[Embodiment 4]
Hereinafter, a fourth embodiment of the present invention will be described with reference to the drawings.
FIG. 5 shows an embodiment of a system that automatically adjusts the amount of nitrogen gas according to the temperature of the treated water and has a function of supplying water to the boiler before starting the boiler that cannot use steam.
Although the flow of the two-stage deoxygenation apparatus is shown for the sake of simplicity of explanation, even if the number of stages is larger than that, there is no problem and the effect of reducing the consumption amount of nitrogen gas becomes larger.
(Water supply system)
The water supply system is substantially the same as in the third embodiment, but in order to increase the processing efficiency when the steam line cannot be used and at partial load, a treated water circulation valve is provided at the outlet of the first stage treated water tank pump (41a). When (44) is installed and the second-stage treated water tank (1b) is replenished, the first-stage treated water pipe (31a) side is used. The flow path is configured to be switched.
In addition, the feed water flow meter (5) which outputs the feed water flow rate to a deaeration apparatus is installed in the inlet of the unit.
(Nitrogen)
The nitrogen-based piping is supplied from the nitrogen tank (14) to the second-stage contact tower (6b) via the nitrogen solenoid valve (16) and the nitrogen flow meter (15).
The nitrogen gas exhausted from the second stage treated water tank (1b) is connected to the first stage steam injector (24a) via the second stage treated water tank exhaust pipe (11a).
The gas separated from the first stage treated water tank (1a) is also connected to the first stage steam injector (24a) via the first stage treated gas circulation pipe (17a). Therefore, when the pressure in the second-stage treated water tank (1b) becomes higher than the pressure in the first-stage treated water tank (1a), the corresponding nitrogen gas is supplied to the first-stage contact tower (6a).

(水温度自動調整制御)
演算制御回路(82)には、予め使用する窒素ガスの純度及び目標とする処理水の溶存酸素濃度の値が設定されている。
処理水温度センサー(83)の温度が、演算制御回路(82)に送られると、内部で温度から換算した飽和溶存酸素濃度を求める計算を行い、さらにこのシステムの場合には二段処理であるので、二段処理の場合の当該原水溶存酸素から処理水溶存酸素にする為の、データーテーブルから、必要な理論窒素量を求めることができる。
蒸気圧スイッチ(23)も正常である場合には、処理効率が98%程度を想定して、目標とする窒素注入率を求める。
原水が、給水流量計(5)を通過すると、通過量に応じて流量信号が演算制御回路(82)に送られるので、一定の流量が流れた時に、目標とする注入率となる様に、窒素電磁弁を開にすることで目標とする窒素ガス注入率で、二段目処理塔に窒素ガスを注入できる。
窒素の様な少量のガスの場合には、直動式電磁弁を開閉することで、比例的な制御を行うことが可能であるが、これは制御弁等のリニアーコントロールのできるものに変更しても良い。
窒素流量計(15)は、窒素ガス量が正しく制御出来ているかを監視する為に設けられており、より正確な流量制御を行うこともできるし、窒素ガスが空になった場合に警報を出すことも可能である。
尚、給水流量計(5)はより安価に構成した場合には、フロートスイッチ(43)の開閉信号等で代用することも可能である。
その場合には、原水ポンプ(42)と一段目処理水槽ポンプ(41a)を同時に運転しない様にすると、より正確に流量検出が可能になる。
(Water temperature automatic adjustment control)
In the arithmetic and control circuit (82), the purity of nitrogen gas to be used and the target dissolved oxygen concentration value are set in advance.
When the temperature of the treated water temperature sensor (83) is sent to the arithmetic control circuit (82), a calculation is performed to obtain a saturated dissolved oxygen concentration converted from the temperature inside, and in the case of this system, it is a two-stage process. Therefore, the necessary theoretical nitrogen amount can be obtained from the data table for converting the raw water-soluble oxygen into the treated water-soluble oxygen in the case of the two-stage treatment.
When the vapor pressure switch (23) is also normal, the target nitrogen injection rate is obtained assuming that the processing efficiency is about 98%.
When the raw water passes through the feed water flow meter (5), a flow rate signal is sent to the arithmetic control circuit (82) according to the passing amount, so that when a constant flow rate flows, the target injection rate is reached. Nitrogen gas can be injected into the second stage processing tower at the target nitrogen gas injection rate by opening the nitrogen solenoid valve.
In the case of a small amount of gas such as nitrogen, it is possible to perform proportional control by opening and closing the direct acting solenoid valve, but this is changed to one that can be linearly controlled such as a control valve. May be.
The nitrogen flow meter (15) is provided to monitor whether the amount of nitrogen gas is correctly controlled. It can also control the flow rate more accurately and alerts when the nitrogen gas is exhausted. It is also possible to put out.
In addition, when the water supply flowmeter (5) is configured at a lower cost, it can be replaced by an open / close signal of the float switch (43).
In that case, if the raw water pump (42) and the first-stage treated water tank pump (41a) are not operated simultaneously, the flow rate can be detected more accurately.

