JP2013012561A - Multilayer ceramic electronic component - Google Patents
Multilayer ceramic electronic component Download PDFInfo
- Publication number
- JP2013012561A JP2013012561A JP2011143739A JP2011143739A JP2013012561A JP 2013012561 A JP2013012561 A JP 2013012561A JP 2011143739 A JP2011143739 A JP 2011143739A JP 2011143739 A JP2011143739 A JP 2011143739A JP 2013012561 A JP2013012561 A JP 2013012561A
- Authority
- JP
- Japan
- Prior art keywords
- thickness
- external electrode
- ceramic body
- wraparound
- width
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 88
- 238000003618 dip coating Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 abstract description 4
- 239000010408 film Substances 0.000 abstract 1
- 239000010409 thin film Substances 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 23
- 230000000052 comparative effect Effects 0.000 description 18
- 238000007747 plating Methods 0.000 description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 13
- 229920005822 acrylic binder Polymers 0.000 description 13
- 239000004020 conductor Substances 0.000 description 11
- 238000005259 measurement Methods 0.000 description 10
- 238000001035 drying Methods 0.000 description 6
- 239000003985 ceramic capacitor Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229940116411 terpineol Drugs 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
Images
Landscapes
- Ceramic Capacitors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
本発明は、積層セラミック電子部品の外部電極構造に関するものであり、さらに詳細には、角部の膜厚が十分に得られる積層セラミック電子部品の外部電極構造に関するものである。 The present invention relates to an external electrode structure of a multilayer ceramic electronic component, and more particularly to an external electrode structure of a multilayer ceramic electronic component in which a sufficient film thickness can be obtained at a corner.
積層セラミックコンデンサに代表されるセラミック電子部品の外部電極は、通常、主要な表面および裏面、一対の側面ならびに一対の端面を有する略直方体状のセラミック素体の一方の端面を下にして、セラミック素体を導電体ペースト内に浸漬し、次いで、セラミック素体を引き上げて、乾燥し、乾燥後に、セラミック素体の他方の端面を下にして、セラミック素体を導電体ペースト内に浸漬し、次いで、セラミック素体を引き上げて、乾燥することによって形成される。 An external electrode of a ceramic electronic component typified by a multilayer ceramic capacitor usually has a ceramic element with one end face of a substantially rectangular parallelepiped ceramic element having a main surface and a back face, a pair of side faces, and a pair of end faces facing down. The body is immersed in the conductor paste, and then the ceramic body is pulled up and dried. After drying, the ceramic body is immersed in the conductor paste with the other end face of the ceramic body facing down, The ceramic body is pulled up and dried.
図1は、従来の積層セラミック電子部品の外部電極構造を示す略断面図である。 FIG. 1 is a schematic cross-sectional view showing an external electrode structure of a conventional multilayer ceramic electronic component.
図1に示されるように、このようにして形成された外部電極1は、セラミック素体2の両端面3、4の全面を覆い、両端面3、4の角部3a、4aを回り込むようにして、主要な表面5および主要な裏面6の一部ならびに両側面(図示せず)の一部に形成されるが、セラミック素体2の両端面3、4の角部3a、4aにおける厚さが、他の部分に比して、薄くなるという問題があった。
As shown in FIG. 1, the external electrode 1 formed in this way covers the entire surfaces of both
近年、電子部品をより一層小型化するとともに、その容量をより一層大きくすることが要請され、有効素体体積を大きくするため、外部電極の厚さを極力薄くすることが要求されているが、外部電極の厚さを薄くすると、両端面の角部における外部電極の厚さが薄くなり過ぎて、めっきが形成されずに、実装不良など生じるおそれがあった。 In recent years, it has been required to further reduce the size of electronic components and to further increase the capacity thereof, and to increase the effective element volume, it is required to reduce the thickness of the external electrode as much as possible. If the thickness of the external electrode is reduced, the thickness of the external electrode at the corners of both end faces becomes too thin, and plating may not be formed, resulting in a mounting failure.
両端面の角部における外部電極の厚さが薄くなるという問題を解決するために、外部電極を形成する導電体ペーストのチクソトロピー比を高くすることが提案されているが、導電体ペーストのチクソトロピー比を高くすると、セラミック素体を導電体ペーストから引き上げる際に、導電体ペーストの一部がセラミック素体によって引っ張られて、外部電極に突起が生成されるおそれがある。 In order to solve the problem that the thickness of the external electrode at the corners of both end faces is reduced, it has been proposed to increase the thixotropy ratio of the conductor paste forming the external electrode. When the ceramic body is pulled up, when the ceramic body is pulled up from the conductor paste, a part of the conductor paste may be pulled by the ceramic body and a projection may be generated on the external electrode.
また、上記問題を解決するため、セラミック素体を導電体ペーストから引き上げる速度を速くすることも提案されているが、セラミック素体を導電体ペーストから引き上げる速度を速くすると、ピンホールが発生したり、セラミック素体の主要な表面および裏面上に形成された外部電極の厚さが厚くなったりして、外観が悪化し、縦横幅方向の寸法精度が悪化するという問題があった。 In order to solve the above problems, it has been proposed to increase the speed of pulling up the ceramic body from the conductor paste. However, if the speed of pulling up the ceramic body from the conductor paste is increased, pinholes may be generated. However, the external electrodes formed on the main surface and the back surface of the ceramic body have a large thickness, which deteriorates the external appearance and deteriorates the dimensional accuracy in the vertical and horizontal directions.
かかる問題を解決するため、日本特許第4513129号明細書(特許文献1)は、セラミック素体の両端面を凹面形状に加工することを提案している。 In order to solve this problem, Japanese Patent No. 4513129 (Patent Document 1) proposes processing both end faces of a ceramic body into a concave shape.
しかしながら、特許文献1に提案されている手段では、セラミック素体の両端面を研磨等の方法で凹面形状に加工する必要があり、この加工工程においてセラミック素体にクラックが発生するおそれがあった。 However, in the means proposed in Patent Document 1, it is necessary to process both end faces of the ceramic body into a concave shape by a method such as polishing, and there is a risk that cracks may occur in the ceramic body during this processing step. .
したがって、本発明は、セラミック素体に特別な加工を施さなくても、所望の膜厚分布を有する薄層の外部電極が得られる積層セラミック電子部品の外部電極構造を提供することを目的とするものである。 Accordingly, an object of the present invention is to provide an external electrode structure of a multilayer ceramic electronic component in which a thin external electrode having a desired film thickness distribution can be obtained without special processing of the ceramic body. Is.
