JP2013011076A - Article or component containing cured body of self-curable powder - Google Patents

Article or component containing cured body of self-curable powder Download PDF

Info

Publication number
JP2013011076A
JP2013011076A JP2011143290A JP2011143290A JP2013011076A JP 2013011076 A JP2013011076 A JP 2013011076A JP 2011143290 A JP2011143290 A JP 2011143290A JP 2011143290 A JP2011143290 A JP 2011143290A JP 2013011076 A JP2013011076 A JP 2013011076A
Authority
JP
Japan
Prior art keywords
self
sash
fireproof
powder
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011143290A
Other languages
Japanese (ja)
Other versions
JP5701168B2 (en
Inventor
Makoto Yamagata
信 山縣
Yukitoshi Hashimoto
幸登志 橋本
Yoshihiko Hashimoto
善彦 橋本
Shuichi Sato
秀一 佐藤
Yoshihisa Umikawa
善久 海川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Excel Shanon Corp
Original Assignee
Tokuyama Corp
Excel Shanon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp, Excel Shanon Corp filed Critical Tokuyama Corp
Priority to JP2011143290A priority Critical patent/JP5701168B2/en
Publication of JP2013011076A publication Critical patent/JP2013011076A/en
Application granted granted Critical
Publication of JP5701168B2 publication Critical patent/JP5701168B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Door And Window Frames Mounted To Openings (AREA)
  • Special Wing (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fireproof sash material, a fireproof sash frame, or a fireproof window, which maintains strength when heated to high temperature due to fire so as to prevent a glass pane from falling off, allows infilled material not to leak out resulting from erroneous boring or minimal damage, and has sufficient strength for normal use without metal reinforcement, with high productivity.SOLUTION: A fireproof material 16 is made from self-curable powder which is produced from a mixture of 100 pts.mass of an aggregate powder of inorganic hollow particles, 2 to 17 pts.mass of a binder composition of alkaline aqueous solution or dispersion liquid of water soluble phenol resin with a solid content of the water soluble phenol resin of 10 to 60 mass%, and a curing agent with the amount necessary for curing the water soluble phenol resin contained in the binder composition. The cavity part 11 of a sash material or a sash frame 4 is filled with the fireproof material 16, which is cured at normal temperature so that the cured body is used as a heat-resistant component and also as a reinforcement.

Description

本発明は、耐火性又は防火性断熱部材として有用な硬化体を与える自硬化性粉体、さらには該硬化体を含む物品又は部材に関する。更に詳しくは、該硬化体を耐熱性部材として含む防火性サッシ材、サッシ枠および防火窓に関する。
なお、本明細書においては、「サッシ材」とは、枠材、框材、方立て材を総称し、「サッシ枠」とは、所謂サッシ枠の他に、サッシ框を含めて指称する。同様に、「枠」は「框」を含むものとする。
The present invention relates to a self-curing powder that provides a cured product useful as a fire-resistant or fire-resistant heat insulating member, and further relates to an article or member containing the cured product. More specifically, the present invention relates to a fireproof sash material, a sash frame, and a fireproof window including the cured body as a heat resistant member.
In the present specification, “sash material” is a generic term for frame material, eaves material, and frame material, and “sash frame” refers to a sash frame as well as a so-called sash frame. Similarly, “frame” includes “框”.

従来、本体がアルミニウムから形成されたアルミニウム製サッシに代わり、断熱性、防音性に優れた樹脂サッシが寒冷地を中心に普及している。この樹脂サッシは、断熱性に優れているため結露しにくく、居住性を向上することができる。   Conventionally, instead of an aluminum sash whose body is made of aluminum, a resin sash having excellent heat insulation and soundproofing properties has been widely used mainly in cold regions. Since this resin sash is excellent in heat insulation properties, it is difficult to condense and can improve the comfortability.

しかし、樹脂サッシは防火性能が低いため、防火地域または準防火地域等の防火戸あるいは窓に使用することができないという問題があり、防火性を付与する方法が検討されている。防火性を高める方法としては、樹脂サッシの中空部(空洞部)に耐熱性材料を充填する方法が知られている(特許文献1参照)。たとえば、特許文献1に記載の方法では、防火仕様でない一般の樹脂サッシとして使用される長手方向に沿う空洞を有する合成樹脂製形材の空洞内に、略コ字状の金属製部材に熱膨張性耐火材からなるシートをL字状に貼り合わせて一体化したものを挿入することにより防火性を付与している。   However, since the resin sash has low fireproof performance, there is a problem that the resin sash cannot be used for fireproof doors or windows in fireproof areas or semi-fireproof areas, and methods for imparting fireproof properties have been studied. As a method for improving fire resistance, a method of filling a heat-resistant material in a hollow portion (hollow portion) of a resin sash is known (see Patent Document 1). For example, in the method described in Patent Document 1, a substantially U-shaped metal member is thermally expanded in a cavity of a synthetic resin shape member having a cavity along the longitudinal direction used as a general resin sash that is not fireproof. Fire resistance is imparted by inserting a sheet made of a heat-resistant refractory material into an L-shape and integrating them.

ところで防火窓においては、サッシ材自体に防火性が要求されることは勿論であるが、火災時においてガラスあるいはガラスと一体化された障子が脱落し難いことも重要である。そして、ガラスや障子の脱落を防止する方法としては、樹脂製障子の上框、下框、左右の縦框に金属補強材をそれぞれ設けると共に、コーナー部において隣接した縦、横の金属補強材をコーナー金具でそれぞれ連結して金属補強材を四周連続し、前記樹脂製窓枠の上枠に設けた金属補強材に受け金具を取付け、前記樹脂製障子の上框に設けた金属補強材に支持金具を取付け、前記樹脂製障子が閉じた状態で、前記樹脂製障子の框が軟化、あるいは焼失した時に支持金具と受け金具で樹脂製障子を吊り下げ支持するようにする方法が知られている(特許文献2参照)。   By the way, in the fireproof window, it is of course important that the sash material itself is required to have fireproof property, but it is also important that the glass or the shoji integrated with the glass is not easily dropped during a fire. As a method for preventing the falling of glass and shoji, the metal stiffeners are provided on the upper and lower armpits of the resin shoji, and the left and right vertical scissors, respectively, and the vertical and horizontal metal stiffeners adjacent to each other at the corner portion are provided. Connected with corner metal fittings to connect the metal reinforcements for four rounds, attach the metal fittings to the metal reinforcements provided on the upper frame of the resin window frame, and support them on the metal reinforcements provided on the upper arm of the resin shoji There is known a method of attaching a metal fitting and suspending and supporting the resinous shoji with a support metal fitting and a receiving metal fitting when the resin shoji is closed and the heel of the resin shoji is softened or burned out. (See Patent Document 2).

また、加熱時の荷重により有害な変形を生じない防火性樹脂サッシとして、樹脂サッシの空洞部に特定組成のセメント組成物を充填・硬化させたもの(特許文献3)、あるいは耐熱性無機粒子と、100℃〜800℃の温度に加熱されたときに前記耐熱性無機粒子の結合剤として機能する高温結合剤と、を含有してなる粒子状または粉末状の耐熱性組成物を樹脂サッシの空洞部に充填したもの(特許文献4)が知られている。   In addition, as a fire-proof resin sash that does not cause harmful deformation due to a load during heating, a resin composition sash filled with a cement composition having a specific composition (Patent Document 3), or heat-resistant inorganic particles A particulate or powder heat-resistant composition containing a high-temperature binder that functions as a binder for the heat-resistant inorganic particles when heated to a temperature of 100 ° C. to 800 ° C. What filled the part (patent document 4) is known.

特開2005−9304号公報Japanese Patent Laid-Open No. 2005-9304 特許第4229286号公報Japanese Patent No. 4229286 特許第2774897号公報Japanese Patent No. 2774897 特開2010−270466号公報JP 2010-270466 A

前記特許文献1に記載されたサッシ材は、防火サッシとして機能するばかりでなく、防火仕様でない一般の樹脂サッシ材を利用して簡単に製造することができるという優れたものである。しかしながら、該樹脂サッシ材で使用される熱膨張性耐火材は、膨張後においても自立する程度の強度を有するものの、その強度はさほど高くないため、該サッシ材を用いてサッシ枠や窓を構成した場合に、使用するガラスの面積が大きくなったり厚さが厚くなったりした場合には、その重さによって加熱されたサッシ枠が変形し、ガラスが脱落することがあった。このような現象は、補強材としての機能を有する金属製部材を使用することによってある程度防止することができるが、その効果には限界があった。すなわち、金属製部材の挿入のしやすさの観点から金属部材とサッシ材との間に隙間を設けることが多く、この隙間に熱膨張性耐火材を配置したとしてもガラスの重さに起因する力により金属部材が傾いてしまい、ガラスが脱落することがあった。また、サッシ材に複数の空洞が存在する場合に、全ての空洞に金属製部材を挿入することはコスト及び手間の観点で困難であることから、金属部材の挿入されない空洞がある場合には、その空洞部の変形によりガラスが脱落することがあった。   The sash material described in Patent Document 1 not only functions as a fire sash, but is excellent in that it can be easily manufactured using a general resin sash material that is not fire proof. However, the heat-expandable refractory material used in the resin sash material has a strength enough to be self-supporting even after expansion, but its strength is not so high. In this case, when the area of the glass to be used is increased or the thickness is increased, the heated sash frame is deformed by the weight, and the glass may fall off. Such a phenomenon can be prevented to some extent by using a metal member having a function as a reinforcing material, but the effect is limited. That is, a gap is often provided between the metal member and the sash material from the viewpoint of ease of insertion of the metal member, and even if a thermally expandable refractory material is disposed in this gap, it is caused by the weight of the glass. The metal member may be tilted by force, and the glass may fall off. In addition, when there are a plurality of cavities in the sash material, it is difficult to insert metal members into all the cavities from the viewpoint of cost and labor, so when there is a cavity into which no metal member is inserted, The glass may fall off due to the deformation of the cavity.

一方、前記特許文献2に記載された方法では、各種金属製部材(たとえば補強材、コーナー金具、支持金具)どうしを直接ビス固定するために樹脂製形材の加工が必要になるばかりでなく、支持金具は外部に露出するため腐蝕や外力による変形に起因する故障が懸念されるといった問題があった。   On the other hand, in the method described in Patent Document 2, not only processing of a resin shape is required to directly screw-fix various metal members (for example, reinforcing material, corner metal fitting, support metal fitting), Since the support bracket is exposed to the outside, there is a problem that there is a concern about failure due to corrosion or deformation due to external force.

また、前記特許文献3に記載された防火性樹脂サッシ材は、性能自体は優れるものの、生産性に問題があった。すなわち、セメント組成物は硬化する前は液状であり、取り扱い難いばかりでなく、硬化にも長時間を要するためサッシ材の空洞に充填する場合は勿論、充填後においてもセメント組成物が硬化するまで液漏れや液こぼれを起こさないように長時間注意して静置しておく必要があり、生産性の点で問題があった。   Moreover, although the fireproof resin sash material described in the said patent document 3 was excellent in performance itself, there was a problem in productivity. That is, the cement composition is in a liquid state before being hardened and is not only difficult to handle, but also takes a long time to harden, so when filling the cavity of a sash material, of course, until the cement composition hardens even after filling. There was a problem in terms of productivity because it was necessary to leave the product with care for a long time so as not to cause leakage or spillage.

前記特許文献4に記載された防火性樹脂サッシ材は、火災時においては優れた性能を発揮するものである。また、前記粉体組成物は火災時において加熱されて硬化し、高強度の硬化体を与えるため、防火性付与のために特別な金属補強の必要はなく、中空のサッシ本体として例えば防火仕様でない一般の樹脂製中空サッシ材がそのまま利用できるという利点がある。しかしながら、たとえば“無機中空粒子をノボラック樹脂とその硬化剤(たとえばヘキサメチレンテトラミン)とを組み合わせた熱硬化性樹脂からなる高温結合剤でコートした粒子の集合体からなる粉体組成物”を耐熱性組成物として用いた場合には、該粉体組成物は常温では硬化しないため、該防火性樹脂サッシ材を用いてサッシ枠や窓を構成し、それを建物に設置するときに誤って螺子孔を開けた場合、或いはサッシ材として実用上問題とならないような軽微な破損(例えば、パテなどにより補修可能な小さな破損など)が発生してしまった場合などには、充填された前記粉体組成物が外部に流出してしまうことがあった。また、上記粉体組成物は、(火災時以外の)通常の使用時において補強効果を発揮しないため、通常使用時の強度を確保するためには一般の樹脂製中空サッシ材と同様に空洞内部に金属製補強材を挿入する必要があった。   The fireproof resin sash material described in Patent Document 4 exhibits excellent performance during a fire. Further, since the powder composition is heated and cured in the event of a fire to give a high-strength cured body, there is no need for special metal reinforcement for imparting fire resistance, and the hollow sash body is not fireproof, for example. There is an advantage that a general resin hollow sash material can be used as it is. However, for example, “a powder composition comprising an aggregate of particles coated with a high-temperature binder made of a thermosetting resin in which inorganic hollow particles are combined with a novolak resin and a curing agent thereof (for example, hexamethylenetetramine)” is heat resistant. When used as a composition, since the powder composition does not cure at room temperature, the fireproof resin sash material is used to form a sash frame or window, and when it is installed in a building, a screw hole is accidentally formed. In the case where a slight breakage (for example, a small breakage that can be repaired by putty, etc.) that does not cause a practical problem as a sash material has occurred, etc., the filled powder composition Things sometimes leaked out. In addition, since the above powder composition does not exert a reinforcing effect during normal use (other than during a fire), in order to ensure the strength during normal use, the interior of the cavity is the same as a general resin hollow sash material. It was necessary to insert a metal reinforcement into the.

そこで、本発明は、防火性を有し、火災などにより高温に加熱された場合に強度を維持してガラスの脱落が起こり難いという特徴を有するばかりでなく、誤操作による穿孔や極軽微な破損によっても充填物が漏れ出すことがなく、且つ金属製補強材を削減することができ、更に生産性にも優れる防火性サッシ材、防火性サッシ枠或いは防火窓を提供することを目的とする。   Therefore, the present invention is not only characterized by having fireproof properties and maintaining strength when heated to a high temperature due to a fire or the like, and is not likely to drop out of the glass. Another object of the present invention is to provide a fireproof sash material, a fireproof sash frame, or a fireproof window that can prevent the filler from leaking out, reduce the number of metal reinforcing materials, and is excellent in productivity.

更に本発明は、上記防火性サッシ材等に好適に使用できる耐熱性部材の原料を提供すること、および該原料を用いて上記防火性サッシ材等を効率的に製造する方法を提供することも目的とする。   Furthermore, the present invention provides a raw material for a heat-resistant member that can be suitably used for the fireproof sash material and the like, and also provides a method for efficiently producing the fireproof sash material and the like using the raw material. Objective.

本発明者は、前記特許文献4に開示されている技術において、高温結合剤(より具体的にはその一態様である熱硬化性樹脂)として開示されているレゾール樹脂で無機中空粒子をコートしたものを耐熱性組成物として使用した場合には、特に所定の温度に加熱しなくとも常温で硬化し得ることに着目し、その硬化時間を充填操作が可能な範囲内で十分に短くできれば、前記課題を解決することができるのではないかと考えた。   In the technique disclosed in Patent Document 4, the present inventor coated inorganic hollow particles with a resol resin disclosed as a high-temperature binder (more specifically, a thermosetting resin that is one embodiment thereof). When using the composition as a heat-resistant composition, paying attention to the fact that it can be cured at room temperature without heating to a predetermined temperature, and if the curing time can be sufficiently shortened within the range where the filling operation can be performed, I thought that the problem could be solved.

なお、鋳型製造の分野においては、有機自硬化鋳型造型法に用いられる粘結剤組成物として、水溶性フェノール樹脂を粘結剤として用い、これを有機エステルにより硬化せしめる組成物が知られている(例えば、特開平5−192737号公報参照)。しかしながら、該組成物を用いた鋳型砂は、流動性及び模型等への充填性が悪いことが知られており、このような鋳型砂、さらにはこのような鋳型砂に用いられるケイ砂に代えて無機中空粒子を用いたものを樹脂製中空サッシ材などの複雑な形状を有する中空部に充填できるか否かは不明であった。たとえば、鋳型砂を鋳枠に空気輸送法により充填する場合には、サンドマガジンと呼ばれる特殊な装置を用いる必要があり、これら粉体の輸送に一般的な空気輸送が適用できるのか否かさえ不明であった。   In the field of mold production, a composition in which a water-soluble phenol resin is used as a binder and is cured with an organic ester is known as a binder composition used in an organic self-curing mold making method. (For example, refer to JP-A-5-192737). However, it is known that the molding sand using the composition has poor fluidity and filling property to a model and the like. It has been unclear whether or not those using inorganic hollow particles can be filled into a hollow portion having a complicated shape such as a resin hollow sash material. For example, when mold sand is filled into a casting frame by a pneumatic transportation method, it is necessary to use a special device called a sand magazine, and it is unclear whether general pneumatic transportation can be applied to the transportation of these powders. Met.

このような背景のもと、本発明者等が種々検討を行った結果、レゾール樹脂として水溶性フェノール樹脂を特定の固形分濃度として含む塩基性水溶液を用い、これを特定の量比で無機中空粒子に添加、混合することによって得られる粉体は、圧送による空洞への充填が可能で、充填後において室温で比較的速やかに自硬化して優れた強度及び断熱性を有する硬化体を与えることを見出し、本発明を完成するに至った。   As a result of various studies conducted by the present inventors under such a background, a basic aqueous solution containing a water-soluble phenol resin as a specific solid content concentration was used as a resol resin, and this was used as an inorganic hollow at a specific quantitative ratio. Powder obtained by adding to and mixing with particles can be filled into cavities by pumping, and after curing, self-cure at room temperature relatively quickly to give a cured product with excellent strength and heat insulation. As a result, the present invention has been completed.

即ち、本発明は下記〔1〕〜〔11〕に示すものである。   That is, this invention is shown to following [1]-[11].