(蒸気が無い場合の処理)
蒸気圧力スイッチ(23)がOFFである場合には、蒸気が無い状態であるので、その場合には、前記の目標とする窒素注入率を、システムの蒸気が無い場合の気液接触効率に基づいて、算定を行う必要がある。
しかし、この様な場合には、処理水流量が定格より少ない場合が多いので、処理水循環弁(44)を処理水循環配管(36)側に変更し、繰り返し処理水を一段目処理塔と一段目処理水槽間を循環させることで、気液接触効率の低下を補うことができる。
尚、蒸気が無い場合には、一段目蒸気インゼクター(24a)による吸引効果が無くなり、一段目処理ガス循環管(17a)を用いた処理済みガスの再利用が困難と思われるが、一段目蒸気インゼクターの設置位置が、原水配管(3)の最上部に配置されている為、緩衝室(27)に蒸気が供給されない場合には、一段目接触塔(6a)内は循環水で満たされることになり、サイホンを形成するので、ガス循環を行うことが出来、蒸気が無い状態でも処理済みガスの循環利用が可能である。
又、この循環は部分負荷となって、蒸気を使用すると水温が上昇し過ぎる様な場合に、蒸気弁を閉止した状態で、処理効率を維持する場合にも利用できる。
原水は、一段目処理水槽(1a)のフロートスイッチ(43)の高レベルで、原水制御弁(45)が閉となり、低レベルで開となる様にコントロールされることで、一段目処理水槽に気圧変動効果を与えることができる。
この気圧変動効果は、二段目処理水槽排気管(11a)で連通している二段目処理水槽(6b)にも気圧変動効果を与えることで、過飽和状態を解消できる。
この様に本実施形態においては、蒸気が無い状況であっても、処理ガスの循環利用と気圧変動効果を与えることができるので、溶存酸素濃度を抑えた処理水をボイラ(51)へ供給することができるので、実用性の高い脱酸素装置を構成できる。
(Process when there is no steam)
When the steam pressure switch (23) is OFF, there is no steam. In that case, the target nitrogen injection rate is based on the gas-liquid contact efficiency when there is no steam in the system. Need to be calculated.
However, in such a case, since the treated water flow rate is often lower than the rated value, the treated water circulation valve (44) is changed to the treated water circulation pipe (36) side, and the treated water is repeatedly treated with the first-stage treatment tower and the first-stage treatment tower. By circulating between the treatment water tanks, it is possible to compensate for a decrease in gas-liquid contact efficiency.
When there is no steam, the suction effect by the first stage steam injector (24a) is lost, and it is considered difficult to reuse the treated gas using the first stage processing gas circulation pipe (17a). Since the steam injector is located at the top of the raw water pipe (3), when the steam is not supplied to the buffer chamber (27), the first-stage contact tower (6a) is filled with circulating water. Since the siphon is formed, the gas can be circulated, and the treated gas can be circulated and used even without steam.
In addition, this circulation becomes a partial load, and can be used to maintain the processing efficiency with the steam valve closed when the water temperature rises excessively when steam is used.
The raw water is controlled so that the raw water control valve (45) is closed at the high level of the float switch (43) of the first-stage treated water tank (1a) and opened at the low level. An atmospheric pressure fluctuation effect can be provided.
This atmospheric pressure fluctuation effect can eliminate the supersaturated state by giving the atmospheric pressure fluctuation effect to the second-stage treated water tank (6b) communicating with the second-stage treated water tank exhaust pipe (11a).
As described above, in the present embodiment, even in a situation where there is no steam, it is possible to provide the circulation utilization of the processing gas and the atmospheric pressure fluctuation effect, so that the treated water with the dissolved oxygen concentration suppressed is supplied to the boiler (51). Therefore, a highly practical deoxygenation device can be configured.

〔対象ガスの利用範囲〕
本発明において利用される代表的な対象ガスは、脱酸素処理を目的とした窒素ガスである。
しかし、本発明による気液接触方法は極めて高効率である為、次の様な用途での利用も期待できる。
(酸素高濃度水)
酸素富加膜等を利用した酸素濃度の高い気体を本装置により処理することで、同一温度における溶存酸素濃度より高い処理水を得ることができる。
高溶存酸素水は、一般の養魚場等の酸素供給用途にも利用可能であるし、活性汚泥処理や湖沼の富栄養化対策などにも利用できる。
(オゾン高濃度水)
オゾン発生器等が発生するオゾンガスから、高オゾン含有水を効率的に製造することができる。
高オゾン含有水は、各種殺菌用途に利用できる。
(希ガス含有水)
超純水等を利用して、半導体プロセスや化学合成等を行う用途の場合には、窒素であっても不純物となる場合があり、He、Ne、Ar等の希ガス類を含有させた処理水が必要になる場合がある。
この様な用途においても、本発明は少量の対象ガスで処理できるので、コストダウンが可能である。
以上の他に、ヘンリーの法則に従った気液溶解特性を示す対象ガスを用い、目的とする濃度の処理水を得たい用途に広く応用が可能である。
[Use range of target gas]
A typical target gas used in the present invention is nitrogen gas for the purpose of deoxygenation treatment.
However, since the gas-liquid contact method according to the present invention is extremely efficient, it can be expected to be used in the following applications.
(High oxygen concentration water)
By treating a gas having a high oxygen concentration using an oxygen-enriched membrane or the like with this apparatus, treated water having a concentration higher than the dissolved oxygen concentration at the same temperature can be obtained.
Highly dissolved oxygen water can be used for oxygen supply in general fish farms, and can also be used for activated sludge treatment and eutrophication measures for lakes and marshes.
(High concentration ozone water)
High ozone-containing water can be efficiently produced from ozone gas generated by an ozone generator or the like.
The high ozone content water can be used for various sterilization applications.
(Rare gas-containing water)
In the case of applications such as semiconductor processes and chemical synthesis using ultrapure water, nitrogen may be an impurity, and treated water containing rare gases such as He, Ne, Ar, etc. It may be necessary.
Even in such applications, the present invention can be processed with a small amount of the target gas, so that the cost can be reduced.
In addition to the above, the present invention can be widely applied to applications where it is desired to obtain treated water having a target concentration by using a target gas exhibiting gas-liquid dissolution characteristics in accordance with Henry's law.

