JP2013012426A - Organic el panel and manufacturing method of the same - Google Patents

Organic el panel and manufacturing method of the same Download PDF

Info

Publication number
JP2013012426A
JP2013012426A JP2011145267A JP2011145267A JP2013012426A JP 2013012426 A JP2013012426 A JP 2013012426A JP 2011145267 A JP2011145267 A JP 2011145267A JP 2011145267 A JP2011145267 A JP 2011145267A JP 2013012426 A JP2013012426 A JP 2013012426A
Authority
JP
Japan
Prior art keywords
organic
filler
spacer
diameter
sealing substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011145267A
Other languages
Japanese (ja)
Inventor
Yusho Shida
有章 志田
Hisami Sato
久実 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seiki Co Ltd
Original Assignee
Nippon Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seiki Co Ltd filed Critical Nippon Seiki Co Ltd
Priority to JP2011145267A priority Critical patent/JP2013012426A/en
Publication of JP2013012426A publication Critical patent/JP2013012426A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8723Vertical spacers, e.g. arranged between the sealing arrangement and the OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8794Arrangements for heating and cooling

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic EL panel which improves the heat radiation performance and the strength and suppresses the occurrence of display failures, and to provide a manufacturing method of the organic EL panel.SOLUTION: An organic EL panel is formed by forming an organic EL element, holding at least an organic light emitting layer between both electrodes 2, 4, on a support substrate 1 and disposing a sealing substrate 5 hermetically covering the organic EL element on the support substrate 1 through an adhesive 6 containing a spacer 6a. A filler 7 containing a heat radiation filler 7a is arranged on a surface of the sealing substrate 5 which faces the organic EL element. The filler 7 has the height T2 at the time of the arrangement which is lower than the height T1 of the adhesive 6 at the time of the arrangement and is higher than the diameter a1 of the spacer 6a, and the heat radiation filler 7a has the diameter a2 smaller than the diameter a1 of the spacer 6a. The sealing substrate 5 and the support substrate are pressurized and bonded after the filler 7 is disposed.

Description

本発明は、両電極間に少なくとも有機発光層を挟持してなる有機EL(Electro-Luminescence)素子を支持基板上に形成した有機ELパネルに関するものであり、特に気密空間に充填剤を配設した有機ELパネル及びその製造方法に関するものである。   The present invention relates to an organic EL panel in which an organic EL (Electro-Luminescence) element formed by sandwiching at least an organic light emitting layer between both electrodes is formed on a support substrate, and in particular, a filler is disposed in an airtight space. The present invention relates to an organic EL panel and a method for manufacturing the same.

近年有機EL素子を用いた有機ELパネルは、自発光装置として脚光を浴びており、ディスプレイ用途としては液晶表示装置に比べて視野角依存性が少ない、コントラスト比が高い、薄膜化が可能であるなどの利点から市場投入が進み、最近では有機ELパネルを使用した薄型テレビも市場投入された。   In recent years, organic EL panels using organic EL elements have been spotlighted as self-luminous devices, and display applications have less viewing angle dependency than liquid crystal display devices, have high contrast ratios, and can be thinned. Due to the advantages such as, flat screen televisions using organic EL panels have recently been put on the market.

また、最近では有機ELパネルは照明装置としても市場投入され始めており、照明用途としての開発も盛んに行われている。特に照明用途としての有機ELパネルは、高輝度化に伴う放熱技術が重要な開発項目の1つである。   In recent years, organic EL panels have begun to be put on the market as lighting devices, and development for lighting applications is actively performed. In particular, an organic EL panel for use in lighting is one of the development items in which a heat dissipation technique accompanying an increase in luminance is an important development item.

放熱技術として例えば特許文献1及び2に開示されるように、支持基板と封止基板との間の気密空間内に充填剤を充填する発明が開示されている。充填剤を充填することによって、放熱のほか、大型化に伴って撓みの生じる支持基板と封止基板との接触による表示不良を抑制することも可能である。   As disclosed in, for example, Patent Documents 1 and 2 as heat dissipation techniques, an invention is disclosed in which a filler is filled in an airtight space between a support substrate and a sealing substrate. By filling the filler, in addition to heat dissipation, it is also possible to suppress display defects due to contact between the support substrate and the sealing substrate that are bent with an increase in size.

特開2004−103534号公報JP 2004-103534 A 特再公表2008−102694号公報Japanese Patent Publication No. 2008-102694

しかしながら、上述の構成においては、支持基板と封止基板との接着時に両基板に圧力が付与される際や温度変化などの種々の条件で有機EL素子に対して圧力が付与される場合に、充填剤によって有機EL素子に物理的なダメージが与えられることで表示不良を引き起こすおそれがあるという問題点があり、有機ELパネルの放熱及び強度向上のためには更なる改良の余地があった。   However, in the above-described configuration, when pressure is applied to the organic EL element under various conditions such as temperature change or when pressure is applied to both substrates when the support substrate and the sealing substrate are bonded, There is a problem in that display defects may occur due to physical damage to the organic EL element due to the filler, and there is room for further improvement for heat dissipation and strength improvement of the organic EL panel.

本発明は、この問題に鑑みなされたものであり、放熱性や強度の向上が可能であり、また、表示不良の発生を抑制することが可能な有機ELパネル及びその製造方法を提供するものである。   The present invention has been made in view of this problem, and provides an organic EL panel capable of improving heat dissipation and strength, and capable of suppressing the occurrence of display defects, and a method for manufacturing the same. is there.

本発明は、前記課題を解決するため、両電極間に少なくとも有機発光層を挟持してなる有機EL素子を支持基板上に形成し、前記有機EL素子を気密的に覆う封止基板をスペーサーを含む接着剤を介して前記支持基板上に配設してなる有機ELパネルであって、
前記封止基板の前記有機EL素子との対向面に放熱性フィラーを含む充填剤が配設され、
前記充填剤は、その配設時高さが前記接着剤の配設時高さよりも低く、かつ、前記スペーサーの径よりも高く、前記放熱性フィラーはその径が前記スペーサーの径よりも小さく、
前記封止基板と前記支持基板とは前記充填剤配設後に加圧して接着されてなることを特徴とする。
In order to solve the above problems, the present invention forms an organic EL element having at least an organic light emitting layer between both electrodes on a supporting substrate, and a sealing substrate that hermetically covers the organic EL element with a spacer. An organic EL panel disposed on the support substrate via an adhesive containing,
A filler containing a heat dissipating filler is disposed on the surface of the sealing substrate facing the organic EL element,
The height of the filler is lower than the height of the adhesive when disposed, and higher than the diameter of the spacer, and the heat dissipating filler is smaller than the diameter of the spacer,
The sealing substrate and the support substrate are characterized by being pressed and bonded after the filler is disposed.

また、前記充填剤の配設時における前記スペーサーの径よりも高く配設される突出部の容積は、前記スペーサーの径に基づいて定められる設計上の気密空間の容量から前記充填剤の配設時における前記スペーサーの径以下に配設される非突出部の容積を除いた設計残容量よりも大きく、前記スペーサーの径+10μmに基づいて定められる限界気密空間の容量から前記非突出部の容積を除いた限界残容量よりも小さいことを特徴とする。   Further, the volume of the protruding portion disposed higher than the diameter of the spacer at the time of disposing the filler is determined based on the capacity of the designed airtight space determined based on the diameter of the spacer. The volume of the non-projecting portion is larger than the design remaining capacity excluding the volume of the non-projecting portion disposed below the diameter of the spacer at the time, and the volume of the limit airtight space determined based on the diameter of the spacer +10 μm It is smaller than the limit remaining capacity excluding.

また、前記封止基板は、前記充填剤の周囲に吸湿剤が配設されてなり、前記充填剤と前記吸湿剤との間に位置するように仕切り部が形成されてなることを特徴とする。   Further, the sealing substrate includes a hygroscopic agent disposed around the filler, and a partition portion is formed so as to be positioned between the filler and the hygroscopic agent. .

また、前記仕切り部は凸状であり、接着後の前記封止基板と前記支持基板との間隔よりも低く形成されてなることを特徴とする。   In addition, the partition portion is convex and is formed lower than the interval between the sealing substrate and the support substrate after bonding.

また、前記仕切り部は、接着後の前記封止基板と前記支持基板との間隔よりも前記封止基板の前記仕切り部形成個所の最大撓み量分より低く形成されてなることを特徴とする。   In addition, the partition portion is formed to be lower than a maximum deflection amount of the partition portion forming portion of the sealing substrate than an interval between the sealing substrate and the support substrate after bonding.

また、前記封止基板は、前記有機EL素子との対向面の表面粗さが1μm以上であることを特徴とする。   Further, the sealing substrate has a surface roughness of a surface facing the organic EL element of 1 μm or more.

本発明は、前記課題を解決するため、両電極間に少なくとも有機発光層を挟持してなる有機EL素子を支持基板上に形成し、前記有機EL素子を気密的に覆う封止基板をスペーサーを含む接着剤を介して前記支持基板上に配設してなる有機ELパネルの製造方法であって、
前記封止基板の前記有機EL素子との対向面に放熱性フィラーを含む充填剤を配設し、
前記充填剤を、その配設時高さが前記接着剤の配設時高さよりも低く、かつ、前記スペーサーの径よりも高くなるように配設し、前記放熱性フィラーはその径が前記スペーサーの径よりも小さく、
前記封止基板と前記支持基板とを前記充填剤配設後に加圧して接着することを特徴とする。
In order to solve the above problems, the present invention forms an organic EL element having at least an organic light emitting layer between both electrodes on a supporting substrate, and a sealing substrate that hermetically covers the organic EL element with a spacer. A method for producing an organic EL panel, which is disposed on the support substrate via an adhesive containing,
Disposing a filler containing a heat dissipating filler on the surface of the sealing substrate facing the organic EL element,
The filler is disposed such that the height when disposed is lower than the height when disposed and the diameter of the spacer is larger than the diameter of the spacer. Smaller than the diameter of
The sealing substrate and the supporting substrate are pressed and bonded after the filler is disposed.

また、前記充填剤の配設時における前記スペーサーの径よりも高く配設される突出部の容積が、前記スペーサーの径に基づいて定められる設計上の気密空間の容量から前記充填剤の配設時における前記スペーサーの径以下に配設される非突出部の容積を除いた設計残容量よりも大きく、前記スペーサーの径+10μmに基づいて定められる限界気密空間の容量から前記非突出部の容積を除いた限界残容量よりも小さくなるように前記充填剤を配設することを特徴とする。   Further, the volume of the projecting portion disposed higher than the diameter of the spacer at the time of disposing the filler is determined based on the capacity of the designed airtight space determined based on the diameter of the spacer. The volume of the non-projecting portion is larger than the design remaining capacity excluding the volume of the non-projecting portion disposed below the diameter of the spacer at the time, and the volume of the limit airtight space determined based on the diameter of the spacer +10 μm The filler is disposed so as to be smaller than the limit remaining capacity excluding.

本発明は、両電極間に少なくとも有機発光層を挟持してなる有機EL素子を支持基板上に形成した有機ELパネルに関するものであり、特に気密空間に充填剤を配設した有機ELパネル及びその製造方法に関するものであり、放熱性や強度の向上が可能であり、また、表示不良の発生を抑制することが可能となる。   The present invention relates to an organic EL panel in which an organic EL element having at least an organic light emitting layer sandwiched between both electrodes is formed on a support substrate, and in particular, an organic EL panel in which a filler is disposed in an airtight space and its The present invention relates to a manufacturing method, which can improve heat dissipation and strength, and can suppress the occurrence of display defects.

本発明の実施形態である有機ELパネルを示す断面図。Sectional drawing which shows the organic electroluminescent panel which is embodiment of this invention. 同上の有機ELパネルの製造方法を示す図。The figure which shows the manufacturing method of an organic electroluminescent panel same as the above. 同上の有機ELパネルの封止基板を示す平面図。The top view which shows the sealing substrate of an organic electroluminescent panel same as the above. 同上の有機ELパネルの別例を示す図。The figure which shows another example of an organic electroluminescent panel same as the above. 同上の有機ELパネルの別例を示す図。The figure which shows another example of an organic electroluminescent panel same as the above. 同上の有機ELパネルにおける封止基板の一部を示す簡略図。The simplification figure which shows a part of sealing substrate in an organic electroluminescent panel same as the above.

以下、本発明の一実施形態を添付の図面に基いて説明する。図1は本発明の実施形態である有機ELパネルを示すものである。有機ELパネルは、支持基板1上に透明電極(陽極)2、機能層3、背面電極(陰極)4からなる発光部(有機EL素子)を形成し、また、支持基板1上に封止基板5を接着剤6を介して配設してなる。また、封止基板5の発光部との対向面には充填剤7配設されている。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows an organic EL panel according to an embodiment of the present invention. In the organic EL panel, a light emitting part (organic EL element) including a transparent electrode (anode) 2, a functional layer 3, and a back electrode (cathode) 4 is formed on a support substrate 1, and a sealing substrate is formed on the support substrate 1. 5 is disposed via an adhesive 6. A filler 7 is disposed on the surface of the sealing substrate 5 facing the light emitting portion.

支持基板1は、例えば光透過性を有するガラス基板からなる矩形状の基板である。   The support substrate 1 is a rectangular substrate made of, for example, a light transmissive glass substrate.

透明電極2は、例えばITO、IZO(登録商標)、ZnO、AZO、GZO等の透明導電材料からなるものであり、スパッタリング法、真空蒸着法、スピン塗布法、インクジェット法等の手段によって層状に形成された後、フォトリソグラフィー法により所望の形状にパターニングされてなる。また、透明電極2上には配線抵抗を低減するために、アルミニウム(Al)、モリブデン(Mo)、チタン(Ti)、銀(Ag)、銅(Cu)、クロム(Cr)、ニッケル(Ni)等の低抵抗の金属材料あるいはこれらの合金の単層あるいは積層からなる補助電極を部分的に形成してもよい。また、透明電極2の端部上に短絡を防止するための無機材料や高分子材料からなる絶縁膜を形成してもよい。絶縁膜は、スパッタリング法、真空蒸着法、スピン塗布法、インクジェット法等の手段によって層状に形成された後、フォトリソグラフィー法により所望の形状にパターニングされる。   The transparent electrode 2 is made of a transparent conductive material such as ITO, IZO (registered trademark), ZnO, AZO, GZO, etc., and is formed in a layered manner by means such as sputtering, vacuum deposition, spin coating, and inkjet. Then, it is patterned into a desired shape by a photolithography method. On the transparent electrode 2, in order to reduce wiring resistance, aluminum (Al), molybdenum (Mo), titanium (Ti), silver (Ag), copper (Cu), chromium (Cr), nickel (Ni) An auxiliary electrode made of a single layer or a laminate of a low-resistance metal material such as these or an alloy thereof may be partially formed. Further, an insulating film made of an inorganic material or a polymer material for preventing a short circuit may be formed on the end portion of the transparent electrode 2. The insulating film is formed into a layer by means of a sputtering method, a vacuum deposition method, a spin coating method, an ink jet method or the like, and then patterned into a desired shape by a photolithography method.

機能層3は、少なくとも有機発光層を有するものであり、例えば、正孔注入層、正孔輸送層、有機発光層、電子輸送層及び電子注入層からなり、各層が真空蒸着法等の手段によって形成されてなるものである。   The functional layer 3 has at least an organic light emitting layer, and includes, for example, a hole injection layer, a hole transport layer, an organic light emitting layer, an electron transport layer, and an electron injection layer, and each layer is formed by means such as a vacuum deposition method. It is formed.

背面電極4は、例えばアルミニウム(Al)、カルシウム(Ca)、モリブデン(Mo)、チタン(Ti)、銀(Ag)、金(Au)、銅(Cu)、クロム(Cr)、ニッケル(Ni)、マグネシウム(Mg)等の低抵抗の金属導電材料やIZO(登録商標)、ZnO、AZO、GZO等の透明導電材料あるいはこれらの合金からなるものであり、真空蒸着法やスパッタリング法等の手段によって層状に形成されてなる。透明電極2と背面電極4とが対向し、機能層3を挟持する個所が前記発光部となる。   The back electrode 4 is made of, for example, aluminum (Al), calcium (Ca), molybdenum (Mo), titanium (Ti), silver (Ag), gold (Au), copper (Cu), chromium (Cr), nickel (Ni). It is made of a low-resistance metal conductive material such as magnesium (Mg), a transparent conductive material such as IZO (registered trademark), ZnO, AZO, or GZO, or an alloy thereof, and by means such as vacuum deposition or sputtering. It is formed in layers. The portion where the transparent electrode 2 and the back electrode 4 face each other and sandwich the functional layer 3 is the light emitting portion.

封止基板5は、例えば支持基板1と同様に光透過性を有するガラス基板からなる矩形状の基板からなり、スペーサー6aを含有する紫外線硬化型の接着剤6を周縁部に塗布し、この接着剤6を介して支持基板1上に接着されることで、支持基板1とともに発光部を収納する気密空間を形成するものである。また、封止基板5は、前記発光部との対向面に充填剤7が塗布されている。なお、封止基板5は、金属材料からなるものであってもよい。   The sealing substrate 5 is made of a rectangular substrate made of a light-transmitting glass substrate, for example, like the support substrate 1, and an ultraviolet curable adhesive 6 containing a spacer 6 a is applied to the peripheral portion and this adhesion is performed. By being adhered onto the support substrate 1 via the agent 6, an airtight space for accommodating the light emitting portion together with the support substrate 1 is formed. The sealing substrate 5 is coated with a filler 7 on the surface facing the light emitting portion. The sealing substrate 5 may be made of a metal material.

充填剤7は、放熱性フィラー7aを含む120Pa・s程度の粘度であるゲル化剤からなり、封止基板5の前記発光部との対向面に塗布して配設されるものである。放熱性フィラー7aは前記発光部から発生し吸湿剤9を介して伝達される熱を封止基板5から外部に放出する媒体となるものであり、溶剤や水分を一切含まないアルミナ、シリカ、シリコン、または鉄、亜鉛、銅、銀などの酸化物や窒化物、あるいはこれらを絶縁性の樹脂で覆ったものが用いられる。放熱性フィラー7aの径は例えば15〜20μmであるが、接着剤6のスペーサー6aの径よりも小さいものであれば、これよりも小さいものであっても大きいものであってもよい。   The filler 7 is made of a gelling agent having a viscosity of about 120 Pa · s including the heat dissipating filler 7 a, and is applied and disposed on the surface of the sealing substrate 5 facing the light emitting portion. The heat dissipating filler 7a serves as a medium for releasing the heat generated from the light emitting part and transmitted through the moisture absorbent 9 to the outside from the sealing substrate 5, and does not contain any solvent or moisture, such as alumina, silica, silicon Or oxides or nitrides of iron, zinc, copper, silver, or the like covered with an insulating resin. The diameter of the heat dissipating filler 7 a is, for example, 15 to 20 μm, but may be smaller or larger as long as it is smaller than the diameter of the spacer 6 a of the adhesive 6.

さらに、本実施形態における特徴部分について述べる。図2は有機ELパネルの製造方法における封止基板5への充填剤7の塗布工程及び支持基板1と封止基板5との接着工程を示すものである。
まず、封止基板5の前記発光部との対向面の周辺部にスペーサー6aを含有する接着剤6をディスペンサー等の手段によって塗布する(図2(a)参照)。このとき、接着剤6の塗布時(配設時)の高さをT1とする。
次に、封止基板5の前記発光部との対向面の接着剤6の塗布領域の内側に放熱性フィラー7aを含有する充填剤7をディスペンサー等の手段によって塗布する(図2(b)及び図3参照)。このとき、充填剤7の塗布時(配設時)の高さT2が、接着剤6の塗布時の高さT1より低く(T2<T1)、かつ、接着剤6のスペーサー6aの直径a1よりも若干高く(T2>a1)なるように充填剤7を塗布する。また、充填剤7は塗布時においては所定の長さd及び幅wのライン状に塗布され、封止基板5の全面には塗布されておらず、充填剤7の塗布領域には充填剤7が塗布されない領域(以下、間隔部とも言う)5aが設けられるようにする。さらに、塗布された充填剤7の容積S(S=T2・d・w)のうち、(T2−a1)・d・wで求められるスペーサー6aの直径a1よりも高い部位(以下、突出部とも言う)7bの容積S1(S1=(T2−a1)・d・w)が、スペーサー6aの直径a1に基づいて、x・y・a1で定められる設計上の気密空間の容量から(x、yは気密空間の縦横の長さを示し、さらに詳細には気密空間のうち両基板1、5の接着時に充填剤7が充填される空間の縦横の長さを示す)、塗布された充填剤7のうち、a1・d・wで求められるスペーサー6aの直径a1以下の部位(以下、非突出部とも言う)7cの容積を除いた設計残容量S2(S2=(x・y・a1)−(a1・d・w))と、スペーサー6aの直径a1+10μmに基づいて、x・y・(a1+10μm)で定められる限界気密空間の容量から非突出部7cの容積を除いた限界残容量S3(S3=(x・y・(a1+10μm))−(a1・d・w))との間で下記の関係を満たすように充填剤7が塗布される。
S2<S1<S3
すなわち、
(x・y・a1)−(a1・d・w)<(T2−a1)・d・w<(x・y・(a1+10μm))−(a1・d・w)
また、充填剤7に含有される放熱性フィラー7aは、その直径a2がスペーサー6aの直径a1よりも小さいものを用いる。スペーサー6aの直径a1は、後述する接着後の両基板1、5の間隔T3に依存するが、この間隔T3が高いと接着剤6を水分が透過しやすくなりシール性能が低下するため、スペーサー6aの直径a1は小さいことが望ましく、放熱性フィラー7aの直径a2はこれよりさらに小さくなる。
次に、上述のように接着剤6及び充填剤7を塗布した封止基板5と前記発光部を形成した支持基板1とを重ね合わせ(図2(c)参照)、さらに両基板1、5の平面に対して垂直方向に所定の圧力を加えた後、UVを照射して接着剤6を硬化させて両基板1、5を接着し前記発光部を封止する(図2(d)参照)。このとき、まず接着剤6が支持基板1と接触した後に加圧により押し潰され、その後に充填剤7が支持基板1(前記発光部を含む)と接触し、さらに加圧により両基板1、5の平面に対して水平方向に充填剤7が押し広がって間隔部5aを埋め、前記発光部を覆う。なお、上述の式を満たすように充填剤7を塗布する結果、充填剤7の塗布容積Sは設計上の気密空間の容量よりも大きくなり、充填剤7の塗布容積Sと充填剤7の粘度とによって両基板1、5はスペーサー6aの直径a1までは近接せず、接着後の両基板1、5間の間隔T3は、スペーサー6aの直径a1よりも高くなる。
Furthermore, the characteristic part in this embodiment is described. FIG. 2 shows an application process of the filler 7 to the sealing substrate 5 and an adhesion process between the support substrate 1 and the sealing substrate 5 in the manufacturing method of the organic EL panel.
First, the adhesive 6 containing the spacer 6a is applied to the peripheral portion of the surface of the sealing substrate 5 facing the light emitting portion by means such as a dispenser (see FIG. 2A). At this time, the height when applying (disposing) the adhesive 6 is T1.
Next, a filler 7 containing a heat dissipating filler 7a is applied to the inside of the application region of the adhesive 6 on the surface facing the light emitting portion of the sealing substrate 5 by means such as a dispenser (FIG. 2 (b) and (See FIG. 3). At this time, the height T2 at the time of application (disposition) of the filler 7 is lower than the height T1 at the time of application of the adhesive 6 (T2 <T1), and from the diameter a1 of the spacer 6a of the adhesive 6 The filler 7 is applied so as to be slightly higher (T2> a1). In addition, the filler 7 is applied in a line shape having a predetermined length d and width w at the time of application, and is not applied to the entire surface of the sealing substrate 5. A region (hereinafter also referred to as an interval portion) 5a where no coating is applied is provided. Further, in the volume S (S = T2 · d · w) of the applied filler 7, a portion higher than the diameter a1 of the spacer 6a obtained by (T2−a1) · d · w (hereinafter referred to as a protrusion) The volume S1 of 7b (S1 = (T2-a1) · d · w) is calculated from the capacity of the design hermetic space determined by x · y · a1 based on the diameter a1 of the spacer 6a (x, y Indicates the vertical and horizontal lengths of the airtight space, and more specifically indicates the vertical and horizontal lengths of the space in which the filler 7 is filled when the substrates 1 and 5 are bonded to each other in the airtight space). Among these, the design remaining capacity S2 (S2 = (x · y · a1) − ( a1 · d · w)) and the diameter a1 + 10 μm of the spacer 6a, x · A limit remaining capacity S3 (S3 = (x · y · (a1 + 10 μm)) − (a1 · d · w) obtained by subtracting the volume of the non-projecting portion 7c from the capacity of the limit airtight space determined by (a1 + 10 μm) The filler 7 is applied so as to satisfy the following relationship:
S2 <S1 <S3
That is,
(X.y.a1)-(a1.d.w) <(T2-a1) .d.w <(x.y. (a1 + 10 .mu.m))-(a1.d.w)
In addition, as the heat dissipating filler 7a contained in the filler 7, a filler having a diameter a2 smaller than the diameter a1 of the spacer 6a is used. The diameter a1 of the spacer 6a depends on an interval T3 between the substrates 1 and 5 after bonding, which will be described later. However, if the interval T3 is high, moisture easily passes through the adhesive 6 and the sealing performance is deteriorated. The diameter a1 is desirably small, and the diameter a2 of the heat dissipating filler 7a is further smaller than this.
Next, the sealing substrate 5 to which the adhesive 6 and the filler 7 are applied as described above and the support substrate 1 on which the light-emitting portion is formed are overlapped (see FIG. 2C), and both the substrates 1, 5 are overlapped. After applying a predetermined pressure in a direction perpendicular to the plane of the substrate, the adhesive 6 is cured by irradiating UV, and the substrates 1 and 5 are bonded to seal the light emitting portion (see FIG. 2D). ). At this time, the adhesive 6 is first crushed by pressurization after coming into contact with the support substrate 1, and then the filler 7 is brought into contact with the support substrate 1 (including the light emitting part), and further, both substrates 1, The filler 7 pushes and spreads in the horizontal direction with respect to the plane of 5 to fill the space portion 5a and cover the light emitting portion. As a result of applying the filler 7 so as to satisfy the above formula, the application volume S of the filler 7 becomes larger than the designed capacity of the airtight space, and the application volume S of the filler 7 and the viscosity of the filler 7 are increased. Thus, the substrates 1 and 5 are not close to the diameter a1 of the spacer 6a, and the distance T3 between the substrates 1 and 5 after bonding is higher than the diameter a1 of the spacer 6a.

本実施形態は、放熱性フィラー7aを含む充填剤7を封止基板5の前記発光部との対向面に配設することで放熱性や強度の向上が可能である。さらに、上述の特徴により、充填剤7の塗布時の高さT2を接着剤6の塗布時の高さT1よりも低くすることで、両基板1、5の加圧時にはまず接着剤6が接触するため、充填剤7が接着剤6を乗り越えて気密空間外に漏れ出て前記発光部の配線や端子を覆って接続不良による表示不良を起こすことを抑制することができる。
さらに、充填剤7の塗布時の高さT2を接着剤6のスペーサー6aの直径6aよりも若干高くすることで、両基板1、5の加圧時に充填剤7を押し広げて前記発光部を隙間無く覆うことができ放熱性や強度を向上させることができる。
さらに、充填剤7に含有する放熱性フィラー7aの直径a2をスペーサー6aの直径a1よりも小さくすることによって、充填剤7の押し広げ時や温度変化によって充填剤7が前記発光部に応力を加える際にも放熱性フィラー7aによって前記発光部に物理的なダメージを与えることを抑制し、表示不良が起こることを抑制するができる。
また、両基板1、5間の間隔T3がスペーサー6aの直径a1に対して大きすぎる場合には前述のように接着剤6を水分が通過しやすくなりシール性能が低下するが、充填剤7の塗布容量を上述の式の範囲内とすることで隙間のない充填とシール性能の両立が実現できる。なお、充填剤7の粘度が低すぎる場合には、加圧時に充填剤7が広がりすぎ、また、粘度が高すぎる場合には、加圧しても充填剤7が間隔部5aを埋める程度に広がらないため、充填剤7の粘度は、200pa・s以下であって、動粘度が110000cSt±10000程度とすることが望ましい。
In the present embodiment, the heat dissipation and the strength can be improved by disposing the filler 7 including the heat dissipating filler 7a on the surface of the sealing substrate 5 facing the light emitting portion. Furthermore, due to the above-described features, the height T2 when the filler 7 is applied is lower than the height T1 when the adhesive 6 is applied, so that the adhesive 6 first contacts when both substrates 1 and 5 are pressed. Therefore, it is possible to prevent the filler 7 from getting over the adhesive 6 and leaking out of the airtight space to cover the wiring and terminals of the light emitting portion and cause a display failure due to poor connection.
Furthermore, by making the height T2 at the time of applying the filler 7 slightly higher than the diameter 6a of the spacer 6a of the adhesive 6, the filler 7 is spread and spread when the substrates 1 and 5 are pressed, and the light emitting part is It can be covered without a gap, and heat dissipation and strength can be improved.
Furthermore, by making the diameter a2 of the heat dissipating filler 7a contained in the filler 7 smaller than the diameter a1 of the spacer 6a, the filler 7 applies stress to the light emitting part when the filler 7 is expanded or when the temperature changes. In particular, it is possible to suppress physical damage to the light emitting portion by the heat dissipating filler 7a, and to suppress the occurrence of display defects.
If the distance T3 between the substrates 1 and 5 is too large with respect to the diameter a1 of the spacer 6a, the moisture can easily pass through the adhesive 6 as described above. By making the coating volume within the range of the above formula, it is possible to realize both filling without gaps and sealing performance. In addition, when the viscosity of the filler 7 is too low, the filler 7 spreads too much at the time of pressurization, and when the viscosity is too high, the filler 7 spreads to such an extent that the filler 7 fills the gap portion 5a even when pressurized. Therefore, it is desirable that the filler 7 has a viscosity of 200 pa · s or less and a kinematic viscosity of about 110000 cSt ± 10000.

なお、封止基板5の前記発光部との対向面には、気密空間内に侵入した水分を吸着するための吸湿剤を塗布してもよい。具体的には、図4に示すように、接着剤6と充填剤7との間に吸湿剤8を塗布する。吸湿剤8は、化学的あるいは物理的に水分を吸着する吸湿作用を有する活性アルミナ、モレキュラシーブス、酸化カルシウムあるいは酸化バリウム等の無機材料と樹脂材料とを混合してクリーム状あるいはペースト状に形成される。なお、本発明において吸湿剤8を塗布する場合には、設計時の気密空間を算出する際にx、yからは吸湿剤8の塗布領域の幅をそれぞれ除いて計算する。   In addition, you may apply | coat the moisture absorbent for adsorb | sucking the water | moisture content which penetrate | invaded in airtight space to the surface facing the said light emission part of the sealing substrate 5. FIG. Specifically, as shown in FIG. 4, a hygroscopic agent 8 is applied between the adhesive 6 and the filler 7. The hygroscopic agent 8 is formed into a cream or paste by mixing an inorganic material such as activated alumina, molecular sieves, calcium oxide or barium oxide having a hygroscopic action to adsorb moisture chemically or physically and a resin material. The When applying the hygroscopic agent 8 in the present invention, the calculation is performed by excluding the width of the application region of the hygroscopic agent 8 from x and y when calculating the airtight space at the time of design.

また、封止基板5に充填剤7と吸湿剤8とをそれぞれ塗布する場合には、充填剤7と吸湿剤8とが混ざり合うことで、化学反応を引き起こしたり部分的に膨張するなどして前記発光部にダメージを与えて表示不良を起こしたり、充填剤7及び吸湿剤8としての機能が損なわれ、補償する製品寿命が得られないといった問題が生じるおそれがある。
これに対し、図5に示すように、封止基板5の前記発光部との対向面に充填剤7と吸湿剤8との間に位置するように凸状の仕切り部5bを形成することで、充填剤7と吸湿剤8との混合を抑制し、信頼性を向上させることができる。仕切り部5bは、エッチング加工、フロスト加工、ブラスト加工あるいはこれらの組み合わせによって形成することができる。
また、仕切り部5bは、その高さT4が接着後の両基板1、5の間隔T3よりも低くなるように形成され、さらに望ましくは温度変化等による封止基板5の仕切り部5b形成個所の最大撓み量Δw部より低く形成される(T4<T3−Δw)。仕切り部5bと前記発光部(配線等を含む)との接触を防止して表示不良が起こることを抑制するためである。仕切り部5b形成個所の最大撓み量Δwは以下の式3で示す近似値とする。
図6は、封止基板5の半分を図示しており、図示の境界は中央部を示す。また、説明を簡略化するために充填剤7及び吸湿剤8等を省略している。図6に示すように、封止基板5の中央部の最大撓み量Δw(m)は、以下の数式1に近似する。

Figure 2013012426
なお、αは係数(−)であり、Lは荷重(N)であり、aは封止基板5の単辺長さ(m)(接着剤6の塗布領域を除く)であり、Dは封止基板5の剛性(N・m)を示す。
さらに、封止基板5の中央部に掛かる荷重Lは、以下の数式2で示される。
Figure 2013012426
したがって、仕切り部5b形成個所の最大撓み量Δw(m)は以下の数式3に近似する。
Figure 2013012426
なお、xは、封止基板5の中央部から仕切り部5bまでの長さを示す。 Further, when the filler 7 and the hygroscopic agent 8 are respectively applied to the sealing substrate 5, the filler 7 and the hygroscopic agent 8 are mixed to cause a chemical reaction or partially expand. The light emitting part may be damaged to cause a display defect, or the functions as the filler 7 and the hygroscopic agent 8 may be impaired, and the product life to be compensated may not be obtained.
On the other hand, as shown in FIG. 5, the convex partition part 5b is formed on the surface of the sealing substrate 5 facing the light emitting part so as to be positioned between the filler 7 and the hygroscopic agent 8. Further, the mixing of the filler 7 and the hygroscopic agent 8 can be suppressed, and the reliability can be improved. The partition portion 5b can be formed by etching, frosting, blasting, or a combination thereof.
Further, the partition portion 5b is formed such that its height T4 is lower than the interval T3 between the two substrates 1 and 5 after bonding, and more desirably, the partition portion 5b formation portion of the sealing substrate 5 due to temperature change or the like. It is formed lower than the maximum deflection amount Δw 2 part (T4 <T3-Δw 2 ). This is to prevent a display defect from occurring by preventing contact between the partition portion 5b and the light emitting portion (including wirings). The maximum amount of deflection Δw 2 at the portion where the partition portion 5b is formed is an approximate value represented by the following Expression 3.
FIG. 6 illustrates a half of the sealing substrate 5, and the illustrated boundary indicates the central portion. Further, in order to simplify the description, the filler 7 and the hygroscopic agent 8 are omitted. As shown in FIG. 6, the maximum deflection amount Δw 1 (m) of the central portion of the sealing substrate 5 is approximated by Equation 1 below.
Figure 2013012426
Α is a coefficient (−), L is a load (N), a is a single side length (m) of the sealing substrate 5 (excluding an application region of the adhesive 6), and D is a seal. The rigidity (N · m) of the stationary substrate 5 is shown.
Further, the load L applied to the central portion of the sealing substrate 5 is expressed by the following formula 2.
Figure 2013012426
Therefore, the maximum amount of deflection Δw 2 (m) at the portion where the partition portion 5b is formed approximates the following Equation 3.
Figure 2013012426
Incidentally, x 1 denotes the length from the central portion of the sealing substrate 5 to the partition portion 5b.

また、充填剤7の粘度が低い場合には、さらに、封止基板5の前記発光部との対向面をブラスト加工やフロスト加工などにより表面粗さRaが1μm以上となるように荒らすことで充填剤7の過度の広がりを抑制することができる。
また充填剤7の塗布領域を前記発光部よりも広くすることで前記発光部の発光領域と仕切り部5bとが接触することを避けることができる。
If the viscosity of the filler 7 is low, the surface of the sealing substrate 5 facing the light emitting portion is further roughened by blasting or frosting so that the surface roughness Ra is 1 μm or more. Excessive spread of the agent 7 can be suppressed.
Moreover, it can avoid that the light emission area | region of the said light emission part and the partition part 5b contact by making the application | coating area | region of the filler 7 wider than the said light emission part.

また、本実施形態において、封止基板5は平板状であったが、封止基板5は、周縁部に支持基板1方向の突出する支持部を形成して凹状とし、この支持部に接着剤6を塗布するものであってもよい。凹状の封止基板5を用いる場合、本発明における「接着剤6の塗布時の高さT1(接着剤の配設時高さ)」は、実際の接着剤6の塗布時の高さに前記支持部の高さを加算したものとなり、「スペーサー6aの直径a1(スペーサーの径)」は、実際のスペーサー6aの直径に前記支持部の高さを加算したものとなる。   Further, in the present embodiment, the sealing substrate 5 has a flat plate shape, but the sealing substrate 5 is formed in a concave shape by forming a supporting portion protruding in the direction of the supporting substrate 1 at the peripheral portion, and an adhesive is provided on the supporting portion. 6 may be applied. When the concave sealing substrate 5 is used, the “height T1 when the adhesive 6 is applied (height when the adhesive is disposed)” in the present invention is equal to the height when the actual adhesive 6 is applied. The height of the support portion is added, and “the diameter a1 of the spacer 6a (spacer diameter)” is obtained by adding the height of the support portion to the actual diameter of the spacer 6a.

以下、さらに実施例を上げ本発明の具体的な効果を説明する。   The specific effects of the present invention will be described below with further examples.

実施例は、前述の実施形態に示す有機ELパネルであって、まず、支持基板1上に透明電極2として膜厚300nmのITOをスパッタリング法で形成し、フォトリソグラフィー法で所望の形状にパターニングした。次に、配線抵抗を低減するための補助電極としてAlをスパッタリング法にて膜厚500nmで形成し、フォトリソグラフィー法で所望の形状にパターニングした。次に、絶縁膜としてポリイミドを膜厚1μmで透明電極2及び補助電極を部分的に覆うようにスピン塗布法で形成し、フォトリソグラフィー法で所望の形状にパターニングし、その後250℃で1時間の加熱処理を行い絶縁膜を焼成した。次に、透明電極2上に、機能層3として正孔注入層、正孔輸送層、有機発光層、電子輸送層、電子注入層をこの順に真空蒸着法で形成し、その後、背面電極4としてAlを真空蒸着法にて膜厚100nmで形成し、発光部を設けた。
また、封止基板5として0.5mm厚の平板ソーダガラスを用意し、後に発光部を覆うように周縁部に40μm径のスペーサー6aを1wt%含む紫外線硬化型の接着剤6を塗布した。接着剤6の塗布時の高さT1は200μm〜300μmとした。その後、封止基板5を窒素環境下のグローブボックスへ搬送し、CaOをベースとした化学吸湿剤を吸湿剤8として封止基板5の発光部との対向面の接着剤6より内側の2辺にディスペンサーにて塗布し、その後10〜20μm径のアルミナからなる放熱性フィラー7aを含む、粘度が約120Pa・sのゲル化剤からなる充填剤7を封止基板5の発光部との対向面の接着剤6及び吸湿剤8で囲まれる中央領域にディスペンサーで塗布した。充填剤7の塗布時の高さT2は80μm〜100μmとした。
そして、発光部を形成した支持基板1と、接着剤6、充填剤7及び吸湿剤8を塗布した封止基板5とを重ね合わせ、加圧及び紫外線照射を10J照射することで両者を接着させ有機ELパネルを作成した。なお、有機ELパネルは、外形サイズが48mm×50mm、画素(発光部)サイズが45mm×45mmとした。
An example is the organic EL panel shown in the above-described embodiment. First, ITO having a film thickness of 300 nm is formed on the support substrate 1 as the transparent electrode 2 by a sputtering method, and is patterned into a desired shape by a photolithography method. . Next, Al was formed with a film thickness of 500 nm by sputtering as an auxiliary electrode for reducing wiring resistance, and was patterned into a desired shape by photolithography. Next, polyimide is formed as an insulating film with a film thickness of 1 μm by spin coating so as to partially cover the transparent electrode 2 and the auxiliary electrode, and patterned into a desired shape by photolithography, and then at 250 ° C. for 1 hour. The insulating film was baked by heat treatment. Next, a hole injection layer, a hole transport layer, an organic light emitting layer, an electron transport layer, and an electron injection layer are formed as a functional layer 3 on the transparent electrode 2 in this order by a vacuum deposition method. Al was formed with a film thickness of 100 nm by a vacuum deposition method, and a light emitting portion was provided.
Further, a flat soda glass having a thickness of 0.5 mm was prepared as the sealing substrate 5, and an ultraviolet curable adhesive 6 containing 1 wt% of a spacer 6 a having a diameter of 40 μm was applied to the peripheral portion so as to cover the light emitting portion later. Height T1 at the time of application | coating of the adhesive agent 6 was 200 micrometers-300 micrometers. Thereafter, the sealing substrate 5 is transported to a glove box under a nitrogen environment, and a chemical moisture absorbent based on CaO is used as the moisture absorbent 8 and two sides inside the adhesive 6 on the surface facing the light emitting portion of the sealing substrate 5. The surface of the sealing substrate 5 facing the light emitting portion is coated with a filler, which includes a heat dissipating filler 7a made of alumina having a diameter of 10 to 20 μm and a gelling agent having a viscosity of about 120 Pa · s. It applied with the dispenser to the center area | region enclosed with the adhesive agent 6 and the hygroscopic agent 8. The height T2 when the filler 7 was applied was 80 μm to 100 μm.
Then, the support substrate 1 on which the light emitting part is formed and the sealing substrate 5 coated with the adhesive 6, the filler 7, and the hygroscopic agent 8 are overlapped, and both are adhered by applying 10 J of pressure and ultraviolet irradiation. An organic EL panel was prepared. The organic EL panel had an outer size of 48 mm × 50 mm and a pixel (light emitting portion) size of 45 mm × 45 mm.

(比較例1)
比較例1として接着剤6の塗布時の高さT1は実施例1と同様の200μm〜300μmで塗布し、実施例1と同様に吸湿剤8を塗布した後、40〜60μm径のアルミナからなる放熱性フィラー7aを含む、粘度が約140Pa・sのゲル化剤からなる充填剤7を封止基板5の発光部との対向面の接着剤6及び吸湿剤8で囲まれる中央領域にディスペンサーで塗布した。充填剤7の塗布時の高さT2は、比較例1では接着剤6の塗布時の高さT1とほぼ同様になるよう200μm〜300μmとした。また接着剤6は実施例1と同様のものを使用し、含有するスペーサーは40μm径である。
なお、上述した他は実施例1と同様にして比較例1としての有機ELパネルを作成した。
(Comparative Example 1)
As Comparative Example 1, the height T1 at the time of application of the adhesive 6 is 200 μm to 300 μm, which is the same as that in Example 1, and after the moisture absorbent 8 is applied as in Example 1, it is made of alumina having a diameter of 40-60 μm. A filler 7 including a heat dissipating filler 7a and made of a gelling agent having a viscosity of about 140 Pa · s is dispensed in a central region surrounded by the adhesive 6 and the hygroscopic agent 8 on the surface facing the light emitting portion of the sealing substrate 5 with a dispenser. Applied. In the comparative example 1, the height T2 when the filler 7 was applied was set to 200 μm to 300 μm so as to be substantially the same as the height T1 when the adhesive 6 was applied. The adhesive 6 is the same as in Example 1, and the spacer contained has a diameter of 40 μm.
In addition, the organic EL panel as Comparative Example 1 was prepared in the same manner as Example 1 except for the above.

(評価方法)
実施例1及び比較例1の評価方法として、まず、外観観察にて充填剤7の漏れ及び吸湿剤8への接触があるか否かを確認した。
また、−40℃/80℃の温度環境下で輝度3000cd/mで発光駆動させるヒートサイクル試験を1000時間行った。これは温度変化により気密空間内に含まれる空気の気圧変化に伴う膨張収縮により、充填剤7により発光部に与えられる応力が変化することでダメージを与え、表示不良を起こすか否かを評価するものである。
また、同様に、−40℃の低温環境下で輝度3000cd/mで発光駆動させる低温動作試験を1000時間行った。これは上記と同様に室温に比べて発光部に与えられる応力が大きくなる低温環境下で、充填剤7により発光部にダメージが与えられ、表示不良を起こすか否かを評価するものである。
また、両基板の重ね合わせ時に加わる圧力によって充填剤7により発光部にダメージが与えられ、表示不良が起こるか否かを早期に確認することを目的として、表示不良を加速させる80℃の高温環境下で輝度3000cd/mで発光駆動させる高温動作試験を1000時間を行った。
(Evaluation method)
As an evaluation method of Example 1 and Comparative Example 1, first, it was confirmed by appearance observation whether there was leakage of the filler 7 and contact with the hygroscopic agent 8.
Further, a heat cycle test in which light emission was driven at a luminance of 3000 cd / m 2 under a temperature environment of −40 ° C./80° C. was performed for 1000 hours. This is to evaluate whether or not a display defect is caused by causing damage due to a change in the stress applied to the light emitting part by the filler 7 due to expansion and contraction accompanying a change in air pressure of the air contained in the airtight space due to a temperature change. Is.
Similarly, a low-temperature operation test in which light emission was driven at a luminance of 3000 cd / m 2 under a low temperature environment of −40 ° C. was performed for 1000 hours. This evaluates whether or not the light emitting portion is damaged by the filler 7 and causes a display defect under a low temperature environment in which the stress applied to the light emitting portion is larger than that at room temperature as described above.
Further, a high temperature environment of 80 ° C. for accelerating the display defect for the purpose of confirming at an early stage whether or not the light emitting part is damaged by the filler 7 due to the pressure applied when the two substrates are overlapped, and the display defect occurs. A high temperature operation test in which light emission was driven at a luminance of 3000 cd / m 2 was performed for 1000 hours.

Figure 2013012426

上表1は、前述の充填剤7の漏れ及び吸湿剤8への接触の有無、ヒートサイクル試験、低温動作試験及び高温動作試験の評価結果を示すものである。比較例1においては充填剤7の漏れ、ならびに吸湿剤8への接触が確認され、また、何れの試験においても表示不良(ダークスポット)が多数発生しているのに対し、実施例1においては充填剤7の漏れ及び吸湿剤8への接触は確認されず、表示不良も生じていない。これにより、本発明を適用することで、充填剤7により放熱性や強度を向上させた構成において、充填剤7の漏れや吸湿剤8への接触が生じることがなく、また、種々の状況により発光部の面方向に圧力が掛かる場合であっても、圧力によりキズが生じて表示不良を引き起こすことを抑制することができる効果が十分に得られることは明らかである。
Figure 2013012426

Table 1 above shows the evaluation results of the leakage of the filler 7 and the presence or absence of contact with the moisture absorbent 8, the heat cycle test, the low temperature operation test, and the high temperature operation test. In Comparative Example 1, leakage of the filler 7 and contact with the hygroscopic agent 8 were confirmed. In addition, in each test, many display defects (dark spots) occurred, whereas in Example 1, The leakage of the filler 7 and the contact with the hygroscopic agent 8 are not confirmed, and there is no display defect. Thereby, by applying the present invention, in the configuration in which the heat dissipation and strength are improved by the filler 7, the leakage of the filler 7 and the contact with the hygroscopic agent 8 do not occur, and depending on various situations Even when pressure is applied in the surface direction of the light emitting portion, it is clear that an effect capable of suppressing the occurrence of display defects due to scratches due to the pressure is sufficiently obtained.

次に、実施例2〜4及び比較例2、3を用いて封止基板5に充填剤7及び吸湿剤8を塗布し、さらに両者の間に仕切り部5bを形成した場合の具体的な効果について説明する。   Next, specific effects when the filler 7 and the hygroscopic agent 8 are applied to the sealing substrate 5 using Examples 2 to 4 and Comparative Examples 2 and 3, and the partition portion 5b is further formed between them. Will be described.

実施例2として、封止基板5に0.7mmのソーダガラスを使用し、フロスト加工にて表面を表面粗さRaが1μm以上5μm以下の精度で加工した。その際、封止基板5の充填剤7を塗布する領域と吸湿剤8を塗布する領域とを分割するべく凸状の仕切り部5bをエッチング加工でパターニングした。仕切り部5bの高さT4は、接着後の両基板1、5の間隔T3よりも封止基板5の仕切り部5b形成個所の最大撓み量Δw分より低くなるようにした。封止基板5に仕切り部5bで分割された中央領域に充填剤7を塗布した後、同環境下で仕切り部5bで分割された外側領域に吸湿剤8としてCaOをベースとした化学吸湿剤をディスペンサーにて塗布した。なお、接着剤6の塗布幅は1.5mmとした。上述の他は実施例1と同様にして有機ELパネルを作成した。 As Example 2, 0.7 mm soda glass was used for the sealing substrate 5, and the surface was processed with an accuracy of a surface roughness Ra of 1 μm to 5 μm by frost processing. At that time, the convex partition part 5b was patterned by etching to divide the region where the filler 7 of the sealing substrate 5 was applied and the region where the hygroscopic agent 8 was applied. The height T4 of the partition portion 5b were to be lower than the maximum deflection amount [Delta] w 2 minutes of the partition portion 5b forming point of the sealing substrate 5 than the distance T3 between the substrates 1 and 5 after bonding. After applying the filler 7 to the central region divided by the partition portion 5b on the sealing substrate 5, a chemical moisture absorbent based on CaO as the moisture absorbent 8 is applied to the outer region divided by the partition portion 5b in the same environment. It apply | coated with the dispenser. The application width of the adhesive 6 was 1.5 mm. Other than the above, an organic EL panel was prepared in the same manner as in Example 1.

実施例3として、封止基板5をエッチング加工にて表面を加工し、ブラスト加工にて仕切り部5bをパターニングし、仕切り部5bを含む表面をエッチング加工にて表面処理を行った他は、実施例2と同様にして有機ELパネルを作成した。   Example 3 was carried out except that the surface of the sealing substrate 5 was processed by etching, the partition part 5b was patterned by blasting, and the surface including the partition part 5b was surface-treated by etching. An organic EL panel was prepared in the same manner as in Example 2.

実施例4として、封止基板5を、エッチングの加工精度以下の幅の凸部形状を有するレジストパターンを形成してエッチング加工を施し、実施例2及び3と比較して尖った形状の仕切り部5bを形成し、フロスト加工にて封止基板5の表面を表面粗さRaが0.1mmとなるように加工した他は、実施例2と同様にして有機ELパネルを作成した。   As Example 4, the sealing substrate 5 is etched by forming a resist pattern having a convex shape with a width less than or equal to the etching processing accuracy, and the partition portion having a sharp shape as compared with Examples 2 and 3 is used. An organic EL panel was prepared in the same manner as in Example 2 except that 5b was formed and the surface of the sealing substrate 5 was processed by frosting so that the surface roughness Ra was 0.1 mm.

(比較例2)
比較例2として、仕切り部5bを形成せず、また、封止基板5に充填剤7を塗布せずに吸湿剤8のみを塗布した他は、実施例2と同様にして有機ELパネルを形成した。
(比較例3)
比較例3として、仕切り部5bを形成せず、封止基板5に充填剤7と吸湿剤8とを塗布した他は、実施例2と同様にして有機ELパネルを形成した。
(Comparative Example 2)
As Comparative Example 2, an organic EL panel was formed in the same manner as in Example 2 except that the partition portion 5b was not formed and only the moisture absorbent 8 was applied to the sealing substrate 5 without applying the filler 7. did.
(Comparative Example 3)
As Comparative Example 3, an organic EL panel was formed in the same manner as in Example 2 except that the partition portion 5b was not formed and the filler 7 and the hygroscopic agent 8 were applied to the sealing substrate 5.

(評価方法)
実施例2〜4及び比較例2、3は、照明用として作成されている。実施例2〜4及び比較例2、3の評価方法として、まず、点灯のための駆動にフレーム周波数100Hz、順方向に定電流を0.3A印加して3000cd/mで色温度2000Kに発光するようにし、発光部のジャンクション温度Tjを計測した。
また、−40℃/80℃の温度環境下で輝度3000cd/mで発光駆動させるヒートサイクル試験を1000時間行った。これは温度変化により気密空間内に含まれる空気の気圧変化に伴う膨張収縮により、充填剤7により発光部に与えられる応力が変化することでダメージを与え、外観不良あるいは表示不良を起こすか否かを評価するものである。
また、60℃/90%の高温高湿環境下で輝度3000cd/mで発光駆動させる高温高湿動作試験を1000時間を行った。これは、本発明にて吸湿剤8の吸湿能力が低下していないか否かを評価するものである。また、車載スペックの振動耐久試験を実施した。これは、振動により、充填剤7により発光部に与えられる応力が変化することでダメージを与え、外観不良あるいは表示不良を起こすか否かを評価するものである。
(Evaluation method)
Examples 2 to 4 and Comparative Examples 2 and 3 are created for illumination. As an evaluation method in Examples 2 to 4 and Comparative Examples 2 and 3, first, a frame frequency of 100 Hz is applied to driving for lighting, a constant current of 0.3 A is applied in the forward direction, and light is emitted at a color temperature of 2000 K at 3000 cd / m 2. The junction temperature Tj of the light emitting part was measured.
Further, a heat cycle test in which light emission was driven at a luminance of 3000 cd / m 2 under a temperature environment of −40 ° C./80° C. was performed for 1000 hours. This is because whether the stress applied to the light emitting part by the filler 7 is changed due to the expansion and contraction caused by the change in the air pressure of the air contained in the airtight space due to the temperature change, causing damage and causing poor appearance or poor display. Is to evaluate.
In addition, a high temperature and high humidity operation test in which light emission was driven at a luminance of 3000 cd / m 2 in a high temperature and high humidity environment of 60 ° C./90% was performed for 1000 hours. This evaluates whether or not the hygroscopic ability of the hygroscopic agent 8 is lowered in the present invention. In addition, a vibration durability test of the in-vehicle spec was conducted. This is to evaluate whether or not the stress applied to the light emitting portion by the filler 7 is changed by the vibration due to the vibration and causes the appearance defect or the display defect.

Figure 2013012426

上表2は、前述の発熱温度の評価、ヒートサイクル試験、高温高湿動作試験、振動耐久試験の評価結果をしめすものである。発熱温度の評価において、比較例2はジャンクション温度Tjは室温環境下で約52℃であり、約27℃程度発熱していた。また、比較例2及び実施例2〜4は、ジャンクション温度Tjは約29℃で発熱は約4℃程度に抑えることができた。したがって、充填剤7を気密空間内に充填することで放熱効果が得られていることがわかる。また、ヒートサイクル試験においては、比較例2と比較例3の一部に外観あるいは点灯に不良が発生したのに対し、実施例2〜4にはいずれも不良は見られなかった。高温高湿試験においては実施例2〜4及び比較例2、3のいずれにも不良は見られなかった。振動耐久試験においては、仕切り部5bのない比較例3に充填剤7と吸湿剤8とが混ざり合うことによる吸湿能力の低下に伴う不良が見られた。実施例2〜4にはいずれも不良は見られなかった。これにより、本発明として封止基板5に仕切り部5bを形成することによって、充填剤7及び吸湿剤8の能力を低下させることなく、信頼性を向上させることができる効果が十分に得られることは明らかである。
Figure 2013012426

Table 2 above shows the evaluation results of the above-described evaluation of heat generation temperature, heat cycle test, high temperature and high humidity operation test, and vibration durability test. In the evaluation of the heat generation temperature, in Comparative Example 2, the junction temperature Tj was about 52 ° C. in a room temperature environment, and the heat generation was about 27 ° C. In Comparative Example 2 and Examples 2 to 4, the junction temperature Tj was about 29 ° C., and the heat generation could be suppressed to about 4 ° C. Therefore, it turns out that the heat dissipation effect is acquired by filling the filler 7 in airtight space. Further, in the heat cycle test, defects in appearance or lighting occurred in some of Comparative Examples 2 and 3, whereas no defects were found in Examples 2 to 4. In the high temperature and high humidity test, no defect was found in any of Examples 2 to 4 and Comparative Examples 2 and 3. In the vibration endurance test, a defect associated with a decrease in moisture absorption capability due to the mixing of the filler 7 and the moisture absorbent 8 with the comparative example 3 without the partition portion 5b was observed. In Examples 2 to 4, no defect was found. Thereby, the effect which can improve reliability is fully acquired, without reducing the capability of the filler 7 and the hygroscopic agent 8, by forming the partition part 5b in the sealing substrate 5 as this invention. Is clear.

本発明は、両電極の間に少なくとも有機発光層を挟持した発光部を支持基板上に形成した有機ELパネルに関するものであり、特に充填剤を気密空間内に配置した有機ELパネルに好適である。なお、本発明は、ディスプレイ用、照明用問わず適用可能であり、セグメント型ディスプレイタイプやドットマトリクス型ディスプレイタイプの有機ELパネルであっても適用可能である。   The present invention relates to an organic EL panel in which a light emitting portion having at least an organic light emitting layer sandwiched between both electrodes is formed on a support substrate, and is particularly suitable for an organic EL panel in which a filler is disposed in an airtight space. . The present invention can be applied regardless of whether it is for display or illumination, and can also be applied to an organic EL panel of a segment type display type or a dot matrix type display type.

1 支持基板
2 透明電極
3 機能層
4 背面電極
5 封止基板
5a 間隔部
5b 仕切り部
6 接着剤
6a スペーサー
7 充填剤
7a 放熱性フィラー
8 吸湿剤
DESCRIPTION OF SYMBOLS 1 Support substrate 2 Transparent electrode 3 Functional layer 4 Back electrode 5 Sealing substrate 5a Space | interval part 5b Partition part 6 Adhesive 6a Spacer 7 Filler 7a Heat-radiating filler 8 Hygroscopic agent

Claims (8)

両電極間に少なくとも有機発光層を挟持してなる有機EL素子を支持基板上に形成し、前記有機EL素子を気密的に覆う封止基板をスペーサーを含む接着剤を介して前記支持基板上に配設してなる有機ELパネルであって、
前記封止基板の前記有機EL素子との対向面に放熱性フィラーを含む充填剤が配設され、
前記充填剤は、その配設時高さが前記接着剤の配設時高さよりも低く、かつ、前記スペーサーの径よりも高く、前記放熱性フィラーはその径が前記スペーサーの径よりも小さく、
前記封止基板と前記支持基板とは前記充填剤配設後に加圧して接着されてなることを特徴とする有機ELパネル。
An organic EL element having at least an organic light emitting layer sandwiched between both electrodes is formed on a support substrate, and a sealing substrate that hermetically covers the organic EL element is formed on the support substrate through an adhesive including a spacer. An organic EL panel that is arranged,
A filler containing a heat dissipating filler is disposed on the surface of the sealing substrate facing the organic EL element,
The height of the filler is lower than the height of the adhesive when disposed, and higher than the diameter of the spacer, and the heat dissipating filler is smaller than the diameter of the spacer,
The organic EL panel, wherein the sealing substrate and the support substrate are pressed and bonded after the filler is disposed.
前記充填剤の配設時における前記スペーサーの径よりも高く配設される突出部の容積は、前記スペーサーの径に基づいて定められる設計上の気密空間の容量から前記充填剤の配設時における前記スペーサーの径以下に配設される非突出部の容積を除いた設計残容量よりも大きく、前記スペーサーの径+10μmに基づいて定められる限界気密空間の容量から前記非突出部の容積を除いた限界残容量よりも小さいことを特徴とする請求項1に記載の有機ELパネル。 The volume of the protrusion disposed higher than the diameter of the spacer at the time of disposing the filler is determined based on the capacity of the design hermetic space determined based on the diameter of the spacer at the time of disposing the filler. It is larger than the design remaining capacity excluding the volume of the non-projecting part arranged below the diameter of the spacer, and the volume of the non-projecting part is removed from the capacity of the limit airtight space determined based on the diameter of the spacer +10 μm. The organic EL panel according to claim 1, wherein the organic EL panel is smaller than a limit remaining capacity. 前記封止基板は、前記充填剤の周囲に吸湿剤が配設されてなり、前記充填剤と前記吸湿剤との間に位置するように仕切り部が形成されてなることを特徴とする請求項1に記載の有機ELパネル。 2. The sealing substrate according to claim 1, wherein a hygroscopic agent is disposed around the filler, and a partition portion is formed so as to be positioned between the filler and the hygroscopic agent. 1. The organic EL panel according to 1. 前記仕切り部は凸状であり、接着後の前記封止基板と前記支持基板との間隔よりも低く形成されてなることを特徴とする請求項3に記載の有機ELパネル。 4. The organic EL panel according to claim 3, wherein the partition portion has a convex shape and is formed to be lower than an interval between the sealing substrate and the support substrate after bonding. 前記仕切り部は、接着後の前記封止基板と前記支持基板との間隔よりも前記封止基板の前記仕切り部形成個所の最大撓み量分より低く形成されてなることを特徴とする請求項4に記載の有機ELパネル。 5. The partition portion is formed to be lower than a maximum deflection amount of the partition portion forming portion of the sealing substrate than an interval between the sealing substrate and the support substrate after bonding. The organic EL panel as described in 2. 前記封止基板は、前記有機EL素子との対向面の表面粗さが1μm以上であることを特徴とする請求項3に記載の有機ELパネル。 The organic EL panel according to claim 3, wherein the sealing substrate has a surface roughness of 1 μm or more on a surface facing the organic EL element. 両電極間に少なくとも有機発光層を挟持してなる有機EL素子を支持基板上に形成し、前記有機EL素子を気密的に覆う封止基板をスペーサーを含む接着剤を介して前記支持基板上に配設してなる有機ELパネルの製造方法であって、
前記封止基板の前記有機EL素子との対向面に放熱性フィラーを含む充填剤を配設し、
前記充填剤を、その配設時高さが前記接着剤の配設時高さよりも低く、かつ、前記スペーサーの径よりも高くなるように配設し、前記放熱性フィラーはその径が前記スペーサーの径よりも小さく、
前記封止基板と前記支持基板とを前記充填剤配設後に加圧して接着することを特徴とする有機ELパネルの製造方法。
An organic EL element having at least an organic light emitting layer sandwiched between both electrodes is formed on a support substrate, and a sealing substrate that hermetically covers the organic EL element is formed on the support substrate through an adhesive including a spacer. An organic EL panel manufacturing method comprising:
Disposing a filler containing a heat dissipating filler on the surface of the sealing substrate facing the organic EL element,
The filler is disposed such that the height when disposed is lower than the height when disposed and the diameter of the spacer is larger than the diameter of the spacer. Smaller than the diameter of
A method of manufacturing an organic EL panel, comprising: pressing and bonding the sealing substrate and the support substrate after the filler is disposed.
前記充填剤の配設時における前記スペーサーの径よりも高く配設される突出部の容積が、前記スペーサーの径に基づいて定められる設計上の気密空間の容量から前記充填剤の配設時における前記スペーサーの径以下に配設される非突出部の容積を除いた設計残容量よりも大きく、前記スペーサーの径+10μmに基づいて定められる限界気密空間の容量から前記非突出部の容積を除いた限界残容量よりも小さくなるように前記充填剤を配設することを特徴とする請求項7に記載の有機ELパネルの製造方法。
The volume of the protruding portion disposed higher than the diameter of the spacer at the time of disposing the filler is determined based on the capacity of the designed airtight space determined based on the diameter of the spacer. It is larger than the design remaining capacity excluding the volume of the non-projecting part arranged below the diameter of the spacer, and the volume of the non-projecting part is removed from the capacity of the limit airtight space determined based on the diameter of the spacer +10 μm. The method of manufacturing an organic EL panel according to claim 7, wherein the filler is disposed so as to be smaller than a limit remaining capacity.
JP2011145267A 2011-06-30 2011-06-30 Organic el panel and manufacturing method of the same Withdrawn JP2013012426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011145267A JP2013012426A (en) 2011-06-30 2011-06-30 Organic el panel and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011145267A JP2013012426A (en) 2011-06-30 2011-06-30 Organic el panel and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2013012426A true JP2013012426A (en) 2013-01-17

Family

ID=47686134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011145267A Withdrawn JP2013012426A (en) 2011-06-30 2011-06-30 Organic el panel and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2013012426A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136213A1 (en) * 2013-03-06 2014-09-12 株式会社 日立製作所 Light source apparatus and method for manufacturing same
WO2015118798A1 (en) * 2014-02-10 2015-08-13 パナソニックIpマネジメント株式会社 Organic electroluminescence element and illumination device
KR20160012412A (en) * 2014-07-24 2016-02-03 엘지디스플레이 주식회사 Organic light emitting display device and method of manufacturing the same
WO2018042960A1 (en) * 2016-09-01 2018-03-08 双葉電子工業株式会社 Organic el display device
WO2018205690A1 (en) * 2017-05-11 2018-11-15 京东方科技集团股份有限公司 Display panel, method for manufacturing same, and display apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136213A1 (en) * 2013-03-06 2014-09-12 株式会社 日立製作所 Light source apparatus and method for manufacturing same
JPWO2014136213A1 (en) * 2013-03-06 2017-02-09 株式会社日立製作所 Light source device and manufacturing method thereof
WO2015118798A1 (en) * 2014-02-10 2015-08-13 パナソニックIpマネジメント株式会社 Organic electroluminescence element and illumination device
KR20160012412A (en) * 2014-07-24 2016-02-03 엘지디스플레이 주식회사 Organic light emitting display device and method of manufacturing the same
KR102232945B1 (en) * 2014-07-24 2021-03-25 엘지디스플레이 주식회사 Organic light emitting display device and method of manufacturing the same
WO2018042960A1 (en) * 2016-09-01 2018-03-08 双葉電子工業株式会社 Organic el display device
JPWO2018042960A1 (en) * 2016-09-01 2019-03-22 双葉電子工業株式会社 Organic EL display
WO2018205690A1 (en) * 2017-05-11 2018-11-15 京东方科技集团股份有限公司 Display panel, method for manufacturing same, and display apparatus
US20190207153A1 (en) * 2017-05-11 2019-07-04 Boe Technology Group Co., Ltd. Display panel, method for fabricating the same and display device
US10707440B2 (en) 2017-05-11 2020-07-07 Boe Technology Group Co., Ltd. Display panel with an elastic component surrounding by a frame sealant

Similar Documents

Publication Publication Date Title
WO2014156159A1 (en) Light-emitting device and production method therefor
WO2015068344A1 (en) Light-emitting device
JP5541984B2 (en) Organic EL display device
JP2019216246A (en) Light-emitting device and mobile display device
WO2016086535A1 (en) Oled packaging structure and packaging method therefor
US20100044733A1 (en) Electroluminescence element
JP2015109258A (en) Light-emitting device and method of manufacturing light-emitting device
JP2011023336A (en) Organic el display
JP5319420B2 (en) Organic electroluminescence device
CN109119448B (en) Display panel and display device
JP2013012426A (en) Organic el panel and manufacturing method of the same
KR20090121236A (en) Method for producing organic light-emitting device
US10476030B2 (en) Display device and manufacturing method thereof
JP2010244850A (en) Organic el display
JP2001189191A (en) Sealing plate for organic el display element and sealing method
US20090015149A1 (en) Organic electroluminescent device and method for fabricating the same
JP2013131339A (en) Organic light emitting device and manufacturing method of the same
JPH11283739A (en) Manufacture of el display device
JP2006313729A (en) Organic light emitting display device, and method of manufacturing organic light emitting display device
JP6452678B2 (en) ORGANIC LIGHT EMITTING DEVICE AND METHOD FOR PRODUCING THE SAME
JP5026161B2 (en) Method for manufacturing organic light emitting display device using vertical sealing device
KR101595455B1 (en) Organic Light Emitting Diode Display Device and Method for Manufacturing the Same
KR101564629B1 (en) Organic electro-luminescence device
JP2010078666A (en) Organic el panel
JP2007250251A (en) Optical device and manufacturing method of optical device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902