JP2002239681A - Molding sand composition - Google Patents

Molding sand composition

Info

Publication number
JP2002239681A
JP2002239681A JP2001033136A JP2001033136A JP2002239681A JP 2002239681 A JP2002239681 A JP 2002239681A JP 2001033136 A JP2001033136 A JP 2001033136A JP 2001033136 A JP2001033136 A JP 2001033136A JP 2002239681 A JP2002239681 A JP 2002239681A
Authority
JP
Japan
Prior art keywords
fine particles
sand composition
hollow spherical
molding sand
spherical fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001033136A
Other languages
Japanese (ja)
Other versions
JP4953511B2 (en
Inventor
Masayuki Kato
雅之 加藤
Shigeo Nakai
茂夫 仲井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2001033136A priority Critical patent/JP4953511B2/en
Publication of JP2002239681A publication Critical patent/JP2002239681A/en
Application granted granted Critical
Publication of JP4953511B2 publication Critical patent/JP4953511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide molding sand composition excellent in fluidity. SOLUTION: This molding sand composition contains a refractory granular aggregates and non-hollow spherical fine grains. In the case of defining ϕ as average grain diameter of the refractory granular aggregates, the average grain diameter of the non-hollow spherical fine grains is ϕ/8-ϕ/5,000. Concretely, it is desirable that the average diameter of the non-hollow spherical fine grains is 0.1-50 μm. Further, it is desirable that a binder, such as a furan resin, a water-soluble alkaline phenol resin, is contained in the molding sand composition, because the fluidity of the molding sand composition containing the binder is easily lowered. As the non-hollow spherical fine grain, silica fine grain, silicone resin fine grain, polyethylene fine grain, etc., are used, and the silica fine grain, in which silicon treatment is applied on this surface, is suitably used. Blending ratio of the non-hollow spherical fine grain is desirable to be 0.01-1.0 pts.mass to 100 pts.mass of the refractory granular aggregate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流動性が改善され
た鋳物砂組成物に関し、複雑な鋳型や高強度の鋳型の造
型に適した鋳物砂組成物に関するものである。なお、本
発明において、鋳型とは中子をも含むものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molding sand composition having improved fluidity, and more particularly to a molding sand composition suitable for molding complicated molds and high-strength molds. In the present invention, the mold includes a core.

【0002】[0002]

【従来の技術】鋳型は、一般的に、種々の形状の模型
(木型、発泡型、金型、中子型、割り型等の型と言われ
るもの全てを含む。)に鋳物砂組成物を充填し成形して
造型される。鋳物砂組成物は、多くの場合、珪砂等の耐
火性粒状骨材と粘結剤とを含有しており、この粘結剤に
よって耐火性粒状骨材相互間を結合させ、所定強度の鋳
型を造型する。なお、場合によっては、鋳物砂組成物中
に粘結剤が含有されておらず、耐火性粒状骨材だけで鋳
型を造型することもある。
2. Description of the Related Art In general, a mold is formed into a model of various shapes (including all molds such as a wooden mold, a foam mold, a mold, a core mold, a split mold, etc.) and a molding sand composition. And molded. The foundry sand composition often contains a refractory granular aggregate such as silica sand and a binder, and the refractory granular aggregate is bonded to each other by the binder to form a mold having a predetermined strength. Mold it. In some cases, a binder is not contained in the foundry sand composition, and a mold may be formed only with the refractory granular aggregate.

【0003】ところが、模型が複雑な形状をしている
と、鋳物砂組成物の充填が不良となることがあった。特
に、鋳物砂組成物中に粘結剤が含有されていると、鋳物
砂組成物の流動性が低下しやすく、充填不良となりやす
い。従来、このような場合は、(i)熟練工による手作
業によって手込め充填する方法、(ii)振動造型の場合
は、強力な振動を与えて充填する方法、(iii )ブロー
造型の場合は、強力なエアーブローによって充填する方
法、等が講じられている。
[0003] However, if the model has a complicated shape, the filling of the molding sand composition may be poor. In particular, when a binder is contained in the foundry sand composition, the fluidity of the foundry sand composition is liable to be lowered, and poor filling is likely to occur. Conventionally, in such a case, (i) a method of manually filling and filling by a skilled worker, (ii) a method of filling by applying a strong vibration in the case of vibration molding, and (iii) a method of blowing molding A method of filling by strong air blow, and the like are taken.

【0004】しかしながら、(i)の方法は、現在、鋳
型造型の熟練工が少なく、かつ手作業であるため鋳型の
生産効率が低下する、また、(ii)及び(iii )の方法
は、骨材が模型に染み付き(模型に埋入し)、模型の抜
き取りが困難になったり、模型として発泡型を使用した
場合には、発泡型が破損或いは変形し、鋳型造型が不能
になるということがある。
[0004] However, the method (i) has a small number of skilled mold-making workers and is a manual operation, so that the production efficiency of the mold is reduced. Further, the methods (ii) and (iii) are an aggregate. Is soaked in the model (embedded in the model), making it difficult to remove the model, or when using a foam mold as the model, the foam mold may be damaged or deformed, making mold molding impossible .

【0005】このような欠点を解決するため、鋳物砂組
成物の流動性を向上させ、その充填性を向上させる方法
が種々提案されている。例えば、鋳物砂組成物中に流動
性向上剤として、フッ素系界面活性剤を含有させる方法
(特開平2−299741号公報)、脂肪族化合物を含
有させる方法(特開平3−134067号公報)、界面
活性剤や潤滑剤を含有させる方法(特開平10−216
895号公報)等が提案されている。これら各方法は、
いずれも、界面活性剤等の化学的特性を利用して、流動
性を改善しようというものである。
[0005] In order to solve such disadvantages, various methods have been proposed for improving the fluidity of the foundry sand composition and improving its filling property. For example, a method of including a fluorine-based surfactant as a fluidity improver in a molding sand composition (Japanese Patent Application Laid-Open No. 2-299741), a method of including an aliphatic compound (Japanese Patent Application Laid-Open No. 3-140467), A method of incorporating a surfactant or a lubricant (Japanese Patent Laid-Open No. Hei 10-216)
No. 895) has been proposed. Each of these methods
In both cases, the chemical properties of a surfactant or the like are used to improve the fluidity.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明者は、
前記各方法とは全く異なった原理で、鋳物砂組成物の流
動性を改善すべく、種々検討したところ、耐火性粒状骨
材の粒径に対して、一定の粒径を持つ非中空球状微粒子
を添加すれば、鋳物砂組成物の流動性が改善されること
を見出した。つまり、所定の大きさの耐火性粒状骨材と
所定の大きさの非中空球状微粒子とを混合すれば、全体
としての鋳物砂組成物の流動性が改善されることを見出
したのである。これは、耐火性粒状骨材と非中空球状微
粒子との物理的相互作用で、鋳物砂組成物の流動性が改
善されるというものであり、前記各方法とは、その原理
が異なるものである。
Therefore, the present inventor has proposed:
Based on completely different principles from the above-mentioned methods, various studies were conducted to improve the flowability of the foundry sand composition. Has been found to improve the fluidity of the foundry sand composition. That is, it has been found that mixing the refractory granular aggregate having a predetermined size with the non-hollow spherical fine particles having a predetermined size improves the flowability of the molding sand composition as a whole. This is that the physical interaction between the refractory granular aggregate and the non-hollow spherical fine particles improves the fluidity of the foundry sand composition, and the principle is different from each of the above methods. .

【0007】[0007]

【課題を解決するための手段】本発明は、耐火性粒状骨
材と非中空球状微粒子とを含有し、該耐火性粒状骨材の
平均粒径をφとしたとき、該非中空球状微粒子の平均粒
径が、φ/8〜φ/5000である鋳物砂組成物に関す
るものである。
Means for Solving the Problems The present invention comprises a refractory granular aggregate and non-hollow spherical fine particles, wherein the average particle size of the non-hollow spherical fine particles is φ when the average particle size of the refractory granular aggregate is φ. The present invention relates to a molding sand composition having a particle size of φ / 8 to φ / 5000.

【0008】本発明で用いる耐火性粒状骨材としては、
従来公知のものであれば、どのようなものでも使用する
ことができる。例えば、珪砂、ジルコン砂、クロマイト
砂、オリビン砂、ムライト砂等を使用することができ
る。耐火性粒状骨材の平均粒径は、100〜5000μ
m程度が好ましく、特に200〜600μm程度が好ま
しい。耐火性粒状骨材の形状は任意であって良いが、球
形の骨材を用いると、非中空球状微粒子との相乗作用
で、より流動性の向上を図ることができる。耐火性粒状
骨材の平均粒径は、JIS Z 2602記載の方法に
準じ、メッシュによる篩い分けで、質量基準の50%径
として求めたものである。なお、本発明で言う耐火性粒
状骨材とは、主骨材を意味するものであり、主骨材に若
干量添加される補助骨材は、本発明では任意の添加剤の
範疇に属するものである。
[0008] The refractory granular aggregate used in the present invention includes:
Any conventionally known one can be used. For example, silica sand, zircon sand, chromite sand, olivine sand, mullite sand and the like can be used. The average particle size of the refractory granular aggregate is 100-5000μ.
m is preferable, and about 200 to 600 μm is particularly preferable. The shape of the refractory granular aggregate may be arbitrary, but when a spherical aggregate is used, the fluidity can be further improved by a synergistic action with the non-hollow spherical fine particles. The average particle diameter of the refractory granular aggregate is determined as a 50% diameter on a mass basis by sieving with a mesh according to the method described in JIS Z 2602. Incidentally, the refractory granular aggregate referred to in the present invention means a main aggregate, and auxiliary aggregate added to the main aggregate in a small amount belongs to the category of any additive in the present invention. It is.

【0009】本発明において、流動性向上剤としての役
割を果たすのは、非中空球状微粒子である。ここで、非
中空球状微粒子の意味内容は、以下のとおりである。
「非中空」とは、中空ではなく、中実ということであ
る。中空微粒子を用いると、鋳物砂組成物の充填時に、
微粒子が破損したり変形しやすく、流動性向上を図れな
くなるので、本発明では用いることができない。また、
破損或いは変性しなくても、中空微粒子はクッション作
用があり、鋳物砂組成物の流動性を阻害しやすいので、
本発明では用いることができない。「球状」ということ
は、表面に角がなくて、所定の曲率で丸くなっていると
いうことである。角があると、微粒子が耐火性粒状骨材
相互間に存在していても、骨材相互間の滑りが悪くな
り、流動性向上を図れないので、本発明では用いること
ができない。「微粒子」というのは、耐火性粒状骨材よ
りもその大きさが小さい粒子ということである。
In the present invention, non-hollow spherical fine particles play a role as a fluidity improver. Here, the meaning of the non-hollow spherical fine particles is as follows.
"Solid" means not solid but solid. When hollow fine particles are used, at the time of filling the molding sand composition,
The particles cannot be used in the present invention because the fine particles are easily broken or deformed and the fluidity cannot be improved. Also,
Even if it is not damaged or denatured, the hollow fine particles have a cushioning effect and easily inhibit the fluidity of the foundry sand composition,
It cannot be used in the present invention. "Spherical" means that the surface has no corners and is rounded at a predetermined curvature. If there is a corner, even if the fine particles are present between the refractory granular aggregates, the slip between the aggregates becomes worse and the flowability cannot be improved, so that they cannot be used in the present invention. "Fine particles" are particles that are smaller in size than the refractory granular aggregate.

【0010】本発明においては、耐火性粒状骨材の大き
さに対する、非中空球状微粒子の大きさに特徴がある。
即ち、耐火性粒状骨材の平均粒径をφとしたとき、非中
空球状微粒子の平均粒径がφ/8〜φ/5000、好ま
しくはφ/15〜φ/500であるということである。
非中空球状微粒子の平均粒径がφ/8よりも大きいと、
鋳物砂組成物の流動性の向上が不十分であり、好ましく
ない。また、非中空球状微粒子の平均粒径がφ/500
0よりも小さい場合も、鋳物砂組成物の流動性の向上が
不十分であり、好ましくない。
The present invention is characterized by the size of the non-hollow spherical fine particles with respect to the size of the refractory granular aggregate.
That is, when the average particle diameter of the refractory granular aggregate is φ, the average particle diameter of the non-hollow spherical fine particles is φ / 8 to φ / 5000, preferably φ / 15 to φ / 500.
When the average particle diameter of the non-hollow spherical fine particles is larger than φ / 8,
The fluidity of the foundry sand composition is insufficiently improved, which is not preferable. Further, the average particle diameter of the non-hollow spherical fine particles is φ / 500.
When it is smaller than 0, the fluidity of the molding sand composition is insufficiently improved, which is not preferable.

【0011】耐火性粒状骨材の平均粒径は、一般的に1
00〜5000μm程度のものが用いられることが多い
ので、非中空球状微粒子の平均粒径は、0.02〜62
5μmの範囲で適宜決定すれば良い。しかしながら、一
般的に、非中空球状微粒子の平均粒径は、0.1〜50
μm、更には1〜30μmの範囲で選定するのが好まし
い。この程度の平均粒径の非中空球状微粒子が、最も良
く流動性向上に寄与するからである。なお、非中空球状
微粒子の平均粒径は、レーザー回折計を用いて、質量基
準の50%径として求めた。
The average particle size of the refractory granular aggregate is generally 1
The average particle diameter of the non-hollow spherical fine particles is 0.02 to 62,
What is necessary is just to determine suitably in the range of 5 micrometers. However, generally, the average particle size of the non-hollow spherical fine particles is 0.1 to 50.
μm, and more preferably in the range of 1 to 30 μm. This is because the non-hollow spherical fine particles having such an average particle diameter best contribute to the improvement of fluidity. The average particle size of the non-hollow spherical fine particles was determined as a 50% diameter on a mass basis using a laser diffractometer.

【0012】非中空球状微粒子としては、非中空である
こと、球状であること、所定の平均粒径を持つことの条
件が満たされるものであれば、その素材はどのようなも
のであっても良い。例えば、シリカ,シリコーン系樹
脂,アルミナ,ガラス,ムライト等の無機材料や、ポリ
エチレン,ポリプロピレン,ポリスチレン,(メタ)ア
クリル酸系樹脂,フッ素系樹脂等の有機材料が用いられ
る。無機材料では変形が少ない利点があり、有機材料で
は注湯時に熱分解し消失する利点がある。なお、有機材
料の場合は、その軟化点が50℃以上、好ましくは80
℃以上のものが良い。軟化点が50℃未満であると、鋳
物砂組成物の混練時や造型時に、非中空球状微粒子が変
形したり、粘着性を呈したりして、鋳物砂組成物の流動
性が低下する恐れがある。また、表面がシリコン系化合
物で構成されている非中空微粒子、好ましくはシリコー
ン系樹脂微粒子、又はシリカ微粒子等の無機微粒子表面
が珪素化合物を主体とする処理剤でシリコン処理された
無機微粒子を用いるのが好ましい。これらは、流動性の
向上と共に、得られる鋳型の圧縮強度の向上も見られ、
好ましいものである。なお、珪素化合物を主体とする処
理剤としては、ヘキサメチルジシラザン,トリメチルク
ロルシラン,トリメチルエトキシシラン,アリルフェニ
ルジクロルシラン等のシランカップリング剤やシリコー
ンオイル等の珪素化合物を主体とする処理剤が用いられ
る。
As the non-hollow spherical fine particles, any material may be used as long as it satisfies the conditions of being non-hollow, being spherical, and having a predetermined average particle size. good. For example, inorganic materials such as silica, silicone resin, alumina, glass, and mullite, and organic materials such as polyethylene, polypropylene, polystyrene, (meth) acrylic acid resin, and fluorine resin are used. Inorganic materials have the advantage of less deformation, and organic materials have the advantage of thermal decomposition and disappearance during pouring. In the case of an organic material, its softening point is 50 ° C. or higher, preferably 80 ° C.
The thing of more than ° C is good. When the softening point is less than 50 ° C., at the time of kneading or molding of the molding sand composition, the non-hollow spherical fine particles may be deformed or exhibit tackiness, and the fluidity of the molding sand composition may be reduced. is there. In addition, non-hollow fine particles whose surface is composed of a silicon-based compound, preferably inorganic fine particles such as silicone-based resin fine particles, or silica fine particles, use inorganic fine particles whose surface is silicon-treated with a treating agent mainly containing a silicon compound. Is preferred. These are seen with the improvement of the fluidity, the improvement of the compressive strength of the resulting mold,
It is preferred. Examples of the treating agent mainly containing a silicon compound include a silane coupling agent such as hexamethyldisilazane, trimethylchlorosilane, trimethylethoxysilane, and allylphenyldichlorosilane, and a treating agent mainly containing a silicon compound such as silicone oil. Is used.

【0013】非中空球状微粒子の配合量は、耐火性粒状
骨材100質量部に対して、0.01〜1.0質量部で
あるのが好ましく、0.05〜0.5質量部であるのが
より好ましい。非中空球状微粒子の配合量が0.01質
量部未満であると、鋳物砂組成物の流動性向上効果が不
十分となる傾向が生じる。また、非中空球状微粒子の配
合量が1.0質量部を超えると、得られる鋳型の強度が
低下する傾向が生じたり、造型時に非中空球状微粒子が
飛散する傾向が生じる。
The amount of the non-hollow spherical fine particles is preferably 0.01 to 1.0 part by mass, and more preferably 0.05 to 0.5 part by mass, per 100 parts by mass of the refractory granular aggregate. Is more preferred. When the compounding amount of the non-hollow spherical fine particles is less than 0.01 part by mass, the effect of improving the fluidity of the molding sand composition tends to be insufficient. When the amount of the non-hollow spherical fine particles exceeds 1.0 part by mass, the strength of the obtained mold tends to decrease, and the non-hollow spherical fine particles tend to scatter during molding.

【0014】本発明に係る鋳物砂組成物中には、更に粘
結剤が含有されているのが好ましい。即ち、鋳物砂組成
物中に粘結剤が含有されている場合、特にその流動性が
低下しやすいため、粘結剤含有鋳物砂組成物に本発明を
適用するのが好ましい。粘結剤としても、従来公知のも
のであればどのようなものでも用いることができ、例え
ば、フラン樹脂,水溶性フェノール樹脂,耐火性粒状骨
材表面に被覆されたノボラック型フェノール樹脂(シェ
ル用粘結剤)、フェノールウレタン樹脂、水ガラス、粘
土等を用いることができる。
It is preferable that the foundry sand composition according to the present invention further contains a binder. That is, when the binder is contained in the molding sand composition, the fluidity of the binder is particularly liable to decrease. Therefore, the present invention is preferably applied to the binder-containing molding sand composition. As the binder, any conventionally known binder can be used. For example, furan resin, water-soluble phenol resin, and novolak type phenol resin coated on the surface of refractory granular aggregate (for shell) Binder), phenol urethane resin, water glass, clay and the like.

【0015】また、本発明に係る鋳物砂組成物中には、
鋳肌をよくするため、砂落としをよくするため、すくわ
れ防止等の目的で、従来公知の各種の添加剤を含有させ
てもよい。例えば、補助骨材,石炭粉,ピッチ粉,コー
クス粉,黒鉛粉末,澱粉質添加剤,繊維素質添加剤,フ
ッ素系界面活性剤,脂肪族活性剤,潤滑油等を適当量添
加しても良い。
[0015] In the molding sand composition according to the present invention,
Conventionally known various additives may be contained for the purpose of improving casting surface, improving sand removal, preventing scooping, and the like. For example, an appropriate amount of auxiliary aggregate, coal powder, pitch powder, coke powder, graphite powder, starchy additive, fibrous additive, fluorosurfactant, aliphatic activator, lubricating oil, etc. may be added. .

【0016】本発明に係る鋳物砂組成物を、模型に充填
して造型する方法としては、従来公知の造型法であれば
どのようなものでも採用でき、例えば、振動機を用いた
振動造型法,エアーを用いたブロー造型法,圧力差を利
用する減圧造型法,手込め造型法等を採用することがで
きる。本発明に係る鋳物砂組成物の場合、手込め造型法
よりも、機械を用いた振動造型法,ブロー造型法,減圧
造型法等の方が、その効果が顕著である。また、本発明
に係る鋳物砂組成物は、自硬性鋳型,ガス硬化性鋳型,
フルモールド鋳型,シェルモールド鋳型等の鋳型の種別
を問わず、適用しうるものであり、また粘結剤を含まな
い鋳型にも適用することができる。特に、本発明に係る
鋳物砂組成物は、耐火性粒状骨材に大きな運動エネルギ
ーを与えなくとも造型しうるので、複雑な形状をした中
子の造型や、発泡模型を使用して造型する場合に有利で
ある。
The molding sand composition according to the present invention can be filled in a model and molded by any known molding method, for example, a vibration molding method using a vibrator. For example, a blow molding method using air, a depressurized molding method using a pressure difference, a manual molding method, or the like can be employed. In the case of the molding sand composition according to the present invention, the effects are more remarkable in the vibration molding method, the blow molding method, the vacuum molding method, and the like using a machine than in the manual molding method. Further, the molding sand composition according to the present invention comprises a self-hardening mold, a gas-hardening mold,
The present invention can be applied to any type of mold such as a full mold mold and a shell mold mold, and can also be applied to a mold containing no binder. In particular, since the molding sand composition according to the present invention can be molded without giving a large kinetic energy to the refractory granular aggregate, molding of a core having a complicated shape or molding using a foam model is preferable. Is advantageous.

【0017】[0017]

【実施例】以下、実施例に基づいて本発明を説明する
が、本発明は実施例に限定されるものではない。本発明
は、耐火性粒状骨材の粒径に対して、一定の粒径を持つ
非中空球状微粒子を添加すれば、鋳物砂組成物の流動性
が改善されるとの知見に基づくものとして、解釈される
べきである。
Hereinafter, the present invention will be described based on examples, but the present invention is not limited to the examples. The present invention is based on the finding that the addition of non-hollow spherical fine particles having a constant particle size improves the fluidity of the foundry sand composition with respect to the particle size of the refractory granular aggregate, Should be interpreted.

【0018】実施例1 フリーマントル珪砂(平均粒径511μm)8kgに、
フラン樹脂(花王クエーカー社製、340B)40gと
フラン樹脂用硬化剤(花王クエーカー社製、C−21)
16gを添加して、キッチンミキサーにて混練した。更
に、非中空球状微粒子(電気化学工業社製、球状シリカ
微粒子FB−6D、平均粒径6.9μm)8gを添加し
混練して、鋳物砂組成物を得た。
Example 1 To 8 kg of Fremantle silica sand (average particle size: 511 μm),
40 g of furan resin (manufactured by Kao Quaker, 340B) and a curing agent for furan resin (manufactured by Kao Quaker, C-21)
16 g was added and kneaded with a kitchen mixer. Further, 8 g of non-hollow spherical fine particles (spherical silica fine particles FB-6D, manufactured by Denki Kagaku Kogyo KK, average particle size of 6.9 μm) were added and kneaded to obtain a molding sand composition.

【0019】実施例2〜9 実施例1で用いた非中空球状微粒子に代えて、以下の非
中空球状微粒子を用いる他は、実施例1と同様にして鋳
物砂組成物を得た。実施例2は、信越化学工業社製、球
状シリコーン系樹脂微粒子X−52−854、平均粒径
0.8μmの非中空球状微粒子を使用した。実施例3
は、信越化学工業社製、球状シリコーン系樹脂微粒子K
MP590、平均粒径2.0μmの非中空球状微粒子を
使用した。実施例4は、東芝シリコーン社製、球状シリ
コーン系樹脂微粒子トスパール3120、平均粒径1
2.0μmの非中空球状微粒子を使用した。実施例5
は、信越化学工業社製、球状シリカ微粒子(表面をシリ
コン処理したもの)KMP105、平均粒径0.8μm
の非中空球状微粒子を使用した。実施例6は、信越化学
工業社製、球状シリカ微粒子(表面をシリコン処理した
もの)KMP110、平均粒径1.9μmの非中空球状
微粒子を使用した。実施例7は、電気化学工業社製、球
状シリカ微粒子FB−60、平均粒径22.7μmの非
中空球状微粒子を使用した。実施例8は、東芝バロティ
ーニ社製、ガラスビーズEMB−10、平均粒径6.0
μmの非中空球状微粒子を使用した。実施例9は、平均
粒径50.0μmのガラスビーズを非中空球状微粒子と
して使用した。
Examples 2 to 9 A molding sand composition was obtained in the same manner as in Example 1 except that the following non-hollow spherical fine particles were used in place of the non-hollow spherical fine particles used in Example 1. Example 2 used spherical silicone-based resin fine particles X-52-854, manufactured by Shin-Etsu Chemical Co., Ltd., and non-hollow spherical fine particles having an average particle diameter of 0.8 μm. Example 3
Is spherical silicone resin fine particle K manufactured by Shin-Etsu Chemical Co., Ltd.
MP590, non-hollow spherical fine particles having an average particle size of 2.0 μm were used. Example 4 was manufactured by Toshiba Silicone Co., Ltd., manufactured by Tospearl 3120, a spherical silicone resin fine particle, and having an average particle size of 1
2.0 μm solid hollow fine particles were used. Example 5
Is manufactured by Shin-Etsu Chemical Co., Ltd., spherical silica fine particles (surface siliconized) KMP105, average particle size 0.8 μm
Non-hollow spherical fine particles were used. In Example 6, non-hollow spherical fine particles having an average particle size of 1.9 μm, spherical silica fine particles (surface-treated with silicon) KMP110 manufactured by Shin-Etsu Chemical Co., Ltd. were used. Example 7 used spherical silica fine particles FB-60, manufactured by Denki Kagaku Kogyo KK, and non-hollow spherical fine particles having an average particle diameter of 22.7 μm. Example 8 was manufactured by Toshiba Barotini, glass beads EMB-10, average particle size 6.0.
μm non-hollow spherical fine particles were used. In Example 9, glass beads having an average particle size of 50.0 μm were used as non-hollow spherical fine particles.

【0020】比較例1〜7 実施例1で用いた非中空球状微粒子に代えて、以下の微
粒子を用いる他は、実施例1と同様にして鋳物砂組成物
を得た。比較例1は、山森土本鉱業所製、不定形シリカ
微粒子シリカA−3、平均粒径7.0μmの非中空不定
形微粒子を使用した。比較例2は、山森土本鉱業所製、
不定形シリカ微粒子シリカA−1、平均粒径17.0μ
mの非中空不定形微粒子を使用した。比較例3は、日本
アエロジル社製、球状シリカ微粒子アエロジル130、
平均粒径0.016μmの非中空球状微粒子を使用し
た。比較例4は、ムライト社製、球状ムライト微粒子セ
ラビーズ1750、平均粒径75.0μmの非中空球状
微粒子を使用した。比較例5は、平均粒径100μmの
ガラスビーズを非中空球状微粒子として使用した。比較
例6は、日本フェライト社製、中空球状アルミナ微粒子
Filite 52/7 FG、平均粒径100μmの
中空球状微粒子を使用した。また、比較例7は、非中空
球状微粒子を使用しない他は、実施例1と同様にして得
られた鋳物砂組成物である。
Comparative Examples 1 to 7 A molding sand composition was obtained in the same manner as in Example 1 except that the following fine particles were used instead of the non-hollow spherical fine particles used in Example 1. In Comparative Example 1, non-hollow amorphous particles having an average particle diameter of 7.0 μm were used. Comparative Example 2 was made by Yamamori Tsuchimoto Mining
Amorphous silica fine particles silica A-1, average particle size 17.0 μm
m non-hollow amorphous particles were used. Comparative Example 3 was manufactured by Nippon Aerosil Co., Ltd., spherical silica fine particles Aerosil 130,
Non-hollow spherical fine particles having an average particle size of 0.016 μm were used. In Comparative Example 4, non-hollow spherical fine particles having an average particle diameter of 75.0 μm were used. In Comparative Example 5, glass beads having an average particle diameter of 100 μm were used as non-hollow spherical fine particles. In Comparative Example 6, hollow spherical fine particles having a hollow spherical alumina fine particle Filite 52/7 FG and an average particle diameter of 100 μm manufactured by Nippon Ferrite Co., Ltd. were used. Comparative Example 7 is a molding sand composition obtained in the same manner as in Example 1 except that the non-hollow spherical fine particles were not used.

【0021】実施例1〜9及び比較例1〜7で得られた
鋳物砂組成物の流動性を評価するため、以下の試験を行
った。まず、図1に示すような、略U字状の中空部(A
−B−C)を持つ箱体を準備した。図1中、PSは発泡
ポリスチレン体であり、表面にはPC100(花王クエ
ーカー社製、塗型剤)が塗布されている。また、この箱
体の寸法は、L1が8cm、L2が20cm、L3が17
cm、L4が8cm、L 5が8cm、L6が12cmであ
る。この箱体の中空部Aに入るだけ、鋳物砂組成物を投
入し、振動を開始した。振動を1分間行うと、鋳物砂組
成物は中空部Bへ移動し、中空部Aの上部に空間が生じ
た。この空間に更に鋳物砂組成物を、全部で8kgとな
るように投入し、今度は10分間振動を与えた。そうす
ると、鋳物砂組成物は、箱体の中空部Cに入って行き、
図1に示すような状態(山状)となった。そして、発泡
ポリスチレン体の底面から、山状鋳物砂組成物の頂上ま
での距離をaとし、山状鋳物砂組成物の裾までの距離を
bとし、その平均値〔(a+b)/2〕を求め、これを
充填高さ(cm)とし、その結果を表1に示した。充填
高さが高いほど、鋳物砂組成物の流動性が良好であるこ
とを示している。なお、上記した振動は、東洋機械製作
所製の垂直面真円運動振動機を用い、振動条件1.5
G、振幅0.4mmで行った。
Obtained in Examples 1 to 9 and Comparative Examples 1 to 7
The following tests were conducted to evaluate the fluidity of the foundry sand composition.
Was. First, as shown in FIG. 1, a substantially U-shaped hollow portion (A
-BC) was prepared. In FIG. 1, PS is foamed
PC100 (Kao Que)
Co., Ltd., coating agent). Also this box
The body dimensions are L1Is 8cm, LTwoIs 20cm, LThreeIs 17
cm, LFourIs 8cm, L FiveIs 8cm, L6Is 12cm
You. The casting sand composition is injected only as far as the hollow portion A of the box is inserted.
And started to vibrate. When the vibration is performed for 1 minute,
The product moves to the hollow portion B, and a space is created above the hollow portion A.
Was. In this space, a total of 8 kg of the foundry sand composition was added.
And then vibrated for 10 minutes. To be so
Then, the foundry sand composition goes into the hollow portion C of the box,
The state (mountain shape) as shown in FIG. 1 was obtained. And foaming
From the bottom of the polystyrene body to the top of the
And the distance to the skirt of the mountain-shaped foundry sand composition
b, and the average value ((a + b) / 2] is obtained.
The filling height (cm) was used, and the results are shown in Table 1. filling
The higher the height, the better the fluidity of the foundry sand composition.
Are shown. In addition, the above-mentioned vibration
Using a vertical vertical circular motion vibrator, vibration conditions 1.5
G, with an amplitude of 0.4 mm.

【0022】〔表1〕 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 微粒子 平均粒径 充填高さ (μm) (cm) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 実施例1 非中空球状シリカ 6.9 9.0 実施例2 非中空球状シリコーン系樹脂 0.8 5.0 実施例3 非中空球状シリコーン系樹脂 2.0 5.8 実施例4 非中空球状シリコーン系樹脂 12.0 7.8 実施例5 非中空球状シリカ 0.8 5.0 実施例6 非中空球状シリカ 1.9 7.8 実施例7 非中空球状シリカ 22.7 8.0 実施例8 非中空ガラスビーズ 6.0 7.8 実施例9 非中空ガラスビーズ 50.0 5.3 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 比較例1 非中空不定形シリカ 7.0 2.1 比較例2 非中空不定形シリカ 17.0 2.3 比較例3 非中空球状シリカ 0.016 3.8 比較例4 非中空球状ムライト 75.0 2.0 比較例5 非中空ガラスビーズ 100.0 2.0 比較例6 中空球状アルミナ 100.0 3.0 比較例7 無し − 3.3 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[Table 1] 微粒子 Average particle size of fine particles Filling height ( μm) (cm) Example 1 Solid Hollow Spherical Silica 6.9 9.0 Example 2 Solid Hollow Silicone Resin 0.8 5.0 Example 3 Solid Hollow Silicone Resin 2.0 5.8 Example 4 Solid Hollow Silicone Resin 12.0 7.8 Example 5 Solid Hollow Silica 0.8 5.0 Example 6 Solid Hollow Spherical Silica 1.9 7.8 Example 7 Solid Hollow Spherical Silica 22.7 8.0 Example 8 Solid Hollow Glass Beads 6.0 7.8 Example 9 Solid Glass Beads 50.0 5.3━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Comparison 1 Solid Hollow Amorphous Silica 7.0 2.1 Comparative Example 2 Solid Hollow Amorphous Silica 17.0 2.3 Comparative Example 3 Solid Hollow Spherical Silica 0.016 3.8 Comparative Example 4 Solid Hollow Spherical Mullite 75.0 2 0.0 Comparative Example 5 Solid Glass Beads 100.0 2.0 Comparative Example 6 Hollow Spherical Alumina 100.0 3.0 Comparative Example 7 None-3.3% ━━━━━━━━━━━━━━━━━━━━

【0023】表1の結果から明らかなように、実施例1
〜9で得られた鋳物砂組成物は、比較例1〜7で得られ
たいずれの鋳物砂組成物よりも、充填高さが高く、流動
性に優れていることが分かる。
As is clear from the results in Table 1, Example 1
9 shows that the molding sand compositions obtained in Comparative Examples 1 to 7 have a higher filling height and are more excellent in fluidity than any of the molding sand compositions obtained in Comparative Examples 1 to 7.

【0024】実施例10、11及び比較例8 実施例1で用いた非中空球状微粒子に代えて、以下の微
粒子を用いる他は、実施例1と同様にして鋳物砂組成物
を得た。実施例10は、日本精化社製、球状ポリエチレ
ン微粒子フロービーズLE1080、平均粒径6.0μ
mの非中空球状微粒子を使用した。実施例11は、花王
社製、球状架橋ポリスチレン微粒子PB−200、平均
粒径8.0μmの非中空球状微粒子を使用した。比較例
8は、日本精化社製、不定形ポリエチレン微粒子フロー
センUF−80、平均粒径25.0の非中空不定形微粒
子を使用した。
Examples 10 and 11 and Comparative Example 8 A molding sand composition was obtained in the same manner as in Example 1 except that the following fine particles were used instead of the non-hollow spherical fine particles used in Example 1. Example 10 was manufactured by Nippon Seika Co., Ltd., spherical polyethylene microparticle flow beads LE1080, average particle diameter 6.0 μm.
m non-hollow spherical fine particles were used. In Example 11, spherical hollow crosslinked polystyrene fine particles PB-200 manufactured by Kao Corporation, and non-hollow spherical fine particles having an average particle size of 8.0 μm were used. In Comparative Example 8, non-hollow amorphous particles having an average particle diameter of 25.0 were used.

【0025】実施例10、11及び比較例8で得られた
鋳物砂組成物の流動性を評価するため、実施例1と同様
の試験を行い、充填高さを求めた。そして、その結果を
表2に示した。 〔表2〕 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 微粒子 平均粒径 充填高さ (μm) (cm) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 実施例10 非中空球状ポリエチレン 6.0 5.8 実施例11 非中空球状架橋ポリスチレン 8.0 6.8 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 比較例8 非中空不定形ポリエチレン 25.0 1.5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 表2の結果から明らかなように、実施例10及び11で
得られた鋳物砂組成物は、比較例で得られたいずれの鋳
物砂組成物よりも、充填高さが高く、流動性に優れてい
ることが分かる。
In order to evaluate the fluidity of the molding sand compositions obtained in Examples 10 and 11 and Comparative Example 8, the same test as in Example 1 was performed to determine the filling height. Table 2 shows the results. [Table 2] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Average particle size of fine particles Filling height (μm) ( cm) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Example 10 Solid Hollow Spherical Polyethylene 6.0 5.8 Example 11 Solid Hollow Spherical Crosslinked Polystyrene 8.0 6.8 Comparison Example 8 Hollow amorphous polyethylene 25.0 1.525 Table 2 As is clear from the results, the molding sand compositions obtained in Examples 10 and 11 have a higher filling height and excellent fluidity than any of the molding sand compositions obtained in Comparative Examples. You can see that.

【0026】実施例12及び比較例9 フラン樹脂及びフラン樹脂用硬化剤を使用しない他は、
実施例1と同様にして鋳物砂組成物を得た(実施例1
2)。また、非中空球状微粒子を使用しない他は、実施
例12と同様にして鋳物砂組成物を得た(比較例9)。
そして、実施例12及び比較例9に係る鋳物砂組成物に
ついて、実施例1と同様の試験を行った。但し、実施例
12及び比較例9に係る鋳物砂組成物は、無バインダー
であるので、もともと流動性が良く、実施例1で評価し
た充填高さの値で流動性を評価するのが困難である。そ
こで、充填高さが7cmになるまでの時間を測定した。
その結果、実施例12は80秒であり、比較例9は10
5秒であった。従って、実施例12に係る鋳物砂組成物
の方が、比較例9に係るものよりも、流動性に優れてい
ることが分かる。
Example 12 and Comparative Example 9 Except that the furan resin and the curing agent for the furan resin were not used,
A casting sand composition was obtained in the same manner as in Example 1 (Example 1).
2). In addition, a molding sand composition was obtained in the same manner as in Example 12 except that solid hollow fine particles were not used (Comparative Example 9).
And about the casting sand composition which concerns on Example 12 and Comparative Example 9, the same test as Example 1 was performed. However, since the molding sand compositions according to Example 12 and Comparative Example 9 were binderless, they originally had good fluidity, and it was difficult to evaluate the fluidity at the value of the filling height evaluated in Example 1. is there. Then, the time until the filling height reached 7 cm was measured.
As a result, Example 12 was 80 seconds, and Comparative Example 9 was 10 seconds.
5 seconds. Therefore, it can be seen that the foundry sand composition according to Example 12 is more excellent in fluidity than that according to Comparative Example 9.

【0027】実施例13及び比較例10 実施例6で使用したフリーマントル珪砂に代えて、サン
パール♯40(山川産業社製、マグネシウムスラグ、平
均粒径455μm)を用いる他は、実施例6と同一の方
法で鋳物砂組成物を得た(実施例13)。球状シリカ微
粒子(表面をシリコン処理したもの)KMP110を使
用しない他は、実施例6と同一の方法で鋳物砂組成物を
得た(比較例10)。そして、実施例13及び比較例1
0に係る鋳物砂組成物について、その全投入量を9.2
kgとする他は、実施例1と同様の試験を行い、充填高
さを求めた。その結果、実施例13においては10.8
cmであり、比較例10においては6.3cmであっ
た。このことから、球状の耐火性粒状骨材を用いた場合
でも、流動性が向上していることが分かる。
Example 13 and Comparative Example 10 The procedure of Example 6 was repeated except that Sunpearl # 40 (manufactured by Yamakawa Sangyo Co., magnesium slag, average particle size: 455 μm) was used instead of Fremantle silica sand used in Example 6. A foundry sand composition was obtained in the same manner (Example 13). A molding sand composition was obtained in the same manner as in Example 6, except that spherical silica fine particles (the surface of which was silicon-treated) KMP110 was not used (Comparative Example 10). Then, Example 13 and Comparative Example 1
0, the total amount of the casting sand composition was 9.2.
The same test as in Example 1 was performed except that the weight was set to kg, and the filling height was determined. As a result, in Example 13, 10.8
cm, and in Comparative Example 10, it was 6.3 cm. This indicates that the fluidity is improved even when the spherical refractory granular aggregate is used.

【0028】実施例14 フラン再生砂(フラン鋳型の鋳物砂を再生したもの、平
均粒径(414μm)2kgに、フラン樹脂(花王クエ
ーカー社製、340B)14gとフラン樹脂用硬化剤
(花王クエーカー社製、C−14)7gを添加して、キ
ッチンミキサーにて混練した。更に、非中空球状微粒子
(信越化学工業社製、球状シリコーン系樹脂微粒子KM
P590、平均粒径2.0μm)2gを添加し混練し
て、鋳物砂組成物を得た。
Example 14 Recycled furan (regenerated cast sand of a furan mold, 14 g of furan resin (340B, manufactured by Kao Quaker Co., Ltd.) and a curing agent for furan resin (Kao Quaker Co., Ltd.) were added to 2 kg of an average particle size (414 μm). And C-14) were mixed and kneaded with a kitchen mixer.Furthermore, non-hollow spherical fine particles (spherical silicone resin fine particles KM, manufactured by Shin-Etsu Chemical Co., Ltd.)
P590, average particle size 2.0 μm) was added and kneaded to obtain a molding sand composition.

【0029】実施例15、16及び比較例11 実施例14で用いた非中空球状微粒子に代えて、以下の
非中空球状微粒子を用いる他は、実施例14と同様にし
て鋳物砂組成物を得た(実施例15及び16)。実施例
15は、信越化学工業社製、球状シリカ微粒子(表面を
シリコン処理したもの)KMP110、平均粒径1.9
μmの非中空球状微粒子を使用した。実施例16は、電
気化学工業社製、球状シリカ微粒子FB−6D、平均粒
径6.9μmの非中空球状微粒子を使用した。また、比
較例11は、微粒子を用いない他は、実施例14と同様
にして鋳物砂組成物を得た。
Examples 15 and 16 and Comparative Example 11 A molding sand composition was obtained in the same manner as in Example 14 except that the following non-hollow spherical fine particles were used in place of the non-hollow spherical fine particles used in Example 14. (Examples 15 and 16). Example 15 was manufactured by Shin-Etsu Chemical Co., Ltd., having spherical silica fine particles (surface siliconized) KMP110, and having an average particle size of 1.9.
μm non-hollow spherical fine particles were used. In Example 16, spherical silica fine particles FB-6D manufactured by Denki Kagaku Kogyo KK and non-hollow spherical fine particles having an average particle diameter of 6.9 μm were used. In Comparative Example 11, a molding sand composition was obtained in the same manner as in Example 14, except that fine particles were not used.

【0030】実施例14〜16及び比較例11に係る鋳
物砂組成物を用いて、φ50mm×50cmの大きさの
鋳型圧縮強度測定用テストピース(圧縮強度測定用鋳
型)を手込めで作成し、1日経過後の鋳型圧縮強度を測
定した。また、このテストピースの重量と体積から、密
度(充填密度:g/cm3)を求めた。この結果を表3
に示した。なお、鋳型圧縮強度及び密度の測定は、25
℃下において行った。
Using the molding sand compositions according to Examples 14 to 16 and Comparative Example 11, a test piece for measuring the compressive strength (mould for measuring the compressive strength) having a size of φ50 mm × 50 cm was prepared by hand. After one day, the mold compressive strength was measured. The density (packing density: g / cm 3 ) was determined from the weight and volume of the test piece. Table 3 shows the results.
It was shown to. In addition, the measurement of the mold compressive strength and the density was 25
The test was carried out at a temperature of 100.

【0031】〔表3〕 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 非中空球状微粒子 圧縮強度 充填密度 の平均粒径(μm) (MPa) (g/cm3) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 実施例14 2.0 3.97 1.66 実施例15 1.9 3.62 1.65 実施例16 6.9 3.20 1.69 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 比較例11 微粒子無し 3.51 1.59 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ この結果から明らかなように、実施例14〜16で得ら
れた鋳型は、比較例11で得られた鋳型に比べて、鋳物
砂組成物の流動性が良いため、充填密度が高くなってい
ることが分かる。また、実施例14及び15で得られた
鋳型は、比較例11で得られた鋳型に比べて、圧縮強度
も向上していることが分かる。
[Table 3] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Non-hollow spherical fine particles Compressive strength Packing density Average particle size (μm) (MPa) (g / cm 3 ) {Example 14 2.0 3.97 1.66 Example 15 1.9 3.62 1.65 Example 16 6.9 3.20 1.69} ━━━━━━━━━━━━━━━━━━━━━━ Comparative Example 11 No fine particles 3.51 1.59 ━━━━━━━━━━━━━━━━━よ う As is clear from the results, the molds obtained in Examples 14 to 16 were compared with the mold obtained in Comparative Example 11, High filling density due to good flowability of molding sand composition It can be seen that Tsu. Further, it can be seen that the molds obtained in Examples 14 and 15 have improved compressive strength as compared with the mold obtained in Comparative Example 11.

【0032】実施例17及び比較例12 フリーマントル珪砂(平均粒径511μm)2kgに、
自硬性用水溶性アルカリフェノール樹脂(花王クエーカ
ー社製、S660)30gと水溶性アルカリフェノール
樹脂用硬化剤(花王クエーカー社製、Q×140)6g
を添加して、キッチンミキサーにて混練した。更に、非
中空球状微粒子(信越化学工業社製、球状シリカ微粒子
(表面をシリコン処理したもの)KMP110、平均粒
径1.9μm)2gを添加し混練して、鋳物砂組成物を
得た(実施例17)。また、非中空球状微粒子を用いな
い他は、実施例17と同様にして鋳物砂組成物を得た
(比較例12)。
Example 17 and Comparative Example 12 To 2 kg of Fremantle silica sand (average particle size: 511 μm),
30 g of a water-soluble alkali phenol resin for self-hardening (K660, S660) and 6 g of a curing agent for water-soluble alkali phenol resin (Q140, Q140)
Was added and kneaded with a kitchen mixer. Further, 2 g of non-hollow spherical fine particles (Shin-Etsu Chemical Co., Ltd., spherical silica fine particles (surface siliconized) KMP110, average particle size 1.9 μm) were added and kneaded to obtain a molding sand composition (implementation). Example 17). A molding sand composition was obtained in the same manner as in Example 17 except that the non-hollow spherical fine particles were not used (Comparative Example 12).

【0033】実施例17及び比較例12に係る鋳物砂組
成物を用いて、実施例14と同様に、φ50mm×50
cmの大きさの鋳型圧縮強度測定用テストピース(圧縮
強度測定用鋳型)を手込めで作成し、1日経過後の鋳型
圧縮強度を測定した。また、実施例14と同様に、この
テストピースの密度(充填密度:g/cm3)を求め
た。この結果、実施例17では、圧縮強度が2.53M
Paで、充填密度が1.69g/cm3であった。比較
例12では、圧縮強度が2.43MPaで、充填密度が
1.65g/cm3であった。この結果から、実施例1
7で得られた鋳型は、比較例12で得られた鋳型に比べ
て、鋳物砂組成物の流動性が良いため、充填密度が高く
なっており、更に圧縮強度も高くなっていることが分か
る。
Using the molding sand compositions according to Example 17 and Comparative Example 12, in the same manner as in Example 14,
A test piece (mold for compressive strength measurement) for measuring the mold compressive strength having a size of cm was prepared by hand, and the mold compressive strength after one day had elapsed was measured. Further, similarly to Example 14, the density (filling density: g / cm 3 ) of this test piece was determined. As a result, in Example 17, the compressive strength was 2.53M.
At Pa, the packing density was 1.69 g / cm 3 . In Comparative Example 12, the compressive strength was 2.43 MPa, and the packing density was 1.65 g / cm 3 . From these results, Example 1
7 reveals that the mold density obtained in the mold obtained in Comparative Example 7 is higher than that of the mold obtained in Comparative Example 12 because the flowability of the molding sand composition is higher, and the compressive strength is higher. .

【0034】実施例18及び比較例13 6号珪砂(平均粒径266μm)2kgに、炭酸ガス硬
化用水溶性アルカリフェノール樹脂(花王クエーカー社
製、C800)60gを添加して、キッチンミキサーに
て混練した。更に、非中空球状微粒子(信越化学工業社
製、球状シリカ微粒子(表面をシリコン処理したもの)
KMP105、平均粒径0.8μm)6gを添加し混練
して、鋳物砂組成物を得た(実施例18)。また、非中
空球状微粒子を用いない他は、実施例18と同様にして
鋳物砂組成物を得た(比較例13)。
Example 18 and Comparative Example 1 To 2 kg of No. 6 silica sand (average particle size: 266 μm), 60 g of a water-soluble alkali phenol resin for curing carbon dioxide (C800, manufactured by Kao Quaker Co., Ltd.) was added and kneaded with a kitchen mixer. . In addition, non-hollow spherical fine particles (Shin-Etsu Chemical Co., Ltd., spherical silica fine particles (the surface of which has been silicon-treated))
6 g of KMP105 (average particle size 0.8 μm) was added and kneaded to obtain a molding sand composition (Example 18). A molding sand composition was obtained in the same manner as in Example 18 except that solid hollow fine particles were not used (Comparative Example 13).

【0035】実施例18及び比較例13に係る鋳物砂組
成物を用いて、炭酸ガスを通気させることにより、水溶
性アルカリフェノール樹脂を硬化させて、φ50mm×
50cmの大きさの鋳型圧縮強度測定用テストピース
(圧縮強度測定用鋳型)を作成し、直ちに鋳型圧縮強度
を測定した。また、このテストピースの密度(充填密
度:g/cm3)を求めた。この結果、実施例18で
は、圧縮強度が2.79MPaで、充填密度が1.42
g/cm3であった。比較例13では、圧縮強度が2.
50MPaで、充填密度が1.35g/cm3であっ
た。この結果から、実施例18で得られた鋳型は、比較
例13で得られた鋳型に比べて、鋳物砂組成物の流動性
が良いため、充填密度が高くなっており、更に圧縮強度
が高くなっていることが分かる。
Using the foundry sand composition according to Example 18 and Comparative Example 13, a water-soluble alkali phenol resin was cured by passing a carbon dioxide gas through to give a φ50 mm ×
A test piece (mold for compressive strength measurement) of 50 cm in size for measuring mold compressive strength was prepared, and the mold compressive strength was measured immediately. Further, the density (packing density: g / cm 3 ) of the test piece was determined. As a result, in Example 18, the compressive strength was 2.79 MPa, and the packing density was 1.42.
g / cm 3 . In Comparative Example 13, the compressive strength was 2.
At 50 MPa, the packing density was 1.35 g / cm 3 . From this result, the mold obtained in Example 18 has a higher filling density because the flowability of the molding sand composition is better than the mold obtained in Comparative Example 13, and the compression strength is higher. You can see that it has become.

【0036】実施例19及び比較例14 フラタリー珪砂(平均粒径246μm)100質量部
に、フランウォームボックス用樹脂(花王クエーカー社
製、730)1.6質量部、フランウォームボックス用
硬化剤(花王クエーカー社製、FC−310)0.48
質量部及びフランウォームボックス用添加剤(花王クエ
ーカー社製、J−20)0.1質量部を添加して、混練
した。更に、非中空球状微粒子(信越化学工業社製、球
状シリカ微粒子(表面をシリコン処理したもの)KMP
105、平均粒径0.8μm)0.1質量部を添加し混
練して、鋳物砂組成物を得た(実施例19)。また、非
中空球状微粒子を用いない他は、実施例19と同様にし
て鋳物砂組成物を得た(比較例14)。
Example 19 and Comparative Example 14 To 100 parts by mass of flattery silica sand (average particle size: 246 μm), 1.6 parts by mass of a resin for a furan worm box (730, manufactured by Kao Quaker Co., Ltd.) and a curing agent for a furan worm box (Kao) Quaker, FC-310) 0.48
Parts by mass and 0.1 part by mass of an additive for a furan warm box (J-20, manufactured by Kao Quaker Co., Ltd.) were added and kneaded. Furthermore, non-hollow spherical fine particles (Shin-Etsu Chemical Co., Ltd., spherical silica fine particles (the surface of which has been silicon-treated)) KMP
105, an average particle diameter of 0.8 μm) and kneaded to obtain a molding sand composition (Example 19). In addition, a molding sand composition was obtained in the same manner as in Example 19 except that solid hollow fine particles were not used (Comparative Example 14).

【0037】実施例19及び比較例14で得られた鋳物
砂組成物を、予め180℃に加熱した25mm×25m
m×250mmの金型内に加熱空気と共に吹き込んで充
填し、10秒間焼成して鋳型を得た。焼成後、1日経過
後の抗折強度と充填密度を測定した。その結果、実施例
19で得られた鋳型の抗折強度は6.54MPaで、充
填密度は1.532g/cm3であった。一方、比較例
14で得られた鋳型の抗折強度は6.34MPaで、充
填密度は1.501g/cm3であった。従って、実施
例19で得られた鋳型は、比較例14で得られた鋳型に
比べて、鋳物砂組成物の流動性が良いため、充填密度が
高くなっており、更に圧縮強度が高くなっていることが
分かる。
The foundry sand compositions obtained in Example 19 and Comparative Example 14 were heated to 180 ° C. in advance to obtain a 25 mm × 25 m
The mold was blown into the m × 250 mm mold together with the heated air, and the mixture was baked for 10 seconds to obtain a mold. After firing, the transverse rupture strength and packing density one day later were measured. As a result, the die obtained in Example 19 had a transverse rupture strength of 6.54 MPa and a packing density of 1.532 g / cm 3 . On the other hand, the transverse rupture strength of the mold obtained in Comparative Example 14 was 6.34 MPa, and the packing density was 1.501 g / cm 3 . Accordingly, the mold obtained in Example 19 has a higher filling density and a higher compressive strength because the flowability of the molding sand composition is better than that of the mold obtained in Comparative Example 14. You can see that there is.

【0038】[0038]

【発明の効果】以上説明したように、本発明に係る鋳物
砂組成物は、耐火性粒状骨材と、この耐火性粒状骨材の
平均粒径に対して、所定比の平均粒径を持つ非中空球状
微粒子とを含有するもので、非中空球状微粒子の介在に
よって、耐火性粒状骨材が流動しやすくなる。従って、
模型に鋳物砂組成物を充填しやすくなると共に、模型の
形状が複雑であっても、その複雑な空間部にも充填しや
すくなり、全体として充填密度が高く、複雑な鋳型を製
造しやすくなるという効果を奏する。また、模型に鋳物
砂組成物を充填する際、組成物に過大な運動エネルギー
を与えることなく、充填しうるので、模型への鋳物砂組
成物の染み付きを防止しうると共に、模型が発泡模型の
ような場合には、模型の変形や破損をも防止しうるとい
う効果を奏する。
As described above, the foundry sand composition according to the present invention has a refractory granular aggregate and an average particle size having a predetermined ratio to the average particle size of the refractory granular aggregate. It contains non-hollow spherical fine particles, and the refractory granular aggregates can easily flow due to the presence of the non-hollow spherical fine particles. Therefore,
It becomes easy to fill the casting sand composition into the model, and even if the shape of the model is complicated, it is also easy to fill the complex space, and the packing density is high as a whole, making it easy to manufacture complex molds This has the effect. In addition, when the casting sand composition is filled in the model, the composition can be filled without giving excessive kinetic energy to the composition, so that the casting sand composition can be prevented from permeating the model, and the model can be made of a foam model. In such a case, there is an effect that deformation and breakage of the model can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋳物砂組成物の流動性を評価するために用いた
箱体の模式的斜視図である。
FIG. 1 is a schematic perspective view of a box used for evaluating the fluidity of a molding sand composition.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 耐火性粒状骨材と非中空球状微粒子とを
含有し、該耐火性粒状骨材の平均粒径をφとしたとき、
該非中空球状微粒子の平均粒径が、φ/8〜φ/500
0である鋳物砂組成物。
Claims 1. A fire-resistant granular aggregate containing non-hollow spherical fine particles, wherein the average particle diameter of the fire-resistant granular aggregate is φ,
The non-hollow spherical fine particles have an average particle diameter of φ / 8 to φ / 500.
A foundry sand composition that is 0.
【請求項2】 非中空球状微粒子の平均粒径が0.1〜
50μmである請求項1記載の鋳物砂組成物。
2. The non-hollow spherical fine particles have an average particle size of 0.1 to
The molding sand composition according to claim 1, which has a thickness of 50 µm.
【請求項3】 更に粘結剤を含有する請求項1又は2記
載の鋳物砂組成物。
3. The molding sand composition according to claim 1, further comprising a binder.
【請求項4】 非中空球状微粒子の表面がシリコン系化
合物で構成されている請求項1乃至3のいずれか一項に
記載の鋳物砂組成物。
4. The molding sand composition according to claim 1, wherein the surface of the non-hollow spherical fine particles is composed of a silicon compound.
【請求項5】 非中空球状微粒子が、耐火性粒状骨材1
00質量部に対して、0.01〜1.0質量部配合され
ている請求項1乃至4のいずれか一項に記載の鋳物砂組
成物。
5. The non-hollow spherical fine particles are made of a refractory granular aggregate 1
The foundry sand composition according to any one of claims 1 to 4, which is added in an amount of 0.01 to 1.0 part by mass with respect to 00 parts by mass.
JP2001033136A 2001-02-09 2001-02-09 Foundry sand composition Expired - Lifetime JP4953511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001033136A JP4953511B2 (en) 2001-02-09 2001-02-09 Foundry sand composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001033136A JP4953511B2 (en) 2001-02-09 2001-02-09 Foundry sand composition

Publications (2)

Publication Number Publication Date
JP2002239681A true JP2002239681A (en) 2002-08-27
JP4953511B2 JP4953511B2 (en) 2012-06-13

Family

ID=18896937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001033136A Expired - Lifetime JP4953511B2 (en) 2001-02-09 2001-02-09 Foundry sand composition

Country Status (1)

Country Link
JP (1) JP4953511B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011159A (en) * 2011-11-26 2013-01-17 Asahi Organic Chemicals Industry Co Ltd Self-curable powder, and article or component containing cured body of the self-curable powder
JP2013011076A (en) * 2011-06-28 2013-01-17 Tokuyama Corp Article or component containing cured body of self-curable powder
WO2019093083A1 (en) * 2017-11-09 2019-05-16 新東工業株式会社 Expandable aggregate mixture for molds, mold, and method for manufacturing mold
US20220402018A1 (en) * 2019-11-22 2022-12-22 Kinsei Matec Co., Ltd. Casting sand and kit for sand mold

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2020006777A (en) 2017-12-28 2020-09-09 Asahi Yukizai Corp Coated sand, production method for same, and production method for casting mold.
JP7142030B2 (en) * 2017-12-28 2022-09-26 旭有機材株式会社 Mold material, manufacturing method thereof, and mold manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05212487A (en) * 1992-02-03 1993-08-24 Mitsubishi Heavy Ind Ltd Production of casting mold

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05212487A (en) * 1992-02-03 1993-08-24 Mitsubishi Heavy Ind Ltd Production of casting mold

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011076A (en) * 2011-06-28 2013-01-17 Tokuyama Corp Article or component containing cured body of self-curable powder
JP2013011159A (en) * 2011-11-26 2013-01-17 Asahi Organic Chemicals Industry Co Ltd Self-curable powder, and article or component containing cured body of the self-curable powder
WO2019093083A1 (en) * 2017-11-09 2019-05-16 新東工業株式会社 Expandable aggregate mixture for molds, mold, and method for manufacturing mold
JP2019084575A (en) * 2017-11-09 2019-06-06 新東工業株式会社 Foam aggregate mixture for mold, mold, and method for producing mold
CN111344085A (en) * 2017-11-09 2020-06-26 新东工业株式会社 Foaming aggregate mixture for casting mold, casting mold and method for manufacturing casting mold
US11110510B2 (en) 2017-11-09 2021-09-07 Sintokogio, Ltd. Expandable aggregate mixture for molds, mold, and method for manufacturing mold
CN111344085B (en) * 2017-11-09 2022-10-11 新东工业株式会社 Foaming aggregate mixture for casting mold, casting mold and method for manufacturing casting mold
US20220402018A1 (en) * 2019-11-22 2022-12-22 Kinsei Matec Co., Ltd. Casting sand and kit for sand mold

Also Published As

Publication number Publication date
JP4953511B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4610679B2 (en) Manufacturing procedures for ferrules for molds, other feeding heads and feeding elements, and compositions for the production of said ferrules and elements
CA2621005C (en) Borosilicate glass-containing molding material mixtures
MX2007002585A (en) Material mixture for producing casting moulds for machining metal
US4127157A (en) Aluminum phosphate binder composition cured with ammonia and amines
KR20120123049A (en) Foundry mixes containing carbonate salts and their uses
EP0888199B1 (en) Sleeves, their preparation, and use
JP2016533275A (en) Method for producing a lost core or molded product for the production of a casting
CN110494234B (en) Casting material mixture containing additives for reducing casting defects
US20090032210A1 (en) Exothermic And Insulating Feeder Sleeves Having A High Gas Permeability
RU2512517C2 (en) Compositions containing certain metallocenes and use thereof
JP2002239681A (en) Molding sand composition
US4209056A (en) Aluminum phosphate binder composition cured with ammonia and amines
WO2001070430A1 (en) Insulating sleeve compositions containing fine silica and their use
JP2021104544A (en) Method for molding casting mold and core
JP6114599B2 (en) Carbon dioxide curable composition for mold making and method for producing mold
JP7451363B2 (en) plaster for casting
JP7247804B2 (en) Mold-making composition and mold-making method
CN107840672A (en) Brick cup preparation method and equipment
KR20200081388A (en) Foam aggregate mixture for molds, molds, and method for manufacturing molds
JP2014208364A (en) Self-curing mold molding composition, method of manufacturing the same, and method of manufacturing mold
JP3123031B2 (en) Binder composition for mold production and method for producing mold
JPH08268774A (en) Production of inorganic expanded body
JP3238315B2 (en) Nickel aluminum bronze propeller casting mold
JP2001286977A (en) Mold and method for manufacturing mold
JP2021109237A (en) Composition for mold casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100908

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101008

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4953511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term