〔脱酸素技術〕
(蒸気ボイラ用)
ボイラ用給水の脱酸素は、古典的な蒸気式脱気装置や膜脱気や窒素脱気等が既に実用化されており、利用分野は極めて広い。
特に、食品や医薬品分野等で蒸気中の化学物質等の不純物を嫌う用途には、物理的脱酸素方法が好適である。
しかし、従来の方法では夫々課題があり更に高効率且つ信頼性の高いシステムが求められている。
(密閉水系)
密閉水系は、冷温水等をユースポイントにて熱交換し、空気調和等に使用する系統であるが、防食が大きな課題になっている。
本発明の様に、窒素の利用効率が高くコンパクトなシステムが提供できれば、この様な用途でも、利用用途を広げることができる。
(給湯系統)
給湯系統では、薬品による防食が極めて制限されることや、通水が1パスである為、窒素の利用効率の低い従来型のシステムの場合、ランニングコストが嵩むことで普及が進んでいない。
本方式と窒素が安価に供給出来る窒素発生器等と組み合わせることで、処理コストを抑えた防食が可能となり、普及を促進することができる。
[Deoxygenation technology]
(For steam boiler)
For deoxygenation of boiler feed water, classic steam deaerators, membrane deaerators, nitrogen deaerators, etc. have already been put to practical use, and the fields of use are extremely wide.
In particular, a physical deoxygenation method is suitable for applications that dislike impurities such as chemical substances in steam in the food and pharmaceutical fields.
However, each of the conventional methods has problems, and there is a need for a system with higher efficiency and reliability.
(Sealed water system)
The sealed water system is a system in which cold / hot water or the like is heat-exchanged at a use point and used for air conditioning or the like, but corrosion prevention has been a major issue.
If a compact system with high nitrogen use efficiency can be provided as in the present invention, the use application can be expanded even in such applications.
(Hot water system)
In the hot water supply system, corrosion prevention by chemicals is extremely limited, and water passing is one pass. Therefore, in the case of a conventional system with low nitrogen utilization efficiency, the running cost is high and the spread is not progressing.
Combining this method with a nitrogen generator or the like that can supply nitrogen at a low cost makes it possible to prevent corrosion at a reduced processing cost and promote the spread.

〔蒸気エネルギーの有効利用〕
本発明で使用する蒸気は、次の4項目の効果があり、更に投入した蒸気エネルギーは、ボイラ用の給水や温水供給等の場合には給水予熱と同様に熱回収が可能であるので、非常にエネルギーの利用効率が高い処理方法である。
(水蒸気凝縮効果)
水蒸気が凝縮する際に、水中の過飽和気体にエネルギーを与え、溶存気体の気中への分離を促進する。
(水温上昇による対象ガスの削減効果)
水温上昇に伴い、ヘンリーの法則に従い気体の溶解度が減少するので、特に脱酸素目的の場合には、処理ガスの削減効果が期待できる。
(水蒸気の運動エネルギーの利用)
高圧蒸気の持つ運動エネルギーを利用して、負圧を作ることができるので、コンプレッサー等の特別な装置を用いずに、再利用ガスを高圧部に移送することが出来る他、ポンプや攪拌器等の動力も電気エネルギーを使用せずに用いることができる。
(蒸気エネルギーの回収)
ボイラ用給水の場合には、次の二通りの条件が考えられる。
ケース1:ボイラ室内温度よりも給水温度が低い場合。
ボイラ室内温度25℃、給水温度20℃の場合
1mの処理水に必要な窒素ガス量が60Lと仮定し、当該処理に使用する蒸気を10kgとした場合に、処理水の温度上昇は4℃程度であるので、配管系統は放熱傾向ではなく、蒸気の熱量は全て回収可能である。
ケース2:ボイラ室内温度よりも給水温度が高い場合。
この様なケースでは、給水ラインは保温されているケースが多く、数度程度の温度上昇では、保温を経由した熱損失は極めて少ないので、投入熱量の殆どが回収可能である。
〔給水ポンプのエネルギーの有効利用〕
本発明の気圧変動効果で用いる微小な気圧変動は、コンプレッサーや真空ポンプ等の特別な機器を用いること無く実現できる技術である為、従来の給水ポンプの持つ吸込み能力を利用することで、無駄な動力を用いること無く過飽和気体の気液分離を促進することができる。
特に、液体を利用した圧力変化は、キャビテーションや気泡圧縮等の気体運動を伴わなければ、非圧縮性流体であるので、容積効率が高くエネルギー的にも有利である。
[Effective use of steam energy]
The steam used in the present invention has the following four effects. Further, the steam energy input can be recovered in the same manner as the pre-heating of the feed water in the case of boiler feed water or hot water supply. In addition, it is a processing method with high energy use efficiency.
(Water vapor condensation effect)
When water vapor condenses, it gives energy to the supersaturated gas in the water and promotes separation of dissolved gas into the air.
(Target gas reduction effect due to water temperature rise)
As the water temperature rises, the gas solubility decreases according to Henry's law, so that a reduction effect of the processing gas can be expected particularly for the purpose of deoxygenation.
(Use of kinetic energy of water vapor)
Since negative pressure can be created using the kinetic energy of high-pressure steam, recycled gas can be transferred to the high-pressure section without using a special device such as a compressor. The power of can also be used without using electrical energy.
(Recovery of steam energy)
In the case of boiler water supply, the following two conditions can be considered.
Case 1: When the feed water temperature is lower than the boiler room temperature.
When the boiler room temperature is 25 ° C. and the feed water temperature is 20 ° C. Assuming that the amount of nitrogen gas required for 1 m 3 treated water is 60 L and the steam used for the treatment is 10 kg, the temperature rise of the treated water is 4 ° C. Therefore, the piping system does not tend to dissipate heat, and all the heat of steam can be recovered.
Case 2: When the feed water temperature is higher than the boiler room temperature.
In such a case, there are many cases where the water supply line is kept warm, and when the temperature rises about several degrees, the heat loss via the heat keeping is very small, so most of the input heat can be recovered.
[Effective use of energy from water supply pump]
Since the minute pressure fluctuation used in the pressure fluctuation effect of the present invention is a technology that can be realized without using a special device such as a compressor or a vacuum pump, it is useless by utilizing the suction capability of the conventional water supply pump. Gas-liquid separation of supersaturated gas can be promoted without using power.
In particular, a pressure change using a liquid is an incompressible fluid unless accompanied by a gas motion such as cavitation or bubble compression, and thus has high volumetric efficiency and is advantageous in terms of energy.

1…処理水槽
1a…一段目処理水槽
1b…二段目処理水槽
1c…三段目処理水槽
1d…四段目処理水槽
2…原水タンク
3…原水配管
3a…原水配管バイパス弁二次側
4…処理水
5…給水流量計
6…接触塔
6a…一段目接触塔
6b…二段目接触塔
6c…三段目接触塔
6d…四段目接触塔
7…散水板
8…通気管
9…内管
10a…処理水槽高液面
10b…処理水槽低液面
11…窒素配管
11a…二段目処理水槽排気管
11b…三段目処理水槽排気管
11c…四段目処理水槽排気管
12…窒素排気管
13…逆止弁
14…窒素ボンベ
15…窒素流量計
16…窒素遮断弁
17a…一段目処理ガス循環管
17b…二段目処理ガス循環管
17c…三段目処理ガス循環管
17d…四段目処理ガス循環管
20…蒸気源
21…蒸気配管
22a…一段目蒸気遮断弁
22b…二段目蒸気遮断弁
22c…三段目蒸気遮断弁
22d…四段目蒸気遮断弁
23…蒸気圧スイッチ
24…蒸気インゼクター
24a…一段目蒸気インゼクター
24b…二段目蒸気インゼクター
23c…三段目蒸気インゼクター
24d…四段目蒸気インゼクター
25…自動ガス抜き弁
26…気体混合器
27…緩衝室
28…スクリーン
29…ガス分離室
31…原水配管
31a…一段目処理水配管
31b…二段目処理水配管
31c…三段目処理水配管
32…処理水配管
33a…一段流路切替弁
33b…二段流路切替弁
33c…三段流路切替弁
33d…四段流路切替弁
34a…一段バイパス切替弁
34b…二段バイパス切替弁
35a…一段バイパス配管
35b…二段バイパス配管
36…処理水循環配管
36a…一段目処理水循環配管
36b…二段目処理水循環配管
36c…三段目処理水循環配管
36d…四段目処理水循環配管
37…処理水連通管
41a…一段目処理水槽ポンプ
41b…二段目処理水槽ポンプ
41c…三段目処理水槽ポンプ
41d…四段目処理水槽ポンプ
42…原水ポンプ
43…フロートスイッチ
44…処理水循環弁
45…原水制御弁
46…処理水ポンプ
47…排気電磁弁
48…排気圧力調整弁
49…レベル調整排気電磁弁
61…蒸気入口部
62…蒸気ノズル
63…ディフューザ部
64…出口部
65…吸込部
66…接触管
67…蒸気穴
70…蒸気式液体噴霧ノズル
71…噴射穴
72…蒸気式ターボコンプレッサー
73…蒸気排気切替弁
74…蒸気吸収管
75…蒸気排気管
80…原水温度センサー
82…演算制御回路
83…処理水温度センサー
84…制御配線
DESCRIPTION OF SYMBOLS 1 ... Treated water tank 1a ... 1st stage treated water tank 1b ... 2nd stage treated water tank 1c ... 3rd stage treated water tank 1d ... 4th stage treated water tank 2 ... Raw water tank 3 ... Raw water piping 3a ... Raw water piping bypass valve secondary side 4 ... Treated water 5 ... Feed water flow meter 6 ... Contact tower 6a ... First stage contact tower 6b ... Second stage contact tower 6c ... Third stage contact tower 6d ... Fourth stage contact tower 7 ... Sprinkler plate 8 ... Vent pipe 9 ... Inner pipe 10a ... treated water tank high liquid level 10b ... treated water tank low liquid level 11 ... nitrogen pipe 11a ... second stage treated water tank exhaust pipe 11b ... third stage treated water tank exhaust pipe 11c ... fourth stage treated water tank exhaust pipe 12 ... nitrogen exhaust pipe DESCRIPTION OF SYMBOLS 13 ... Check valve 14 ... Nitrogen cylinder 15 ... Nitrogen flow meter 16 ... Nitrogen shut-off valve 17a ... First stage processing gas circulation pipe 17b ... Second stage processing gas circulation pipe 17c ... Third stage processing gas circulation pipe 17d ... Fourth stage Process gas circulation pipe 20 ... Steam source 21 ... Steam pipe 22 ... 1st stage steam shut-off valve 22b ... 2nd stage steam shut-off valve 22c ... 3rd stage steam shut-off valve 22d ... 4th stage steam shut-off valve 23 ... Steam pressure switch 24 ... Steam injector 24a ... 1st stage steam shut-off valve 24b ... 2 Stage steam injector 23c ... Third stage steam injector 24d ... Fourth stage steam injector 25 ... Automatic gas vent valve 26 ... Gas mixer 27 ... Buffer room 28 ... Screen 29 ... Gas separation room 31 ... Raw water piping 31a ... First-stage treated water piping 31b ... Second-stage treated water piping 31c ... Third-stage treated water piping 32 ... Treatment water piping 33a ... First-stage flow switching valve 33b ... Second-stage flow switching valve 33c ... Third-stage flow switching valve 33d ... Four-stage flow path switching valve 34a ... Single-stage bypass switching valve 34b ... Two-stage bypass switching valve 35a ... Single-stage bypass pipe 35b ... Two-stage bypass pipe 36 ... Treatment water circulation pipe 36 ... 1st stage treated water circulation pipe 36b ... 2nd stage treated water circulation pipe 36c ... 3rd stage treated water circulation pipe 36d ... 4th stage treated water circulation pipe 37 ... Treated water communication pipe 41a ... 1st stage treated water tank pump 41b ... 2nd stage treated water tank Pump 41c ... Third stage treated water tank pump 41d ... Fourth stage treated water tank pump 42 ... Raw water pump 43 ... Float switch 44 ... Treated water circulation valve 45 ... Raw water control valve 46 ... Treated water pump 47 ... Exhaust solenoid valve 48 ... Exhaust pressure adjustment Valve 49 ... Level adjusting exhaust electromagnetic valve 61 ... Steam inlet 62 ... Steam nozzle 63 ... Diffuser section 64 ... Outlet section 65 ... Suction section 66 ... Contact pipe 67 ... Steam hole 70 ... Steam type liquid spray nozzle 71 ... Injection hole 72 ... Steam turbo compressor 73 ... Steam exhaust switching valve 74 ... Steam absorption pipe 75 ... Steam exhaust pipe 80 ... Raw water temperature sensor 82 ... Calculation system Circuit 83 ... treated water temperature sensor 84 ... control wiring

Claims (12)