本発明のかかる目的は、主要な表面と、主要な裏面と、2つの端面と、2つの側面を有する略直方体のセラミック素体の両端面に、前記端面を覆う端面部分と前記主要な表面、前記主要な裏面および前記2つの側面に回り込んで形成された回り込み部分とを有する端子電極を備えた積層セラミック電子部品であって、前記端子電極は、前記端面部分及び前記回り込み部分に凹部が形成されており、前記端面部分の凹部の幅W1は前記素体の幅W0の30%以上であり、かつ、前記凹部の深さt1は前記端面部分の最大厚さtmax1の10ないし50%であり、前記回り込み部分の凹部の幅L1は前記回り込み部分の長さL0の30%以上であり、かつ、前記回り込み部分の凹部の深さt2は前記回り込み部分の最大厚さtmax2の10ないし40%であることを特徴とする積層セラミック電子部品によって達成される。 Such an object of the present invention is to provide a main surface, a main back surface, two end surfaces, and both end surfaces of a substantially rectangular parallelepiped ceramic body having two side surfaces, an end surface portion covering the end surfaces, and the main surface, A multilayer ceramic electronic component comprising a terminal electrode having a main back surface and a wraparound portion formed so as to wrap around the two side surfaces, wherein the terminal electrode has a recess formed in the end surface portion and the wraparound portion. The width W1 of the concave portion of the end surface portion is 30% or more of the width W0 of the element body, and the depth t1 of the concave portion is 10 to 50% of the maximum thickness tmax1 of the end surface portion. The width L1 of the recess in the wraparound portion is 30% or more of the length L0 of the wraparound portion, and the depth t2 of the recess in the wraparound portion is 10 of the maximum thickness tmax2 of the wraparound portion. It is achieved by a multilayer ceramic electronic component, characterized in that with 40%.
本発明によれば、セラミック素体の各端面に形成された外部電極が、端面の略中央部分に向けて、厚さが薄くなる凹状部分を有するとともに、端面の略中央部分で、その厚さが最小になるように形成されているから、セラミック素体の各端面に塗布された導電体ペーストは、各端面の両角部に向けて、引き寄せられる。一方、セラミック素体の主要な表面および主要な裏面ならびに両側面に形成された外部電極が、その厚さがその略中央部において最小になるように、凹状に形成されているから、セラミック素体の主要な表面および主要な裏面ならびに両側面に塗布された導電体ペーストも、各端面の両角部に向けて、引き寄せられる。その結果、各端面の両角部に形成される外部電極が薄くなることを効果的に防止することができ、所望の膜厚分布を有する薄層の外部電極構造を得ることができる。 According to the present invention, the external electrode formed on each end face of the ceramic body has a concave portion whose thickness decreases toward the substantially central portion of the end face, and the thickness at the substantially central portion of the end face. Therefore, the conductive paste applied to each end face of the ceramic body is drawn toward both corners of each end face. On the other hand, since the external electrodes formed on the main surface, main back surface, and both side surfaces of the ceramic body are formed in a concave shape so that the thickness thereof is minimized at the substantially central portion, the ceramic body The conductive paste applied to the main surface and the main back surface and both side surfaces of the metal is also drawn toward both corners of each end surface. As a result, it is possible to effectively prevent the external electrodes formed at both corners of each end face from becoming thin, and to obtain a thin external electrode structure having a desired film thickness distribution.
本発明によれば、セラミック素体の両端面を凹面形状に加工する必要がないので、クラックの発生を効果的に防止することが可能になる。 According to the present invention, since it is not necessary to process both end faces of the ceramic body into a concave shape, it is possible to effectively prevent the occurrence of cracks.
さらに、本発明によれば、外部電極に凹部が形成されているから、外部電極の下表面と外表面との距離が短く、したがって、脱バインダ処理が容易になり、ブリスターを低減することが可能になる。 Furthermore, according to the present invention, since the concave portion is formed in the external electrode, the distance between the lower surface and the outer surface of the external electrode is short, so that the binder removal process is facilitated and blisters can be reduced. become.
本発明によれば、所望の膜厚分布を有する薄層の外部電極を備えた積層セラミック電子部品の外部電極構造を提供することが可能になる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the external electrode structure of the multilayer ceramic electronic component provided with the thin layer external electrode which has a desired film thickness distribution.
図2は、本発明の好ましい実施態様にかかる積層セラミックコンデンサを示す略縦断面図である。 FIG. 2 is a schematic longitudinal sectional view showing a multilayer ceramic capacitor according to a preferred embodiment of the present invention.
図2に示されるように、セラミック素体2は、主要な表面5および主要な裏面6と、端面3、4を備えており、図2には図示されていないが、セラミック素体2は、さらに、主要な表面5、主要な裏面6および端面3、4に垂直な一対の側面を備えている。
As shown in FIG. 2, the
セラミック素体2には、たとえば、ディップ塗布法などによって、導電体ペーストが塗布され、外部電極1が形成されている。
A ceramic paste is applied to the
図2に示されるように、外部電極1は、セラミック素体2の両端面3、4を覆っており、さらに、セラミック素体2の端面3、4の両角部3a、4aを回り込んで、セラミック素体2の主要な表面5および主要な裏面6の一部に達し、それぞれ、終端部5a、6aにおいて終端している。図2には図示されていないが、セラミック素体2の主要な表面5および主要な裏面6に形成された外部電極1と同様に、外部電極1はセラミック素体2の各端面3、4の両端に位置する一対の角部を回り込んで、セラミック素体2の一対の側面の一部に達し、セラミック素体2の主要な表面5および主要な裏面6に形成された外部電極1と同様に、一対の側面で終端している。
As shown in FIG. 2, the external electrode 1 covers both
図2に示されるように、セラミック素体2の各端面3、4に形成された外部電極1は、各端面3、4の略中央部3b、4bに厚さが最も薄い凹状部1a、1aを有し、各端面3、4の角部3a、4aに向かって、外部電極1の厚さが次第に厚くなるように形成されている。本実施態様においては、各端面3、4の角部3a、4aよりもわずかに略中央部3b、4b寄りの第一の位置3c、4cおよび略中央部3b、4bに対して、第一の位置3c、4cと対称な第二の位置3d、4dで、セラミック素体2の各端面3、4に形成された外部電極1の厚さが最大になるように、外部電極1が形成されている。
As shown in FIG. 2, the external electrode 1 formed on each
ここに、セラミック素子2の端面3、4上に形成された外部電極1の凹状部1a、1aの深さt1が、第一の位置3c、4cおよび第二の位置3d、4dにおける外部電極1の最大厚さtmax1の約0.1倍ないし約0.5倍で、第一の位置3c、4cと第二の位置3d、4dとの距離、すなわち凹状部1aの幅W1が各端面3、4の幅W0の約0.3倍以上になるように、セラミック素体2の各端面3、4上に、外部電極1が形成されている。
Here, the depth t1 of the
図2に示されるように、外部電極1は、各端面3、4の角部3a、4aを回り込んで、セラミック素体2の主要な表面5および主要な裏面6の一部に達し、終端部5a、6aで終端している。
As shown in FIG. 2, the external electrode 1 wraps around the
セラミック素体2の主要な表面5および主要な裏面6の一部に形成された外部電極1は、各端面3、4の角部3a、4aと終端部5a、6aとの略中央部5b、6bに最も厚さの薄い凹状部1b、1bを有し、凹状部1b、1bと各端面3,4の角部3a、4aとの間の第三の位置5c、6cおよび凹状部1b、1bに対して、第三の位置5c、6cと略対称な第四の位置5d、6dで、セラミック素体2の主要な表面5および主要な裏面6に形成された外部電極1の厚さが極大になるように、外部電極1が形成されている。
The external electrode 1 formed on a part of the main surface 5 and the
本実施態様においては、外部電極1の凹状部1b、1bの深さt2が、第三の位置5c、6cまたは第四の位置5d、6dにおける外部電極1の最大厚さtmax2の約0.1倍ないし約0.4倍で、第三の位置5c、6cと第四の位置5d、6dとの距離、すなわち凹状部1bの幅L1は、各端面3、4の角部3a、4aとセラミック素体2の主要な表面5および主要な裏面6における外部電極1の終端部5a、6aとの距離、すなわち回り込み部分の長さL0の約0.3倍以上になるように外部電極1が形成されている。
In this embodiment, the depth t2 of the
本実施態様によれば、セラミック素体2の各端面3、4に形成された外部電極1が、端面3、4の略中央部分3b、4bに向けて、厚さが薄くなり、端面3、4の略中央部分3b、4bに最も薄い凹状部1a、1aが形成されているから、セラミック素体2の各端面3、4に塗布された導電体ペーストは、各端面3、4の両角部3a、4aに向けて、引き寄せられる。一方、セラミック素体2の主要な表面5および主要な裏面6ならびに両側面(図示せず)に形成され、終端部5a、6aで終端する外部電極1は、その略中央部に向けて、厚さが薄くなり、その略中央部に厚さが最小の凹状部1b、1bを有するように形成されているから、セラミック素体2の主要な表面5および主要な裏面6ならびに両側面に塗布された導電体ペーストも、各端面3、4の両角部3a、4aに向けて、引き寄せられる。その結果、各端面3、4の両角部3a、4aに形成される外部電極1が薄くなることを効果的に防止することができ、所望の膜厚分布を有する薄層の外部電極構造を得ることができる。
According to this embodiment, the external electrode 1 formed on each
さらに、本実施態様においては、セラミック素体2の各端面3、4に形成された外部電極1が、各端面3、4の略中央部3b、4bに厚さが最も薄い凹状部1a、1aを有しており、また、セラミック素体2の主要な表面5および主要な裏面6の一部に形成された外部電極1も、各端面3、4の角部3a、4aと終端部5a、6aとの略中央部5b、6bに最も厚さの薄い凹状部1b、1bを有しているから、外部電極1の下表面と外表面との間の距離は短く、したがって、脱バインダ処理が容易になり、ブリスターを低減することが可能になる。
Furthermore, in the present embodiment, the external electrodes 1 formed on the end faces 3 and 4 of the
以下、本発明の作用効果をより一層明確なものにするために、実施例および比較例を掲げる。 Examples and comparative examples will be given below in order to further clarify the effects of the present invention.
比較例1
3.2mm×2.5mm×2.5mmのサイズで角部の曲率半径が160μmである略直方体の積層セラミックコンデンサのセラミック素体を用意した。
Comparative Example 1
A ceramic body of an approximately rectangular parallelepiped multilayer ceramic capacitor having a size of 3.2 mm × 2.5 mm × 2.5 mm and a corner radius of curvature of 160 μm was prepared.
銅粉末(半加工フレーク粉)100重量部に対して、9.0重量部のアクリル系バインダを含み、溶剤として、ターピネオールを含む導電体ペーストを用意し、ディップ塗布法によって、セラミック素体の両端面を覆うように塗布し、昇温速度3℃/分の赤外線乾燥機を用いてピーク温度250℃で乾燥した。乾燥後、800℃の窒素雰囲気中で焼き付けを行い、外部電極を形成した。得られたサンプルから200個抜き取り、ブリスターの発生の有無を観察した。次にこのサンプルを側面から研磨して、外部電極の端面における厚さ、側面の回り込み部の長さと厚さ、端面および回り込み部の凹状部の幅と深さ、および角部における厚さを測定した。測定値はサンプル200個の平均値とした。なお、角部における厚さは、最も薄いところで2μm以上あるものを合格とした。 A conductive paste containing 9.0 parts by weight of an acrylic binder and terpineol as a solvent is prepared for 100 parts by weight of copper powder (semi-processed flake powder), and both ends of the ceramic body are prepared by dip coating. It was applied so as to cover the surface, and dried at a peak temperature of 250 ° C. using an infrared dryer at a temperature rising rate of 3 ° C./min. After drying, baking was performed in a nitrogen atmosphere at 800 ° C. to form external electrodes. Two hundred samples were extracted from the obtained samples and observed for the occurrence of blisters. Next, this sample is polished from the side surface, and the thickness at the end surface of the external electrode, the length and thickness of the wraparound portion of the side surface, the width and depth of the concave portion of the end surface and wraparound portion, and the thickness at the corner portion are measured. did. The measured value was an average value of 200 samples. In addition, the thickness in a corner | angular part made the pass what is 2 micrometers or more in the thinnest place.