〔1〕 無機中空粒子の集合体からなる粉体100質量部と、水溶性フェノール樹脂の固形分濃度が10〜60質量%である水溶性フェノール樹脂のアルカリ水溶液または分散液からなる粘結剤組成物2〜17質量部と、当該粘結剤組成物に含まれる水溶性フェノール樹脂を硬化せしめるのに必要量の硬化剤と、を混合して得られることを特徴とする自硬化性粉体。   [1] A binder composition comprising 100 parts by mass of a powder composed of an aggregate of inorganic hollow particles and an aqueous alkaline solution or dispersion of a water-soluble phenol resin having a solid content concentration of 10 to 60% by mass of the water-soluble phenol resin. A self-curing powder obtained by mixing 2 to 17 parts by mass of a product and a necessary amount of a curing agent to cure the water-soluble phenol resin contained in the binder composition.

〔2〕 篩い振動数を3600回/分、篩い振動幅を0.5〜0.8mmで振動させたロート角60°、細口径4.7mmのロートに20gの自硬化性粉体を投入した時のロート通過速度が0.1g/min以上であることを特徴とする上記〔1〕に記載の自硬化性粉体。   [2] 20 g of self-curing powder was put into a funnel having a sieve angle of 3600 times / minute, a sieve vibration width of 0.5 to 0.8 mm and a funnel angle of 60 ° and a narrow-bore diameter of 4.7 mm. The self-curing powder as described in [1] above, wherein the funnel passage speed is 0.1 g / min or more.

〔3〕 前記硬化剤の使用量が前記粘結剤組成物100質量部に対して10〜200質量部であることを特徴とする上記〔1〕又は〔2〕に記載の自硬化性粉体。   [3] The self-curing powder according to [1] or [2], wherein the amount of the curing agent used is 10 to 200 parts by mass with respect to 100 parts by mass of the binder composition. .

〔4〕 前記硬化剤が有機エステルからなることを特徴とする前記〔1〕乃至〔3〕の何れかに記載の自硬化性粉体。   [4] The self-curable powder according to any one of [1] to [3], wherein the curing agent is an organic ester.

〔5〕 前記粉体として、粒子径が200μm以下である粒子の含有割合が30質量%以下であり、粒子径が300μm以上500μm以下の範囲にある粒子の含有割合が30質量%以上であり、粒子径が600μm以上である粒子の含有割合が20質量%以下である粒度分布を有する粉体を使用することを特徴とする前記〔1〕乃至〔4〕の何れかに記載の自硬化性粉体。   [5] As the powder, the content ratio of particles having a particle diameter of 200 μm or less is 30% by mass or less, the content ratio of particles having a particle diameter in the range of 300 μm or more and 500 μm or less is 30% by mass or more, The self-hardening powder according to any one of [1] to [4], wherein a powder having a particle size distribution in which the content ratio of particles having a particle diameter of 600 μm or more is 20% by mass or less is used. body.

〔6〕 内部に空洞を有する物品又は部材の当該空洞内に前記〔1〕乃至〔5〕の何れかに記載の自硬化性粉体の硬化体が充填されてなることを特徴とする物品又は部材。   [6] An article or member having a cavity inside, the article or member being filled with the cured product of the self-curable powder according to any one of [1] to [5] Element.

〔7〕 長手方向に沿う空洞を有する中空形材からなるサッシ本体と、当該空洞内に充填される耐熱性部材と、を含んでなる防火性サッシ材であって、前記耐熱性部材が前記〔1〕乃至〔5〕の何れかに記載の自硬化性粉体の硬化体からなることを特徴とする防火性サッシ材。   [7] A sash body comprising a hollow sash body having a cavity along the longitudinal direction, and a heat-resistant member filled in the cavity, wherein the heat-resistant member is the above [ [1] A fireproof sash material comprising a cured product of the self-curable powder according to any one of [5].

〔8〕 それぞれ防火性サッシ材で構成された上枠、下枠、および左右の縦枠を有する枠内に、上下左右の框を有する障子を装着した防火性窓であって、少なくとも前記下枠が上記〔7〕に記載の防火性サッシ材で構成されてなることを特徴とする防火性窓。   [8] A fireproof window in which a shoji having upper, lower, left, and right hooks is mounted in a frame having an upper frame, a lower frame, and left and right vertical frames each formed of a fireproof sash material, and at least the lower frame Is composed of the fire-resistant sash material according to [7] above.

〔9〕 前記障子の少なくとも前記下框が前記〔7〕に記載の防火性サッシ材で構成されてなることを特徴とする上記〔8〕に記載の防火性窓。   [9] The fireproof window according to [8] above, wherein at least the lower arm of the shoji is composed of the fireproof sash material according to [7].

〔10〕 長手方向に沿う空洞部を有するサッシ材からなるサッシ枠の前記空洞部内に、請求項1乃至5の何れかに記載の自硬化性粉体の硬化体が充填されてなることを特徴とするサッシ枠。   [10] The self-curing powder cured body according to any one of claims 1 to 5 is filled in the hollow portion of a sash frame having a hollow portion along the longitudinal direction. And sash frame.

〔11〕 長手方向に沿う空洞部を有するサッシ材からなるサッシ枠の上枠の左右方向の一方の端部の内周面または側枠の上端部の内周面に、前記空洞部に連通する充填口を設け、この充填口に第1筒状治具を挿着し、この第1筒状治具を介して前記〔1〕乃至〔5〕の何れかに記載の自硬化性粉体を空洞部内に圧送するとともに、前記充填口に対してほぼ対角線の位置関係に位置する、下枠の端部の内周面または側枠の下端部の内周面に、前記空洞部が外部に連通する排気口を設け、この排気口に第2筒状治具を挿着し、この第2筒状治具を介して空洞部内の空気を外部に排気しうるようにして前記空洞部内に前記自硬化性粉体を充填する充填工程、及び当該充填工程で充填された前記自硬化性粉体を硬化させる工程を含んでなることを特徴とする上記〔10〕に記載のサッシ枠の製造方法。   [11] The sash frame made of a sash frame having a cavity portion along the longitudinal direction communicates with the cavity portion on the inner peripheral surface of one end portion in the left-right direction of the upper frame or the inner peripheral surface of the upper end portion of the side frame. A filling port is provided, a first cylindrical jig is inserted into the filling port, and the self-curing powder according to any one of [1] to [5] is inserted through the first cylindrical jig. The cavity is communicated to the outside on the inner peripheral surface of the end portion of the lower frame or the inner peripheral surface of the lower end portion of the side frame, which is pumped into the hollow portion and positioned in a substantially diagonal relationship with respect to the filling port. An exhaust port is provided, a second cylindrical jig is inserted into the exhaust port, and the air in the cavity can be exhausted to the outside via the second cylindrical jig, and the self-exhaust in the cavity. A filling step of filling the curable powder, and a step of hardening the self-curing powder filled in the filling step. Method for producing a sash frame according to the above [10] to.

前記〔1〕乃至〔5〕に示す本発明の自硬化性粉体は、たとえば無機中空粒子の集合体からなる粉体に所定量の前記粘結剤組成物および硬化剤を添加してミキサーなどにより混練することにより調製できる。このようにして得られる本発明の自硬化性粉体は、常温において自然に硬化する性質を有するが、調製後しばらくの間は硬化せずに圧送が可能な粉体流動性を有する。このため、中空サッシ材やそれを枠組みした枠体、障子などの“内部に空洞を有する部材又は物品”に容易に充填できるという特長を有する。さらに、本発明の自硬化性粉体は、充填後において、比較的短時間で、室温で自硬化するので、充填対象となる部材や物品に誤操作による穿孔や極軽微な破損が起っても、充填物が漏れ出すことがない。   The self-curing powder of the present invention shown in the above [1] to [5] is, for example, a mixer in which a predetermined amount of the binder composition and a curing agent are added to a powder composed of an aggregate of inorganic hollow particles. Can be prepared by kneading. The self-curing powder of the present invention thus obtained has a property of naturally curing at room temperature, but has a powder fluidity that can be pumped without being cured for a while after preparation. For this reason, it has the feature that it can be easily filled in "a member or article having a hollow inside" such as a hollow sash material, a frame body framed by the frame, and a shoji. Furthermore, since the self-curing powder of the present invention is self-curing at room temperature in a relatively short time after filling, even if a member or article to be filled is perforated or extremely lightly damaged, The filling will not leak out.

また、本発明の自硬化性粉体が自然に硬化して得られる硬化体は、優れた強度及び断熱性を有するので、火災時において防火材として機能するばかりでなく通常使用時における補強材としても機能する。したがって、前記〔6〕に示す本発明の物品又は部材は、優れた防火性を有し、従来必要であった補強材の使用を省略することもできる。
例えば、本発明の部材の一態様である前記〔7〕に示す本発明の防火性サッシ材は、前記特許文献4に記載されているような従来の防火性サッシ材と比べて、次のような利点を有する。すなわち、上記従来の防火性サッシ材では、サッシ材本体として一般的な樹脂製サッシ材を用いた場合には遮炎性と強度確保のために金属製補強部材を使用する必要があったのに対し、発明のサッシ材では、このような金属製補強部材を用いなくても必要な強度を確保することができ、且つ上記従来の防火性サッシ材と同等以上の防火性能を実現することができる。
また、発明の防火性サッシ材の空洞内充填される前記硬化体は、通水性を有し、水と接触しても有機成分が殆ど溶出することがないので、該サッシ材を用いて構成した前記〔8〕及び〔9〕に示す本発明の防火性窓や前記〔10〕に示す本発明のサッシ枠においては、台風時などにおいて螺子部等の隙間から不可避的に滲入した水を排出するための流路を確保することができる。
In addition, the cured product obtained by naturally curing the self-curing powder of the present invention has excellent strength and heat insulation, so that it not only functions as a fireproof material in the event of a fire, but also as a reinforcing material during normal use. Also works. Therefore, the article or member of the present invention shown in the above [6] has excellent fire resistance, and the use of a reinforcing material that has been conventionally required can be omitted.
For example, the fireproof sash material of the present invention shown in the above [7], which is an aspect of the member of the present invention, is compared with the conventional fireproof sash material described in Patent Document 4 as follows. Have the advantages. That is, in the above conventional fireproof sash material, when a general resin sash material is used as the sash material body, it is necessary to use a metal reinforcing member to ensure flameproofness and strength. On the other hand, in the sash material of the invention, the required strength can be ensured without using such a metal reinforcing member, and fire resistance performance equivalent to or higher than that of the conventional fireproof sash material can be realized. .
In addition, the cured body filled in the cavity of the fire-resistant sash material of the invention has water permeability, and organic components are hardly eluted even when contacted with water. Therefore, the sash material is used. In the fireproof window of the present invention shown in the above [8] and [9] and the sash frame of the present invention shown in the above [10], water inevitably infiltrated from a gap such as a screw part is discharged during a typhoon or the like. Therefore, it is possible to secure a flow path.

さらに、前記〔11〕に示す本発明の方法によれば、特定の位置に設けられた充填口に第1筒状治具を挿着し、防火性材料をサッシ材の空洞部内に圧送するとともに、該第1筒状治具が挿着された位置と特定の関係を有する位置に設けられた排気口より第2筒状治具を介して空洞部内の空気を排出することにより、空洞部内に本発明の自硬化性粉体を容易に充填できるので、充填作業の効率が向上し、また可及的均一に充填され、かつ充填率も大幅に高めることができる。その結果、防火性能を一段と向上させることができる。そのため、本発明の方法は建物躯体の開口部に装着したままの状態にある既成の窓枠を、防火構造となるようにする耐火補修方法として好適である。   Furthermore, according to the method of the present invention shown in [11], the first cylindrical jig is inserted into the filling port provided at a specific position, and the fireproof material is pumped into the cavity of the sash material. By discharging the air in the cavity through the second cylindrical jig from the exhaust port provided at a position having a specific relationship with the position where the first cylindrical jig is inserted, Since the self-curing powder of the present invention can be filled easily, the efficiency of the filling operation is improved, the filling is performed as uniformly as possible, and the filling rate can be greatly increased. As a result, the fireproof performance can be further improved. For this reason, the method of the present invention is suitable as a fireproof repair method in which a prefabricated window frame that is still attached to the opening of a building frame has a fireproof structure.

本発明の方法により、サッシ枠の空洞部内に本発明の自硬化性粉体を充填して耐火補修した後の防火窓を一部破断して示す斜視図である。It is a perspective view which partially fractures and shows the fire prevention window after filling the self-hardening powder of this invention in the cavity part of a sash frame by the method of this invention, and carrying out fireproof repair. 図1におけるII−II線の要部拡大横断面図である。It is a principal part expanded horizontal sectional view of the II-II line in FIG. 充填装置を用いて、サッシ枠を構成するサッシ材の空洞部内に本発明の自硬化性粉体を充填する場合の一実施形態を概略的に示す図である。It is a figure which shows roughly one Embodiment in the case of filling the self-hardening powder of this invention in the cavity part of the sash material which comprises a sash frame using a filling apparatus. 図3における円Aの要部拡大縦断面図である。FIG. 4 is an enlarged vertical cross-sectional view of a main part of a circle A in FIG. 3. 第1筒状治具の斜視図である。It is a perspective view of the 1st cylindrical jig. 図5のVI−VI線断面図である。FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 5. 図3における円Bの要部拡大横断面図である。It is a principal part expanded horizontal sectional view of the circle | round | yen B in FIG. 第2筒状治具の斜視図である。It is a perspective view of the 2nd cylindrical jig. 図8のIX−IX線断面図である。It is the IX-IX sectional view taken on the line of FIG. 封止部材の斜視図である。It is a perspective view of a sealing member. 同じく、封止部材の分解斜視図である。Similarly, it is a disassembled perspective view of a sealing member. 本発明の方法により、サッシ枠を構成するサッシ材の空洞部内に本発明の自硬化性粉体を充填する場合の他の実施形態を概略的に示す図である。It is a figure which shows schematically other embodiment at the time of filling the self-hardening powder of this invention in the cavity part of the sash material which comprises a sash frame by the method of this invention. 第1筒状治具の他の実施形態を示す斜視図である。It is a perspective view which shows other embodiment of a 1st cylindrical jig | tool. 図13のXIV−XIV線断面図である。It is the XIV-XIV sectional view taken on the line of FIG. ロート通過速度の試験装置の模式図である。It is a schematic diagram of the test apparatus of funnel passage speed.

1.本発明の自硬化性粉体
本発明の自硬化性粉体は、無機中空粒子の集合体からなる粉体100質量部と、水溶性フェノール樹脂の固形分濃度が10〜60質量%である水溶性フェノール樹脂のアルカリ水溶液または分散液からなる粘結剤組成物2〜17質量部と、当該粘結剤組成物に含まれる水溶性フェノール樹脂を硬化せしめるのに必要量の硬化剤と、を混合して得られることを特徴とする。以下、本発明の自硬化性粉体について原料及び製造方法について説明する。
1. Self-hardening powder of the present invention The self-hardening powder of the present invention comprises 100 parts by weight of a powder composed of an aggregate of inorganic hollow particles and a water-soluble phenolic resin having a solid content concentration of 10 to 60% by weight. 2-17 parts by mass of a binder composition comprising an alkaline aqueous solution or dispersion of a water-soluble phenol resin and a curing agent in an amount necessary for curing the water-soluble phenol resin contained in the binder composition. It is characterized by being obtained. Hereinafter, a raw material and a manufacturing method are demonstrated about the self-hardening powder of this invention.

(無機中空粒子の集合体からなる粉体)
無機中空粒子の原料となる粉体を構成する無機中空粒子としては、800℃、好ましくは900℃に加熱されても軟化したり溶融したりしない無機物質からなる中空の粒子または粉末であれば使用可能であり、ガラスバルーン、シラスバルーン、石炭灰バルーン(フライアッシュバルーン)、セラミック系バルーン等を挙げることができる。これら無機中空粒子は1種類のみを用いてもよく、異なる複数の種類を併用してもよい。自硬化性粉体は、無機中空粒子を用いることにより粉体が軽量化されて流動性が向上し、中空でない粒子と比べて圧送による空洞への供給をスムースにして、より確実でムラのない充填を行うことができる。
(Powder made of aggregate of inorganic hollow particles)
The inorganic hollow particles constituting the powder used as the raw material of the inorganic hollow particles are 800 ° C, preferably any hollow particles or powder made of an inorganic substance that does not soften or melt even when heated to 900 ° C. Examples thereof include glass balloons, shirasu balloons, coal ash balloons (fly ash balloons), ceramic balloons, and the like. Only one kind of these inorganic hollow particles may be used, or a plurality of different kinds may be used in combination. Self-curing powder uses inorganic hollow particles to reduce the weight of the powder and improve fluidity. Smoother supply to the cavity by pressure feeding than non-hollow particles makes it more reliable and uniform. Filling can be performed.