気液接触装置の気液接触部にて、対象ガスと処理水とを接触させる気液接触方法において、新たに供給される対象ガス量が処理水に含まれる難溶解性ガス総量の10倍以下である場合に、下記処理(i)〜(iii):
(i)気液接触部の気相を水蒸気過飽和とする処理、
(ii)分離ガスを循環利用し、処理水に対する気体の容積混合比を20%とする処理、
(iii)気液接触部及びそれと連通した貯留槽の気相圧力を、処理水の平均水温における水蒸気圧に95KPaを加えた圧力よりも下回る減圧工程と、その減圧工程圧力よりも少なくとも10KPa望ましくは20KPa以上高い加圧工程を1サイクルとして、処理水が各単位の気液接触部及び貯留槽に存在している間に1サイクル以上行う処理、
の内、前記処理(i)については単独で又は前記処理(ii)若しくは(iii)と併せて実施するか、前記処理(ii)については前記処理(iii)と併せて実施するか、或いは、前記処理(i)〜(iii)の全てを実施することを特徴とする気液接触方法。
In the gas-liquid contact method in which the target gas and the treated water are brought into contact with each other at the gas-liquid contact portion of the gas-liquid contact device, the amount of the newly supplied target gas is 10 times or less the total amount of the hardly soluble gas contained in the treated water. In the case of the following processing (i) to (iii):
(I) treatment to make the gas phase of the gas-liquid contact portion supersaturated with water vapor,
(Ii) A process in which the separation gas is recycled and the volume mixing ratio of the gas to the treated water is 20%
(Iii) A depressurization step in which the gas phase pressure of the gas-liquid contact portion and the storage tank communicating therewith is lower than the pressure obtained by adding 95 KPa to the water vapor pressure at the average water temperature of the treated water, and preferably at least 10 KPa than the depressurization step pressure A process of performing one cycle or more while the treated water is present in the gas-liquid contact portion and the storage tank of each unit, with a pressurization step higher than 20 KPa as one cycle,
Among them, the process (i) is performed alone or in combination with the process (ii) or (iii), the process (ii) is performed in combination with the process (iii), or A gas-liquid contact method, wherein all of the treatments (i) to (iii) are performed.
請求項1に記載の気液接触方法において、
前記処理(iii)を実施する場合、
前記気液接触装置は、
一次側の圧力が二次側の圧力より高くなるか、予め設定された圧力になると処理ガスを系外に排出し、それ以下の圧力では処理ガスの排出及び逆流を防止する逆流防止手段若しくは圧力調整逆流防止手段を備えた排気手段を持つ気密型の気液接触部を備え、
該気液接触部の原水入口部に原水制御手段を備えるか、給水源の圧力を下限圧力以下とした原水供給手段を備え、
該処理水出口部には、吸込み能力が1m以上の給水移送手段を備え、給水移送手段の最大流量より多い流量と、最小流量より少ない流量か遮断する様に原水流量を、前記原水制御手段若しくは原水供給手段でコントロールすることで、前記気液接触部における気相と水相の容積比を変化させ、気圧変化を生じさせる
ことを特徴とする気液接触方法。
The gas-liquid contact method according to claim 1,
When carrying out the process (iii),
The gas-liquid contact device comprises:
When the pressure on the primary side becomes higher than the pressure on the secondary side or reaches a preset pressure, the processing gas is discharged out of the system. An airtight gas-liquid contact portion having an exhaust means with an adjusted backflow prevention means,
Provided with raw water control means at the raw water inlet part of the gas-liquid contact part, or provided with raw water supply means with the pressure of the water supply source being lower than the lower limit pressure,
The treated water outlet is provided with a feed water transfer means having a suction capacity of 1 m or more. A gas-liquid contact method characterized by changing the volume ratio of the gas phase to the water phase in the gas-liquid contact portion to cause a change in atmospheric pressure by controlling with the raw water supply means.
請求項1または請求項2に記載の気液接触方法において、
前記気液接触部と、
前記気液接触部に前記処理水を供給する処理水供給手段と、
前記気液接触部に前記対象ガスを供給する対象ガス供給手段と、
前記気液接触部から前記処理水を外部に流出させる処理水取水手段と、
前記気液接触部から前記対象ガスを排出する対象ガス排出手段と、から構成される気液接触手段を1構成要素とし、
その処理水ラインを複数段直列に接続し、処理水の最後段の構成要素に高純度の対象ガスを供給し、そこで排出された対象ガスを前段の構成要素の供給ガスとすることで、対象ガスの消費量を削減する多段気液接触処理において、
前記処理水の原水に含まれる溶存気体が、原水温度の飽和状態と概ね一致し、かつ、原水の平均温度が比較的安定している場合には、
前記平均温度が55℃以下である場合には4段、
前記平均温度が55℃超80℃以下である場合には3段、
前記平均温度が80℃超90℃未満である場合には2段、
前記平均温度が90℃以上である場合には多段処理を選択しない、
と言う処理段数基準に基づいて、処理段数を調整し、
前記処理水の原水の平均温度の変化が大きい場合には、
最低温度から前記処理段数基準に基づく処理段数の設備とし、
各処理段の処理水流路をバイパスするバイパス手段、及び、気液接触の為の動力源遮断手段のうちの少なくとも一つと、前記処理水の温度を検出する温度検出手段と、を備え、
該温度検出手段で検出された前記処理水の温度が予め設定された水温に達した場合に、前記バイパス手段及び前記動力源遮断手段のうちの少なくとも一つを制御し、処理段数を調整する
ことを特徴とする気液接触方法。
In the gas-liquid contact method according to claim 1 or 2,
The gas-liquid contact portion;
Treated water supply means for supplying the treated water to the gas-liquid contact portion;
Target gas supply means for supplying the target gas to the gas-liquid contact portion;
Treated water intake means for causing the treated water to flow out from the gas-liquid contact portion;
A gas-liquid contact means comprising a target gas discharge means for discharging the target gas from the gas-liquid contact portion,
By connecting the treated water lines in multiple stages in series, supplying the high purity target gas to the last component of the treated water, and using the target gas discharged there as the supply gas for the previous component, the target In multistage gas-liquid contact treatment that reduces gas consumption,
When the dissolved gas contained in the raw water of the treated water is substantially consistent with the saturation state of the raw water temperature, and the average temperature of the raw water is relatively stable,
When the average temperature is 55 ° C. or lower, four stages,
When the average temperature is more than 55 ° C and not more than 80 ° C, three steps,
When the average temperature is more than 80 ° C. and less than 90 ° C., two steps,
When the average temperature is 90 ° C. or higher, multistage treatment is not selected.
Based on the processing stage number standard, adjust the number of processing stages,
When the change in the average temperature of the treated raw water is large,
From the lowest temperature to the number of processing stages based on the processing stage number criteria,
Bypass means for bypassing the treated water flow path of each treatment stage, and at least one of power source cutoff means for gas-liquid contact, and temperature detecting means for detecting the temperature of the treated water,
Controlling the number of processing stages by controlling at least one of the bypass means and the power source shut-off means when the temperature of the treated water detected by the temperature detection means reaches a preset water temperature. A gas-liquid contact method characterized by the above.
請求項1から請求項3のいずれか一項に記載の気液接触方法において、
前記処理(i)を実施する場合、
前記気液接触装置は、
前記水蒸気を供給する水蒸気供給手段と、
外部より供給される対象ガス、又は気液分離した接触済み対象ガスのうちの少なくとも一つを供給する対象ガス供給手段と、を備え、さらに、
前記水蒸気供給手段及び前記対象ガス供給手段からの水蒸気及び対象ガスを予め混合する水蒸気対象ガス混合手段、並びに、該水蒸気対象ガス混合手段からの混合蒸気を、前記気液接触部内の処理水に吸収させる混合蒸気凝縮手段を備えるか、
処理水と対象ガスが前記気液接触部において予め混合状態である場合には、前記水蒸気供給手段からの水蒸気を、混合状態である処理水及び対象ガスに吸収させる水蒸気凝縮手段を備えるか、或いは、
前記両方の蒸気凝縮手段を備え、
前記気液接触部内の処理水に、前記混合蒸気または前記水蒸気を凝縮させる
ことを特徴とする気液接触方法。
In the gas-liquid contact method according to any one of claims 1 to 3,
When performing the process (i),
The gas-liquid contact device comprises:
Water vapor supply means for supplying the water vapor;
Target gas supply means for supplying at least one of a target gas supplied from the outside or a contacted target gas that has been gas-liquid separated; and
Water vapor target gas mixing means for preliminarily mixing the water vapor and the target gas from the water vapor supply means and the target gas supply means, and the mixed steam from the water vapor target gas mixing means are absorbed into the treated water in the gas-liquid contact portion Or a mixing vapor condensing means
In the case where the treated water and the target gas are mixed in advance in the gas-liquid contact part, the water vapor from the steam supply means is provided with water vapor condensing means for absorbing the treated water and the target gas in the mixed state, or ,
Comprising both said vapor condensing means,
The mixed liquid or the water vapor is condensed in the treated water in the gas-liquid contact part.
請求項1から請求項3のいずれか一項に記載の気液接触方法において、
前記処理(i)〜(iii)の全てを実施する場合、
前記気液接触装置は、
前記気液接触部内へ処理水を供給する液体移送手段として、水蒸気を駆動エネルギーとする蒸気駆動液体移送手段を備えるか、
前記気液接触部内の対象ガスの移送手段として、水蒸気を駆動エネルギーとする蒸気駆動ガス移送手段を備えるか、或いは、
前記気液接触部内の処理水と対象ガスの攪拌手段として、水蒸気を駆動エネルギーとする蒸気駆動攪拌手段を備え、さらに、
前記蒸気駆動液体移送手段、前記蒸気駆動ガス移送手段及び前記蒸気駆動攪拌手段のうちの少なくとも一つの水蒸気駆動手段からの運動エネルギーの低下した水蒸気を処理水に吸収させる蒸気凝縮手段を備え、
下記(i)〜(iii)の方法:
(i)駆動用の水蒸気に予め対象ガスを混合する方法、
(ii)前記蒸気凝縮手段に流入する前に対象ガスを混合する方法、
(iii)水蒸気を吸収させる処理水を対象ガスと予め混合状態にしておく方法、
のうちのいずれかの方法で、前記気液接触部内に、水蒸気過飽和の状態を存在させる
ことを特徴とする気液接触方法。
In the gas-liquid contact method according to any one of claims 1 to 3,
When performing all of the processes (i) to (iii),
The gas-liquid contact device comprises:
As a liquid transfer means for supplying treated water into the gas-liquid contact portion, it is provided with a vapor-driven liquid transfer means using steam as drive energy,
As a means for transferring the target gas in the gas-liquid contact portion, it is provided with a steam-driven gas transfer means using steam as driving energy, or
As the agitation means of the treated water and the target gas in the gas-liquid contact portion, it comprises a vapor drive agitation means using steam as drive energy,
Vapor condensing means for absorbing treated water with water vapor with reduced kinetic energy from at least one water vapor driving means among the vapor driven liquid transfer means, the vapor driven gas transfer means and the vapor driven stirring means;
The following methods (i) to (iii):
(I) A method of previously mixing a target gas with water vapor for driving,
(Ii) a method of mixing the target gas before flowing into the vapor condensing means;
(Iii) A method in which treated water for absorbing water vapor is mixed with the target gas in advance.
A gas-liquid contact method, wherein a steam supersaturated state is present in the gas-liquid contact portion by any one of the methods.
請求項5に記載の気液接触方法において、
前記気液接触装置は、
処理水の流路の一部に、温度を検出できる温度検出手段、及び、処理水の流量を検出できる流量検出手段のうちの少なくとも一つの検出手段を備え、さらに、
前記検出手段で検出された処理水の温度または流量に基づいて、前記水蒸気駆動手段への水蒸気の供給を制御する駆動用水蒸気制御手段、或いは、前記検出手段で検出された処理水の温度または流量に基づいて、前記蒸気凝縮手段への運動済み水蒸気の供給を制御する凝縮用水蒸気制御手段を備え、
処理水の温度が予め設定された規定の温度以下である場合か、処理水の流量が予め規定された流量以上である場合、或いは、両方の条件を満たす場合に、前記水蒸気駆動手段への水蒸気の供給、若しくは運動済み水蒸気の処理水への凝縮を行う
ことを特徴とする気液接触方法。
In the gas-liquid contact method according to claim 5,
The gas-liquid contact device comprises:
In part of the flow path of the treated water, provided with at least one detection means of a temperature detection means capable of detecting the temperature and a flow rate detection means capable of detecting the flow rate of the treated water,
Based on the temperature or flow rate of the treated water detected by the detecting means, the driving steam control means for controlling the supply of water vapor to the steam driving means, or the temperature or flow rate of the treated water detected by the detecting means A water vapor control means for condensing for controlling the supply of exercised water vapor to the vapor condensing means,
When the temperature of the treated water is equal to or lower than a predetermined temperature, when the flow rate of the treated water is equal to or higher than the predetermined flow rate, or when both conditions are satisfied, the water vapor to the water vapor driving means The gas-liquid contact method is characterized by supplying water or condensing exercised steam into treated water.
請求項1から請求項6のいずれか一項に記載の気液接触方法において、
前記気液接触装置は、
処理水の流路若しくは前記気液接触部に、温度を検出できる温度検出手段と、処理水の流量を検出できる流量検出手段と、を備え、さらに、
水蒸気を使用する場合には、処理設備への供給蒸気の蒸気検出手段、循環対象ガス流量検出手段、及び凝縮蒸気流量検出手段のうちの少なくとも一つから判断されるシステム動作正常検出手段と、
前記温度検出手段からの信号から飽和酸素濃度を求める飽和酸素濃度演算手段と、
前記飽和酸素濃度、気液接触の処理段数、対象ガス純度、及び、システムの動作が正常である場合の気液接触処理効率から単位流量当たりに必要な対象ガス量を演算する必要対象ガス量演算手段と、
該必要対象ガス量演算手段からの信号と、前記流量検出手段からの信号により処理水流量に応じて対象ガスの必要量を演算する比例演算手段と、
該比例演算手段からの信号により、処理水流量に応じた対象ガス流量に調整する対象ガス流量調整手段と、を備え、
処理水の流量、温度、処理段数、システム状態、ガス純度に応じて、対象ガス流量を自動調整する
ことを特徴とする気液接触方法。
In the gas-liquid contact method according to any one of claims 1 to 6,
The gas-liquid contact device comprises:
A temperature detection means capable of detecting the temperature and a flow rate detection means capable of detecting the flow rate of the treated water in the flow path of the treated water or the gas-liquid contact portion, and
When using water vapor, the system operation normality detection means determined from at least one of the steam detection means of the steam supplied to the processing equipment, the circulation target gas flow rate detection means, and the condensed steam flow rate detection means,
Saturated oxygen concentration calculating means for obtaining a saturated oxygen concentration from a signal from the temperature detecting means;
Necessary target gas amount calculation for calculating the required target gas amount per unit flow rate from the saturated oxygen concentration, the number of gas-liquid contact processing stages, the target gas purity, and the gas-liquid contact processing efficiency when the system operation is normal Means,
Proportional calculation means for calculating the required amount of the target gas according to the treated water flow rate based on the signal from the required target gas amount calculating means and the signal from the flow rate detecting means;
A target gas flow rate adjusting means for adjusting the target gas flow rate according to the treated water flow rate by a signal from the proportional calculation means,
A gas-liquid contact method characterized by automatically adjusting the target gas flow rate according to the flow rate of treated water, temperature, number of treatment stages, system state, and gas purity.
請求項7に記載の気液接触方法において、
前記システム動作正常検出手段からの信号により前記処理(i)の効果を期待出来ない場合には、前記処理(ii)および(iii)の効果のみで対応できる単位時間当たりの処理水量に応じて、前記必要対象ガス量演算手段の気液接触効率の値をシステムが正常な場合より少ない値に調整する
ことを特徴とする気液接触方法。
In the gas-liquid contact method according to claim 7,
When the effect of the treatment (i) cannot be expected from the signal from the system operation normal detection means, according to the amount of treated water per unit time that can be handled only by the effect of the treatment (ii) and (iii), The gas-liquid contact method characterized in that the gas-liquid contact efficiency value of the required target gas amount calculation means is adjusted to a value smaller than that when the system is normal.
請求項7または請求項8に記載の気液接触方法において、
前記気液接触装置は、
垂直に配置された気液接触部と、該気液接触部の最上部よりも低い液面を持つ貯留槽から構成される気液接触手段において、該気液接触部処理水立下り部と貯留槽の気室を連通させたガス循環管路を備え、
後段の気液接触手段若しくは処理水利用設備へ処理水を供給する処理水供給手段出口に、該処理水供給手段の処理水出口と気液接触手段への処理水入口を連通させる切替手段を備えるか、
気液接触手段に処理水を供給する処理水供給手段の入口に、前段の気液接触手段からの処理水若しくは原水入口と、気液接触手段からの処理水出口を連通させる切替手段を備え、
前記システム動作正常検出手段からの信号により蒸気供給が無い場合や、処理水の温度や流量が少なく、蒸気動力を遮断する場合には、前記切替手段により前記処理水供給手段の液体移送能力を利用して前記気液接触手段内の処理水を循環させ、且つ各段の気室圧力を前段からの切替手段及び後段への切替手段の調整により気圧変動を行い、気液接触部の立下り部に形成されるサイホン作用により分離済み処理ガスを循環させる
ことを特徴とする気液接触方法。
In the gas-liquid contact method according to claim 7 or 8,
The gas-liquid contact device comprises:
In a gas-liquid contact means comprising a vertically arranged gas-liquid contact part and a storage tank having a liquid level lower than the uppermost part of the gas-liquid contact part, the gas-liquid contact part treated water falling part and storage It has a gas circulation line that communicates the air chamber of the tank,
There is provided a switching means for communicating the treated water outlet of the treated water supply means and the treated water inlet to the gas-liquid contact means at the outlet of the treated water supply means for supplying treated water to the gas-liquid contacting means or the treated water utilization facility in the subsequent stage. Or
Provided at the inlet of the treated water supply means for supplying treated water to the gas-liquid contact means is a switching means for communicating the treated water or raw water inlet from the preceding gas-liquid contact means and the treated water outlet from the gas-liquid contact means,
When there is no steam supply due to a signal from the system operation normal detection means, or when the temperature and flow rate of treated water is low and the steam power is shut off, the liquid transfer capability of the treated water supply means is used by the switching means. Then, the treated water in the gas-liquid contact means is circulated, and the air pressure in each stage is changed by adjusting the switching means from the previous stage and the switching means to the subsequent stage, and the falling part of the gas-liquid contact part A gas-liquid contact method characterized by circulating the separated processing gas by a siphon action formed on the substrate.
請求項7から請求項9のいずれか一項に記載の気液接触方法において、
前記気液接触装置は、
原水入口から処理水出口までが連通した流路を備え、
該連通流路の上流側に液体循環手段入口を連通し、気液接触部を経由して処理水槽に貯留した処理水を、該液体移送手段入口の下流側に戻す循環流路を備え、
該気液接触装置の最大給水の流量より移送能力の大きい液体循環手段を備えた循環型気液接触装置を一段とし、該循環型気液接触装置を多段に構成し、
該処理水槽の少なくとも一つに、液面検出手段を備え、該連通流路の再上流に流量制御手段を備える
ことを特徴とする気液接触方法。
In the gas-liquid contact method according to any one of claims 7 to 9,
The gas-liquid contact device comprises:
It has a channel that communicates from the raw water inlet to the treated water outlet,
A circulation channel that communicates the liquid circulation means inlet to the upstream side of the communication channel and returns the treated water stored in the treated water tank via the gas-liquid contact portion to the downstream side of the liquid transfer means inlet;
The circulation type gas-liquid contact device having a liquid circulation means having a transfer capacity larger than the flow rate of the maximum water supply of the gas-liquid contact device is configured in one stage, and the circulation type gas-liquid contact apparatus is configured in multiple stages,
At least one of the treated water tanks is provided with a liquid level detection means, and a flow rate control means is provided on the upstream side of the communication flow path.
請求項1から請求項10のいずれか一項に記載の気液接触方法において、
前記対象ガスとして不活性ガスを用い、前記処理水中のガス組成を前記不活性ガスのガス組成に置換させる
ことを特徴とする水の脱酸素方法。
In the gas-liquid contact method according to any one of claims 1 to 10,
An inert gas is used as the target gas, and the gas composition in the treated water is replaced with the gas composition of the inert gas.
請求項11に記載の水の脱酸素方法において、
前段の処理単位から次段の処理単位に供給される排ガス若しくは大気に排出される排ガスの酸素濃度を計測する酸素濃度検出手段と、
前記必要対象ガス量演算手段に、予想される処理ガス中の酸素濃度演算回路を少なくとも一段分を備え、該酸素濃度検出手段の酸素濃度値と、同一場所の予想される酸素濃度演算値の比較を行う酸素濃度比較演算回路とを備え、
該酸素濃度比較演算回路で、酸素濃度が高すぎる場合、酸素濃度が低すぎる場合に、何れか一方、若しくは両方の警報を出力する
ことを特徴とする水の脱酸素方法。
The water deoxygenation method according to claim 11,
Oxygen concentration detection means for measuring the oxygen concentration of the exhaust gas supplied from the previous processing unit to the next processing unit or exhausted to the atmosphere;
The required target gas amount calculation means is provided with at least one stage of an oxygen concentration calculation circuit in the expected processing gas, and the oxygen concentration value of the oxygen concentration detection means is compared with the expected oxygen concentration calculation value at the same place An oxygen concentration comparison calculation circuit for performing
A method for deoxygenating water, wherein the oxygen concentration comparison operation circuit outputs either or both alarms when the oxygen concentration is too high or the oxygen concentration is too low.
JP2011147584A 2011-07-01 2011-07-01 Gas-liquid contact process and water-deoxidization process utilizing the same Pending JP2013013847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011147584A JP2013013847A (en) 2011-07-01 2011-07-01 Gas-liquid contact process and water-deoxidization process utilizing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011147584A JP2013013847A (en) 2011-07-01 2011-07-01 Gas-liquid contact process and water-deoxidization process utilizing the same

Publications (1)

Publication Number Publication Date
JP2013013847A true JP2013013847A (en) 2013-01-24

Family

ID=47687066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011147584A Pending JP2013013847A (en) 2011-07-01 2011-07-01 Gas-liquid contact process and water-deoxidization process utilizing the same

Country Status (1)

Country Link
JP (1) JP2013013847A (en)

Similar Documents

Publication Publication Date Title
US5843307A (en) Unit for the treatment of water by ozonization, and a corresponding installation for the production of ozonized water
JP5548106B2 (en) Method and apparatus for mixing fluid under pressure for semiconductor process tools
JPH04190803A (en) Vacuum degassing method
US9901870B2 (en) Carbon dioxide capturing system and method of operating same
WO2004071635A1 (en) Method, device, and system for controlling dissolved amount of gas
US9248415B2 (en) Systems and methods for maximizing dissolved gas concentration of a single species of gas from a mixture of multiple gases
CA2608335A1 (en) Method and apparatus for producing oxygen-containing reducing aqueous beverage
US5106497A (en) Ozone treatment system utilizing an air lift pump as a mixer and as a circulating means
JP2014516314A (en) Method and apparatus for oxygen enrichment of a liquid
RU2625235C2 (en) Deaerator and deaeration method
KR101632252B1 (en) Pure liquid production device
JP2004298840A (en) Vessel for adjusting amount of gas to be dissolved
JP5412135B2 (en) Ozone water supply device
JP2013013847A (en) Gas-liquid contact process and water-deoxidization process utilizing the same
JP4018099B2 (en) Device for removing dissolved oxygen in liquid and method for removing dissolved oxygen
JP2017209662A (en) Water treatment system and water treatment method
JP3068244B2 (en) Method and apparatus for heating and multi-step degassing of makeup water using steam in a power plant
JP4232490B2 (en) Deaerator
JP3737687B2 (en) Deoxygenation device for water supply
JP6078287B2 (en) Gas-liquid contact method and water deoxygenation method using the same
JP4138473B2 (en) Method and apparatus for evaporating and concentrating foaming liquid
JP2004237264A (en) Vacuum deaeration apparatus
JP3748865B2 (en) Deoxygenation method
US9878280B1 (en) Method for generating O2-rich gas from air using water
JP5676976B2 (en) Capacitor cooling water control device for steam injection vacuum pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151006