また、サンプルから別に200個抜き取り、電解ニッケルメッキを施した。メッキしたサンプルのメッキ付を観察し、角部にメッキ膜が形成されていないものの数をカウントした。次いで、このメッキしたサンプルに85℃、湿度85%の恒温槽で20Vの電圧を印加して耐湿負荷試験を行った。 Moreover, 200 pieces were extracted from the sample and subjected to electrolytic nickel plating. The plated samples were observed for plating, and the number of samples with no plating film formed at the corners was counted. Next, a humidity resistance load test was performed by applying a voltage of 20 V to the plated sample in a constant temperature bath at 85 ° C. and a humidity of 85%.
上記の観察、測定および試験の結果、外部電極の端面および側面には凹状部は形成されなかった。角部の厚みは1.2μmであり、2μm以上の閾値を満たさなかった。また、ブリスターは200個中10個発生した。耐湿負荷試験においては不合格は0であったが、メッキ付け性については200個中2個が不合格であった。 As a result of the above observation, measurement, and test, no concave portion was formed on the end face and side face of the external electrode. The corner thickness was 1.2 μm and did not satisfy the threshold of 2 μm or more. Moreover, 10 out of 200 blisters were generated. In the moisture resistance load test, the number of failures was 0, but 2 out of 200 pieces were unacceptable in terms of plating performance.
実施例1
銅粉末100重量部に対して、7.5重量部のアクリル系バインダを含む導電体ペーストを用いた点を除き、上記比較例1と同様にして、サンプルを作製し、各種観察、測定および試験を行った。
Example 1
Samples were prepared in the same manner as in Comparative Example 1 except that a conductive paste containing 7.5 parts by weight of an acrylic binder was used with respect to 100 parts by weight of copper powder, and various observations, measurements, and tests were performed. Went.
その結果、外部電極の端面および回り込み部分に凹状部が形成された。端面における外部電極の厚さは、端面の略中央部に向かって薄くなり、端面の略中央部で最小となり、その最大厚さは57μm、最小厚さは51μmで、凹状部の深さは最大厚さ10.5%となり、外部電極の厚さが極大になる部分間の距離(凹状部分の幅)はセラミック素体の端面の幅の30%であった。また、回り込み部における外部電極の厚さは、端面の略中央部に向かって薄くなり、端面の略中央部で最小となり、その最大厚さは26μm、最小厚さは23μmで、凹状部の深さは最大厚さの11.5%となり、外部電極の厚さが極大になる部分間の距離(凹状部分の幅)は回り込み部分の長さの30%であった。 As a result, a concave portion was formed on the end face and the wraparound portion of the external electrode. The thickness of the external electrode at the end face becomes thinner toward the substantially central portion of the end face, and becomes the smallest at the substantially central portion of the end face. The maximum thickness is 57 μm, the minimum thickness is 51 μm, and the depth of the concave portion is the maximum. The thickness was 10.5%, and the distance between the portions where the thickness of the external electrode was maximized (the width of the concave portion) was 30% of the width of the end face of the ceramic body. Further, the thickness of the external electrode at the wraparound portion becomes thinner toward the substantially central portion of the end face, and becomes the minimum at the substantially central portion of the end face. The maximum thickness is 26 μm, the minimum thickness is 23 μm, and the depth of the concave portion The thickness was 11.5% of the maximum thickness, and the distance between the portions where the thickness of the external electrode was maximized (the width of the concave portion) was 30% of the length of the wraparound portion.
また、角部における厚さは2.0μmで十分な厚みを得ることができた。 Moreover, the thickness at the corners was 2.0 μm, and a sufficient thickness could be obtained.
ブリスター、耐湿負荷試験およびメッキ付け性についての不合格は発生しなかった。 There were no failures in blistering, moisture resistance load testing and plating performance.
実施例2
銅粉末100重量部に対して、6.5重量部のアクリル系バインダを含む導電体ペーストを用いた点を除き、上記比較例1と同様にして、サンプルを作製し、各種観察、測定および試験を行った。
Example 2
A sample was prepared in the same manner as in Comparative Example 1 except that a conductive paste containing 6.5 parts by weight of an acrylic binder was used with respect to 100 parts by weight of copper powder, and various observations, measurements, and tests were performed. Went.
その結果、外部電極の端面および回り込み部分に凹状部が形成された。端面における外部電極の最大厚さは54μm、最小厚さは41μmで、凹状部の深さは最大厚さの24.1%となり、凹状部分の幅はセラミック素体の端面の幅の40%であった。また、回り込み部における外部電極の最大厚さは25μm、最小厚さは19μmで、凹状部の深さは最大厚さの24.0%となり、凹状部分の幅は回り込み部分の長さの40%であった。また、角部における厚さは2.4μmで十分な厚みを得ることができた。 As a result, a concave portion was formed on the end face and the wraparound portion of the external electrode. The maximum thickness of the external electrode on the end face is 54 μm, the minimum thickness is 41 μm, the depth of the concave portion is 24.1% of the maximum thickness, and the width of the concave portion is 40% of the width of the end face of the ceramic body. there were. Further, the maximum thickness of the external electrode in the wraparound portion is 25 μm, the minimum thickness is 19 μm, the depth of the concave portion is 24.0% of the maximum thickness, and the width of the concave portion is 40% of the length of the wraparound portion. Met. Further, the thickness at the corner was 2.4 μm, and a sufficient thickness could be obtained.
また、ブリスター、耐湿負荷試験およびメッキ付け性についての不合格は発生しなかった。 In addition, no failure occurred regarding the blister, moisture resistance load test and plating ability.
実施例3
銅粉末100重量部に対して、5.0重量部のアクリル系バインダを含む導電体ペーストを用いた点を除き、上記比較例1と同様にして、サンプルを作製し、各種観察、測定および試験を行った。
Example 3
Samples were prepared in the same manner as in Comparative Example 1 except that a conductive paste containing 5.0 parts by weight of an acrylic binder was used with respect to 100 parts by weight of copper powder, and various observations, measurements, and tests were performed. Went.
その結果、外部電極の端面および回り込み部分に凹状部が形成された。端面における外部電極の最大厚さは47μm、最小厚さは26μmで、凹状部の深さは最大厚さの44.7%となり、凹状部分の幅はセラミック素体の端面の幅の50%であった。また、回り込み部における外部電極の最大厚さは24μm、最小厚さは15μmで、凹状部の深さは最大厚さの37.5%となり、凹状部分の幅は回り込み部分の長さの50%であった。また、角部における厚さは3.0μmで十分な厚みを得ることができた。 As a result, a concave portion was formed on the end face and the wraparound portion of the external electrode. The maximum thickness of the external electrode at the end face is 47 μm, the minimum thickness is 26 μm, the depth of the concave portion is 44.7% of the maximum thickness, and the width of the concave portion is 50% of the width of the end face of the ceramic body. there were. The maximum thickness of the external electrode at the wraparound portion is 24 μm, the minimum thickness is 15 μm, the depth of the concave portion is 37.5% of the maximum thickness, and the width of the concave portion is 50% of the length of the wraparound portion. Met. Further, the thickness at the corner was 3.0 μm, and a sufficient thickness could be obtained.
また、ブリスター、耐湿負荷試験およびメッキ付け性についての不合格は発生しなかった。 In addition, no failure occurred regarding the blister, moisture resistance load test and plating ability.
比較例2
銅粉末100重量部に対して、4.0重量部のアクリル系バインダを含む導電体ペーストを用いた点を除き、上記比較例1と同様にして、サンプルを作製し、各種観察、測定および試験を行った。
Comparative Example 2
A sample was prepared in the same manner as in Comparative Example 1 except that a conductive paste containing 4.0 parts by weight of an acrylic binder was used with respect to 100 parts by weight of copper powder, and various observations, measurements, and tests were performed. Went.
その結果、外部電極の端面および回り込み部分に凹状部が形成された。しかし端面における外部電極の最大厚さは49μm、最小厚さは20μmで、凹状部の深さは最大厚さの59.2%となり、50%を超えてしまった。また、凹状部分の幅はセラミック素体の端面の幅の60%であった。また、回り込み部における外部電極の最大厚さは24μm、最小厚さは12μmで、凹状部の深さは最大厚さの50.0%となり、40%を超えてしまった。また凹状部分の幅は回り込み部分の長さの60%であった。なお、角部における厚さは3.2μmで十分な厚みを得ることができた。 As a result, a concave portion was formed on the end face and the wraparound portion of the external electrode. However, the maximum thickness of the external electrode on the end face was 49 μm, the minimum thickness was 20 μm, and the depth of the concave portion was 59.2% of the maximum thickness, exceeding 50%. Further, the width of the concave portion was 60% of the width of the end face of the ceramic body. Further, the maximum thickness of the external electrode in the wraparound portion was 24 μm, the minimum thickness was 12 μm, and the depth of the concave portion was 50.0% of the maximum thickness, exceeding 40%. The width of the concave portion was 60% of the length of the wraparound portion. The thickness at the corner was 3.2 μm, and a sufficient thickness could be obtained.
また、ブリスター、およびメッキ付け性についての不合格は発生しなかったが、耐湿負荷試験では200個中4個の不合格が発生した。 Moreover, although the failure about a blister and plating property did not generate | occur | produce, the failure of 4 out of 200 occurred in the moisture-proof load test.
比較例3
銅粉末100重量部に対して、8.0重量部のアクリル系バインダを含む導電体ペーストを用いた点と、導電体ペーストの乾燥に昇温速度20℃/分の熱風循環乾燥を用いた点を除き、上記比較例1と同様にして、サンプルを作製し、各種観察、測定および試験を行った。
Comparative Example 3
The point which used the conductor paste containing 8.0 weight part acrylic binder with respect to 100 weight part of copper powders, and the point which used the hot air circulation drying for temperature rising rate 20 degree-C / min for drying of a conductor paste A sample was prepared in the same manner as in Comparative Example 1 except that various observations, measurements, and tests were performed.
その結果、外部電極の端面および回り込み部分に凹状部が形成された。しかし端面における外部電極の最大厚さは58μm、最小厚さは52μmで、凹状部の深さは最大厚さの10.3%となり、10%以上であったが、凹状部分の幅はセラミック素体の端面の幅の20%で、30%に満たなかった。また、回り込み部における外部電極の最大厚さは27μm、最小厚さは24μmで、凹状部の深さは最大厚さの11.1%となり、10%以上であったが、凹状部分の幅は回り込み部分の長さの10%で、30%に満たなかった。また、角部における厚さは1.4μmで十分な厚みを得ることができなかった。 As a result, a concave portion was formed on the end face and the wraparound portion of the external electrode. However, the maximum thickness of the external electrode on the end face is 58 μm, the minimum thickness is 52 μm, and the depth of the concave portion is 10.3% of the maximum thickness, which is 10% or more. It was 20% of the width of the end face of the body, less than 30%. Further, the maximum thickness of the external electrode in the wraparound portion is 27 μm, the minimum thickness is 24 μm, and the depth of the concave portion is 11.1% of the maximum thickness, which is 10% or more, but the width of the concave portion is It was 10% of the length of the wraparound portion, and less than 30%. Further, the thickness at the corners was 1.4 μm, and a sufficient thickness could not be obtained.
また、メッキ付け性および耐湿負荷試験についての不合格は発生しなかったが、ブリスターについては200個中6個の不合格が発生した。 Moreover, although the disqualification about a plateability and a moisture-proof load test did not generate | occur | produce, about the blister, about 6 rejections generate | occur | produced.
実施例4
銅粉末100重量部に対して、7.5重量部のアクリル系バインダを含む導電体ペーストを用いた点を除き、上記比較例3と同様にして、サンプルを作製し、各種観察、測定および試験を行った。
Example 4
Samples were prepared in the same manner as in Comparative Example 3 except that a conductive paste containing 7.5 parts by weight of an acrylic binder was used with respect to 100 parts by weight of copper powder, and various observations, measurements, and tests were performed. Went.