上記粉体の粒度分布は、特に限定されるものではないが、本発明の自硬化性粉体としたときに、これを長手方向に沿う空洞部を有するサッシ材からなるサッシ枠の前記空洞部内に充填する場合の充填性からは粒度分布を制御することが好ましい。たとえば、建物躯体の開口部に装着したままの状態にある既成の窓枠のような、長手方向に沿う空洞部を有するサッシ材からなるサッシ枠の前記空洞部内に、本発明の方法により圧送して充填する場合において、密充填され易く、充填後において自重や振動などにより空隙が発生し難いという理由から、次の粒度分布を有することが好ましい。
即ち、粒子径が200μm以下である粒子の含有割合が30質量%以下であり、粒子径が300μm以上500μm以下の範囲にある粒子の含有割合が30質量%以上であり、粒子径が600μm以上である粒子の含有割合が20質量%以下である粒度分布を有することが好ましく、粒子径が200μm以下である粒子の含有割合が20質量%以下、特に1〜20質量%であり、粒子径が300μm以上、500μm以下の範囲にある粒子の含有割合が40質量%以上、特に40〜90質量%であり、粒子径が600μm以上である粒子の含有割合が10質量%以下、特に5〜10質量%であり、残余が粒子径が500μmを越え600μm未満であるような粒度分布を有することが特に好ましい。なお、上記粒子度分布は、乾式ふるい分け試験方法(JIS K0069)による粒度測定結果に基づくものである。
原料となる前記粉体がこのような粒度分布を有する場合には粘結剤組成物および硬化剤と混合して本発明の自硬化性粉体としても、良好な充填性を実現することができる。
The particle size distribution of the powder is not particularly limited, but when the self-curing powder of the present invention is used, the particle size distribution in the sash frame made of a sash material having a cavity along the longitudinal direction is used. It is preferable to control the particle size distribution in view of the filling property when filling into the container. For example, the method of the present invention is used to pump into the hollow portion of the sash frame made of a sash frame having a hollow portion along the longitudinal direction, such as an existing window frame that is still attached to the opening of the building frame. In the case of filling, it is preferable to have the following particle size distribution because it is easy to close-pack and hardly generate voids due to its own weight or vibration after filling.
That is, the content ratio of particles having a particle diameter of 200 μm or less is 30% by mass or less, the content ratio of particles having a particle diameter in the range of 300 μm or more and 500 μm or less is 30% by mass or more, and the particle diameter is 600 μm or more. It is preferable to have a particle size distribution in which the content ratio of certain particles is 20% by mass or less, the content ratio of particles having a particle size of 200 μm or less is 20% by mass or less, particularly 1 to 20% by mass, and the particle size is 300 μm. The content ratio of particles in the range of 500 μm or less is 40% by mass or more, particularly 40 to 90% by mass, and the content ratio of particles having a particle diameter of 600 μm or more is 10% by mass or less, particularly 5 to 10% by mass. It is particularly preferred that the remainder have a particle size distribution such that the particle size is greater than 500 μm and less than 600 μm. The particle size distribution is based on the result of particle size measurement by a dry screening test method (JIS K0069).
When the powder used as a raw material has such a particle size distribution, it can be mixed with a binder composition and a curing agent to achieve good filling properties even as the self-curable powder of the present invention. .

(粘結剤組成物)
粘結剤組成物とは、これに含まれる水溶性フェノール樹脂が硬化剤の作用によって高分子化することによって無機中空粒子どうしを結合させるものであり、水溶性フェノール樹脂のアルカリ水溶液または分散液からなる。
本発明においては、前記粉体に対して使用して自硬化性粉体を調製したとしたときに、調製直後からある時間内では圧送可能な粉体流動性を保持し、常温或いは室温において適度な時間で硬化し、高い強度の硬化体を与えるという理由から、水溶性フェノール樹脂の固形分濃度が10〜60質量%である粘結剤組成物を、前記粉体100質量部に対して2〜17質量部使用する必要がある。このような条件を満足する場合には、細長い空間内に空気輸送(圧送)可能な粉体流動性とすることができ、さらに、室温(例えば10〜30℃)における作業猶予時間を3分〜1時間内で制御することができる。硬化物の強度の観点からより好ましい粉体特性を有する自硬化性粉体を得るためには、粘結剤組成物中の水溶性フェノール樹脂の固形分濃度は30〜50質量%であることが好ましく、粘結剤組成物の使用量は、前記粉体100質量部に対して4〜10質量部であることが好ましい。
なお、水溶性フェノール樹脂の固形分濃度は、予めその質量を秤量した試料を空気循環式炉内で100℃、3時間乾燥させた後に質量を測定し、乾燥前後の試料質量に基づいて決定されるものである。
(Binder composition)
The binder composition is a composition in which the water-soluble phenol resin contained therein is polymerized by the action of a curing agent to bind the inorganic hollow particles to each other, from an aqueous alkali solution or dispersion of the water-soluble phenol resin. Become.
In the present invention, when the self-curing powder is prepared for use with the powder, the powder fluidity that can be pumped within a certain period of time immediately after the preparation is maintained, and is moderate at room temperature or room temperature. The binder composition in which the solid content concentration of the water-soluble phenol resin is 10 to 60% by mass with respect to 100 parts by mass of the powder is 2 for the reason that it cures in a short time and gives a cured product with high strength. It is necessary to use ~ 17 parts by mass. When satisfying such conditions, the powder fluidity can be pneumatically transported (pressed) into the elongated space, and the work grace time at room temperature (for example, 10 to 30 ° C.) is 3 minutes to It can be controlled within one hour. In order to obtain a self-curing powder having more preferable powder characteristics from the viewpoint of the strength of the cured product, the solid content concentration of the water-soluble phenol resin in the binder composition is 30 to 50% by mass. Preferably, the amount of the binder composition used is 4 to 10 parts by mass with respect to 100 parts by mass of the powder.
The solid content concentration of the water-soluble phenol resin is determined based on the sample mass before and after drying after measuring the mass after drying the sample weighed in advance in an air circulation furnace at 100 ° C. for 3 hours. Is.

粘結剤組成物に含まれる水溶性フェノール樹脂とは、フェノール類と、化学量論的に過剰量のアルデヒド類と、を塩基性触媒の存在下に反応させて得られる樹脂を意味し、一般にレゾール型と呼ばれる。本発明においては、有機エステル等の硬化剤と自硬化反応をし易いという観点から、水溶性フェノール樹脂としては、フェノール性水酸基1当量に対し0.1〜1.2当量のアルカリ金属を含有するアルカリフェノール樹脂を使用することが好ましい。このようなアルカリフェノール樹脂を用いた場合には、硬化剤に由来する酸によってアルカリフェノール樹脂が中和され更に高分子化する事により無機中空粒子どうしを結合する作用がより高くなる。   The water-soluble phenol resin contained in the binder composition means a resin obtained by reacting phenols with a stoichiometric excess of aldehydes in the presence of a basic catalyst. It is called resol type. In the present invention, the water-soluble phenol resin contains 0.1 to 1.2 equivalents of an alkali metal with respect to 1 equivalent of the phenolic hydroxyl group, from the viewpoint that it can easily undergo a self-curing reaction with a curing agent such as an organic ester. It is preferable to use an alkali phenol resin. When such an alkali phenol resin is used, the alkali phenol resin is neutralized by the acid derived from the curing agent and further polymerized, thereby further enhancing the action of bonding the inorganic hollow particles.

水溶性フェノール樹脂の原料となるフェノール類としては、フェノール、クレゾール、レゾルシノール、3,5−キシレノール、ビスフェノールA、その他置換フェノール、及びこれらの混合物を使用することができるが、水溶性と比較的安価という理由からフェノールを使用することが好ましい。
アルデヒド類としては、ホルムアルデヒド、アセトアルデヒド、フルフラールアルデヒド及びこれらの混合物を使用することができるが、ホルムアルデヒドを使用することが好ましい。アルデヒド類の使用量は、フェノール化合物と化学量論的に反応するのに必要な量以上の量であればよいが、フェノール類1モルに対して1.2〜2.5モル使用することが好ましい。
塩基性触媒としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属の水酸化物を使用することができる。塩基性触媒の使用量は、通常、フェノール類1モルに対して0.1〜1モルである。有機エステルを硬化剤として使用する場合は、0.4〜1モルが好ましい。
水溶性フェノール樹脂の合成は、次のようにして行うことができる。すなわち、先ず、それぞれ所定量のフェノール類とアルデヒド類とを加熱下に水と混合して均一な混合溶液調製する。その後、一旦冷却してから、該混合溶液に所定量の塩基性触媒を水溶液の形で攪拌下に徐々に滴下して混合する。滴下終了後、混合液を徐々に昇温し、還流下で反応液が所定の粘度に達するまで反応させればよい。
Phenols that can be used as raw materials for water-soluble phenol resins include phenol, cresol, resorcinol, 3,5-xylenol, bisphenol A, other substituted phenols, and mixtures thereof, but are water-soluble and relatively inexpensive. For this reason, it is preferable to use phenol.
As aldehydes, formaldehyde, acetaldehyde, furfural aldehyde and a mixture thereof can be used, but it is preferable to use formaldehyde. The amount of the aldehyde used may be an amount more than that required for the stoichiometric reaction with the phenol compound, but 1.2 to 2.5 mol may be used with respect to 1 mol of the phenol. preferable.
As the basic catalyst, alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide can be used. The usage-amount of a basic catalyst is 0.1-1 mol normally with respect to 1 mol of phenols. When using organic ester as a hardening | curing agent, 0.4-1 mol is preferable.
The synthesis of the water-soluble phenol resin can be performed as follows. That is, first, a predetermined amount of phenols and aldehydes are mixed with water under heating to prepare a uniform mixed solution. Thereafter, after cooling, a predetermined amount of a basic catalyst is gradually added dropwise to the mixed solution in the form of an aqueous solution with stirring. After completion of the dropwise addition, the temperature of the mixed solution is gradually raised, and the reaction may be performed under reflux until the reaction solution reaches a predetermined viscosity.

反応終了後は、必要に応じてアルカリ水溶液を添加して水溶性フェノールのアルカリ度を調整したり、さらに水を加えて固形分濃度を調整したりすることにより粘結剤組成物とすることができる。   After completion of the reaction, an alkaline aqueous solution may be added as necessary to adjust the alkalinity of the water-soluble phenol, or water may be added to adjust the solid content concentration to obtain a binder composition. it can.

粘結剤組成物には、尿素などのホルムアルデヒド補足剤及び/又はγ―アミノプロピルトリエトキシシランなどのシランカップリング剤からなる硬化体の強度増強剤を、上記粘結剤組成物100質量部に対して、それぞれ0.5〜5質量部、0.05〜1質量部添加することが好ましい。   In the binder composition, a strength-enhancing agent for a cured product composed of a formaldehyde supplement such as urea and / or a silane coupling agent such as γ-aminopropyltriethoxysilane is added to 100 parts by weight of the binder composition. On the other hand, it is preferable to add 0.5-5 mass parts and 0.05-1 mass parts, respectively.

(硬化剤)
硬化剤とは水溶性フェノール樹脂に作用してこれらを常温或いは室温(例えば10〜30℃)で自然に硬化させる機能を有する物質を意味し、例えば酸または有機エステルが使用できる。酸としては、例えば、硫酸、キシレンスルホン酸、トルエンスルホン酸等のスルホン酸、リン酸等が挙げられる。有機エステルとしては、例えば、ギ酸メチル、ギ酸エチル、酢酸エチル、乳酸エチル、セバシン酸メチル、エチレングリコールジアセテート、ジアセチン、トリアセチン、コハク酸ジメチル、アジピン酸ジメチル、グルタル酸ジメチル、二塩基酸メチルエステル混合物等のカルボン酸エステル類、又はγ−ブチロラクトン、γ−カプロラクトン、δ−バレロラクトン、δ−カプロラクトン、β−プロピオラクトン、ε−カプロラクトン等のラクトン類、又はエチレンカーボネート、プロピレンカーボネート、4−エチルジオキソロン、4−ブチルジオキソロン、4,4−ジメチルジオキソロン、4,5−ジメチルジオキソロン等の環状シルキレンカーボネート類(有機炭酸エステル類)等が挙げられる。これら硬化剤のなかでも作業性の観点から加水分解速度が比較的緩やかな二塩基酸エステルが好ましい。
(Curing agent)
The curing agent means a substance having a function of acting on a water-soluble phenol resin and naturally curing them at room temperature or room temperature (for example, 10 to 30 ° C.). For example, an acid or an organic ester can be used. Examples of the acid include sulfonic acids such as sulfuric acid, xylene sulfonic acid, and toluene sulfonic acid, and phosphoric acid. Examples of organic esters include methyl formate, ethyl formate, ethyl acetate, ethyl lactate, methyl sebacate, ethylene glycol diacetate, diacetin, triacetin, dimethyl succinate, dimethyl adipate, dimethyl glutarate, and a mixture of dibasic acid methyl esters. Or lactones such as γ-butyrolactone, γ-caprolactone, δ-valerolactone, δ-caprolactone, β-propiolactone, ε-caprolactone, or ethylene carbonate, propylene carbonate, 4-ethyldi Examples thereof include cyclic silalkylene carbonates (organic carbonates) such as oxolone, 4-butyldioxolone, 4,4-dimethyldioxolone, and 4,5-dimethyldioxolone. Among these curing agents, dibasic acid esters having a relatively slow hydrolysis rate are preferable from the viewpoint of workability.

硬化剤の使用量は常温における作業猶予時間、粉体流動性及び強度を勘案して適宜決定すればよいが、より具体的には常温における作業猶予時間を3分〜1時間に制御できるという観点から、水溶性フェノール樹脂100質量部に対して10〜200質量部、特に15〜100質量部であることが好ましい。水溶性フェノール樹脂を完全に硬化させる理由から10質量部以上が望ましく、硬化阻害を起し強度を低下させてしまう理由から200質量部以下が望ましい。特に硬化剤の含有量は水溶性フェノール樹脂の添加量が無機中空粒子100質量部に対して2〜6質量部の範囲では硬化剤の量を多めに入れても良く、水溶性フェノール樹脂100質量部に対して10〜200質量部が好ましい。また、水溶性フェノール樹脂の添加量が6質量部より多くなると硬化剤は水溶性フェノール樹脂の量以下程度に抑えるほうが良く、水溶性フェノール樹脂100質量部に対して10〜100質量部が好ましい。このとき、水溶性フェノール樹脂と硬化剤の合計量は、無機中空粒子100質量部に対して2〜30質量部になるようにすることが望ましい。   The use amount of the curing agent may be appropriately determined in consideration of the work grace time at room temperature, powder fluidity and strength, and more specifically, the viewpoint that the work grace time at room temperature can be controlled to 3 minutes to 1 hour. From 10 to 200 parts by weight, particularly 15 to 100 parts by weight, based on 100 parts by weight of the water-soluble phenol resin. 10 parts by mass or more is desirable for the reason of completely curing the water-soluble phenolic resin, and 200 parts by mass or less is desirable for the reason of causing inhibition of curing and reducing the strength. In particular, the content of the curing agent is such that the amount of the water-soluble phenol resin added in the range of 2 to 6 parts by mass with respect to 100 parts by mass of the inorganic hollow particles may include a larger amount of the curing agent. 10-200 mass parts is preferable with respect to a part. Moreover, when the addition amount of water-soluble phenol resin becomes more than 6 mass parts, it is better to suppress a hardening | curing agent to below the quantity of water-soluble phenol resin, and 10-100 mass parts is preferable with respect to 100 mass parts of water-soluble phenol resins. At this time, the total amount of the water-soluble phenol resin and the curing agent is desirably 2 to 30 parts by mass with respect to 100 parts by mass of the inorganic hollow particles.

2.本発明の自硬化性粉体の製造方法
本発明の自硬化性粉体は、次のような方法により好適に製造することができる。即ち、前記無機中空粒子をミキサー等の攪拌機により攪拌させながら、硬化剤、必要に応じてホルムアルデヒド補足剤及び/又は強度増強剤を予め添加した粘結剤組成物を順次攪拌機に投入することにより容易に製造することができる。
2. Production method of self-curing powder of the present invention The self-curing powder of the present invention can be suitably produced by the following method. That is, while stirring the inorganic hollow particles with a stirrer such as a mixer, a binder composition to which a curing agent and, if necessary, a formaldehyde supplement and / or a strength enhancer are added in advance is easily put into a stirrer. Can be manufactured.

3.本発明の自硬化性粉体の用途
本発明の自硬化性粉体は、常温で自然に硬化して優れた強度及び断熱性を有する硬化体を与える。該硬化体は、火災時において遮炎材として機能するばかりでなく補強材としても機能する。したがって、内部に空洞を有する物品又は部材の当該空洞内に本発明の自硬化性粉体の硬化体が充填されてなる物品又は部材(本発明の物品又は部材)は、優れた防火性を有し、従来必要であった補強材の使用を省略することもできる。
3. Use of self-curing powder of the present invention The self-curing powder of the present invention is naturally cured at room temperature to give a cured product having excellent strength and heat insulation. The cured body not only functions as a flame barrier during a fire, but also functions as a reinforcing material. Therefore, an article or member (the article or member of the present invention) in which the cured product of the self-curing powder of the present invention is filled in the cavity of the article or member having a cavity inside has excellent fire resistance. In addition, it is possible to omit the use of a reinforcing material that has been conventionally required.

たとえば、本発明の部材の一態様である「長手方向に沿う空洞を有する中空形材からなるサッシ本体と、当該空洞内に充填される耐熱性部材と、を含んでなる防火性サッシ材であって、前記耐熱性部材が本発明の自硬化性粉体の硬化体からなることを特徴とする防火性サッシ材」(本発明の防火性サッシ材)は、前記特許文献4に記載されているような従来の防火性サッシ材と比べて、次のような利点を有する。すなわち、上記従来の防火性サッシ材では、サッシ材本体として一般的な樹脂製サッシ材を用いた場合には遮炎性と強度確保のために金属製補強部材を使用する必要があったのに対し、発明の防火性サッシ材では、このような金属製補強部材を用いなくても必要な強度を確保することができ、且つ上記従来の防火性サッシ材と同等の防火性能を実現することができる。このとき、本発明の防火性サッシ材の空洞内に充填される前記硬化体は、通水性を有し、水と接触しても有機成分が殆ど溶出することがないので、該サッシ材を用いて構成した本発明の防火性窓や本発明のサッシ枠においては、台風時などにおいてガラスとのシール部から不可避的に滲入した水を排出するための流路を確保することができる。なお、これら本発明の防火性窓やサッシ枠が本発明の防火性サッシ材の前記特長を有することは勿論である。   For example, it is a fireproof sash material comprising a sash body comprising a hollow shape member having a cavity along the longitudinal direction and a heat-resistant member filled in the cavity, which is an embodiment of the member of the present invention. "The fireproof sash material in which the heat-resistant member is made of a cured body of the self-curing powder of the present invention" (the fireproof sash material of the present invention) is described in Patent Document 4. Compared to such a conventional fireproof sash material, it has the following advantages. That is, in the above conventional fireproof sash material, when a general resin sash material is used as the sash material body, it is necessary to use a metal reinforcing member to ensure flameproofness and strength. On the other hand, the fireproof sash material of the invention can ensure the required strength without using such a metal reinforcing member, and can realize the fireproof performance equivalent to the conventional fireproof sash material. it can. At this time, the cured body filled in the cavity of the fireproof sash material of the present invention has water permeability, and even when it comes into contact with water, organic components are hardly eluted, so the sash material is used. In the fireproof window of the present invention configured as described above and the sash frame of the present invention, it is possible to secure a flow path for discharging water inevitably infiltrated from the sealing portion with glass during a typhoon or the like. Of course, these fireproof windows and sash frames of the present invention have the above-mentioned features of the fireproof sash material of the present invention.

さらに、以下に詳しく説明する本発明の方法によれば、特定の位置に設けられた充填口に第1筒状治具を挿着し、防火性材料をサッシ材の空洞部内に圧送するとともに、該第1筒状治具が挿着された位置と特定の関係を有する位置に設けられた排気口より第2筒状治具を介して空洞部内の空気を排出することにより、空洞部内に防火性材料を容易に充填できるので、充填作業の効率が向上し、また可及的均一に充填され、かつ充填率も大幅に高めることができる。その結果、防火性能を一段と向上させることができる。そのため、本発明の方法は建物躯体の開口部に装着したままの状態にある既成の窓枠を、防火構造となるようにする耐火補修方法(本発明の方法を用いたこのような耐火補修方法を「本工法」と言う)として好適である。   Furthermore, according to the method of the present invention described in detail below, the first cylindrical jig is inserted into the filling port provided at a specific position, and the fireproof material is pumped into the cavity of the sash material, By discharging the air in the cavity through the second cylindrical jig from the exhaust port provided at a position having a specific relationship with the position where the first cylindrical jig is inserted, fire prevention is provided in the cavity. Since the material can be easily filled, the efficiency of the filling operation is improved, the filling material is filled as uniformly as possible, and the filling rate can be greatly increased. As a result, the fireproof performance can be further improved. For this reason, the method of the present invention is a fireproof repair method (such a fireproof repair method using the method of the present invention) that makes an existing window frame that is still attached to the opening of a building frame to have a fireproof structure. Is referred to as “the present construction method”).

以下、本発明のサッシ枠および本工法について、その実施形態を図面に基づいて詳しく説明するが、本発明はこれら具体的な態様に限定されるものではない。たとえば、サッシ材以外の物品又は部材であっても、これらが内部に空洞を有するものであり、その空洞内に本発明の自硬化性粉体を充填し自硬化させた場合には、本発明のサッシ材と同様に、耐熱性、耐火性、断熱性等の性能向上効果及び補強効果を得ることができる。本発明の物品又は部材のうち、本発明の防火性サッシ材、本発明の防火窓および本発明のサッシ枠を除くものとしては、ドア、玄関ドア、断熱ボード・軒天材・壁等を挙げることができる。   Hereinafter, embodiments of the sash frame and the construction method of the present invention will be described in detail with reference to the drawings, but the present invention is not limited to these specific embodiments. For example, even if the article or member other than the sash material has a cavity inside, and the self-curable powder of the present invention is filled in the cavity and self-cured, the present invention As in the case of the sash material, it is possible to obtain performance improvement effects such as heat resistance, fire resistance, heat insulation, and reinforcement effect. Among the articles or members of the present invention, those excluding the fireproof sash material of the present invention, the fireproof window of the present invention and the sash frame of the present invention include doors, entrance doors, heat insulation boards, eaves materials, walls, etc. be able to.

4.本発明のサッシ枠
以下、図面を参照して本発明のサッシ枠について説明する。
図1は、充填装置を用いて、サッシ枠の空洞部内に防火性材料を充填して耐火補修後した後の防火窓を一部破断して示す斜視図、図2は、図1におけるII−II線の要部拡大横断面図である。
なお、図示の実施例では、図2において、左側を「室内側」とし、右側を「室外側」として説明する。
4). Hereinafter, the sash frame of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing a partially broken fire-proof window after a fire-resistant material is filled in a cavity portion of a sash frame using a filling device, and after the fire-proof repair, and FIG. It is a principal part expanded horizontal sectional view of II line.
In the illustrated embodiment, in FIG. 2, the left side is described as “indoor side” and the right side is described as “outdoor side”.

図1及び図2に示すように、後記する充填装置を用いた耐火補修後の防火窓、例えば複層ガラス窓1は、住宅や事務所等の建物躯体2に設けた開口部3に、合成樹脂製のサッシ枠4を組付けるとともに、このサッシ枠4の内周面4aに、複層ガラスWを嵌め殺し状態をもって装着することにより構成されている。
なお、サッシ枠4は、上枠4A、下枠4B及び左右の側枠4Cを構成する断面がやや横長矩形の中空形材からなる合成樹脂製のサッシ材5を方形に組立てることにより構成されている。
また、サッシ材5を構成する中空形材としては、例えば特開平9−137675号公報に開示されているような、塩化ビニル樹脂に、木材の粉砕物から調製したセルロース系微粉末を配合した樹脂組成物をもって形成した部材、特開平2000−303743号公報に開示されているような、表面が透明あるいは着色されたアクリル樹脂で被覆された部材等が適宜使用される。
As shown in FIGS. 1 and 2, a fireproof window after fireproof repair using a filling device to be described later, for example, a multi-layer glass window 1, is synthesized in an opening 3 provided in a building housing 2 such as a house or office. The resin sash frame 4 is assembled, and the multilayer glass W is fitted on the inner peripheral surface 4a of the sash frame 4 so as to be mounted in a killed state.
The sash frame 4 is constructed by assembling a synthetic resin sash material 5 made of a hollow shape material with a slightly rectangular cross section constituting the upper frame 4A, the lower frame 4B, and the left and right side frames 4C. Yes.
Moreover, as a hollow shape material which comprises the sash material 5, resin which mix | blended the cellulose fine powder prepared from the pulverized material of wood with vinyl chloride resin as disclosed by Unexamined-Japanese-Patent No. 9-137675, for example A member formed of the composition, a member whose surface is covered with a transparent or colored acrylic resin, as disclosed in JP-A No. 2000-303743, and the like are appropriately used.

なお、本工法は、前記したような合成樹脂製のサッシ枠4について好適に使用できるが、中空形材からなるアルミニウムまたはアルミニウム合金製のサッシ材を用いたサッシ枠やアルミニウムまたはアルミニウム合金と樹脂を複合させて用いた所謂アルミ樹脂複合サッシ材についても同様に適用できる。
サッシ枠4の内周面4aには、図2に要部を拡大して示すように、前記サッシ材5と、このサッシ材5における室内側内周端縁の内側に向けて突出させた突出部6と、前記サッシ材5の室外側内周端縁に形成した取付凹部7に取付けられた押え部材(押縁)8とより囲まれた内周溝部9が形成されている。
この内周溝部9には、前記複層ガラスWの外周端が、嵌合状態をもって保持されるようになっている。
In addition, although this construction method can be suitably used for the sash frame 4 made of a synthetic resin as described above, a sash frame using a sash material made of aluminum or an aluminum alloy made of a hollow material or an aluminum or aluminum alloy and a resin are used. The same applies to a so-called aluminum resin composite sash material used in combination.
On the inner peripheral surface 4 a of the sash frame 4, as shown in an enlarged view in FIG. 2, the sash member 5 and a protrusion protruded toward the inside of the indoor inner peripheral edge of the sash member 5. An inner circumferential groove portion 9 is formed that is surrounded by a portion 6 and a pressing member (pressing edge) 8 attached to an attachment concave portion 7 formed at an inner peripheral edge on the outdoor side of the sash member 5.
The inner peripheral groove 9 holds the outer peripheral end of the multilayer glass W in a fitted state.

複層ガラスWは、例えば、室内側に配置される網入りガラスW1と室外側に配置されるフロートガラスW2とより構成されている。
なお、網入りガラスW1とフロートガラスW2とは、入れ替えた配置としてもよい。
The multilayer glass W is composed of, for example, a mesh glass W1 disposed on the indoor side and a float glass W2 disposed on the outdoor side.
The meshed glass W1 and the float glass W2 may be replaced with each other.

サッシ枠4の内周面4aと複層ガラスWの外周端との間には、火災時に複層ガラスWの周囲のサッシ材5が炭化劣化して抜け落ちたとしても、火炎が複層ガラスWの周囲を通り抜けないように、耐火部材10が配設されている。
この耐火部材10としては、セラミックファイバー等の不燃性の繊維、例えば不燃性の繊維部材の全外周面を、シート状またはフィルム状の非通気性部材で被覆してなるものや、バーミキュライト、カオリン、マイカ、熱膨張性黒鉛、ケイ酸金属塩、ホウ酸塩等の熱膨張性無機物、及びこれらを組合せたものが好適に使用することができる。
Even if the sash material 5 around the multilayer glass W is carbonized and falls off between the inner peripheral surface 4a of the sash frame 4 and the outer peripheral edge of the multilayer glass W, the flame is not lost. The refractory member 10 is disposed so as not to pass through the surroundings.
Examples of the refractory member 10 include non-flammable fibers such as ceramic fibers, for example, those obtained by coating the entire outer peripheral surface of a non-flammable fiber member with a sheet-like or film-like non-breathable member, vermiculite, kaolin, Thermally expandable inorganic materials such as mica, thermally expandable graphite, metal silicate, and borate, and combinations thereof can be suitably used.

サッシ枠4の上枠4A、下枠4B及び左右の側枠4Cを構成するサッシ材5には、長手方向に沿って空洞部11が形成されており、この空洞部11は、前記上枠4A、下枠4B及び左右の側枠4Cの全周に亘って互いに連通しうるようになっている。   A sash member 5 constituting the upper frame 4A, the lower frame 4B, and the left and right side frames 4C of the sash frame 4 is formed with a cavity portion 11 along the longitudinal direction. The cavity portion 11 is formed of the upper frame 4A. The lower frame 4B and the left and right side frames 4C can communicate with each other over the entire circumference.

空洞部11は、補強を兼ねた隔壁12をもって、サッシ材5内のほぼ中心部に形成した比較的大きな主要空洞部13と、この主要空洞部13の室外側に隣接させて上下方向の内外2段に形成した比較的小さな小空洞部14A,14Bとに複数に区画されている。
主要空洞部13は、更に隔壁12Aをもって、上下方向の内外2段の大空洞部13A,13Bに区画されてなるとともに、これら大空洞部13A,13Bは、前記隔壁12Aに穿設した通孔15をもって、互いに連通させてある。
The cavity portion 11 has a partition wall 12 that also serves as a reinforcement, a relatively large main cavity portion 13 formed substantially at the center of the sash member 5, and an inner and outer 2 in the vertical direction adjacent to the outdoor side of the main cavity portion 13. It is divided into a plurality of relatively small small cavities 14A and 14B formed in steps.
The main cavity portion 13 further has a partition wall 12A and is divided into two large cavity portions 13A and 13B in the vertical direction, and the large cavity portions 13A and 13B are formed through holes 15 formed in the partition wall 12A. And communicated with each other.

主要空洞部13には、防火性材料16が、内外の空洞部13A,13Bに跨って充填されており、この防火性材料16の充填によって、前記サッシ枠4を、所望の防火性能を有する防火構造に補修することができる。なお、上記防火性材料16は、充填前および充填直後においては本発明の自硬化性粉体からなり、充填後、本発明の自硬化性粉体硬化時間を経過した後は、本発明の自硬化性粉体の硬化体からなる。   The main cavity 13 is filled with a fireproof material 16 across the inner and outer cavities 13A and 13B. By filling the fireproof material 16, the sash frame 4 has a fireproof performance having a desired fireproof performance. Can be repaired to the structure. The fireproof material 16 is made of the self-curing powder of the present invention before filling and immediately after filling, and after the self-curing powder curing time of the present invention has elapsed after filling, the self-curing powder of the present invention. It consists of a cured product of curable powder.

なお、図1、図2には、従来一般的に使用されている代表的な樹脂製中空サッシ材、すなわち、サッシ枠4を補強する目的で、スチールなどの金属からなる断面ほぼコ字形をなす長尺な補強材17が、サッシ材5の主要空洞部13A,13Bの内部に保持されるように、ビス18によって螺着されている樹脂製中空サッシ材をそのまま使用した例をしめしている。本発明の自硬化性粉体は空洞部13に充填後、自然に硬化して高強度の硬化体を与えるので、上記補強材17の使用を省略することも可能である。   1 and FIG. 2 have a substantially U-shaped cross section made of metal such as steel for the purpose of reinforcing a typical resin hollow sash material generally used conventionally, that is, a sash frame 4. An example in which a resin hollow sash material screwed by screws 18 is used as it is so that the long reinforcing material 17 is held inside the main cavities 13A and 13B of the sash material 5 is shown. Since the self-curing powder of the present invention is naturally cured after filling the cavity 13 to give a high-strength cured body, the use of the reinforcing material 17 can be omitted.

5.本工法
次に、建物躯体2の開口部3に装着された既成の複層ガラス窓1のサッシ枠4を防火構造に補修する本工法の作業工程を説明する。
図3は、充填装置を用いて、サッシ枠を構成するサッシ材の空洞部内に本発明の自硬化性粉体からなる防火性材料を充填する場合の一実施形態を概略的に示す図、図4は、図3における円Aの要部拡大縦断面図、図5は、第1筒状治具の斜視図、図6は、図5のVI−VI線断面図、図7は、図3における円Bの要部拡大横断面図、図8は、第2筒状治具の斜視図、図9は、図8のIX−IX線断面図、図10は、封止部材の斜視図、図11は、同じく、封止部材の分解斜視図である。
また、図12は、充填装置を用いて、サッシ枠を構成するサッシ材の空洞部内に、本発明の自硬化性粉体からなる防火性材料を充填する場合の他の実施形態を概略的に示す図、図13は、第1筒状治具の他の実施形態を示す斜視図、図14は、図13のXIV−XIV線断面図である。
5. Next, the work process of this construction method for repairing the sash frame 4 of the existing multi-layer glass window 1 attached to the opening 3 of the building housing 2 to a fireproof structure will be described.
FIG. 3 is a diagram schematically showing an embodiment when a fireproof material made of the self-curing powder of the present invention is filled into a cavity of a sash material constituting a sash frame using a filling device. 4 is an enlarged longitudinal sectional view of the main part of the circle A in FIG. 3, FIG. 5 is a perspective view of the first cylindrical jig, FIG. 6 is a sectional view taken along the line VI-VI in FIG. FIG. 8 is a perspective view of the second cylindrical jig, FIG. 9 is a cross-sectional view taken along the line IX-IX of FIG. 8, and FIG. 10 is a perspective view of the sealing member. FIG. 11 is also an exploded perspective view of the sealing member.
FIG. 12 schematically shows another embodiment in which a fireproof material made of the self-hardening powder of the present invention is filled into a cavity of a sash material constituting a sash frame using a filling device. FIG. 13 is a perspective view showing another embodiment of the first cylindrical jig, and FIG. 14 is a sectional view taken along the line XIV-XIV in FIG.

充填装置によるサッシ枠4への防火性材料16の充填作業は、充填前に、まず、複層ガラスW、押え部材8、耐火部材10、その他のシール部材などをサッシ枠4から取除く。   In the filling operation of the fireproof material 16 to the sash frame 4 by the filling device, first, the multi-layer glass W, the pressing member 8, the fireproof member 10, and other sealing members are removed from the sash frame 4 before filling.

次いで、図3〜図9に示すように、サッシ枠4における上枠4Aの左右方向の一方の端部の内周面4aに孔明け加工を施すことにより、充填口19(図2、図4参照)を穿設する。
この充填口19は、必ずしも上枠4Aに設ける必要はなく、図12に示すように、側枠4Cの上端部の内周面に設けることもでき、この場には、防火性材料16の充填に際して、枠の形状(例えば図12に示す方立て4Dの有無など)の影響を受け難いという利点がある。
一方、前記充填口19とほぼ対角線上に位置する前記サッシ枠4の下枠4Bにおける左右方向の端部または側枠4Cの下端部(本実施形態においては、側枠4Cの下端部)の内周面4aに孔明け加工を施すことにより、充填口19より下方に位置するように、排気口20(図7参照)を離間させて穿設する。
これらの充填口19及び排気口20は、前記サッシ材5における空洞部11の内部を主要空洞部13A,13Bに区画する隔壁12Aに設けた通孔15と対向する位置に孔明け加工されることが好ましい。
本発明の方法では、充填口19と排気口20とを、前記したような位置関係で設けることにより、防火性材料16を、このような空気による圧送により、サッシ材5の空洞部11内に高い充填率で均一に充填することができる。
Next, as shown in FIGS. 3 to 9, the filling port 19 (FIGS. 2 and 4) is formed by drilling the inner peripheral surface 4 a of one end portion of the upper frame 4 </ b> A in the left-right direction of the sash frame 4. Drill).
The filling port 19 is not necessarily provided in the upper frame 4A, and may be provided on the inner peripheral surface of the upper end portion of the side frame 4C, as shown in FIG. At this time, there is an advantage that it is difficult to be influenced by the shape of the frame (for example, the presence or absence of the frame 4D shown in FIG. 12).
On the other hand, inside the left and right ends of the lower frame 4B of the sash frame 4 positioned substantially diagonally to the filling port 19 or the lower end of the side frame 4C (in this embodiment, the lower end of the side frame 4C) By drilling the peripheral surface 4 a, the exhaust port 20 (see FIG. 7) is spaced apart so as to be positioned below the filling port 19.
The filling port 19 and the exhaust port 20 are drilled at positions facing the through holes 15 provided in the partition wall 12A that partitions the inside of the cavity portion 11 of the sash material 5 into main cavity portions 13A and 13B. Is preferred.
In the method of the present invention, by providing the filling port 19 and the exhaust port 20 in the positional relationship as described above, the fireproof material 16 is pumped into the cavity 11 of the sash material 5 by such air pressure. It can be uniformly filled at a high filling rate.

充填装置は、図3、図4、図12に示すように、前記サッシ枠4における上枠4Aの左右方向の一方の端部の内周面4aに開口させた充填口19から、前記サッシ材5における空洞部11の内部に向けて挿着される第1筒状治具21または第1筒状治具21´を備えている。   As shown in FIGS. 3, 4, and 12, the filling device includes the sash material from a filling port 19 that is opened on an inner peripheral surface 4 a of one end of the upper frame 4 </ b> A in the left-right direction of the sash frame 4. 5 includes a first cylindrical jig 21 or a first cylindrical jig 21 ′ that is inserted toward the inside of the cavity 11.

第1筒状治具21は、図5、図6に示すように、例えば金属などの有底な円筒体22からなり、この円筒体22における長手方向のほぼ中間部外周には、充填口19への挿着時に、前記上枠4Aの内周面4aに外側から当接するように張出す平面視矩形をなす金属などの当接板23が溶接等によって固着されている。
前記充填口19に挿着される第1筒状治具21の当接板23から上方部分の挿入端部21aとなる円筒体22の上端面21bは閉塞されているとともに、この挿入端部21aの周側面には、2つの吐出口24が開口されている。
この2つの吐出口24は、前記充填口19に第1筒状治具21を挿着した際に、サッシ材5の空洞部11における主要空洞部13の内部を区画する隔壁12Aに設けた通孔15を通して大空洞部13A,13Bに跨って連通しうるように配置される。
As shown in FIGS. 5 and 6, the first cylindrical jig 21 is composed of a bottomed cylindrical body 22 such as a metal, for example. At the time of insertion, a contact plate 23 made of metal or the like having a rectangular shape in a plan view extending so as to contact the inner peripheral surface 4a of the upper frame 4A from the outside is fixed by welding or the like.
The upper end surface 21b of the cylindrical body 22 serving as the insertion end portion 21a in the upper part from the contact plate 23 of the first cylindrical jig 21 to be inserted into the filling port 19 is closed, and the insertion end portion 21a. Two discharge ports 24 are opened on the peripheral side surface.
The two discharge ports 24 are formed in the partition wall 12A that partitions the interior of the main cavity 13 in the cavity 11 of the sash member 5 when the first cylindrical jig 21 is inserted into the filling port 19. It arrange | positions so that it can communicate across the large cavity parts 13A and 13B through the hole 15. FIG.

なお、前記した第1筒状治具21´は、図13、図14に示すように、挿入端部21aが前記第1筒状治具21とは異なる管状体からなるものを使用することも可能である。
この第1筒状治具21´は、図5、図6に示す第1筒状治具21において、その閉塞された挿入端部21aにおける上端面21bの端面を開口させて、吐出口24としてなるものである。
このような管状体である第1筒状治具21´を用いた場合には、前記充填口19に、該第1筒状治具21´の挿入端部21aが大空洞部13A内に入っていれば、大空洞部13A内は勿論大空洞部13B内にも通孔15を通して問題なく防火性材料16を充填することができる。
The first cylindrical jig 21 ′ may be one having an insertion end 21 a made of a tubular body different from the first cylindrical jig 21 as shown in FIGS. 13 and 14. Is possible.
The first cylindrical jig 21 ′ has an opening at the end surface of the upper end surface 21 b of the closed insertion end 21 a in the first cylindrical jig 21 shown in FIGS. It will be.
When the first cylindrical jig 21 ′ having such a tubular body is used, the insertion end 21 a of the first cylindrical jig 21 ′ enters the large cavity portion 13 A at the filling port 19. If so, the fireproof material 16 can be filled without any problem through the through hole 15 in the large cavity 13A as well as in the large cavity 13B.

充填装置は、第1筒状治具21または第1筒状治具21´以外に、図3、図7、図12に示すように、第1筒状治具21または第1筒状治具21´が挿着される前記充填口19とほぼ対角線上に位置する側枠4Cの下端部の内周面4aに開口させた排気口20に挿着される第2筒状治具25を備えている。   In addition to the first cylindrical jig 21 or the first cylindrical jig 21 ′, the filling device includes a first cylindrical jig 21 or a first cylindrical jig as shown in FIGS. 3, 7, and 12. A second cylindrical jig 25 to be inserted into the exhaust port 20 opened on the inner peripheral surface 4a of the lower end portion of the side frame 4C located substantially diagonally to the filling port 19 into which 21 'is inserted; ing.

第2筒状治具25は、図8、図9に示すように、前記第1筒状治具21と同様に、例えば金属などの円筒体26からなり、この円筒体26における長手方向のほぼ中間部外周には、排気口20への挿着時に、側枠4Cの内周面4aに外側から当接するように張出す平面視矩形をなす金属製の当接板27が溶接等によって固着されている。
円筒体26の一方の端部は、前記排気口20に挿入される第2筒状治具25の挿入端部25aとなるとともに、この挿入端部25aに、防火性材料16を構成する本発明の自硬化性粉体の粒径または粉径よりも小径の孔部を備えた金網等からなる有底円筒状のエアーフィルター部材28を装着することによって、排気口部が形成される。
As shown in FIGS. 8 and 9, the second cylindrical jig 25 is formed of a cylindrical body 26 made of metal, for example, in the same manner as the first cylindrical jig 21. On the outer periphery of the intermediate portion, a metal contact plate 27 having a rectangular shape in a plan view extending so as to contact the inner peripheral surface 4a of the side frame 4C from the outside when being inserted into the exhaust port 20 is fixed by welding or the like. ing.
One end portion of the cylindrical body 26 serves as an insertion end portion 25a of the second cylindrical jig 25 inserted into the exhaust port 20, and the fireproof material 16 is formed in the insertion end portion 25a. The exhaust port portion is formed by mounting the bottomed cylindrical air filter member 28 made of a wire mesh or the like having a particle diameter of the self-curing powder or a hole having a diameter smaller than the powder diameter.

エアーフィルター部材28は、前記排気口20に第2筒状治具25を挿着した際に、サッシ材5の主要空洞部13の内部を区画する隔壁12Aに設けた通孔15を通して大空洞部13A,13Bに跨って連通しうるように配置されることが好ましい。
なお、エアーフィルター部材は、防火性材料16が排気口20から外部に排出されるのを防止し、空気のみを排出する機能を有するものであれば、その形状は有底円筒状に限定されるものではなく、例えば第2筒状治具25の端部の開口を覆うような膜状の物であってもよい。
When the second cylindrical jig 25 is inserted into the exhaust port 20, the air filter member 28 has a large cavity portion through a through hole 15 provided in the partition wall 12 </ b> A that partitions the inside of the main cavity portion 13 of the sash material 5. It is preferable that they are arranged so as to communicate across 13A and 13B.
The shape of the air filter member is limited to a bottomed cylindrical shape as long as it has a function of preventing the fireproof material 16 from being discharged to the outside through the exhaust port 20 and discharging only air. For example, it may be a film-like object that covers the opening at the end of the second cylindrical jig 25.

前記充填口19及び排気口20には、図4、図7に示すように、封止部材29が、サッシ枠4の内周面4aと第1筒状治具21の外周に設けた当接板23、及び第2筒状治具25の外周に設けた当接板27との間に介在するようにして被着されている。   As shown in FIGS. 4 and 7, the filling member 19 and the exhaust port 20 are in contact with a sealing member 29 provided on the inner peripheral surface 4 a of the sash frame 4 and the outer periphery of the first cylindrical jig 21. It is attached so as to be interposed between the plate 23 and the contact plate 27 provided on the outer periphery of the second cylindrical jig 25.

封止部材29は、図10および図11に示すように、例えば硬質塩化ビニルからなる基板30と、天然スポンジゴム等からなるバックアップシート31と、基板30とバックアップシート31との間に配置した薄型のゴムシートからなる弾性的に伸縮自在な弾性膜32とより構成されている。
前記弾性膜32は、基板30の裏面に配置されているとともに、前記基板30とバックアップシート31との間に挟持させ一体化されている。
これら基板30、バックアップシート31、及び弾性膜32は、前記第1及び第2筒状治具21の当接板23、27とほぼ同一な平面視矩形形状を有する。
As shown in FIGS. 10 and 11, the sealing member 29 is, for example, a thin plate disposed between a substrate 30 made of hard vinyl chloride, a backup sheet 31 made of natural sponge rubber, and the substrate 30 and the backup sheet 31. The elastic film 32 is made of a rubber sheet and is elastically stretchable.
The elastic film 32 is disposed on the back surface of the substrate 30 and is integrated by being sandwiched between the substrate 30 and the backup sheet 31.
The substrate 30, the backup sheet 31, and the elastic film 32 have substantially the same rectangular shape in plan view as the contact plates 23 and 27 of the first and second cylindrical jigs 21.

基板30とバックアップシート31の中央部には、互いに整合する位置に通孔33、34がそれぞれ穿設されている。
基板30とバックアップシート31との間に挟持され一体化された弾性膜32の中央部には、前記通孔33、34に整合するように位置させて、それらの通孔33、34の孔径とほぼ同一長さのスリット状開口部35が設けられている。
Through holes 33 and 34 are formed in the central portions of the substrate 30 and the backup sheet 31 at positions aligned with each other.
The elastic film 32 sandwiched and integrated between the substrate 30 and the backup sheet 31 is positioned so as to be aligned with the through holes 33 and 34, and the diameters of the through holes 33 and 34 are determined. A slit-like opening 35 having substantially the same length is provided.

通孔33、34及びスリット状開口部35を備える封止部材29は、前記通孔33、34及びスリット状開口部35を充填口19または排気口20に位置を整合させて、充填口19または排気口20に被着するとともに、前記弾性膜32のスリット状開口部35を、第1筒状治具21及び第2筒状治具25のそれぞれの挿入もしくは引抜き動作に応じて、弾性的に拡開状態もしくは縮閉状態になるようにしてある。   The sealing member 29 including the through holes 33 and 34 and the slit-shaped opening 35 is arranged so that the positions of the through-holes 33 and 34 and the slit-shaped opening 35 are aligned with the filling port 19 or the exhaust port 20. The slit-shaped opening 35 of the elastic film 32 is elastically attached to the exhaust port 20 in accordance with the insertion or extraction operation of the first cylindrical jig 21 and the second cylindrical jig 25, respectively. An expanded state or a contracted state is set.

すなわち、第1筒状治具21または第1筒状治具21´の前記吐出口24が形成された挿入端部21aまたは第2筒状治具25の挿入端部25aを形成するエアーフィルター部材28が、封止部材29を構成する基板30の通孔33からバックアップシート31の通孔34に向けて挿入されると、弾性膜32のスリット状開口部35が強制的に拡開方向に伸長され、拡開状態となる。
これにより、充填口19または排気口20が開口され、第1筒状治具21あるいは第1筒状治具21´または第2筒状治具25を、封止部材29を介して充填口19または排気口20からサッシ枠4を構成するサッシ5の空洞部11内へ向けて挿着することができる。
That is, an air filter member that forms the insertion end portion 21a in which the discharge port 24 of the first cylindrical jig 21 or the first cylindrical jig 21 'is formed or the insertion end portion 25a of the second cylindrical jig 25. When 28 is inserted from the through hole 33 of the substrate 30 constituting the sealing member 29 toward the through hole 34 of the backup sheet 31, the slit-shaped opening 35 of the elastic film 32 is forcibly extended in the expanding direction. It will be in an expanded state.
As a result, the filling port 19 or the exhaust port 20 is opened, and the first cylindrical jig 21, the first cylindrical jig 21 ′, or the second cylindrical jig 25 is inserted into the filling port 19 via the sealing member 29. Alternatively, it can be inserted from the exhaust port 20 into the cavity 11 of the sash 5 constituting the sash frame 4.

一方、第1筒状治具21あるいは第1筒状治具21´または第2筒状治具25の挿着状態において、第1または第2筒状治具21,21´,25を、サッシ材5の空洞部11から封止部材29を介して引抜くと、弾性膜32のスリット状開口部35が、拡開状態から縮閉状態に弾性的に復帰しうるように縮閉されることが好ましい。
これにより、第1筒状治具21あるいは第1筒状治具21´または第2筒状治具25が充填口19または排気口20から引抜かれた際にも、封止部材29によって充填口19および排気口20を閉塞させることができる。
このため、第1筒状治具21または第1筒状治具21´及び第2筒状治具25を再利用(使い回し)することが可能となる。
On the other hand, when the first cylindrical jig 21 or the first cylindrical jig 21 ′ or the second cylindrical jig 25 is inserted, the first or second cylindrical jigs 21, 21 ′, 25 are attached to the sash. When pulled out from the cavity 11 of the material 5 through the sealing member 29, the slit-like opening 35 of the elastic film 32 is contracted so that it can elastically return from the expanded state to the contracted state. Is preferred.
Thus, even when the first cylindrical jig 21, the first cylindrical jig 21 ′, or the second cylindrical jig 25 is pulled out from the filling port 19 or the exhaust port 20, the filling member 19 19 and the exhaust port 20 can be closed.
Therefore, the first cylindrical jig 21 or the first cylindrical jig 21 ′ and the second cylindrical jig 25 can be reused (reused).

第1筒状治具21または第1筒状治具21´及び第2筒状治具25を取り外した後は、封止部材29を取り外し、防水テープやキャップ等の部品をもって充填口19及び排気口20を閉塞することが好ましい。
そうすることにより、長期間使用しても枠内への水の侵入を防止することができるばかりでなく、封止部材29を再利用することができる。
After removing the first cylindrical jig 21 or the first cylindrical jig 21 ′ and the second cylindrical jig 25, the sealing member 29 is removed, and the filling port 19 and the exhaust are held with parts such as waterproof tape and a cap. It is preferable to close the mouth 20.
By doing so, not only can water be prevented from entering the frame even when used for a long period of time, but also the sealing member 29 can be reused.

充填装置は、図3及び図12に示すように、防火性材料16を貯留するためのホッパー36と、該ホッパー36の上流に配置され、このホッパー36内の防火性材料16を圧送するための加圧空気を供給するためのエアーコンプレッサー37と、該ホッパー36と第1筒状治具21または第1筒状治具21´とを接続する防火性材料移送管、具体的には供給ホース(防火性材料移送管)38と、前記ホッパー36内にエアーコンプレッサー37からの加圧空気を供給するエアーホース39と、より構成した材料圧送手段を備えていることが好ましい。
すなわち、前記第1筒状治具21または第1筒状治具21´は、図3、図12に示すように、防火性材料16が貯留されるホッパー36の供給口36aに、供給ホース38を介して接続されていることが好ましい。
As shown in FIGS. 3 and 12, the filling device is disposed upstream of the hopper 36 for storing the fireproof material 16, and is used for pumping the fireproof material 16 in the hopper 36. An air compressor 37 for supplying pressurized air, a fireproof material transfer pipe connecting the hopper 36 and the first cylindrical jig 21 or the first cylindrical jig 21 ′, specifically a supply hose ( It is preferable to include a material pressure feeding means composed of a fireproof material transfer pipe) 38, an air hose 39 for supplying pressurized air from the air compressor 37 into the hopper 36, and the air hose 39.
That is, the first cylindrical jig 21 or the first cylindrical jig 21 'is connected to a supply hose 38 at a supply port 36a of a hopper 36 in which the fireproof material 16 is stored, as shown in FIGS. It is preferable to be connected via

ホッパー36内には、エアーコンプレッサー37に接続されたエアーホース39を介して、エアーコンプレッサー37とホッパー36との間に配置されている調圧弁40により圧力が調整された空気がバルブ41を介して圧送されるようになっており、これらホッパー36とエアーコンプレッサー37とにより材料圧送手段を構成している。   In the hopper 36, the air whose pressure is adjusted by the pressure regulating valve 40 disposed between the air compressor 37 and the hopper 36 through the air hose 39 connected to the air compressor 37 passes through the valve 41. The hopper 36 and the air compressor 37 constitute a material pressure feeding means.

空気が圧送されたホッパー36内の防火性材料16は、供給ホース38に接続された第1筒状治具21または第1筒状治具21´を介して、空気と共にサッシ枠4の充填口19から、サッシ材5の空洞部11内に強制的に圧送される。   The fireproof material 16 in the hopper 36 to which the air has been pumped passes through the first cylindrical jig 21 or the first cylindrical jig 21 ′ connected to the supply hose 38 and the filling port of the sash frame 4 together with the air. From 19, it is forcibly pumped into the cavity 11 of the sash material 5.

ホッパー36内における供給口36aの上方近傍には、邪魔板42が配設されている。
この邪魔板42の外周面とホッパー36の内周壁面との間には、防火性材料の流通間隙43が形成されている。
邪魔板42は、防火性材料16の自重による負荷によって、ホッパー36の供給口36aを閉塞するのを防止し、防火性材料16をホッパー36の流通間隙43から供給口36aに向けて円滑に流出させるためのものである。
A baffle plate 42 is disposed in the hopper 36 near the upper portion of the supply port 36a.
Between the outer peripheral surface of the baffle plate 42 and the inner peripheral wall surface of the hopper 36, a flow gap 43 of a fireproof material is formed.
The baffle plate 42 prevents the supply port 36a of the hopper 36 from being blocked by a load due to the weight of the fireproof material 16, and the fireproof material 16 flows out smoothly from the flow gap 43 of the hopper 36 toward the supply port 36a. It is for making it happen.

上記材料圧送手段を有する充填装置では、第1筒状治具21または第1筒状治具21´を、サッシ枠4の上枠4Aの左右方向の一方の端部の内周面又は側枠4Cの上端部の内周面に設けられた充填口19に挿着し、第2筒状治具25を下枠4Bの端部の内周面又は側枠4Cの下端部の内周面に設けられた排気口20に挿入し、第1筒状治具21または第1筒状治具21´を介して、防火性材料16を前記空洞部11内に加圧空気により圧送するので、防火性材料16をサッシ材5の空洞部11内に高い充填率で均一に充填することができる。このとき、充填装置においては、サッシ材5の空洞部11内への防火性材料16の充填を、より安定して行ために、図3に示されるように、第2筒状治具20を介して、空洞部11内の空気を吸引し外部に排気するための吸引排気手段を備えるものとすることが好ましい。
こうすることにより、材料圧送手段による空洞部11内への空気の防火性材料16との圧送力と、吸引排気手段による空洞部11内の空気の吸引排気力とを最適にバランスさせることにより、防火性材料16の充填率を向上させることができる。
In the filling apparatus having the material pressure feeding means, the first cylindrical jig 21 or the first cylindrical jig 21 ′ is connected to the inner peripheral surface or the side frame at one end in the left-right direction of the upper frame 4 </ b> A of the sash frame 4. The second cylindrical jig 25 is inserted into the inner peripheral surface of the end portion of the lower frame 4B or the inner peripheral surface of the lower end portion of the side frame 4C. The fireproof material 16 is inserted into the provided exhaust port 20 and is pumped by pressurized air into the cavity 11 via the first cylindrical jig 21 or the first cylindrical jig 21 ′. The active material 16 can be uniformly filled into the cavity 11 of the sash material 5 at a high filling rate. At this time, in the filling device, in order to more stably fill the fireproof material 16 into the cavity 11 of the sash material 5, as shown in FIG. Therefore, it is preferable to include suction / exhaust means for sucking the air in the cavity 11 and exhausting it outside.
By doing so, by optimally balancing the pressure-feeding force of the air into the cavity 11 by the material-pumping means and the suction-exhausting force of the air in the cavity 11 by the suction-exhaust means, The filling rate of the fireproof material 16 can be improved.

すなわち、図3に示される態様においては、第2筒状治具25は、吸引排気手段としての吸引ファン44に、吸引ホース45を介して接続されている。
吸引ファン44は、ホッパー36内からサッシ枠4におけるサッシ材5の空洞部11内に空気と共に圧送された防火性材料16を、第2筒状治具25の挿入端部25aを形成するエアーフィルター部材28によって、外部に漏洩しないように阻止して、空気のみを強制的に吸引し外部に排気するようになっている。
これにより、サッシ枠4におけるサッシ材5の空洞部11に防火性材料16を密実に充填することができる。
That is, in the embodiment shown in FIG. 3, the second cylindrical jig 25 is connected to a suction fan 44 as a suction exhaust means via a suction hose 45.
The suction fan 44 is an air filter that forms the insertion end portion 25a of the second cylindrical jig 25 from the hopper 36 and the fireproof material 16 that is pressure-fed together with air into the cavity 11 of the sash member 5 in the sash frame 4. The member 28 prevents the air from leaking to the outside, forcibly sucks only air and exhausts it to the outside.
Thereby, the fireproof material 16 can be filled with the cavity 11 of the sash material 5 in the sash frame 4 densely.

また、充填装置においては、より安定して防火性材料16をサッシ材5の空洞部11内に向けて供給し、より確実且つ効率的に高充填率で充填して高い防火性能を得るために、図12に示されるように、前記材料圧送手段における防火性材料移送管としての供給ホース38の第1筒状治具21または第1筒状治具21´側にエアーコンプレッサー37から加圧空気を供給するようにすることが好ましい。   Further, in the filling device, the fireproof material 16 is more stably supplied toward the cavity 11 of the sash material 5, and more reliably and efficiently filled at a high filling rate to obtain high fireproof performance. As shown in FIG. 12, pressurized air is supplied from the air compressor 37 to the first cylindrical jig 21 or the first cylindrical jig 21 ′ side of the supply hose 38 as a fireproof material transfer pipe in the material pressure feeding means. Is preferably supplied.

すなわち、図12に示される態様では、調圧弁40より下流側でエアーホース39を2つに分岐させ、一方を主管39aとしてホッパー36側にバルブ41を介して接続するとともに、もう一方を枝管39bとしてバルブ46を介して供給ホース38に接続することにより、防火性材料16の圧送に際し、エアーコンプレッサー37から供給される加圧空気を、供給ホース38の途中から別途供給して防火性材料16の圧送をアシストするようにしている。
こうすることにより、圧送を連続的に安定して行うことが可能になり、圧送時における一時的な詰まりを解消するために枠に振動を与えるなどの補助的手段を用いる必要がなくなるばかりでなく、サッシ枠4におけるサッシ材5の空洞部11に防火性材料16をより確実に密実に充填することができるようになる。
That is, in the embodiment shown in FIG. 12, the air hose 39 is branched into two on the downstream side of the pressure regulating valve 40, one is connected to the hopper 36 side via the valve 41 as the main pipe 39a, and the other is connected to the branch pipe. By connecting to the supply hose 38 through the valve 46 as 39b, the pressurized air supplied from the air compressor 37 is separately supplied from the middle of the supply hose 38 when the fireproof material 16 is pressure-fed. Assists in the pumping.
This makes it possible to perform pumping continuously and stably, and eliminates the need to use auxiliary means such as giving vibration to the frame to eliminate temporary clogging during pumping. Thus, the cavity portion 11 of the sash material 5 in the sash frame 4 can be more reliably and reliably filled with the fireproof material 16.

なお、前記枝管39bが供給ホース38に接続される位置は、第1筒状治具21または第1筒状治具21´より5〜20cm、特に10〜15cm上流であることが好ましい。   The position where the branch pipe 39b is connected to the supply hose 38 is preferably 5 to 20 cm, particularly 10 to 15 cm upstream from the first cylindrical jig 21 or the first cylindrical jig 21 '.

防火性材料16(本発明の自硬化性粉体)は、サッシ材5の空洞部11内に圧送したときに密充填され易く、充填後において自重や振動などにより空隙が発生し難いという理由から、次のような粒度分布を有するものであることが好ましい。
すなわち、本発明の自硬化性粉体に含まれる無機中空粒子が、液状成分が表面に付着していない状態で、粒子径が200μm以下である粒子の含有割合が30質量%以下であり、粒子径が300μm以上500μm以下の範囲にある粒子の含有割合が30質量%以上であり、粒子径が600μm以上である粒子の含有割合が20質量%以下である粒度分布を有することが特に好ましい。
なお、上記粒子度分布は、乾式ふるい分け試験方法(JIS K 0069)による粒度測定結果に基づくものである。
たとえば、1mの長さに切断した中空のサッシ材の一端にエアーフィルターを配置し、粒度分布の異なる防火性材料を圧送して密充填してからサッシ材の側面をハンマーで叩くことにより振動を与えて強制的に防火性材料を締め固めたときに発生する隙間の体積を測定したところ、前記粒度分布Aから外れる粒度分布を有する防火性材料を用いたときに発生した隙間は充填空間の全体積に対して10〜15%程度であったのに対し、粒度分布AおよびBを有する防火性材料を用いたときに発生した隙間は、それぞれ5〜9%及び5〜7%であった。
The fireproof material 16 (the self-curing powder of the present invention) is easily densely packed when being fed into the cavity 11 of the sash material 5, and it is difficult to generate voids due to its own weight or vibration after filling. The following particle size distribution is preferable.
That is, the inorganic hollow particles contained in the self-curing powder of the present invention are particles having a particle size of 200 μm or less in a state where the liquid component is not attached to the surface, and the content ratio of the particles is 30% by mass or less. It is particularly preferable to have a particle size distribution in which the content ratio of particles having a diameter of 300 μm or more and 500 μm or less is 30% by mass or more and the content ratio of particles having a particle diameter of 600 μm or more is 20% by mass or less.
The particle size distribution is based on the result of particle size measurement by a dry sieving test method (JIS K 0069).
For example, an air filter is placed at one end of a hollow sash material cut to a length of 1 m, and fire-resistant materials with different particle size distributions are pumped and tightly packed, and then the sash material is vibrated by hitting the side with a hammer. When the volume of the gap generated when the fireproof material is forced and compacted is measured, the gap generated when using the fireproof material having a particle size distribution deviating from the particle size distribution A is the entire filling space. The gaps generated when using fireproof materials having particle size distributions A and B were 5 to 9% and 5 to 7%, respectively, while they were about 10 to 15% with respect to the product.

空洞部13に充填された防火性材料16(本発明の自硬化性粉体)は、比較的速やかに硬化して優れた防火性を発揮する。このため、サッシ枠4の上枠4A,4B,4C、4Dを構成する各サッシ材5が、熱により強度を失ったとしても、空洞部11に形成された硬化体により、複層ガラスWを支持し続けることができるため、複層ガラスWの脱落を防止することができる。
また、防火性材料16は、無機中空粒子を使用しているので、その硬化体が高い断熱性能を有するため、火災時においても、サッシ材5の非加熱面の熱による損傷を大幅に低減することができ、より優れた防火性を発揮することができる。さらにサッシ材5の加熱面が炭化劣化や溶融して消失しても、硬化体は崩落しないので、複層ガラスWを支持し続けることができるという効果が得られることになる。
The fireproof material 16 (the self-curing powder of the present invention) filled in the cavity 13 is cured relatively quickly and exhibits excellent fireproofing properties. For this reason, even if each sash material 5 constituting the upper frames 4A, 4B, 4C, and 4D of the sash frame 4 loses its strength due to heat, the multilayer glass W is formed by the cured body formed in the cavity 11. Since it can continue to support, it is possible to prevent the multilayer glass W from falling off.
In addition, since the fireproof material 16 uses inorganic hollow particles, the cured body has high heat insulation performance, so that damage due to heat of the non-heated surface of the sash material 5 is greatly reduced even in a fire. And more excellent fire resistance can be exhibited. Furthermore, even if the heating surface of the sash material 5 is lost due to carbonization deterioration or melting, the cured body does not collapse, so that the effect that the multilayer glass W can be supported can be obtained.

また、サッシ枠4への防火性材料16(本発明の自硬化性粉体)の充填に際して、防火性材料16を圧送する空気の圧力及び流量の最適範囲は、図3及び図12に示す態様と共に、例えば充填口19における圧力と排気口20における圧力の差(差圧)が0.15〜0.20MPaとなるようにすることが好ましい。
5.本発明の防火性サッシ材および防火窓
以上、耐火補修をする場合を例に詳しく説明したが、新規に本発明のサッシ枠を製造する場合は、生産工場にて上記方法に準じて本発明の自硬化粉体を充填すればよい。また、新規に本発明の防火性サッシ材を製造する場合には、本発明の自硬化粉体を圧送する必要は特になく、種々の充填方法が適用できる。たとえば、連通する空洞部の下端を仮封し、上方から本発明の自硬化粉体を落下させて充填し、必要に応じて上端を仮封し、所定時間放置して本発明の自硬化粉体を硬化させてもよい。また、硬化を促進するために加熱することもできる。
Further, when the sash frame 4 is filled with the fireproof material 16 (self-curing powder of the present invention), the optimum range of the pressure and flow rate of the air for pumping the fireproof material 16 is as shown in FIGS. 3 and 12. In addition, for example, it is preferable that the difference (differential pressure) between the pressure at the filling port 19 and the pressure at the exhaust port 20 is 0.15 to 0.20 MPa.
5. The fireproof sash material and the fireproof window of the present invention have been described in detail above, taking the case of fireproof repair as an example, but when the sash frame of the present invention is newly manufactured, according to the above method at the production factory, What is necessary is just to fill self-hardening powder. In addition, when the fireproof sash material of the present invention is newly produced, it is not particularly necessary to pump the self-curing powder of the present invention, and various filling methods can be applied. For example, the lower end of the communicating cavity is temporarily sealed, the self-curing powder of the present invention is dropped and filled from above, the upper end is temporarily sealed as necessary, and the self-curing powder of the present invention is left standing for a predetermined time. The body may be cured. It can also be heated to promote curing.

さらに、本発明の防火性サッシ材の断面プロファイルはさまざまな要求に応じて変更可能である。また、本発明の防火性サッシ材は、框材または立方材であってもよい。特に、本発明の防火性サッシ材が框材である場合には、図1および2に示す実施形態について建物躯体開口部に固定する機能を有しないように微改変するだけで、図1に示す防火窓は防火障子と、図2に示す枠材は框材とすることができる。さらに、これらの詳細についても、躯体取り付け部115a、115b、付属備品固定用金具180、およびビス190に関する説明を除けば、防火窓を防火障子と、枠材を框材と読みかえれば、上に記した「図に示す実施形態の説明」が、ほぼそのまま適用できる。   Furthermore, the cross-sectional profile of the fire-resistant sash material of the present invention can be changed according to various requirements. The fireproof sash material of the present invention may be a firewood material or a cubic material. In particular, when the fireproof sash material of the present invention is a saddle material, the embodiment shown in FIGS. 1 and 2 is shown in FIG. 1 only by slight modification so as not to have a function of fixing to the building frame opening. The fireproof window can be fireproof shoji, and the frame material shown in FIG. Furthermore, with respect to these details, except for the description of the case attachment portions 115a and 115b, the accessory fixtures 180, and the screws 190, the fireproof window can be read as fireproof shoji, and the frame material can be read as saddle. The “description of the embodiment shown in the figure” described can be applied almost as it is.

また、本発明の防火窓は、所謂「はめごろし窓」に限定されず、「建物躯体の開口部に設置される開口枠体に、前記難燃性パネルが、上下左右の框を有する障子として前記枠内に開閉自在に装着された窓」であってもよい。このとき、前記開口枠体を構成する上枠、下枠、および左右の縦枠の内、少なくとも下枠は本発明の防火性サッシ材からなる枠材ある必要があり、また、前記下框は本発明の防火性サッシ材からなる框材である必要がある。   In addition, the fireproof window of the present invention is not limited to a so-called “fitted window”, and “a shoji having the flame retardant panel having upper, lower, left and right fences on an opening frame body installed in an opening of a building housing. As a window that can be freely opened and closed within the frame. At this time, at least the lower frame among the upper frame, the lower frame, and the left and right vertical frames constituting the opening frame body needs to be a frame material made of the fireproof sash material of the present invention, It is necessary to be a firewood made of the fireproof sash material of the present invention.

以下に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。   Examples The present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(無機中空粒子)
無機中空粒子としてフライアッシュバルーンを用い、表1に示す粒度分布を有する粒子とした。なお、各目開きは一段階大きな目開きは通過するものの当該目開きを通過しない粒度の粒子の質量比で示されている。例えば、目開き425は、目開き300は通過するが目開き425を通過しない粒度の粒子の質量比を示している。
(Inorganic hollow particles)
A fly ash balloon was used as the inorganic hollow particles, and particles having a particle size distribution shown in Table 1 were used. In addition, each opening is shown by the mass ratio of the particle | grains of the particle size which passes a 1 step large opening but does not pass the said opening. For example, the opening 425 indicates a mass ratio of particles having a particle size that passes through the opening 300 but does not pass through the opening 425.

Figure 2013011076
Figure 2013011076

(粘結剤組成物の調製)
フェノールの1190質量部に対して、92%パラホルムアルデヒドの825.6質量部と、水の1073.3質量部とを加え、湯浴上で還流加熱することにより、混合液が均一になるまで加温して、フェノールとパラホルムアルデヒドとを完全に溶解させた。その後、かかる水溶液を一旦冷却し、これに、アルカリ触媒として、131.9質量部の48質量%NaOH水溶液と184.6質量部の48質量%KOH水溶液との混合液を、徐々に滴下し、80℃まで徐々に昇温した後、その温度を保持して、還流下で反応させた。そして、反応液の粘度が、150mPa・s/50℃になった時点で冷却して、水溶性フェノール樹脂の合成を終了した。その後、かかる水溶性フェノール樹脂を含有する溶液に対して、更に、調整剤として、290.1質量部の48%NaOH水溶液と406.2質量部の48%KOH水溶液を添加し、その後、固形分が45%になるように、水を加えた。更に、かかる混合溶液の全質量に対し、尿素を1%、及びγ―アミノプロピルトリエトキシシランを0.2%の割合となるように、それぞれ、添加することにより、粘結剤組成物を調製した。
(Preparation of binder composition)
Add 825.6 parts by mass of 92% paraformaldehyde and 1073.3 parts by mass of water to 1190 parts by mass of phenol, and heat to reflux on a hot water bath until the mixture becomes homogeneous. Warm to completely dissolve the phenol and paraformaldehyde. Thereafter, the aqueous solution was once cooled, and a mixed solution of 131.9 parts by mass of 48% by mass NaOH aqueous solution and 184.6 parts by mass of 48% by mass KOH aqueous solution was gradually added dropwise thereto as an alkali catalyst. After gradually raising the temperature to 80 ° C., the temperature was maintained and the reaction was conducted under reflux. And when the viscosity of the reaction liquid became 150 mPa * s / 50 degreeC, it cooled, and the synthesis | combination of water-soluble phenol resin was complete | finished. Thereafter, 290.1 parts by mass of a 48% NaOH aqueous solution and 406.2 parts by mass of a 48% KOH aqueous solution were further added as regulators to the solution containing the water-soluble phenol resin. Water was added so that was 45%. Further, a binder composition is prepared by adding urea to a ratio of 1% and γ-aminopropyltriethoxysilane at a ratio of 0.2% with respect to the total mass of the mixed solution. did.

(本発明の自硬化粉体の物性測定)
得られた無機中空粒子と粘結剤組成物から自硬化粉体を製造し、以下の測定を行った。
(Measurement of physical properties of self-curing powder of the present invention)
Self-curing powder was produced from the obtained inorganic hollow particles and binder composition, and the following measurements were performed.

(1)ロート通過速度
自硬化性流体の流動性の測定を図15に示す装置を用いて行う。この装置は上から順に、篩網51、篩網を振動させるための振動手段52、粉体を投入するロート53、重量計54、及び、振動手段52とロート53を支持する支持台55からなるものであり、振動手段52はロート53を固定する振動台と振動モーターから構成されている。なお、本試験で用いた装置は安息角を測定する装置(ホソカワミクロン株式会社製 POWDER TESTER<TYPE PT-E>)のロート53を通過して落ちた粉体が堆積する安息角測定用のテーブルの代わりに重量計54を設置したものを用いている。本試験で用いるロート53はガラス製のものを用いており、傾斜角度θを60°、管部56の管長aを35mmとし、内径を4.7mmとしている。測定方法は、まず、無機中空粒子に粘結剤組成物及び硬化剤を適宜の割合で混合し自硬化性粉体を得る。次にロート53に自硬化性粉体20g投入しセットする。そしてレオスタット(振動レベルつまみ)の目盛を5(振動巾0.5mm)に合わせて振動を開始する。振動を1分間行った後、ロート53を通過した自硬化性粉体の重量を測定する。1分間後に0.1g以上の通過(0.1g/min以上)が有った場合、圧送による自硬性粉体の充填が可能な範囲とする。また、1分間以内に自硬化性粉体20gすべてがロートを通過した場合は20g/min以上と表記する。
(1) Funnel passing speed The fluidity of the self-curing fluid is measured using the apparatus shown in FIG. This apparatus comprises, in order from the top, a sieve mesh 51, a vibrating means 52 for vibrating the sieve mesh, a funnel 53 for charging powder, a weigh scale 54, and a support base 55 for supporting the vibrating means 52 and the funnel 53. The vibration means 52 includes a vibration table for fixing the funnel 53 and a vibration motor. In addition, the apparatus used in this test is a table for measuring the angle of repose in which the powder falling through the funnel 53 of the apparatus for measuring the angle of repose (POWDER TESTER <TYPE PT-E> manufactured by Hosokawa Micron Corporation) is deposited. Instead, a weight scale 54 is used. The funnel 53 used in this test is made of glass. The inclination angle θ is 60 °, the tube length a of the tube portion 56 is 35 mm, and the inner diameter is 4.7 mm. In the measurement method, first, a binder composition and a curing agent are mixed with inorganic hollow particles at an appropriate ratio to obtain a self-curing powder. Next, 20 g of self-curing powder is put into the funnel 53 and set. Then, the vibration is started by adjusting the scale of the rheostat (vibration level knob) to 5 (vibration width 0.5 mm). After vibrating for 1 minute, the weight of the self-curing powder that has passed through the funnel 53 is measured. If there is a passage of 0.1 g or more (0.1 g / min or more) after 1 minute, the range is such that the self-hardening powder can be filled by pumping. Moreover, when all 20g of self-hardening powder passes a funnel within 1 minute, it describes with 20g / min or more.

(2)安息角
無機中空粒子に粘結剤組成物及び硬化剤を適宜の割合で混合し自硬化性粉体を得て、JIS R 9301−2−2の原理に準拠してホソカワミクロン株式会社製 POWDER TESTER<TYPE PT-E>にて安息角を測定する。本発明の自硬化性粉体は、空洞内へ自硬性粉体の充填を行うには安息角が低くて流動性の良い粉体が良く、一定圧をかけて空洞へ自硬性粉体を圧送して充填させるには安息角が65度以下であることがより望ましい。
(2) Angle of repose A binder composition and a curing agent are mixed with inorganic hollow particles at an appropriate ratio to obtain a self-curing powder, which is manufactured by Hosokawa Micron Co., Ltd. in accordance with the principle of JIS R 9301-2-2. Measure the angle of repose with POWDER TESTER <TYPE PT-E>. The self-hardening powder of the present invention is preferably a powder having a low angle of repose and good fluidity for filling the cavity with the self-hardening powder, and the self-hardening powder is pumped into the cavity by applying a constant pressure. For refilling, the angle of repose is more preferably 65 degrees or less.

(3)圧縮強度
無機中空粒子に粘結剤組成物及び硬化剤を適宜の割合で混合し自硬化性粉体を得て、JACT試験法HM−1に準拠してφ50mm×h50mmの木型に自硬性粉体を流し込み突き固めした試料に、温度25℃×湿度60%の雰囲気で7日間放置した後、木型より抜型し高千穂精機製抗圧力試験機(H3000D)にて圧縮強度を測定する。
(3) Compressive strength A binder composition and a curing agent are mixed with inorganic hollow particles at an appropriate ratio to obtain a self-curing powder, which is made into a wooden pattern of φ50 mm × h50 mm in accordance with JACT test method HM-1. After leaving the self-hardening powder poured and hardened for 7 days in an atmosphere of temperature 25 ° C x humidity 60%, it is removed from the wooden mold and the compressive strength is measured with the Takachiho Seiki anti-pressure tester (H3000D). .

実施例1
無機中空粒子をミキサー等の攪拌機により攪拌させながら、まず硬化剤としてグルタル酸ジメチルを無機中空粒子100質量部に対して0.3質量部投入し30秒攪拌させた後、すみやかに粘結剤組成物を2質量部投入し、さらに30秒攪拌して自硬化性粉体を得た。この自硬化性粉体で測定した物性を表2に示す。
Example 1
While stirring the inorganic hollow particles with a stirrer such as a mixer, first, 0.3 part by weight of dimethyl glutarate as a curing agent is added to 100 parts by weight of the inorganic hollow particles and stirred for 30 seconds. 2 parts by mass of the product was added and further stirred for 30 seconds to obtain a self-curing powder. Table 2 shows the physical properties measured with this self-curing powder.

実施例2
実施例1における硬化剤(グルタル酸ジメチル)を2.2質量部に変更した以外は実施例1と同様にして自硬化性粉体を得た。この自硬化性粉体で測定した物性を表2に示す。
Example 2
Self-curing powder was obtained in the same manner as in Example 1 except that the curing agent (dimethyl glutarate) in Example 1 was changed to 2.2 parts by mass. Table 2 shows the physical properties measured with this self-curing powder.

実施例3
実施例1における硬化剤(グルタル酸ジメチル)を4質量部に変更した以外は実施例1と同様にして自硬化性粉体を得た。この自硬化性粉体で測定した物性を表2に示す。
Example 3
Self-curing powder was obtained in the same manner as in Example 1 except that the curing agent (dimethyl glutarate) in Example 1 was changed to 4 parts by mass. Table 2 shows the physical properties measured with this self-curing powder.

実施例4
実施例1における硬化剤(グルタル酸ジメチル)を0.8質量部とし、粘結剤組成物を3質量部に変更した以外は実施例1と同様にして自硬化性粉体を得た。この自硬化性粉体で測定した物性を表2に示す。
Example 4
Self-curing powder was obtained in the same manner as in Example 1 except that the curing agent (dimethyl glutarate) in Example 1 was changed to 0.8 parts by mass and the binder composition was changed to 3 parts by mass. Table 2 shows the physical properties measured with this self-curing powder.

実施例5
実施例1における硬化剤(グルタル酸ジメチル)を0.8質量部とし、粘結剤組成物を5質量部に変更した以外は実施例1と同様にして自硬化性粉体を得た。この自硬化性粉体で測定した物性を表2に示す。
Example 5
Self-curing powder was obtained in the same manner as in Example 1 except that the curing agent (dimethyl glutarate) in Example 1 was changed to 0.8 parts by mass and the binder composition was changed to 5 parts by mass. Table 2 shows the physical properties measured with this self-curing powder.

実施例6
実施例1における硬化剤(グルタル酸ジメチル)を1.0質量部とし、粘結剤組成物を5質量部に変更した以外は実施例1と同様にして自硬化性粉体を得た。この自硬化性粉体で測定した物性を表2に示す。
Example 6
Self-curing powder was obtained in the same manner as in Example 1 except that the curing agent (dimethyl glutarate) in Example 1 was changed to 1.0 part by mass and the binder composition was changed to 5 parts by mass. Table 2 shows the physical properties measured with this self-curing powder.

実施例7
実施例1における硬化剤(グルタル酸ジメチル)を1.8質量部とし、粘結剤組成物を7質量部に変更した以外は実施例1と同様にして自硬化性粉体を得た。この自硬化性粉体で測定した物性を表2に示す。
Example 7
Self-curing powder was obtained in the same manner as in Example 1 except that the curing agent (dimethyl glutarate) in Example 1 was changed to 1.8 parts by mass and the binder composition was changed to 7 parts by mass. Table 2 shows the physical properties measured with this self-curing powder.

実施例8
実施例1における硬化剤(グルタル酸ジメチル)を1.2質量部とし、粘結剤組成物を8質量部に変更した以外は実施例1と同様にして自硬化性粉体を得た。この自硬化性粉体で測定した物性を表2に示す。
Example 8
Self-curing powder was obtained in the same manner as in Example 1 except that the curing agent (dimethyl glutarate) in Example 1 was changed to 1.2 parts by mass and the binder composition was changed to 8 parts by mass. Table 2 shows the physical properties measured with this self-curing powder.

実施例9
実施例1における硬化剤(グルタル酸ジメチル)を1.5質量部とし、粘結剤組成物を10質量部に変更した以外は実施例1と同様にして自硬化性粉体を得た。この自硬化性粉体で測定した物性を表2に示す。
Example 9
Self-curing powder was obtained in the same manner as in Example 1 except that the curing agent (dimethyl glutarate) in Example 1 was changed to 1.5 parts by mass and the binder composition was changed to 10 parts by mass. Table 2 shows the physical properties measured with this self-curing powder.

実施例10
実施例1における硬化剤(グルタル酸ジメチル)を1.8質量部とし、粘結剤組成物を12質量部に変更した以外は実施例1と同様にして自硬化性粉体を得た。この自硬化性粉体で測定した物性を表2に示す。
Example 10
Self-curing powder was obtained in the same manner as in Example 1 except that the curing agent (dimethyl glutarate) in Example 1 was changed to 1.8 parts by mass and the binder composition was changed to 12 parts by mass. Table 2 shows the physical properties measured with this self-curing powder.

実施例11
実施例1における硬化剤(グルタル酸ジメチル)を2.3質量部とし、粘結剤組成物を15質量部に変更した以外は実施例1と同様にして自硬化性粉体を得た。この自硬化性粉体で測定した物性を表2に示す。
Example 11
Self-curing powder was obtained in the same manner as in Example 1 except that the curing agent (dimethyl glutarate) in Example 1 was changed to 2.3 parts by mass and the binder composition was changed to 15 parts by mass. Table 2 shows the physical properties measured with this self-curing powder.

実施例12
実施例1における硬化剤(グルタル酸ジメチル)を2.4質量部とし、粘結剤組成物を16質量部に変更した以外は実施例1と同様にして自硬化性粉体を得た。この自硬化性粉体で測定した物性を表2に示す。
Example 12
Self-curing powder was obtained in the same manner as in Example 1 except that the curing agent (dimethyl glutarate) in Example 1 was changed to 2.4 parts by mass and the binder composition was changed to 16 parts by mass. Table 2 shows the physical properties measured with this self-curing powder.

実施例13
実施例1における硬化剤(グルタル酸ジメチル)を2.6質量部とし、粘結剤組成物を17質量部に変更した以外は実施例1と同様にして自硬化性粉体を得た。この自硬化性粉体で測定した物性を表2に示す。
Example 13
Self-curing powder was obtained in the same manner as in Example 1 except that the curing agent (dimethyl glutarate) in Example 1 was changed to 2.6 parts by mass and the binder composition was changed to 17 parts by mass. Table 2 shows the physical properties measured with this self-curing powder.

実施例14
実施例1における硬化剤がエチレングリコールジアセテートを0.8質量部とし、粘結剤組成物を5質量部に変更した以外は実施例1と同様にして自硬化性粉体を得た。この自硬化性粉体で測定した物性を表2に示す。
Example 14
A self-curing powder was obtained in the same manner as in Example 1 except that the curing agent in Example 1 was changed to 0.8 parts by mass of ethylene glycol diacetate and the binder composition was changed to 5 parts by mass. Table 2 shows the physical properties measured with this self-curing powder.

実施例15
実施例1における硬化剤がトリアセチンを0.8質量部とし、粘結剤組成物を5質量部に変更した以外は実施例1と同様にして自硬化性粉体を得た。この自硬化性粉体で測定した物性を表2に示す。
Example 15
A self-curing powder was obtained in the same manner as in Example 1 except that the curing agent in Example 1 was changed to 0.8 parts by mass of triacetin and the binder composition was changed to 5 parts by mass. Table 2 shows the physical properties measured with this self-curing powder.

実施例16
粘結剤組成物の調製において、水溶性フェノール樹脂の合成を終了した後、調製剤として48%NaOH水溶液と48%KOH水溶液を添加して、その後、固形分が10%になるように水を加えることで粘結剤組成物を調製した。実施例1における硬化剤(グルタル酸ジメチル)を0.8質量部とし、この粘結剤組成物を5質量部とした以外は実施例1と同様にして自硬化性粉体を得た。この自硬化性粉体で測定した物性を表2に示す。
Example 16
In the preparation of the binder composition, after the synthesis of the water-soluble phenol resin is completed, 48% NaOH aqueous solution and 48% KOH aqueous solution are added as preparation agents, and then water is added so that the solid content becomes 10%. The binder composition was prepared by adding. Self-curing powder was obtained in the same manner as in Example 1 except that the curing agent (dimethyl glutarate) in Example 1 was changed to 0.8 parts by mass and the binder composition was changed to 5 parts by mass. Table 2 shows the physical properties measured with this self-curing powder.

実施例17
粘結剤組成物の調製において、水溶性フェノール樹脂の合成を終了した後、調製剤として48%NaOH水溶液と48%KOH水溶液を添加して、その後、固形分が60%になるように水を加えることで粘結剤組成物を調製した。実施例1における硬化剤(グルタル酸ジメチル)を0.8質量部とし、この粘結剤組成物を5質量部とした以外は実施例1と同様にして自硬化性粉体を得た。この自硬化性粉体で測定した物性を表2に示す。
Example 17
In the preparation of the binder composition, after the synthesis of the water-soluble phenol resin is completed, 48% NaOH aqueous solution and 48% KOH aqueous solution are added as preparation agents, and then water is added so that the solid content becomes 60%. The binder composition was prepared by adding. Self-curing powder was obtained in the same manner as in Example 1 except that the curing agent (dimethyl glutarate) in Example 1 was changed to 0.8 parts by mass and the binder composition was changed to 5 parts by mass. Table 2 shows the physical properties measured with this self-curing powder.

比較例1
実施例1における硬化剤(グルタル酸ジメチル)を2.7質量部とし、粘結剤組成物を18質量部に変更した以外は実施例1と同様にして自硬化性粉体を得た。この自硬化性粉体で測定した物性を表2に示す。
Comparative Example 1
Self-curing powder was obtained in the same manner as in Example 1 except that the curing agent (dimethyl glutarate) in Example 1 was changed to 2.7 parts by mass and the binder composition was changed to 18 parts by mass. Table 2 shows the physical properties measured with this self-curing powder.

比較例2
実施例1における硬化剤(グルタル酸ジメチル)を3.0質量部とし、粘結剤組成物を20質量部に変更した以外は実施例1と同様にして自硬化性粉体を得た。この自硬化性粉体で測定した物性を表2に示す。
Comparative Example 2
Self-curing powder was obtained in the same manner as in Example 1 except that the curing agent (dimethyl glutarate) in Example 1 was changed to 3.0 parts by mass and the binder composition was changed to 20 parts by mass. Table 2 shows the physical properties measured with this self-curing powder.

比較例3
実施例1における硬化剤(グルタル酸ジメチル)を0.3質量部とし、粘結剤組成物を1質量部に変更した以外は実施例1と同様にして自硬化性粉体を得た。この自硬化性粉体で測定した物性を表2に示す。
Comparative Example 3
Self-curing powder was obtained in the same manner as in Example 1 except that the curing agent (dimethyl glutarate) in Example 1 was changed to 0.3 parts by mass and the binder composition was changed to 1 part by mass. Table 2 shows the physical properties measured with this self-curing powder.

比較例4
実施例1における無機中空粒子を硅砂に変更した以外は実施例1と同様にして自硬化性粉体を得た。この自硬化性粉体で測定した物性を表2に示す。
Comparative Example 4
Self-curing powder was obtained in the same manner as in Example 1 except that the inorganic hollow particles in Example 1 were changed to cinnabar. Table 2 shows the physical properties measured with this self-curing powder.

Figure 2013011076
Figure 2013011076

表2より、実施例1〜13と比較例1〜3の粘結剤組成物の配合量とロート通過速度の関係から、無機中空粒子100質量部に対して粘結剤組成物が2〜17質量部の範囲であれば自硬性粉体の流動性を得ることができ、圧送により空洞に自硬性粉体を充填することが可能となると共に圧縮強度を得ることができる。また、安息角が65度以下となる実施例1〜9においてより高い流動性を得ることができ、構造が複雑になる空洞内においても隅々まで自硬性粉体を充填することができる。粘結剤組成物を4〜10質量部とした実施例5〜9は流動性を向上したら圧縮強度が下がり、圧縮強度を上げると流動性が悪化する中で特に流動性と圧縮強度のバランスの良い自硬性流体を得ることができる。また、実施例1〜3より硬化剤の量が圧縮強度により大きく影響し、硬化剤の含有量は粘結剤組成物100質量部に対して10〜200質量部であることが望ましい。また、実施例1と比較例4の対比により粒子に硅砂を用いた場合、粒子の重量が重くなって流動性が得られ難いのに対し、無機中空粒子を用いることで良好な流動性を得ることができる。実施例16〜17より、固形分濃度は10〜60質量%の範囲にすることが望ましく、この範囲であれば良好な自硬化粉体を得ることができる。   From Table 2, from the relationship between the blending amounts of the binder compositions of Examples 1 to 13 and Comparative Examples 1 to 3 and the funnel passage speed, the binder composition was 2 to 17 with respect to 100 parts by mass of the inorganic hollow particles. If it is the range of a mass part, the fluidity | liquidity of self-hardening powder can be obtained, and it becomes possible to fill a cavity with self-hardening powder by pumping, and to obtain compressive strength. In Examples 1 to 9 in which the angle of repose is 65 degrees or less, higher fluidity can be obtained, and self-hardening powder can be filled to every corner even in a cavity having a complicated structure. In Examples 5 to 9 in which the binder composition was 4 to 10 parts by mass, the flow strength was improved and the compressive strength was lowered. When the compressive strength was raised, the flowability was deteriorated. A good self-hardening fluid can be obtained. In addition, the amount of the curing agent greatly affects the compressive strength from Examples 1 to 3, and the content of the curing agent is preferably 10 to 200 parts by mass with respect to 100 parts by mass of the binder composition. Moreover, when dredged sand is used for the particles in comparison with Example 1 and Comparative Example 4, it is difficult to obtain fluidity due to the weight of the particles, whereas good fluidity is obtained by using inorganic hollow particles. be able to. From Examples 16 to 17, it is desirable that the solid content concentration be in the range of 10 to 60% by mass. Within this range, a good self-curing powder can be obtained.

(本発明の自硬化粉体を用いたサッシの実例)
実施例6,7で製造した自硬化粉体を本工法により塩ビ樹脂製の枠で構成されるW1000H2120サイズの嵌め殺し窓の枠内に前記の充てん工法にてほぼ満杯となる2.1kgを充填した。充填後、該窓を7日以上室温で保存した後にISO834の標準温度曲線に沿って屋外側より20分間の加熱試験をおこなった結果、何れの窓とも室内側への火炎の噴出や発炎、火炎が通る亀裂等の損傷及び隙間が無くサッシとしての遮炎性能を満足した。試験終了後加熱面側の塩ビは焼失していたが充てんされた自硬化性粉体は残存し、遮炎性上有効であることが確認された。
また、これとは別にサイズがW1690H1370のLOW−E硝子と網入りガラスの複層ガラスを入れた塩ビ樹脂製縦辷り出しと嵌め殺しの連窓に自硬化性粉体を充填してJIS A 4710に従って断熱性能を測定したところ、何れの場合も、自硬化粉体を充填しない連窓と比べて0.1W/m・K程度断熱性能が向上していた。さらに、水密試験時不可避的に滲入した水の排出性を確認したところ、流路は確保されており、排出された水には有機成分が殆ど含まれていなかった。因みに実施例1で製造した自硬化粉体を硬化させて得た硬化体について、硬化12日以後のフェノール樹脂の溶出量は10ppm以下でPHは7〜8である。
(Example of sash using self-curing powder of the present invention)
The self-curing powder produced in Examples 6 and 7 is filled with 2.1 kg, which is almost full by the above-mentioned filling method, in the W1000H2120 size fitting window frame composed of a PVC resin frame by this method. did. After filling, the windows were stored at room temperature for 7 days or more and then subjected to a heating test for 20 minutes from the outdoor side along the standard temperature curve of ISO834. There was no damage such as cracks through which the flame passed, and there was no gap. After completion of the test, the polyvinyl chloride on the heated surface side was burned away, but the filled self-curing powder remained, and it was confirmed that it was effective in terms of flame barrier properties.
Separately from this, JIS A 4710 is prepared by filling a self-curing powder into a vertical window made of polyvinyl chloride resin containing a LOW-E glass having a size of W1690H1370 and a multi-layer glass of meshed glass, and fitting into a window. In each case, the thermal insulation performance was improved by about 0.1 W / m 2 · K compared to the continuous window not filled with the self-curing powder. Furthermore, when the discharge property of the water inevitably infiltrated at the time of the watertight test was confirmed, the flow path was secured, and the discharged water contained almost no organic component. Incidentally, about the hardened | cured material obtained by hardening the self-hardening powder manufactured in Example 1, the elution amount of the phenol resin after hardening 12th is 10 ppm or less, and PH is 7-8.

1 複層ガラス窓
2 建物躯体
3 開口部
4 サッシ枠
4A 上枠
4B 下枠
4C 側枠
4D 方立て
4a 内周面
5 サッシ材
6 突出部
7 取付凹部
8 押え部材(押縁)
9 内周溝部
10 耐火部材
11 空洞部
12 隔壁
12A 隔壁
13 主要空洞部
13A,13B 大空洞部
14A,14B 小空洞部
15通孔
16 防火性材料(本発明の自硬化性粉体またはその硬化体)
17 補強材
18 ビス
19 充填口
20 排気口
21、21´ 第1筒状治具
21a 挿入端部
21b 上端面
22 円筒体
23 当接板
24 吐出口
25 第2筒状治具
25a 挿入端部
26 円筒体
27 当接板
28 エアーフィルター部材(吸引口部)
29 封止部材
30 基板
31 バックアップシート
32 弾性膜
33,34 通孔(開口部)
35 スリット状開口部(開口部)
36 ホッパー(材料圧送手段)
36a 供給口
37 エアーコンプレッサー(材料圧送手段)
38 供給ホース(防火性材料移送管)
39 エアーホース
39a 主管
39b 枝管
40 調圧弁
41 バルブ
42 邪魔板
43 流通間隙
44 吸引ファン(吸引排気手段)
45 吸引ホース
46 バルブ
51 篩網
52 振動手段
53 ロート
54 重量計
55 支持台
56 管部
W 複層ガラス
W1 網入りガラス
W2 フロートガラス
DESCRIPTION OF SYMBOLS 1 Multi-layer glass window 2 Building frame 3 Opening part 4 Sash frame 4A Upper frame 4B Lower frame 4C Side frame 4D Side wall 4a Inner peripheral surface 5 Sash material 6 Protrusion part 7 Mounting recessed part 8 Holding member (holding edge)
DESCRIPTION OF SYMBOLS 9 Inner peripheral groove part 10 Refractory member 11 Cavity part 12 Partition 12A Partition 13 Main cavity part 13A, 13B Large cavity part 14A, 14B Small cavity part 15 Through-hole 16 Fireproof material (self-hardening powder of this invention or its hardened body )
17 Reinforcing material 18 Screw 19 Filling port 20 Exhaust port 21, 21 'First cylindrical jig 21a Insertion end 21b Upper end surface 22 Cylindrical body 23 Contact plate 24 Discharge port 25 Second cylindrical jig 25a Insertion end 26 Cylindrical body 27 Contact plate 28 Air filter member (suction port)
29 Sealing member 30 Substrate 31 Backup sheet 32 Elastic film 33, 34 Through hole (opening)
35 Slit-shaped opening (opening)
36 Hopper (material pumping means)
36a Supply port 37 Air compressor (material pressure feeding means)
38 Supply hose (fireproof material transfer pipe)
39 Air hose 39a Main pipe 39b Branch pipe 40 Pressure regulating valve 41 Valve 42 Baffle plate 43 Flow gap 44 Suction fan (suction exhaust means)
45 Suction hose 46 Valve 51 Sieve net 52 Vibrating means 53 Funnel 54 Weighing scale 55 Support base 56 Tube part W Multi-layer glass W1 Netted glass W2 Float glass

Claims (11)

無機中空粒子の集合体からなる粉体100質量部と、水溶性フェノール樹脂の固形分濃度が10〜60質量%である水溶性フェノール樹脂のアルカリ水溶液または分散液からなる粘結剤組成物2〜17質量部と、当該粘結剤組成物に含まれる水溶性フェノール樹脂を硬化せしめるのに必要量の硬化剤と、を混合して得られることを特徴とする自硬化性粉体。 100 parts by weight of a powder composed of an aggregate of inorganic hollow particles, and a binder composition 2 composed of an aqueous alkali solution or dispersion of a water-soluble phenol resin having a solid content concentration of 10 to 60% by weight of the water-soluble phenol resin. A self-curing powder obtained by mixing 17 parts by mass and a curing agent in an amount necessary to cure the water-soluble phenol resin contained in the binder composition. 篩い振動数を3600回/分、篩い振動幅を0.5〜0.8mmで振動させたロート角60°、細口径4.7mmのロートに20gの自硬化性粉体を投入した時のロート通過速度が0.1g/min以上であることを特徴とする請求項1に記載の自硬化性粉体。 A funnel when 20 g of self-curing powder is put into a funnel having a sieve angle of 3600 times / minute, a sieve vibration width of 0.5 to 0.8 mm and a funnel angle of 60 ° and a narrow aperture of 4.7 mm. The self-curing powder according to claim 1, wherein the passing speed is 0.1 g / min or more. 前記硬化剤の使用量が前記粘結剤組成物100質量部に対して10〜200質量部であることを特徴とする請求項1又は2に記載の自硬化性粉体。 The self-curing powder according to claim 1 or 2, wherein the amount of the curing agent used is 10 to 200 parts by mass with respect to 100 parts by mass of the binder composition. 前記硬化剤が有機エステルからなることを特徴とする請求項1乃至3の何れかに記載の自硬化性粉体。 The self-curable powder according to any one of claims 1 to 3, wherein the curing agent comprises an organic ester. 前記粉体として、粒子径が200μm以下である粒子の含有割合が30質量%以下であり、粒子径が300μm以上500μm以下の範囲にある粒子の含有割合が30質量%以上であり、粒子径が600μm以上である粒子の含有割合が20質量%以下である粒度分布を有する粉体を使用することを特徴とする請求項1乃至4の何れかに記載の自硬化性粉体。 As the powder, the content ratio of particles having a particle diameter of 200 μm or less is 30% by mass or less, the content ratio of particles having a particle diameter in the range of 300 μm or more and 500 μm or less is 30% by mass or more, and the particle diameter is The self-curable powder according to any one of claims 1 to 4, wherein a powder having a particle size distribution in which the content ratio of particles having a particle size of 600 µm or more is 20 mass% or less is used. 内部に空洞を有する物品又は部材の当該空洞内に請求項1乃至5の何れかに記載の自硬化性粉体の硬化体が充填されてなることを特徴とする物品又は部材。 An article or member comprising the article or member having a cavity therein and filled with the cured body of the self-curing powder according to any one of claims 1 to 5. 長手方向に沿う空洞を有する中空形材からなるサッシ本体と、当該空洞内に充填される耐熱性部材と、を含んでなる防火性サッシ材であって、前記耐熱性部材が請求項1乃至5の何れかに記載の自硬化性粉体の硬化体からなることを特徴とする防火性サッシ材。 A fireproof sash material comprising a sash body made of a hollow material having a cavity along the longitudinal direction, and a heat-resistant member filled in the cavity, wherein the heat-resistant member is a heat-resistant member. A fireproof sash material comprising a cured product of the self-curable powder according to any one of the above. それぞれ防火性サッシ材で構成された上枠、下枠、および左右の縦枠を有する枠内に、上下左右の框を有する障子を装着した防火性窓であって、少なくとも前記下枠が請求項7に記載の防火性サッシ材で構成されてなることを特徴とする防火性窓。 A fireproof window in which a shoji with upper, lower, left, and right hooks is mounted in a frame having an upper frame, a lower frame, and left and right vertical frames each formed of a fireproof sash material, wherein at least the lower frame is claimed. A fireproof window comprising the fireproof sash material according to 7. 前記障子の少なくとも前記下框が請求項7に記載の防火性サッシ材で構成されてなることを特徴とする請求項8に記載の防火性窓。 The fireproof window according to claim 8, wherein at least the lower arm of the shoji is made of the fireproof sash material according to claim 7. 長手方向に沿う空洞部を有するサッシ材からなるサッシ枠の前記空洞部内に、請求項1乃至5の何れかに記載の自硬化性粉体の硬化体が充填されてなることを特徴とするサッシ枠。 A sash comprising a sash frame made of a sash material having a cavity along the longitudinal direction and filled with a cured body of the self-curing powder according to any one of claims 1 to 5. frame. 長手方向に沿う空洞部を有するサッシ材からなるサッシ枠の上枠の左右方向の一方の端部の内周面または側枠の上端部の内周面に、前記空洞部に連通する充填口を設け、この充填口に第1筒状治具を挿着し、この第1筒状治具を介して請求項1乃至5の何れかに記載の自硬化性粉体を空洞部内に圧送するとともに、前記充填口に対してほぼ対角線の位置関係に位置する、下枠の端部の内周面または側枠の下端部の内周面に、前記空洞部が外部に連通する排気口を設け、この排気口に第2筒状治具を挿着し、この第2筒状治具を介して空洞部内の空気を外部に排気しうるようにして前記空洞部内に前記自硬化性粉体を充填する充填工程、及び当該充填工程で充填された前記自硬化性粉体を硬化させる工程を含んでなることを特徴とする請求項10に記載のサッシ枠の製造方法。 A filling port that communicates with the cavity portion is provided on the inner peripheral surface of one end portion in the left-right direction of the upper frame of the upper frame of the sash frame having a hollow portion along the longitudinal direction or the inner peripheral surface of the upper end portion of the side frame. And a first cylindrical jig is inserted into the filling port, and the self-hardening powder according to any one of claims 1 to 5 is pumped into the cavity through the first cylindrical jig. An exhaust port is provided on the inner peripheral surface of the end portion of the lower frame or the inner peripheral surface of the lower end portion of the side frame, which is positioned in a diagonal relationship with respect to the filling port, and the cavity portion communicates with the outside. A second cylindrical jig is inserted into the exhaust port, and the air is exhausted to the outside through the second cylindrical jig, and the self-curing powder is filled into the cavity. And a step of curing the self-hardening powder filled in the filling step. Method for producing a sash frame according to.
JP2011143290A 2011-06-28 2011-06-28 Article or member containing cured body of self-curing powder Expired - Fee Related JP5701168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011143290A JP5701168B2 (en) 2011-06-28 2011-06-28 Article or member containing cured body of self-curing powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011143290A JP5701168B2 (en) 2011-06-28 2011-06-28 Article or member containing cured body of self-curing powder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011258360A Division JP5688000B2 (en) 2011-11-26 2011-11-26 Article or member containing self-curing powder and cured body of self-curing powder

Publications (2)

Publication Number Publication Date
JP2013011076A true JP2013011076A (en) 2013-01-17
JP5701168B2 JP5701168B2 (en) 2015-04-15

Family

ID=47685171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011143290A Expired - Fee Related JP5701168B2 (en) 2011-06-28 2011-06-28 Article or member containing cured body of self-curing powder

Country Status (1)

Country Link
JP (1) JP5701168B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011159A (en) * 2011-11-26 2013-01-17 Asahi Organic Chemicals Industry Co Ltd Self-curable powder, and article or component containing cured body of the self-curable powder
JP2017504669A (en) * 2013-11-29 2017-02-09 ピルキントン グループ リミテッド Refractory material
JP2017057709A (en) * 2015-09-16 2017-03-23 三協立山株式会社 Fixture
KR20210016178A (en) * 2019-08-01 2021-02-15 건진 주식회사 Filing method of window frame

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192737A (en) * 1991-09-10 1993-08-03 Kao Corp Binder composition for molding sand and casting mold composition
JP2002239681A (en) * 2001-02-09 2002-08-27 Kao Corp Molding sand composition
JP2004352950A (en) * 2003-05-30 2004-12-16 Asahi Organic Chem Ind Co Ltd Curable composition and casting sand composition and casting mold using the same
JP2009022980A (en) * 2007-07-19 2009-02-05 Kao Corp Method for manufacturing mold
JP2010270466A (en) * 2009-05-20 2010-12-02 Tokuyama Corp Fire-resistant sash material and fire-resistant window using the same
JP2011057503A (en) * 2009-09-09 2011-03-24 Tokuyama Corp Internal filler for window frame
JP2013011159A (en) * 2011-11-26 2013-01-17 Asahi Organic Chemicals Industry Co Ltd Self-curable powder, and article or component containing cured body of the self-curable powder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192737A (en) * 1991-09-10 1993-08-03 Kao Corp Binder composition for molding sand and casting mold composition
JP2002239681A (en) * 2001-02-09 2002-08-27 Kao Corp Molding sand composition
JP2004352950A (en) * 2003-05-30 2004-12-16 Asahi Organic Chem Ind Co Ltd Curable composition and casting sand composition and casting mold using the same
JP2009022980A (en) * 2007-07-19 2009-02-05 Kao Corp Method for manufacturing mold
JP2010270466A (en) * 2009-05-20 2010-12-02 Tokuyama Corp Fire-resistant sash material and fire-resistant window using the same
JP2011057503A (en) * 2009-09-09 2011-03-24 Tokuyama Corp Internal filler for window frame
JP2013011159A (en) * 2011-11-26 2013-01-17 Asahi Organic Chemicals Industry Co Ltd Self-curable powder, and article or component containing cured body of the self-curable powder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011159A (en) * 2011-11-26 2013-01-17 Asahi Organic Chemicals Industry Co Ltd Self-curable powder, and article or component containing cured body of the self-curable powder
JP2017504669A (en) * 2013-11-29 2017-02-09 ピルキントン グループ リミテッド Refractory material
JP2017057709A (en) * 2015-09-16 2017-03-23 三協立山株式会社 Fixture
KR20210016178A (en) * 2019-08-01 2021-02-15 건진 주식회사 Filing method of window frame
KR102583335B1 (en) * 2019-08-01 2023-09-27 건진 주식회사 Filing method of window frame

Also Published As

Publication number Publication date
JP5701168B2 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP5701168B2 (en) Article or member containing cured body of self-curing powder
EP3174939B1 (en) Method for binding construction blocks together with foamed geopolymer mortar
JP5734585B2 (en) Equipment for filling fireproof materials into sash frames
JP2829093B2 (en) Fireproof coating
KR20160071397A (en) Gypsum wallboard produced using a high water-to-stucco ratio
CN110790566A (en) Superhard high-temperature ceramic matrix composite wear-resistant coating and application method thereof
CN101235659A (en) Polyurethane hard bubble sandwiched integral heat preservation light wall board and method for making same
JP5302822B2 (en) Wall body and manufacturing method thereof
JP5688000B2 (en) Article or member containing self-curing powder and cured body of self-curing powder
JP5330167B2 (en) Window frame inner filler
CN109721305B (en) EPS molding line and preparation method thereof
JP2007146605A (en) External heat insulating construction method of building, heat insulating cement composition, heat insulating polymer cement mortar, and external heat insulating laminated structure
JP2004224622A (en) Refractory coating cement mortar composition for injection
JP5385222B2 (en) Sealing member
CN106567464A (en) Thinly-plastered external wall thermal insulation system provided with composite sandwich vacuum insulation board
JP4407232B2 (en) Manufacturing method of honeycomb structure
JP4553503B2 (en) Cement mortar for wet spraying
CN110409769A (en) A kind of fast gravity die high intensity heavy Machine-blasting mortar construction of long-distance sand transport
CN108397111A (en) A kind of cement foamed fire resistant doorsets and its manufacture craft
CN104446300B (en) A kind of wallboard
TWI793716B (en) Durable and high temperature resistant plate body
CN211677588U (en) Waste discharge device for building glue preparation
JP4333168B2 (en) Manufacturing method of honeycomb structure
CN114645578A (en) Ink-homogenizing heat-insulation board, external wall external heat-insulation system and construction method
JP2005307502A (en) Fireproof door frame and inorganic reinforcing material for filling fireproof door frame

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20140806

A256 Written notification of co-pending application filed on the same date by different applicants

Free format text: JAPANESE INTERMEDIATE CODE: A2516

Effective date: 20140806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150217

R150 Certificate of patent or registration of utility model

Ref document number: 5701168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees