JP2013012370A - Method for restricting spread of potential rise in ground electrode - Google Patents

Method for restricting spread of potential rise in ground electrode Download PDF

Info

Publication number
JP2013012370A
JP2013012370A JP2011143813A JP2011143813A JP2013012370A JP 2013012370 A JP2013012370 A JP 2013012370A JP 2011143813 A JP2011143813 A JP 2011143813A JP 2011143813 A JP2011143813 A JP 2011143813A JP 2013012370 A JP2013012370 A JP 2013012370A
Authority
JP
Japan
Prior art keywords
ground electrode
potential
soil improvement
induction
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011143813A
Other languages
Japanese (ja)
Other versions
JP5665669B2 (en
Inventor
Kazuo Yamamoto
和男 山本
Shunichi Yanagawa
俊一 柳川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoden Corp
Original Assignee
Shoden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoden Corp filed Critical Shoden Corp
Priority to JP2011143813A priority Critical patent/JP5665669B2/en
Publication of JP2013012370A publication Critical patent/JP2013012370A/en
Application granted granted Critical
Publication of JP5665669B2 publication Critical patent/JP5665669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a potential rise spread restriction method which makes it possible to restrict the spread of potential rise in a ground electrode at the falling of a thunderbolt, requiring less labor and cost than in conventional technology.SOLUTION: In a potential rise spread restriction method used to restrain a potential rise at a ground electrode on an induction side buried in the earth and having a lightning current flowing thereinto from spreading to a ground electrode on a non-induction side disposed around the ground electrode on the induction side, soil in a portion existing between the ground electrode on the induction side and the ground electrode on the non-induction side and separated from both ground electrodes is used as a soil improvement portion with relatively higher resistance than the earth existing in the vicinity. The soil improvement portion is formed, for example, in shape of the letter I, U or L or in shape of a cylinder in a plan view.

Description

本発明は、接地電極周囲の土壌を改良することにより、雷撃時に生じる電位上昇が接地電極の周囲に波及するのを抑制する技術に関するものである。ここで、「土壌を改良する」とは、土壌自体の組成や含有水分量などを調整してその土壌の抵抗率を周辺の大地の抵抗率に対して変えることのほか、地中に絶縁材料を埋設してその絶縁材料を含む部位の土壌の抵抗率を周辺の大地の抵抗率に対して変えることを含む。   The present invention relates to a technique for suppressing an increase in potential generated during a lightning stroke from spreading around the ground electrode by improving the soil around the ground electrode. Here, “improvement of soil” means changing the resistivity of the soil relative to the resistivity of the surrounding earth by adjusting the composition and moisture content of the soil itself, as well as insulating materials in the ground. And changing the resistivity of the soil containing the insulating material to the resistivity of the surrounding earth.

鉄塔や各種電気設備への雷撃時に雷撃地点の電位が上昇し、この電位上昇が周囲に波及して逆閃絡等の現象を引き起こすことが知られており、これによって各種電気機器や通信機器を破壊、損傷するおそれがあるため、従来から種々の対策が採られている。   It is known that the lightning point potential rises during lightning strikes on steel towers and various electrical equipment, and this potential increase spreads to the surroundings and causes phenomena such as reverse flashing. Since there is a risk of destruction and damage, various measures have been taken conventionally.

例えば、特許文献1には、建造物を中心として放射状に複数本の接地線を接続することにより、接地線のサージインダクタンスを小さくし、1本当たりの接地線に流れる電流を低減して落雷点近傍の電位上昇を抑制すると共に、接地線全体に分流する雷電流を増加させて落雷点から離れた地点での電位低下を防止し、接地系全体としての電位を均等化するようにした接地系の接地構造が記載されている。   For example, in Patent Document 1, a plurality of ground wires are connected radially around a building, thereby reducing the surge inductance of the ground wires and reducing the current flowing through each ground wire to reduce the lightning point. A grounding system that suppresses the potential increase in the vicinity and increases the lightning current diverted to the entire grounding line to prevent a potential drop at a point away from the lightning strike, and equalizes the potential of the entire grounding system. The grounding structure is described.

特開平9−27359号公報「接地系の接地構造及び発電所」(段落[0025]〜[0040]、図1〜図7等)Japanese Patent Laid-Open No. 9-27359, “Grounding Structure and Power Plant of Grounding System” (paragraphs [0025] to [0040], FIGS. 1 to 7 etc.)

しかしながら、特許文献1に記載された従来技術では、多数の接地線が必要不可欠であり、また、これらの接地線の接続構造も複雑であるため、接地工事に多くの労力とコストが必要であるという問題があった。   However, in the prior art described in Patent Document 1, a large number of ground wires are indispensable, and since the connection structure of these ground wires is complicated, a lot of labor and cost are required for grounding work. There was a problem.

そこで、本発明の解決課題は、従来技術に比べて少ない労力及びコストにより、落雷時における接地電極の電位上昇が周囲に波及するのを抑制可能とした方法を提供することにある。   Therefore, a problem to be solved by the present invention is to provide a method capable of suppressing the increase in the potential of the ground electrode during a lightning strike to the surroundings with less labor and cost compared to the prior art.

上記課題を解決するため、請求項1に係る発明は、大地に埋設されて雷電流が流れる起誘導側接地電極の電位上昇が、前記起誘導側接地電極の周囲に配置された被誘導側接地電極に波及するのを抑制するための電位上昇波及抑制方法において、
少なくとも前記起誘導側接地電極と前記被誘導側接地電極との間に存在して両接地電極と隔離された部分の土壌の抵抗値を、当該部分の周囲に存在する大地の抵抗値より相対的に高くすることにより、当該部分を土壌改良部としたことを特徴とする。
In order to solve the above-described problem, the invention according to claim 1 is directed to the induced-side grounding in which the potential increase of the inducing-side grounding electrode embedded in the ground and through which the lightning current flows is disposed around the inducing-inducing side grounding electrode. In the potential rise ripple suppression method for suppressing the ripple to the electrode,
The resistance value of the soil at least between the induction-side ground electrode and the induced-side ground electrode and isolated from both ground electrodes is relative to the resistance value of the ground existing around the part. It is characterized by making the said part into the soil improvement part by making it high.

請求項2に係る発明は、請求項1に記載した波及抑制方法において、前記土壌改良部が、前記起誘導側接地電極と前記被誘導側接地電極との間で地表面とほぼ直交するように埋設された平面ほぼI字形の土壌からなることを特徴とする。   The invention according to claim 2 is the ripple suppression method according to claim 1, wherein the soil improvement portion is substantially orthogonal to the ground surface between the induction-side ground electrode and the induced-side ground electrode. It is characterized in that it is composed of a substantially flat I-shaped soil buried.

請求項3に係る発明は、請求項1に記載した波及抑制方法において、前記土壌改良部が、前記起誘導側接地電極を中心にしてその周囲を包囲するように埋設された筒状の土壌からなることを特徴とする。   The invention according to claim 3 is the ripple suppression method according to claim 1, wherein the soil improvement part is a cylindrical soil embedded so as to surround the periphery of the induction-side ground electrode. It is characterized by becoming.

請求項4に係る発明は、請求項1に記載した波及抑制方法において、前記土壌改良部が、前記起誘導側接地電極を中心にしてその周囲四面のうち前記被誘導側接地電極の反対側を除く三面に配置された平面ほぼコ字形の土壌からなることを特徴とする。   According to a fourth aspect of the present invention, in the ripple suppression method according to the first aspect, the soil improvement portion has a side opposite to the induced-side ground electrode among the four surrounding surfaces centering on the induction-side grounded electrode. It is characterized by consisting of a substantially U-shaped flat surface arranged on three surfaces.

請求項5に係る発明は、請求項1に記載した波及抑制方法において、前記土壌改良部が、前記起誘導側接地電極を中心にしてその周囲四面のうち前記被誘導側接地電極の反対側の一面と、前記起誘導側接地電極と前記被誘導側接地電極とを結ぶ線に平行な一面と、を除く二面に配置された平面ほぼL字形の土壌からなることを特徴とする。   The invention according to claim 5 is the ripple suppression method according to claim 1, wherein the soil improvement portion is located on the opposite side of the induced-side ground electrode among the four surrounding surfaces around the induction-side ground electrode. It is made of a substantially plane L-shaped soil disposed on two surfaces except one surface and one surface parallel to a line connecting the induction-side ground electrode and the induced-side ground electrode.

なお、土壌改良部の形状、構造は、上述した請求項2〜5に記載したものに限定されないのはいうまでもなく、要は、起誘導側接地電極と被誘導側接地電極との間に存在して両接地電極と隔離された部分の土壌の抵抗値を、当該部分の周囲に存在する大地の抵抗値より相対的に高くするような形状、構造であればよい。   In addition, it cannot be overemphasized that the shape of a soil improvement part and a structure are not limited to what was described in Claims 2-5 mentioned above, In short, it is between an induction | guidance | derivation side ground electrode and a to-be-induced side ground electrode. Any shape and structure may be used as long as the resistance value of the soil existing and isolated from both ground electrodes is relatively higher than the resistance value of the ground existing around the portion.

本発明によれば、雷撃地点である起誘導側接地電極の周囲に存在する各種電気機器、通信機器の接地電位が上昇するのを防ぎ、逆閃絡等によるこれらの機器の破壊や損傷を未然に防止することができる。
また、従来技術のように多数の接地線を相互に接続するような作業が不要になるため、労力やコストの低減も可能である。
According to the present invention, it is possible to prevent the ground potential of various electrical devices and communication devices existing around the induction-side ground electrode, which is a lightning strike point, from rising, and to prevent destruction or damage of these devices due to reverse flashing or the like. Can be prevented.
Further, since the work of connecting a large number of ground wires to each other as in the prior art is not required, labor and cost can be reduced.

垂直接地電極及びその周囲における電位上昇を解析するために用いた解析空間を示す図であり、(a)は斜視図、(b)は平面図、(c)は正面図である。It is a figure which shows the analysis space used in order to analyze the vertical ground electrode and the electric potential rise in the circumference | surroundings, (a) is a perspective view, (b) is a top view, (c) is a front view. 解析に用いた注入電流波形を示す図である。It is a figure which shows the injection current waveform used for the analysis. 土壌改良部の形状を示した図であり、(a−1)〜(e−1)はCase1〜5の正面図、(a−2)〜(e−2)はCase1〜5の平面図である。It is the figure which showed the shape of the soil improvement part, (a-1)-(e-1) is a front view of Case1-5, (a-2)-(e-2) is a top view of Case1-5. is there. Case0における接地電極の電位変化を示す図である。It is a figure which shows the electric potential change of the ground electrode in Case0. Case0及びCase1における接地電極の電位変化を示す図である。It is a figure which shows the electric potential change of the ground electrode in Case0 and Case1. Case0及びCase2における接地電極の電位変化を示す図である。It is a figure which shows the electric potential change of the ground electrode in Case0 and Case2. Case0及びCase3における接地電極の電位変化を示す図である。It is a figure which shows the electric potential change of the ground electrode in Case0 and Case3. Case0及びCase4における接地電極の電位変化を示す図である。It is a figure which shows the electrical potential change of the ground electrode in Case0 and Case4. Case0及びCase5における接地電極の電位変化を示す図である。It is a figure which shows the electric potential change of the ground electrode in Case0 and Case5. Case5における土壌改良部の形状を示した図であり、(e−1)は正面図、(e−2)は平面図である。It is the figure which showed the shape of the soil improvement part in Case5, (e-1) is a front view, (e-2) is a top view. Case5において土壌改良部の抵抗率を変化させた場合の接地電極21,22の電位変化を示す図である。It is a figure which shows the electrical potential change of the ground electrodes 21 and 22 at the time of changing the resistivity of a soil improvement part in Case5. Case5において土壌改良部の抵抗率を変化させた場合の接地電極21の電位上昇定常値(図12(a))、接地電極22の電位上昇定常値(図12(c))、及び、接地電極22の電位上昇波高値(図12(b))を示す図である。In Case 5, the steady increase in potential of the ground electrode 21 (FIG. 12A), the steady increase in potential of the ground electrode 22 (FIG. 12C), and the ground electrode when the resistivity of the soil improvement portion is changed. It is a figure which shows the electric potential rise peak value of 22 (FIG.12 (b)). Case5において土壌改良部の深さを変化させた場合の接地電極21,22の電位変化を示す図である。It is a figure which shows the electrical potential change of the ground electrodes 21 and 22 at the time of changing the depth of a soil improvement part in Case5. Case5において土壌改良部の深さを変化させた場合の接地電極21の電位上昇定常値(図14(a))、接地電極22の電位上昇定常値(図14(c))、及び、接地電極22の電位上昇波高値(図14(b))を示す図である。In Case 5, the steady increase in potential of the ground electrode 21 (FIG. 14 (a)), the steady increase in potential of the ground electrode 22 (FIG. 14 (c)), and the ground electrode when the depth of the soil improvement portion is changed. It is a figure which shows the electric potential rise peak value of 22 (FIG.14 (b)). Case5において土壌改良部の厚さを変化させた場合の接地電極21,22の電位変化を示す図である。It is a figure which shows the electrical potential change of the ground electrodes 21 and 22 at the time of changing the thickness of a soil improvement part in Case5. Case5において土壌改良部の厚さを変化させた場合の接地電極21の電位上昇定常値(図16(a))、接地電極22の電位上昇定常値(図16(c))、及び、接地電極22の電位上昇波高値(図16(b))を示す図である。In Case 5, the steady increase in potential of the ground electrode 21 (FIG. 16A), the steady increase in potential of the ground electrode 22 (FIG. 16C), and the ground electrode when the thickness of the soil improvement portion is changed. It is a figure which shows the electric potential rise peak value of 22 (FIG.16 (b)). Case5において土壌改良部の幅を変化させた場合の接地電極21,22の電位変化を示す図である。It is a figure which shows the electrical potential change of the ground electrodes 21 and 22 at the time of changing the width | variety of a soil improvement part in Case5. Case5において土壌改良部の幅を変化させた場合の接地電極21の電位上昇定常値(図18(a))、接地電極22の電位上昇定常値(図18(c))、及び、接地電極22の電位上昇波高値(図18(b))を示す図である。In Case 5, when the width of the soil improvement part is changed, the potential increase steady value of the ground electrode 21 (FIG. 18A), the potential increase steady value of the ground electrode 22 (FIG. 18C), and the ground electrode 22 are increased. It is a figure which shows the electric potential rise peak value (FIG.18 (b)).

以下、図に沿って本発明の実施形態を説明する。
まず、図1は、雷撃時における接地電極及びその周囲の電位上昇を解析するために用いた解析空間を示す図であり、(a)は斜視図、(b)は平面図、(c)は正面図である。
図1において、解析空間10の刻み幅は、x,y,z全ての方向でΔs=0.25mとし、解析空間10の大きさはx方向:76m、y方向:74m、z方向:27.5mとした。なお、解析空間10を囲む6つの境界面は、Liaoの2次吸収境界条件を用いて開空間を模擬している。ここで、Liaoの2次吸収境界条件については、例えば、宇野亨による「FDTD法による電磁界およびアンテナ解析」(1998年3月20日,コロナ社発行)のp.72〜p.80に記載されている。
大地構造は、解析空間10の底部から高さ14.5mまでが、ρ=100Ωm、比誘電率ε=10の物質で満たされているものとする。なお、図1(c)において、11は仮想地表面を示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, FIG. 1 is a diagram showing an analysis space used for analyzing the ground electrode and its surrounding potential rise during a lightning stroke, (a) is a perspective view, (b) is a plan view, and (c) is a plan view. It is a front view.
In FIG. 1, the step size of the analysis space 10 is Δs = 0.25 m in all the x, y, and z directions, and the size of the analysis space 10 is x direction: 76 m, y direction: 74 m, z direction: 27. It was 5 m. The six boundary surfaces surrounding the analysis space 10 simulate open spaces using Liao's secondary absorption boundary conditions. Here, the secondary absorption boundary condition of Liao is described in, for example, p. Of “Electromagnetic field and antenna analysis by FDTD method” by Jun Uno (published on March 20, 1998, Corona). 72-p. 80.
The ground structure is assumed to be filled from the bottom of the analysis space 10 to a height of 14.5 m with a material having ρ = 100 Ωm and a relative dielectric constant ε r = 10. In FIG. 1C, 11 indicates the virtual ground surface.

解析空間10の内部には、二本の垂直接地電極21,22が配置されており、一方の接地電極21には電流注入線23が接続されている。これらの接地電極21,22及び電流注入線23には、半径5.75mmの細線導体モデルが使用されている。
一方の接地電極(起誘導側接地電極)21は、図示されていない電流源(内部抵抗を500Ωとする)から電流注入線23を介して雷電流を注入するためのものであり、他方の接地電極(被誘導側接地電極)22は、接地電極21への雷電流注入時における電位上昇値を測定するための電極である。ここで、接地電極21,22の電位上昇値は、吸収境界面12(図1(b),(c)を参照)から各測定点(接地電極21,22)までの大地面上電界の積分値であり、電圧プローブ24(図1(a)を参照)を用いて測定される。
Inside the analysis space 10, two vertical ground electrodes 21 and 22 are arranged, and a current injection line 23 is connected to one of the ground electrodes 21. A thin wire conductor model having a radius of 5.75 mm is used for the ground electrodes 21 and 22 and the current injection line 23.
One ground electrode (induction-side ground electrode) 21 is for injecting a lightning current from a current source (not shown) (with an internal resistance of 500Ω) through a current injection line 23, and the other ground The electrode (induced-side ground electrode) 22 is an electrode for measuring a potential increase value when a lightning current is injected into the ground electrode 21. Here, the potential increase value of the ground electrodes 21 and 22 is the integration of the electric field on the ground plane from the absorption boundary surface 12 (see FIGS. 1B and 1C) to each measurement point (the ground electrodes 21 and 22). The value is measured using a voltage probe 24 (see FIG. 1 (a)).

以上の解析条件のもとで、接地電極21を鉄塔などの雷撃地点に見立てて電流を注入し、後述するように、接地電極21の周囲において抵抗率ρ=10kΩm、比誘電率ε=10とした土壌(以下、上記抵抗率及び比誘電率を有する土壌の一部を土壌改良部という)の形状を種々変化させたときに各接地電極21,22に現れる電位及び電位上昇値を計算した。
図2は接地電極21への注入電流波形を示しており、一般的な帰還雷撃の波頭長を表現したものであって、波頭長が約1.0μs、波高値が1.0Aのステップ波電流である。
電位上昇値の計算には、数値電磁界解析の一種であるFDTD法(Finite-Difference Time-Domain Method)を用いた。このFDTD法は、前述した文献「FDTD法による電磁界およびアンテナ解析」の第1章などに記載されている周知の数値電磁解析手法である。
Under the above analysis conditions, a current is injected assuming that the ground electrode 21 is a lightning strike point such as a steel tower, and a resistivity ρ = 10 kΩm and a relative dielectric constant ε r = 10 around the ground electrode 21 as described later. The potentials and potential rise values appearing on the ground electrodes 21 and 22 when the shape of the soil (hereinafter, a part of the soil having the above-described resistivity and relative permittivity is referred to as a soil improvement part) were varied. .
FIG. 2 shows the waveform of the current injected into the ground electrode 21, which represents the wavefront length of a general return lightning stroke, which has a wavefront length of about 1.0 μs and a peak wave value of 1.0 A. It is.
For the calculation of the potential rise value, an FDTD method (Finite-Difference Time-Domain Method), which is a kind of numerical electromagnetic field analysis, was used. This FDTD method is a well-known numerical electromagnetic analysis method described in Chapter 1 of the above-mentioned document “Electromagnetic field and antenna analysis by FDTD method”.

次に、図3(a)〜(e)は、土壌改良部の形状を5つのケース(Case1〜5)に分けて示したものである。各図において、左側の図は接地電極21,22周辺の正面図、右側の図は平面図であり、(a−1)はCase1の正面図、(a−2)はCase1の平面図を示し、以下同様に、(b−1),(b−2)はCase2を、(c−1),(c−2)はCase3を、(d−1),(d−2)はCase4を、(e−1),(e−2)はCase5を、それぞれ示している。なお、これらの図において、31〜35は土壌改良部をそれぞれ示している。   Next, Fig.3 (a)-(e) divides and shows the shape of a soil improvement part in five cases (Case1-5). In each figure, the left figure is a front view around the ground electrodes 21 and 22, the right figure is a plan view, (a-1) is a front view of Case 1, and (a-2) is a plan view of Case 1. Similarly, (b-1) and (b-2) are Case 2, (c-1) and (c-2) are Case 3, (d-1) and (d-2) are Case 4, (E-1) and (e-2) indicate Case 5, respectively. In these drawings, reference numerals 31 to 35 denote soil improvement portions, respectively.

発明者は、図3に示す様々な形状の土壌改良部31〜35を有するCase1〜5を対象として、接地電極21を雷撃地点(起誘導側)に見立てて電流を注入し、そのときの接地電極21の電位が接地電極22(被誘導側)に波及する様子を観測することにより、接地電極22における電位上昇が最も抑制されるような土壌改良部の形状につき鋭意、研究した。
なお、前述したように土壌改良部の抵抗率ρは、周囲の大地の抵抗率よりも十分に大きくしてρ=10kΩmとし、比誘電率はε=10である。これらの土壌改良部の抵抗率及び比誘電率は、土壌の組成や含有水分量などを調整することで容易に実現可能である。
The inventor injects the current with the ground electrode 21 as a lightning strike point (induction side) for the Cases 1 to 5 having the soil improvement portions 31 to 35 having various shapes shown in FIG. By observing how the potential of the electrode 21 spills over the ground electrode 22 (induced side), the inventors studied diligently about the shape of the soil improvement portion where the potential increase at the ground electrode 22 is most suppressed.
As described above, the resistivity ρ of the soil improvement part is sufficiently larger than the resistivity of the surrounding ground so that ρ = 10 kΩm, and the relative dielectric constant is ε r = 10. The resistivity and relative dielectric constant of these soil improvement parts can be easily realized by adjusting the composition of the soil and the amount of water contained therein.

図3(a−1),(a−2)のCase1は、接地電極21を中心として垂直方向に延びる直方体状の土壌を土壌改良部31とした例、図3(b−1),(b−2)のCase2は、接地電極21を中心として内面が接地電極21から0.75mの距離にある四角筒状(平面ロ字形)の土壌を土壌改良部32とした例、図3(c−1),(c−2)のCase3は、接地電極21を包囲する周囲四面のうち接地電極22側の一面を除いた三面からなる平面コ字形の土壌を土壌改良部33とした例、図3(d−1),(d−2)のCase4は、Case3において接地電極21,22を結ぶ線と平行な一面を除いた平面L字形の土壌を土壌改良部34とした例、図3(e−1),(e−2)のCase5は、接地電極21から0.75mの距離をおいた接地電極22側の一面(平面I字形)の土壌を土壌改良部35とした例である。
土壌改良部31〜35の各部の長さは図3に示すとおりであり、接地電極21,22間の距離は2mである。また、図中の長さLについては、表1に示すようにそれぞれ3種類(Case1は0.25m,1m,1.75m、Case2〜5は0.25m,0.5m,1m)に変化させて測定した。
なお、表1におけるCase0は、接地電極21の周囲(接地電極21,22間)に土壌改良を施していないケースであり、Case1〜5の比較対象である。

Figure 2013012370
Case 1 in FIGS. 3A-1 and 3A-2 is an example in which a rectangular parallelepiped soil extending in the vertical direction with the ground electrode 21 as the center is used as the soil improvement portion 31, FIGS. Case 2 of -2) is an example in which the soil improvement part 32 is a square cylindrical (planar square) soil whose inner surface is at a distance of 0.75 m from the ground electrode 21 with the ground electrode 21 as the center, FIG. Case 3 in 1) and (c-2) is an example in which the soil improvement part 33 is made of a three-plane planar soil excluding one surface on the ground electrode 22 side among the four surrounding surfaces surrounding the ground electrode 21, FIG. Case 4 of (d-1) and (d-2) is an example in which the soil improvement part 34 is a planar L-shaped soil excluding one surface parallel to the line connecting the ground electrodes 21 and 22 in Case 3, FIG. -1), Case 5 of (e-2) is one side of the ground electrode 22 side with a distance of 0.75 m from the ground electrode 21 ( The soil surface I-shaped) is an example of a soil improvement unit 35.
The length of each part of the soil improvement parts 31-35 is as showing in FIG. 3, and the distance between the ground electrodes 21 and 22 is 2 m. In addition, the length L in the figure is changed to three types as shown in Table 1 (case 1 is 0.25 m, 1 m, and 1.75 m, and cases 2 to 5 are 0.25 m, 0.5 m, and 1 m). Measured.
Case 0 in Table 1 is a case where soil improvement is not performed around the ground electrode 21 (between the ground electrodes 21 and 22), and is a comparison object of Cases 1 to 5.
Figure 2013012370

図4は、Case0について接地電極21,22の電位変化の計算結果を示す図である。接地電極21,22間に土壌改良部を設けない場合、起誘導側である接地電極21では、定常値30Vの容量性電位上昇が現れた。この電位上昇が周囲へ波及し、被誘導側である接地電極22では、波高値7V、定常値6Vの誘導性電位上昇が現れた。   FIG. 4 is a diagram illustrating the calculation result of the potential change of the ground electrodes 21 and 22 for Case0. When the soil improvement part was not provided between the ground electrodes 21 and 22, a capacitive potential increase with a steady value of 30 V appeared at the ground electrode 21 on the induction side. This potential rise spread to the surroundings, and an inductive potential rise with a peak value of 7V and a steady value of 6V appeared at the ground electrode 22 on the induced side.

図5は、Case0及びCase1(図3(a−1),(a−2))における接地電極21,22の電位変化の計算結果を示す図である。
これらの波形によれば、Case1の土壌改良を行った場合、接地電極21の接地抵抗が土壌改良部31の大きさに依存して増加するため、起誘導側で電位上昇値が増加している。また、接地電極22では電位上昇値は低減されなかった。つまり、起誘導側、被誘導側の両方で、Case0の結果よりも電位上昇が大きくなり、良好な結果は得られなかった。
FIG. 5 is a diagram illustrating calculation results of potential changes of the ground electrodes 21 and 22 in Case 0 and Case 1 (FIGS. 3A-1 and 3A-2).
According to these waveforms, when the soil improvement of Case 1 is performed, the ground resistance of the ground electrode 21 increases depending on the size of the soil improvement portion 31, so that the potential increase value is increased on the induction side. . Further, the potential increase value was not reduced at the ground electrode 22. That is, the potential increase was larger than the result of Case 0 on both the induction side and the induced side, and good results were not obtained.

図6は、Case0及びCase2(図3(b−1),(b−2))における接地電極21,22の電位変化の計算結果を示す図である。
これらの波形によれば、Case2の土壌改良を行った場合、Case1の場合と同様に起誘導側である接地電極21の接地抵抗が土壌改良部32の大きさに依存して増加している。しかしながら、Case2の土壌改良部32の形状は筒状であり、接地電極21の直近を土壌改良していないため、Case1ほど接地抵抗の増加量は大きくなかった。また、被誘導側である接地電極22の電位上昇は、土壌改良部32の大きさが大きくなるほど低減された。
以上の結果から、起誘導側の接地電極21を囲むように電位上昇を波及させたくない接地電極22が配置されている場合、Case2のように筒状の土壌改良部32によって接地電極21を包囲する方法が有効であると考えられる。しかしながら、起誘導側の接地電極21の電位が土壌改良を行わない場合に比べて若干上昇するので、起誘導側での耐雷対策を強化する必要がある。
FIG. 6 is a diagram showing calculation results of potential changes of the ground electrodes 21 and 22 in Case 0 and Case 2 (FIGS. 3B-1 and 3B-2).
According to these waveforms, when the soil improvement of Case 2 is performed, the ground resistance of the ground electrode 21 on the induction side is increased depending on the size of the soil improvement portion 32 as in the case of Case 1. However, since the shape of the soil improvement part 32 of Case 2 is cylindrical and the soil is not improved immediately in the vicinity of the ground electrode 21, the amount of increase in ground resistance was not as great as in Case 1. In addition, the increase in potential of the ground electrode 22 on the induced side was reduced as the size of the soil improvement unit 32 was increased.
From the above results, when the ground electrode 22 that does not want to propagate the potential rise is disposed so as to surround the ground electrode 21 on the induction side, the ground electrode 21 is surrounded by the cylindrical soil improvement unit 32 as in Case 2. This method is considered effective. However, since the potential of the ground electrode 21 on the induction side is slightly higher than that in the case where soil improvement is not performed, it is necessary to strengthen lightning protection measures on the induction side.

図7,図8,図9は、それぞれ、Case0とCase3(図3(c−1),(c−2))、Case0とCase4(図3(d−1),(d−2))、Case0とCase5(図3(e−1),(e−2))における接地電極21,22の電位変化の計算結果を示す図である。
これらの波形より、Case3(コ字形)→Case4(L字形)→Case5(I字形)というように土壌改良部33〜35の規模が小さくなるに従って、起誘導側の接地電極21における電位上昇は抑制されている。これは、単純に、接地電極21の接地抵抗が土壌改良部33〜35の規模に依存して変化する(小さくなる)ためである。また、被誘導側の接地電極22の電位上昇低減効果は、Case3〜5でほぼ同程度であった。
具体的には、Case3〜5において、起誘導側の接地電極21における電位上昇は5〜55%程度であるが、被誘導側の接地電極22における電位上昇は、定常値で25〜60%程度、波高値で15〜30%程度低減されることが明らかになった。これらのCase3(コ字形),Case4(L字形),Case5(I字形)については、起誘導側の接地電極21の周囲にある被誘導側の接地電極22(言い換えれば、雷撃地点の周囲に配置されていて電位上昇の波及を抑制したい電気機器等)の数や配置に応じて使い分ければよい。
7, FIG. 8, and FIG. 9 respectively show Case 0 and Case 3 (FIG. 3 (c-1), (c-2)), Case 0 and Case 4 (FIG. 3 (d-1), (d-2)), It is a figure which shows the calculation result of the electric potential change of the ground electrodes 21 and 22 in Case0 and Case5 (FIG. 3 (e-1), (e-2)).
From these waveforms, as the scale of the soil improvement parts 33 to 35 becomes smaller, such as Case 3 (U-shaped) → Case 4 (L-shaped) → Case 5 (I-shaped), the potential increase at the ground electrode 21 on the induction side is suppressed. Has been. This is simply because the grounding resistance of the ground electrode 21 changes (becomes smaller) depending on the scale of the soil improvement portions 33 to 35. In addition, the potential increase reduction effect of the ground electrode 22 on the induced side was almost the same in Cases 3 to 5.
Specifically, in Cases 3 to 5, the potential rise at the ground electrode 21 on the induction side is about 5 to 55%, but the potential rise at the ground electrode 22 on the induced side is about 25 to 60% as a steady value. It was revealed that the wave height was reduced by about 15 to 30%. For these Case 3 (U-shaped), Case 4 (L-shaped), and Case 5 (I-shaped), the ground electrode 22 on the induced side around the ground electrode 21 on the induction side (in other words, around the lightning strike point) And the number and arrangement of electrical devices that are desired to suppress the spread of potential rise).

なお、表2(有効数字3桁)は、Case1〜5における起誘導側の接地電極21の電位、被誘導側の接地電極22の電位、及び、Case1〜5のCase0に対する起誘導側の接地電極21の電位上昇増加率、並びに、被誘導側の接地電極22の電位上昇低減率についてまとめたものである。

Figure 2013012370
Table 2 (three significant figures) shows the potential of the grounding electrode 21 on the induction side in Cases 1 to 5, the potential of the grounding electrode 22 on the induced side, and the grounding electrode on the induction side with respect to Case 0 of Cases 1 to 5 21 is a summary of the increase rate of the potential 21 and the decrease rate of the potential increase of the ground electrode 22 on the induced side.
Figure 2013012370

次に、様々な土壌改良部のうち、特に、Case5として示したI字形の土壌改良部35の規模とその効果について検討した結果を、以下に説明する。
図10は、Case5における土壌改良部35の形状を示した図であり、(e−1)は正面図、(e−2)は平面図である。ここでは、土壌改良部35の抵抗率及び大きさ(深さ、厚さ、幅)を変化させた場合の電位上昇への影響について検討した。
図10において、土壌改良部35の深さh=2m、厚さL=0.5m、幅L=1.0m、抵抗率ρ=10kΩmを基準とし、抵抗率ρを1〜10kΩmの範囲で変化させると共に、深さhを0.5〜3.5m、厚さLを0.25〜1.0m、幅Lを0.5〜4.0mの範囲でそれぞれ変化させて計算した。
なお、接地電極21への注入電流波形は、図2に示したものと同一であり、波頭長約1.0μs、波高値1.0Aのステップ波電流である。
Next, the results of examining the scale and effect of the I-shaped soil improvement part 35 shown as Case 5 among various soil improvement parts will be described below.
FIG. 10 is a diagram illustrating the shape of the soil improvement unit 35 in Case 5, in which (e-1) is a front view and (e-2) is a plan view. Here, the influence on the potential increase when the resistivity and the size (depth, thickness, width) of the soil improvement part 35 were changed was examined.
In FIG. 10, the depth h = 2 m, the thickness L 1 = 0.5 m, the width L 2 = 1.0 m, and the resistivity ρ = 10 kΩm as a reference, and the resistivity ρ is in the range of 1 to 10 kΩm. And the depth h was changed within a range of 0.5 to 3.5 m, the thickness L 1 was changed to 0.25 to 1.0 m, and the width L 2 was changed within a range of 0.5 to 4.0 m. .
The waveform of the current injected into the ground electrode 21 is the same as that shown in FIG. 2, and is a step wave current having a wavefront length of about 1.0 μs and a peak value of 1.0 A.

図11は、土壌改良部35の抵抗率ρを変化させた場合の接地電極21,22の電位変化の計算結果を示す図である。また、図12は、土壌改良部35の抵抗率を変化させた場合の接地電極21の電位上昇定常値(図12(a))、接地電極22の電位上昇定常値(図12(c))、及び、接地電極22の電位上昇波高値の計算結果を示している。なお、ρ=100Ωmのケースは、土壌改良部35の周囲の大地と同じ抵抗率であるから、土壌改良していない場合とみなすことができる。   FIG. 11 is a diagram illustrating a calculation result of a potential change of the ground electrodes 21 and 22 when the resistivity ρ of the soil improvement unit 35 is changed. Further, FIG. 12 shows a steady increase in potential of the ground electrode 21 (FIG. 12A) and a steady increase in potential of the ground electrode 22 (FIG. 12C) when the resistivity of the soil improvement unit 35 is changed. And the calculation result of the electric potential rise peak value of the ground electrode 22 is shown. Note that the case of ρ = 100 Ωm has the same resistivity as the ground around the soil improvement unit 35, and can be regarded as a case where the soil is not improved.

図11,図12から明らかなように、土壌改良部35の抵抗率は、起誘導側の接地電極21の電位上昇値に大きな影響を与えていない。一方で、被誘導側の接地電極22の電位上昇値は、土壌改良部35の抵抗率を大きくするほど低減することが可能であった。
また、図12より、接地電極22の電位上昇低減効果は、土壌改良部35の抵抗率ρ=5〜10kΩm辺りで飽和している。ただし、これは周囲の大地の抵抗率がρ=100Ωmの場合の結果である。
As is clear from FIGS. 11 and 12, the resistivity of the soil improvement unit 35 does not greatly affect the potential increase value of the ground electrode 21 on the induction side. On the other hand, the potential increase value of the ground electrode 22 on the induced side can be reduced as the resistivity of the soil improvement unit 35 is increased.
From FIG. 12, the potential increase reduction effect of the ground electrode 22 is saturated at the resistivity ρ = 5 to 10 kΩm of the soil improvement unit 35. However, this is the result when the resistivity of the surrounding ground is ρ = 100 Ωm.

次に、図13は土壌改良部35の深さh[m]を変化させた場合、図15は厚さL[m]を変化させた場合、図17は幅L[m]を変化させた場合の、接地電極21,22の電位変化の計算結果をそれぞれ示している。
また、図14は土壌改良部35の深さh[m]を変化させた場合、図16は厚さL[m]を変化させた場合、図18は幅L[m]を変化させた場合の、接地電極21の電位上昇定常値(各図の(a))、接地電極22の電位上昇定常値(各図の(c))、及び、接地電極22の電位上昇波高値(各図の(b))を示している。
Next, FIG. 13 is the case of changing the depth h [m] of soil improvement unit 35, FIG. 15 is the case of changing the thickness L 1 [m], 17 changing the width L 2 [m] The calculation results of the potential change of the ground electrodes 21 and 22 in the case of the above are shown.
14 shows a case where the depth h [m] of the soil improvement part 35 is changed, FIG. 16 shows a case where the thickness L 1 [m] is changed, and FIG. 18 shows a case where the width L 2 [m] is changed. In this case, the potential rise steady value of the ground electrode 21 ((a) in each figure), the potential rise steady value of the ground electrode 22 ((c) in each figure), and the potential rise peak value of the ground electrode 22 (each (B) of the figure is shown.

これらの図13〜図18によれば、土壌改良部35の形状は、大きければ大きいほど起誘導側すなわち接地電極21の電位上昇値は若干大きくなっているが、被誘導側すなわち接地電極22の電位上昇を効果的に低減できることが明らかである。
また、土壌改良部35の抵抗率と同様に、深さ、幅を変化させた場合にも飽和特性があり、今回の条件の場合、それぞれ、深さh=3m、幅L=4.0m程度で飽和を開始した。厚さLに関しては飽和特性が確認されていないが、これは、接地電極21,22間の距離(今回のモデルでは2m)が狭いためであり、電極間隔が更に長い条件下では、厚さLの飽和特性も深さh及び幅Lと同様に現れると考えられる。
According to these FIG. 13 to FIG. 18, the larger the shape of the soil improvement portion 35 is, the larger the potential increase value of the induction side, that is, the ground electrode 21 is. It is clear that the potential rise can be effectively reduced.
Similar to the resistivity of the soil improvement part 35, there are also saturation characteristics when the depth and width are changed. In this condition, the depth h = 3 m and the width L 2 = 4.0 m, respectively. Saturation started at about. Respect thickness L 1 has not been confirmed saturation characteristic, which is (in the current model 2m) distance between the ground electrodes 21 and 22 are for narrow, electrode spacing in the longer condition, thickness It is considered that the saturation characteristic of L 1 appears similarly to the depth h and the width L 2 .

以上のように、この実施形態によれば、接地電極21,22の間の土壌改良部の抵抗率や大きさ(深さ、厚さ、幅)を変化させることにより、接地電極21への雷撃時に生じる電位上昇が接地電極22側に波及するのを抑制することが可能である。
つまり、起誘導側の接地電極21と電位上昇を波及させたくない被誘導側の接地電極22との数や配置に応じて筒状、コ字形、L字形、I字形の土壌改良部32〜35を使い分けることにより、雷撃時の起誘導側の電位上昇を抑制しつつ被誘導側の電位上昇を効果的に低減することができる。
これにより、雷撃地点の周囲に存在する各種電気機器や通信機器の接地電位が上昇するのを防ぎ、逆閃絡等による機器の破壊や損傷を未然に防止することができる。
なお、電位上昇の抑制効果は、土壌改良部の抵抗率や大きさ(深さ、厚さ、幅)、接地電極の大きさ、形状、数、位置関係等によって異なるため、土壌改良部の施工に当たっては、事前に解析的な検討を行って費用対効果を考慮しつつ設計することが望ましい。
As described above, according to this embodiment, the lightning strike to the ground electrode 21 can be achieved by changing the resistivity and size (depth, thickness, width) of the soil improvement portion between the ground electrodes 21 and 22. It is possible to suppress the potential increase that sometimes occurs from spreading to the ground electrode 22 side.
In other words, depending on the number and arrangement of the ground electrode 21 on the induction side and the ground electrode 22 on the induced side that is not desired to spread the potential rise, the cylindrical, U-shaped, L-shaped, and I-shaped soil improvement portions 32 to 35 are arranged. By properly using, it is possible to effectively reduce the potential increase on the induced side while suppressing the potential increase on the induction side during a lightning strike.
Thereby, it is possible to prevent the ground potential of various electric devices and communication devices existing around the lightning strike point from rising, and to prevent destruction and damage of the device due to reverse flashlight or the like.
In addition, since the effect of suppressing the potential rise varies depending on the resistivity and size (depth, thickness, width) of the soil improvement part, the size, shape, number, and positional relationship of the ground electrode, In doing so, it is desirable to conduct a design analysis in consideration of cost effectiveness by conducting an analytical study in advance.

前述した各実施形態では、土壌改良部を均質な高抵抗の土壌によって形成することを想定しているが、例えば平板状あるいは粒状、粉末状のゴム等の絶縁材料を土壌に埋設し、この絶縁材料を含む部位の土壌全体を土壌改良部とすることもできる。
また、各実施形態では、土壌改良部の抵抗率をその周辺の大地の抵抗率よりも高くしてあるが、周辺の大地の抵抗率を下げることにより土壌改良部の抵抗率が相対的に高くなるようにしてもよい。
In each of the above-described embodiments, it is assumed that the soil improvement portion is formed of homogeneous high-resistance soil. However, for example, a flat or granular, powdered rubber or other insulating material is embedded in the soil, and this insulation is performed. The entire soil of the part including the material can also be used as the soil improvement part.
In each embodiment, the resistivity of the soil improvement part is higher than the resistivity of the surrounding ground, but the resistivity of the soil improvement part is relatively high by lowering the resistivity of the surrounding earth. It may be made to become.

10:解析空間
11:仮想地表面
12:吸収境界面
21:垂直接地電極(起誘導側接地電極)
22:垂直接地電極(被誘導側接地電極)
23:電流注入線
24:電圧プローブ
10: Analysis space 11: Virtual ground surface 12: Absorption boundary surface 21: Vertical ground electrode (induction-side ground electrode)
22: Vertical ground electrode (guided ground electrode)
23: Current injection line 24: Voltage probe

Claims (5)

大地に埋設されて雷電流が流れる起誘導側接地電極の電位上昇が、前記起誘導側接地電極の周囲に配置された被誘導側接地電極に波及するのを抑制するための電位上昇波及抑制方法において、
少なくとも前記起誘導側接地電極と前記被誘導側接地電極との間に存在して両接地電極と隔離された部分の土壌の抵抗値を、当該部分の周囲に存在する大地の抵抗値より相対的に高くすることにより、当該部分を土壌改良部としたことを特徴とする接地電極における電位上昇の波及抑制方法。
A potential rise ripple suppression method for suppressing a rise in potential of an induction side ground electrode embedded in the ground and through which a lightning current flows propagates to an induced side ground electrode arranged around the induction side ground electrode In
The resistance value of the soil at least between the induction-side ground electrode and the induced-side ground electrode and isolated from both ground electrodes is relative to the resistance value of the ground existing around the part. A method for suppressing the spread of the potential increase in the ground electrode, wherein the portion is made a soil improvement portion by increasing the height of the ground electrode.
請求項1に記載した波及抑制方法において、
前記土壌改良部が、前記起誘導側接地電極と前記被誘導側接地電極との間で地表面とほぼ直交するように埋設された平面ほぼI字形の土壌からなることを特徴とした接地電極における電位上昇の波及抑制方法。
In the ripple suppression method according to claim 1,
In the ground electrode, wherein the soil improvement portion is made of a substantially I-shaped flat surface embedded so as to be substantially orthogonal to the ground surface between the induction-side ground electrode and the induced-side ground electrode. A method for suppressing the spread of potential rise.
請求項1に記載した波及抑制方法において、
前記土壌改良部が、前記起誘導側接地電極を中心にしてその周囲を包囲するように埋設された筒状の土壌からなることを特徴とした接地電極における電位上昇の波及抑制方法。
In the ripple suppression method according to claim 1,
The method for suppressing the spread of a potential increase in a ground electrode, wherein the soil improvement part is made of cylindrical soil embedded so as to surround the periphery of the induction-side ground electrode.
請求項1に記載した波及抑制方法において、
前記土壌改良部が、前記起誘導側接地電極を中心にしてその周囲四方のうち前記被誘導側接地電極の反対側を除く三方に配置された平面ほぼコ字形の土壌からなることを特徴とした接地電極における電位上昇の波及抑制方法。
In the ripple suppression method according to claim 1,
The soil improvement part is composed of a substantially U-shaped flat surface disposed on three sides of the surrounding four sides except the opposite side of the induced side ground electrode with the origin side ground electrode as a center. A method for suppressing the spread of potential rise in the ground electrode.
請求項1に記載した波及抑制方法において、
前記土壌改良部が、前記起誘導側接地電極を中心にしてその周囲四方のうち前記被誘導側接地電極の反対側の一方と、前記起誘導側接地電極と前記被誘導側接地電極とを結ぶ線に平行な一方と、を除く二方に配置された平面ほぼL字形の土壌からなることを特徴とした接地電極における電位上昇の波及抑制方法。
In the ripple suppression method according to claim 1,
The soil improvement part connects the induction-side ground electrode and the induced-side ground electrode with one of the surrounding four sides around the induction-side ground electrode and the opposite side of the induced-side ground electrode. A method for suppressing the spread of a potential increase in a ground electrode, characterized by comprising a substantially L-shaped flat surface disposed in two directions except one side parallel to a line.
JP2011143813A 2011-06-29 2011-06-29 Method for suppressing the spread of potential rise at ground electrode Active JP5665669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011143813A JP5665669B2 (en) 2011-06-29 2011-06-29 Method for suppressing the spread of potential rise at ground electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011143813A JP5665669B2 (en) 2011-06-29 2011-06-29 Method for suppressing the spread of potential rise at ground electrode

Publications (2)

Publication Number Publication Date
JP2013012370A true JP2013012370A (en) 2013-01-17
JP5665669B2 JP5665669B2 (en) 2015-02-04

Family

ID=47686092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011143813A Active JP5665669B2 (en) 2011-06-29 2011-06-29 Method for suppressing the spread of potential rise at ground electrode

Country Status (1)

Country Link
JP (1) JP5665669B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106972286A (en) * 2017-04-11 2017-07-21 河北万方中天科技有限公司 A kind of monitoring bar ground ground structure and construction method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355870A (en) * 1986-08-27 1988-03-10 大阪ヒユ−ズ株式会社 Ground pole for reducing abnormal lightning voltage for lightning conductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355870A (en) * 1986-08-27 1988-03-10 大阪ヒユ−ズ株式会社 Ground pole for reducing abnormal lightning voltage for lightning conductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106972286A (en) * 2017-04-11 2017-07-21 河北万方中天科技有限公司 A kind of monitoring bar ground ground structure and construction method
CN106972286B (en) * 2017-04-11 2020-12-08 河北万方中天科技有限公司 Monitoring rod foundation grounding structure and construction method

Also Published As

Publication number Publication date
JP5665669B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
Zeng et al. Lightning impulse performances of grounding grids for substations considering soil ionization
Haddad et al. Experimental investigation of the impulse characteristics of practical ground electrode systems
Lee et al. Evaluation of ground potential rises in a commercial building during a direct lightning stroke using CDEGS
Borghetti et al. Indirect-lightning performance of overhead distribution networks with complex topology
CN105652093A (en) Grounding device impact grounding impedance test method
Piantini Lightning-induced voltages on distribution lines with shield wires
CN203456602U (en) Radial grounding device capable of reducing impulse grounding impedance
Liu et al. Research on electromagnetic character of 500/220kV mixed-voltage quadruple-circuit transmission line
Rizk et al. Induced voltages on overhead line by return strokes to grounded wind tower considering horizontally stratified ground
JP5665669B2 (en) Method for suppressing the spread of potential rise at ground electrode
CN103474791A (en) Radial grounding device with impact impedance reducing function
Mobarakei et al. Back Flashover phenomenon analysis in power transmission substation for insulation coordination
CN103474790B (en) A kind of possess to impact the ring ground of resistance function drops
Yamamoto et al. Mutual influence of a deeply buried grounding electrode and the surrounding grounding mesh
Yasui et al. Reduction measures of the overvoltage in the TN system of a building struck directly by lightning
Garolera et al. Lightning transient analysis in wind turbine blades
CN104332727B (en) A kind of utilization displacement current improves the centralized earthing device and method for arranging of characteristics of the dispersed flow
de Souza et al. The effect of soil ionization on the lightning performance of transmission lines
Choi et al. An analysis of conventional grounding impedance based on the impulsive current distribution of a counterpoise
Wang et al. The FEM analysis of grounding system when considering the soil ionization phenomenon under different soil structures
Lehtonen et al. Ground potential rise and lightning overvoltages in control systems of large power-plants under high soil resistivity
JP2010281234A (en) Method and device for suppressing rise in potential of steel tower leg
CN205489419U (en) High voltage transmission lines electromagnetic interference resistance's lightning protection system
Haryono et al. Analysis of response of a guyed FM radio broadcasting tower subjected to a lightning strike
CN203445252U (en) Annular grounding device possessing function of reducing impact grounding impedance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141209

R150 Certificate of patent or registration of utility model

Ref document number: 5665669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250