その結果、外部電極の端面および回り込み部分に凹状部が形成された。端面における外部電極の最大厚さは58μm、最小厚さは44μmで、凹状部の深さは最大厚さの24.1%となり、凹状部分の幅はセラミック素体の端面の幅の30%であった。また、回り込み部における外部電極の最大厚さは26μm、最小厚さは19μmで、凹状部の深さは最大厚さの26.9%となり、凹状部分の幅は回り込み部分の長さの30%であった。また、角部における厚さは2.0μmで十分な厚みを得ることができた。 As a result, a concave portion was formed on the end face and the wraparound portion of the external electrode. The maximum thickness of the external electrode on the end face is 58 μm, the minimum thickness is 44 μm, the depth of the concave portion is 24.1% of the maximum thickness, and the width of the concave portion is 30% of the width of the end face of the ceramic body. there were. The maximum thickness of the external electrode in the wraparound portion is 26 μm, the minimum thickness is 19 μm, the depth of the concave portion is 26.9% of the maximum thickness, and the width of the concave portion is 30% of the length of the wraparound portion. Met. Moreover, the thickness at the corners was 2.0 μm, and a sufficient thickness could be obtained.
また、ブリスター、耐湿負荷試験およびメッキ付け性についての不合格は発生しなかった。 In addition, no failure occurred regarding the blister, moisture resistance load test and plating ability.
実施例5
銅粉末100重量部に対して、6.5重量部のアクリル系バインダを含み、溶剤として、ターピネオールを含む導電体ペーストを用いた点を除き、上記比較例3と同様にして、サンプルを作製し、各種観察、測定および試験を行った。
Example 5
A sample was prepared in the same manner as in Comparative Example 3 except that a conductive paste containing 6.5 parts by weight of an acrylic binder and 100% by weight of copper powder and containing terpineol as a solvent was used. Various observations, measurements and tests were performed.
その結果、外部電極の端面および回り込み部分に凹状部が形成された。端面における外部電極の最大厚さは52μm、最小厚さは34μmで、凹状部の深さは最大厚さの34.6%となり、凹状部分の幅はセラミック素体の端面の幅の40%であった。また、回り込み部における外部電極の最大厚さは25μm、最小厚さは16μmで、凹状部の深さは最大厚さの36.0%となり、凹状部分の幅は回り込み部分の長さの40%であった。また、角部における厚さは2.6μmで十分な厚みを得ることができた。 As a result, a concave portion was formed on the end face and the wraparound portion of the external electrode. The maximum thickness of the external electrode at the end face is 52 μm, the minimum thickness is 34 μm, the depth of the concave portion is 34.6% of the maximum thickness, and the width of the concave portion is 40% of the width of the end face of the ceramic body. there were. The maximum thickness of the external electrode in the wraparound portion is 25 μm, the minimum thickness is 16 μm, the depth of the concave portion is 36.0% of the maximum thickness, and the width of the concave portion is 40% of the length of the wraparound portion. Met. Further, the thickness at the corner was 2.6 μm, and a sufficient thickness could be obtained.
また、ブリスター、耐湿負荷試験およびメッキ付け性についての不合格は発生しなかった。 In addition, no failure occurred regarding the blister, moisture resistance load test and plating ability.
比較例4
銅粉末100重量部に対して、5.0重量部のアクリル系バインダを含む導電体ペーストを用いた点を除き、上記比較例3と同様にして、サンプルを作製し、各種観察、測定および試験を行った。
Comparative Example 4
A sample was prepared in the same manner as in Comparative Example 3 except that a conductive paste containing 5.0 parts by weight of an acrylic binder was used with respect to 100 parts by weight of copper powder, and various observations, measurements, and tests were performed. Went.
その結果、外部電極の端面および回り込み部分に凹状部が形成された。しかし、端面における外部電極の最大厚さは48μm、最小厚さは19μmで、凹状部の深さは最大厚さの60.4%となり、50%を超えてしまった。また、凹状部分の幅はセラミック素体の端面の幅の50%であった。また、回り込み部における外部電極の最大厚さは25μm、最小厚さは15μmで、凹状部の深さは最大厚さの40.0%であった。また凹状部分の幅は回り込み部分の長さの50%であった。なお、角部における厚さは3.2μmで十分な厚みを得ることができた。 As a result, a concave portion was formed on the end face and the wraparound portion of the external electrode. However, the maximum thickness of the external electrode on the end face was 48 μm, the minimum thickness was 19 μm, and the depth of the concave portion was 60.4% of the maximum thickness, exceeding 50%. The width of the concave portion was 50% of the width of the end face of the ceramic body. The maximum thickness of the external electrode in the wraparound portion was 25 μm, the minimum thickness was 15 μm, and the depth of the concave portion was 40.0% of the maximum thickness. The width of the concave portion was 50% of the length of the wraparound portion. The thickness at the corner was 3.2 μm, and a sufficient thickness could be obtained.
また、ブリスター、およびメッキ付け性については不合格は発生しなかったが、耐湿負荷試験では200個中8個の不合格が発生した。 In addition, although no failure occurred with respect to blistering and plating ability, 8 failures out of 200 occurred in the moisture resistance load test.
比較例5
銅粉末100重量部に対して、8.0重量部のアクリル系バインダを含む導電体ペーストを用いた点と、導電体ペーストの乾燥に昇温速度10℃/分の熱風循環乾燥を用いた点を除き、上記比較例1と同様にして、サンプルを作製し、各種観察、測定および試験を行った。
Comparative Example 5
The point which used the conductor paste containing 8.0 weight part acrylic binder with respect to 100 weight part of copper powders, and the point which used hot-air circulation drying for temperature rising rate 10 degree-C / min for drying of a conductor paste A sample was prepared in the same manner as in Comparative Example 1 except that various observations, measurements, and tests were performed.
その結果、外部電極の端面には凹状部が形成されたが、回り込み部には凹状部が形成されなかった。また、角部における厚さは1.7μmで十分な厚みを得ることができなかった。 As a result, a concave portion was formed on the end face of the external electrode, but no concave portion was formed on the wraparound portion. Moreover, the thickness at the corners was 1.7 μm, and a sufficient thickness could not be obtained.
実施例6
銅粉末100重量部に対して、6.5重量部のアクリル系バインダを含む導電体ペーストを用いた点を除き、上記比較例5と同様にして、サンプルを作製した。
Example 6
A sample was prepared in the same manner as in Comparative Example 5 except that a conductive paste containing 6.5 parts by weight of an acrylic binder was used with respect to 100 parts by weight of the copper powder.
その結果、外部電極の端面および回り込み部分に凹状部が形成された。端面における外部電極の最大厚さは54μm、最小厚さは41μmで、凹状部の深さは最大厚さの24.1%となり、凹状部分の幅はセラミック素体の端面の幅の40%であった。また、回り込み部における外部電極の最大厚さは26μm、最小厚さは23μmで、凹状部の深さは最大厚さの11.5%となり、凹状部分の幅は回り込み部分の長さの30%であった。また、角部における厚さは2.2μmで十分な厚みを得ることができた。 As a result, a concave portion was formed on the end face and the wraparound portion of the external electrode. The maximum thickness of the external electrode on the end face is 54 μm, the minimum thickness is 41 μm, the depth of the concave portion is 24.1% of the maximum thickness, and the width of the concave portion is 40% of the width of the end face of the ceramic body. there were. The maximum thickness of the external electrode in the wraparound portion is 26 μm, the minimum thickness is 23 μm, the depth of the concave portion is 11.5% of the maximum thickness, and the width of the concave portion is 30% of the length of the wraparound portion. Met. Further, the thickness at the corner was 2.2 μm, and a sufficient thickness could be obtained.
また、ブリスター、耐湿負荷試験およびメッキ付け性についての不合格は発生しなかった。 In addition, no failure occurred regarding the blister, moisture resistance load test and plating ability.
実施例7
銅粉末100重量部に対して、5.0重量部のアクリル系バインダを含む導電体ペーストを用いた点を除き、上記比較例5と同様にして、サンプルを作製した。
Example 7
A sample was prepared in the same manner as in Comparative Example 5 except that a conductive paste containing 5.0 parts by weight of an acrylic binder was used with respect to 100 parts by weight of the copper powder.
その結果、外部電極の端面および回り込み部分に凹状部が形成された。端面における外部電極の最大厚さは50μm、最小厚さは33μmで、凹状部の深さは最大厚さの34.0%となり、凹状部分の幅はセラミック素体の端面の幅の50%であった。また、回り込み部における外部電極の最大厚さは25μm、最小厚さは18μmで、凹状部の深さは最大厚さの28.0%となり、凹状部分の幅は回り込み部分の長さの40%であった。また、角部における厚さは2.8μmで十分な厚みを得ることができた。 As a result, a concave portion was formed on the end face and the wraparound portion of the external electrode. The maximum thickness of the external electrode at the end face is 50 μm, the minimum thickness is 33 μm, the depth of the concave portion is 34.0% of the maximum thickness, and the width of the concave portion is 50% of the width of the end face of the ceramic body. there were. Further, the maximum thickness of the external electrode in the wraparound portion is 25 μm, the minimum thickness is 18 μm, the depth of the concave portion is 28.0% of the maximum thickness, and the width of the concave portion is 40% of the length of the wraparound portion. Met. Further, the thickness at the corner was 2.8 μm, and a sufficient thickness could be obtained.
また、ブリスター、耐湿負荷試験およびメッキ付け性についての不合格は発生しなかった。 In addition, no failure occurred regarding the blister, moisture resistance load test and plating ability.
実施例8
銅粉末100重量部に対して、4.0重量部のアクリル系バインダを含む導電体ペーストを用いた点を除き、上記比較例5と同様にして、サンプルを作製した。
Example 8
A sample was prepared in the same manner as in Comparative Example 5 except that a conductive paste containing 4.0 parts by weight of an acrylic binder was used with respect to 100 parts by weight of the copper powder.
その結果、外部電極の端面および回り込み部分に凹状部が形成された。端面における外部電極の最大厚さは50μm、最小厚さは25μmで、凹状部の深さは最大厚さの50.0%となり、凹状部分の幅はセラミック素体の端面の幅の60%であった。また、回り込み部における外部電極の最大厚さは24μm、最小厚さは15μmで、凹状部の深さは最大厚さの37.5%となり、凹状部分の幅は回り込み部分の長さの50%であった。また、角部における厚さは3.0μmで十分な厚みを得ることができた。 As a result, a concave portion was formed on the end face and the wraparound portion of the external electrode. The maximum thickness of the external electrode at the end face is 50 μm, the minimum thickness is 25 μm, the depth of the concave portion is 50.0% of the maximum thickness, and the width of the concave portion is 60% of the width of the end face of the ceramic body. there were. The maximum thickness of the external electrode at the wraparound portion is 24 μm, the minimum thickness is 15 μm, the depth of the concave portion is 37.5% of the maximum thickness, and the width of the concave portion is 50% of the length of the wraparound portion. Met. Further, the thickness at the corner was 3.0 μm, and a sufficient thickness could be obtained.
また、ブリスター、耐湿負荷試験およびメッキ付け性についての不合格は発生しなかった。 In addition, no failure occurred regarding the blister, moisture resistance load test and plating ability.
本発明は、以上の実施態様および実施例に限定されることなく、特許請求の範囲に記載された発明の範囲内で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。 The present invention is not limited to the above embodiments and examples, and various modifications can be made within the scope of the invention described in the claims, and these are also included in the scope of the present invention. It goes without saying that it is a thing.
たとえば、前記実施態様および実施例においては、ディップ塗布法によって、外部電極が形成されているが、外部電極をディップ塗布法によって形成することは必ずしも必要でない。 For example, in the above embodiments and examples, the external electrode is formed by the dip coating method, but it is not always necessary to form the external electrode by the dip coating method.
1 外部電極
1a セラミック素体の端面に形成された外部電極の凹状部
1b セラミック素体の主要な表面、裏面および両側面に形成された外部電極の凹状部
2 セラミック素体
3、4 セラミック素体の端面
3a、4a セラミック素体の端面の角部
3b、4b セラミック素体の端面の略中央部
3c、4c 第一の位置
3d、4d 第二の位置
5 セラミック素体の主要な表面
6 セラミック素体の主要な裏面
5a、6a セラミック素体の主要な表面、裏面および両側面に形成された外部電極の終端部
5c、6c 第三の位置
5d、6d 第四の位置
DESCRIPTION OF SYMBOLS 1
Claims (2)
The multilayer ceramic electronic component according to claim 1, wherein the terminal electrode is formed by a dip coating method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011143739A JP5794840B2 (en) | 2011-06-29 | 2011-06-29 | Multilayer ceramic electronic components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011143739A JP5794840B2 (en) | 2011-06-29 | 2011-06-29 | Multilayer ceramic electronic components |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2013012561A true JP2013012561A (en) | 2013-01-17 |
JP2013012561A5 JP2013012561A5 (en) | 2014-06-05 |
JP5794840B2 JP5794840B2 (en) | 2015-10-14 |
Family
ID=47686216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011143739A Active JP5794840B2 (en) | 2011-06-29 | 2011-06-29 | Multilayer ceramic electronic components |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5794840B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015035589A (en) * | 2013-07-10 | 2015-02-19 | 株式会社村田製作所 | Ceramic electronic component |
US20180082793A1 (en) * | 2016-09-16 | 2018-03-22 | Tdk Corporation | Electronic Component |
CN109427478A (en) * | 2017-08-31 | 2019-03-05 | Tdk株式会社 | Electronic component |
US11482379B2 (en) | 2019-11-18 | 2022-10-25 | Taiyo Yuden Co., Ltd. | Ceramic electronic component and manufacturing method of the same |
WO2023188640A1 (en) * | 2022-03-28 | 2023-10-05 | 株式会社村田製作所 | Electronic component and method for producing same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004079480A (en) * | 2002-08-22 | 2004-03-11 | Murata Mfg Co Ltd | Organic binder, conductive paste for external electrode and ceramic electronic component using same, and manufacturing method of conductive paste for external electrode |
JP2006278162A (en) * | 2005-03-29 | 2006-10-12 | Kyocera Corp | Conductive paste and electronic component using the same |
JP2007134398A (en) * | 2005-11-08 | 2007-05-31 | Tdk Corp | Electronic component |
JP2007149975A (en) * | 2005-11-28 | 2007-06-14 | Sekisui Chem Co Ltd | Ceramic capacitor, method for manufacturing the same, and ceramic green sheet |
JP2009239204A (en) * | 2008-03-28 | 2009-10-15 | Tdk Corp | Manufacturing method for electronic component |
JP2009253010A (en) * | 2008-04-07 | 2009-10-29 | Panasonic Corp | Multilayer ceramic electronic component |
JP2010147309A (en) * | 2008-12-19 | 2010-07-01 | Tdk Corp | Method for manufacturing electronic component |
-
2011
- 2011-06-29 JP JP2011143739A patent/JP5794840B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004079480A (en) * | 2002-08-22 | 2004-03-11 | Murata Mfg Co Ltd | Organic binder, conductive paste for external electrode and ceramic electronic component using same, and manufacturing method of conductive paste for external electrode |
JP2006278162A (en) * | 2005-03-29 | 2006-10-12 | Kyocera Corp | Conductive paste and electronic component using the same |
JP2007134398A (en) * | 2005-11-08 | 2007-05-31 | Tdk Corp | Electronic component |
JP2007149975A (en) * | 2005-11-28 | 2007-06-14 | Sekisui Chem Co Ltd | Ceramic capacitor, method for manufacturing the same, and ceramic green sheet |
JP2009239204A (en) * | 2008-03-28 | 2009-10-15 | Tdk Corp | Manufacturing method for electronic component |
JP2009253010A (en) * | 2008-04-07 | 2009-10-29 | Panasonic Corp | Multilayer ceramic electronic component |
JP2010147309A (en) * | 2008-12-19 | 2010-07-01 | Tdk Corp | Method for manufacturing electronic component |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015035589A (en) * | 2013-07-10 | 2015-02-19 | 株式会社村田製作所 | Ceramic electronic component |
US20180082793A1 (en) * | 2016-09-16 | 2018-03-22 | Tdk Corporation | Electronic Component |
JP2018046228A (en) * | 2016-09-16 | 2018-03-22 | Tdk株式会社 | Electronic component |
US10790091B2 (en) * | 2016-09-16 | 2020-09-29 | Tdk Corporation | Electronic component having depression on surface |
CN109427478A (en) * | 2017-08-31 | 2019-03-05 | Tdk株式会社 | Electronic component |
JP2019046913A (en) * | 2017-08-31 | 2019-03-22 | Tdk株式会社 | Electronic component |
US10650972B2 (en) * | 2017-08-31 | 2020-05-12 | Tdk Corporation | Electronic component |
CN109427478B (en) * | 2017-08-31 | 2021-02-02 | Tdk株式会社 | Electronic component |
JP7052259B2 (en) | 2017-08-31 | 2022-04-12 | Tdk株式会社 | Electronic components |
US11482379B2 (en) | 2019-11-18 | 2022-10-25 | Taiyo Yuden Co., Ltd. | Ceramic electronic component and manufacturing method of the same |
WO2023188640A1 (en) * | 2022-03-28 | 2023-10-05 | 株式会社村田製作所 | Electronic component and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP5794840B2 (en) | 2015-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10176929B2 (en) | Solid electrolytic capacitor | |
JP5794840B2 (en) | Multilayer ceramic electronic components | |
US10008330B2 (en) | Tensile stress resistant multilayer ceramic capacitor | |
TWI658478B (en) | Electric component and method for manufacturing the same | |
JP6295662B2 (en) | Electronic components | |
US10014110B2 (en) | Multilayer ceramic capacitor | |
JP6028739B2 (en) | Manufacturing method of electronic parts | |
US11145453B2 (en) | Coil component | |
US10083795B2 (en) | Multilayer ceramic capacitor and mounted structure with multilayer ceramic capacitor | |
JP6106009B2 (en) | Ceramic electronic components | |
US10541085B2 (en) | Multilayer ceramic electronic component including an organic layer | |
JP6937176B2 (en) | Electronic components, electronic devices, and methods for manufacturing electronic components | |
US20190304699A1 (en) | Multilayer capacitor and installation structure of multilayer capacitor | |
US20160196922A1 (en) | Multilayer ceramic electronic component | |
US11393630B2 (en) | Multilayer electronic component including non-conductive resin layer on body thereof | |
JP7115461B2 (en) | Multilayer ceramic capacitor | |
JP2014239259A (en) | Multilayer capacitor and mounting structure of multilayer capacitor | |
JP2021028967A (en) | Multilayer ceramic electronic component and electrically conductive paste for resin electrode | |
JP2011109065A (en) | Electronic component and method of manufacturing the electronic component | |
KR20200115120A (en) | Multilayer ceramic electronic component | |
JP2017028253A (en) | Multilayer ceramic electronic component and method of manufacturing the same | |
JP2017011142A (en) | Ceramic electronic component | |
JP6393026B2 (en) | Metallized film capacitors | |
JP2018198297A (en) | Solid electrolytic capacitor | |
JP2011165935A (en) | Laminated electronic component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140421 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140421 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150810 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150811 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5794840 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |