JP2013009601A - Method for preventing and recovering color fading of laver algae - Google Patents

Method for preventing and recovering color fading of laver algae Download PDF

Info

Publication number
JP2013009601A
JP2013009601A JP2011142555A JP2011142555A JP2013009601A JP 2013009601 A JP2013009601 A JP 2013009601A JP 2011142555 A JP2011142555 A JP 2011142555A JP 2011142555 A JP2011142555 A JP 2011142555A JP 2013009601 A JP2013009601 A JP 2013009601A
Authority
JP
Japan
Prior art keywords
laver
value
color
iron
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011142555A
Other languages
Japanese (ja)
Other versions
JP5505374B2 (en
Inventor
Chika Ueki
知佳 植木
Osamu Miki
理 三木
Toshiro Kato
敏朗 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2011142555A priority Critical patent/JP5505374B2/en
Publication of JP2013009601A publication Critical patent/JP2013009601A/en
Application granted granted Critical
Publication of JP5505374B2 publication Critical patent/JP5505374B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Of Seaweed (AREA)
  • Edible Seaweed (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for effectively preventing and recovering color fading of laver algae.SOLUTION: A color of color faded laver algae in a laver farm is determined by a L*a*b* color system to determine which of the nutrient impoverishment of nutrient salts comprising nitrogen, phosphorus and metal is the cause for a color fading phenomenon. Based on the determination result, a fertilizer containing causative nutrient salts of the nutrient impoverishment is fertilized in the laver farm, which is the method for preventing or recovering the color fading of the laver algae.

Description

本発明は、ノリ養殖場において、ノリ藻体の色落ちの原因となっている栄養塩(窒素、リン、鉄、又はその組み合わせ)物質を早期に特定し、原因物質に合わせた施肥を実施し、ノリ藻体の色落ちを防止及び回復する方法に関する。   The present invention identifies early on the nutrient (nitrogen, phosphorus, iron, or a combination thereof) substance causing the discoloration of the laver body in the laver farm, and implements fertilization according to the causative substance. The present invention relates to a method for preventing and recovering discoloration of laver bodies.

一般に、ノリ藻体の養殖は、ノリ網にノリの胞子を予め着生させ、このノリ網を秋口に海上に設置し、ノリの生育に適した低水温期に育苗して、12〜4月期に採取する。そして、採取されたノリ藻体の品質、価格を決定する要因の1つが「色」である。ノリ藻体の色彩は品質を最も大きく左右するため、退色したノリ藻体は、商品価値が著しく低下し、別用途として再利用、若しくは廃棄処分を余儀なくされる。近年、有明海等のノリ養殖場において、ノリ藻体の色落ち現象が継続的に生じており、大きな社会問題にもなっている。   In general, laver algae is cultivated by pre-establishing a spider net in a sprout net, placing the sprout net on the sea at the beginning of autumn, and raising seedlings in a low water temperature period suitable for the growth of a sprout. Collect at the period. One of the factors that determine the quality and price of the collected laver body is “color”. Since the color of the seaweed body has the greatest influence on the quality, the seaweed body that has been discolored has a markedly reduced commercial value, and must be reused or disposed of for other purposes. In recent years, discoloration of laver bodies has continuously occurred in laver farms such as Ariake Sea, which has become a major social problem.

このノリ藻体の色落ちの有力な原因としては、ノリ養殖場の貧栄養化が強く指摘されている(非特許文献1)。貧栄養化とは、海水中にノリ藻体と共存する微細藻類(プランクトン)等が栄養塩を摂取し、異常に増殖することにより、ノリ藻体の生育に必要な海水中の窒素、リン等の栄養塩類の濃度が低下してしまう現象である。   As an influential cause of discoloration of this laver body, the poor nutrition of laver farms has been strongly pointed out (Non-patent Document 1). Poor nutrition means that microalgae (plankton) that coexist with seaweed bodies in seawater ingest nutrient salts and grow abnormally, so that nitrogen, phosphorus, etc. in seawater necessary for growth of seaweed bodies This is a phenomenon in which the concentration of nutrients in the water drops.

そこで、ノリ養殖場では、このような貧栄養化に起因するノリ藻体の色落ち防止対策として、ノリ網に色落ちの兆候が見られた場合、以下のような対策が取られている。
1)養殖現場に液体肥料や下水を散布する方法。
2)穏効性の固形肥料をノリ網付近に設置する方法(特許文献1、2)。
3)色落ちしたノリ藻体を一定期間高栄養塩溶液に浸漬する方法(特許文献3、4)。
4)ノリ藻体の色落ちを防ぐために鉄を供給する方法(特許文献5)。
5)ノリ藻体と競合するプランクトンの増殖防止(特許文献6、7)。
Therefore, in the laver farm, as a measure for preventing discoloration of the laver body due to such poor nutrition, the following measures are taken when a sign of discoloration is seen in the laver net.
1) A method of spraying liquid fertilizer and sewage to the farming site.
2) A method of installing a moderately effective solid fertilizer near the laver net (Patent Documents 1 and 2).
3) A method in which the discolored laver body is immersed in a high nutrient solution for a certain period (Patent Documents 3 and 4).
4) A method of supplying iron in order to prevent discoloration of laver bodies (Patent Document 5).
5) Prevention of the growth of plankton competing with the laver body (Patent Documents 6 and 7).

しかしながら、これらいずれの方法もノリ藻体の色落ちの根本的な解決策となっていないのが現状である。
すなわち、上記1)〜3)の手法は、ノリ藻体の色落ちの有力な原因として、ノリ養殖場の貧栄養化を指摘し、その対策を講じてはいるものの、ノリ藻体の色落ちの原因物質を特定した上でその対策を講じている訳ではない。ノリ藻体の色落ちは、海水の窒素、リン、更には鉄のいずれが単独で欠乏しても生ずる。ノリ藻体の色彩を司る光合成色素は、緑色のクロロフィルa、橙色のカロテノイド、赤色フィコエリスリン、青色フィコシアニン、紫色のアロフィコシアニンで構成されている。これらのどれか一つが減少しても、ノリ藻体の色落ちは生ずる訳だが、各光合成色素が減少する原因となる栄養塩類は異なることが分かっている(非特許文献2)。すなわち、窒素欠乏の場合にはフィコエリスリン、フィコシアニン、アロフィコシアニンが他の色素よりも多く減少し、鉄欠乏のときにはクロロフィルaが減少し、そして、リン欠乏では全ての光合成色素が一様に減少する。
However, the present situation is that none of these methods is a fundamental solution for discoloration of laver bodies.
In other words, although the above methods 1) to 3) point out the eutrophication of laver farms as a probable cause of discoloration of laver alga bodies, and have taken measures against them, discoloration of laver algal bodies The countermeasures are not taken after identifying the causative substances. The discoloration of the seaweed body occurs even when nitrogen, phosphorus, or iron in seawater is deficient alone. The photosynthetic pigment that governs the color of the laver body is composed of green chlorophyll a, orange carotenoid, red phycoerythrin, blue phycocyanin, and purple allophycocyanin. Even if any one of these is reduced, the color of the seaweed is lost, but it has been found that the nutrients that cause the reduction of each photosynthetic pigment are different (Non-Patent Document 2). That is, phycoerythrin, phycocyanin, and allophycocyanin decrease more than other pigments in the case of nitrogen deficiency, chlorophyll a decreases in the case of iron deficiency, and all photosynthetic pigments decrease uniformly in phosphorus deficiency. To do.

そして、ノリ藻体の色落ち対策を講ずる前には、色落ちの原因物質が窒素、リン、鉄のいずれによって生じているのかを短時間で明確に判定し、原因となる栄養塩物質を特定し、この栄養塩物質を重点的に施肥する必要がある。しかし、上記従来の色落ち対策にはこのような視点が全く欠けている。不要な栄養塩の海域への供与は、処理コストの増大や余剰の栄養塩による赤潮プランクトンの増殖も懸念される。   Before taking measures against discoloration of laver bodies, it is clearly determined in a short time whether the cause of discoloration is caused by nitrogen, phosphorus, or iron, and the cause nutrient substance is identified However, it is necessary to intensively apply this nutrient substance. However, such a viewpoint is completely lacking in the conventional measures against color fading. The supply of unnecessary nutrients to the sea area raises concerns about increased processing costs and the growth of red tide plankton due to excess nutrients.

次に、上記4)の手法は、ノリ藻体の色落ち防止策として、鉄のみを供給し、色彩が改善することを期待している。しかしながら、ノリ藻体の色落ちの原因は、窒素及びリン起因の場合もあり、鉄のみではない。従って、ノリ藻体の色落ちの原因物質を明確にしない限り、鉄のみの供給はノリ藻体の色落ち対策としては不十分である。   Next, the method 4) is expected to improve the color by supplying only iron as a measure for preventing discoloration of the laver body. However, the cause of discoloration of the laver body may be due to nitrogen and phosphorus, not just iron. Therefore, unless the causative substance of the color fading of the laver body is clarified, the supply of iron alone is insufficient as a measure for the color fading of the laver body.

更に、前述した5)の手法は、微細藻類(植物プランクトン)の増殖を阻害する薬剤を用いる方法であるが、海水中の植物プランクトンは多種多様であり、仮に、特定の種類の微細藻類の増殖を阻害することができたとしても、他の藻類が増殖する可能性を否定することはできない。全ての種類の微細藻類への影響を定量化するには膨大な時間とコストを要する。このような手法によると、栄養塩は阻害剤に抵抗のある他の微細藻類に摂取され、必ずしもノリ藻体の生育に寄与できるとは限らないと考えられる。また、余剰の阻害剤の生態系への影響も懸念される。   Furthermore, the above-mentioned method 5) is a method using a drug that inhibits the growth of microalgae (phytoplankton). However, there are a wide variety of phytoplankton in seawater. Even if they can be inhibited, the possibility of growth of other algae cannot be denied. Quantifying the impact on all types of microalgae requires enormous time and cost. According to such a method, it is considered that the nutrient salt is ingested by other microalgae resistant to the inhibitor and does not necessarily contribute to the growth of the laver body. There are also concerns about the impact of surplus inhibitors on the ecosystem.

特開平11-169,001号公報Japanese Patent Laid-Open No. 11-169,001 特開2002-84,904号公報JP 2002-84,904 A 特開平2-111,685号公報Japanese Patent Laid-Open No. 2-111,685 特開2002-300,819号公報Japanese Patent Laid-Open No. 2002-300,819 特開2010-259,450号公報JP 2010-259,450 JP 特開2001-340,034号公報Japanese Patent Laid-Open No. 2001-340,034 特開2003-265,058号公報JP2003-265,058

「海の貧栄養化とノリ養殖」海洋と生物、vol.181、111-172、2009"Oligotrophic seaweed and seaweed farming" Ocean and life, vol.181, 111-172, 2009 「紅藻スサビノリの光合成色素と葉緑体微細構造における栄養欠乏応答」日本水産学会誌、vol.76、375-382、2010“Nutritional deficiency response in photosynthetic pigments and chloroplast microstructure of red alga Susavinori” Journal of Japanese Fisheries Society, vol.76, 375-382, 2010

ところで、ノリ藻体の色落ちを判定する方法としては、従来、目視による方法、稲等の農作物の葉の色を簡便な方法で測定することを目的に開発された葉緑素計(SPAD-502Plus)により測定された測定値(SPAD値)による色彩判定法、L***表色系のL*値による色彩判定法が採用されてきたが、いずれの方法においても、ノリ藻体の色落ちの原因物質を明確にすることができないため、適切な施肥をすることができないという問題があった。 By the way, as a method for determining the color loss of the laver body, a chlorophyll meter developed for the purpose of measuring the color of leaves of crops such as rice by a visual method (SPAD-502Plus). The color determination method based on the measurement value (SPAD value) measured by the above, and the color determination method based on the L * value of the L * a * b * color system have been adopted. There was a problem that proper fertilization could not be done because the causative substance of the fall could not be clarified.

すなわち、目視によるノリ藻体の色彩判断に関しては、熟練者の目視判断に頼るところが大きく、数値上の基準は設けられていないことから、誰もが色落ちの判断を正確に行うことができるというものではなく、また、熟練者の育成も難しいという問題がある。   In other words, with regard to the color judgment of the laver body by visual inspection, it is highly dependent on the visual judgment of skilled workers, and since no numerical standard is provided, anyone can accurately determine the color loss. There is also a problem that it is difficult to train skilled people.

また、近年になって提唱されたSPAD値は、緑色の光合成色素であるクロロフィルaの含有量を示す数値であり、葉緑素計を用いて容易に測定可能であって、色落ちノリ藻体との相関性を示す知見がある。このSPAD値は、ノリ藻体の色彩を構成する一色素、クロロフィルaのみを標識としており、クロロフィルa量が増加するとSPAD値が大きくなるというクロロフィルa量との間に強い相関関係があることが分かっている。従って、SPAD値は、クロロフィルa量の変動のみを測定することになり、クロロフィルaに起因する色落ちの有無や傾向等の大まかな判断はできるが、ノリ藻体が有するクロロフィルa以外の他の光合成色素の変化に由来する色落ちは判断できない。また、光合成色素の変化は窒素、リン、鉄の欠乏によって起こると考えられるため、このようなSPAD値は、ノリ藻体の色落ち現象が窒素、リン、鉄のいずれによる色落ちかを判断することは困難である。   Moreover, the SPAD value proposed recently is a numerical value indicating the content of chlorophyll a, which is a green photosynthetic pigment, and can be easily measured using a chlorophyll meter. There is knowledge showing correlation. This SPAD value is labeled with only one pigment constituting chlorophyll a, the chlorophyll a, and there is a strong correlation with the amount of chlorophyll a that the SPAD value increases as the amount of chlorophyll a increases. I know. Therefore, the SPAD value is to measure only the change in the amount of chlorophyll a, and it is possible to roughly determine whether or not there is a color fading due to chlorophyll a or the tendency, but other than chlorophyll a that Nori alga has The color fading due to the change in photosynthetic pigment cannot be judged. In addition, since the change in the photosynthetic pigment is considered to be caused by the deficiency of nitrogen, phosphorus, and iron, such SPAD value determines whether the color fading phenomenon of the laver body is due to nitrogen, phosphorus, or iron. It is difficult.

また、L***表色系のL*値はノリ藻体の「彩度」を示す評価軸であり、色落ちした、すなわち色素が減少したノリ藻体は、全般的に透明度が増すため、L*値が増す。従って、このL***表色系のL*値による色落ち判定では、原因となる貧栄養化の物質の特定は困難である。 In addition, the L * value in the L * a * b * color system is an evaluation axis indicating the “saturation” of the Nori alga body. As it increases, the L * value increases. Therefore, it is difficult to identify the cause of eutrophication by the color fading determination based on the L * value of the L * a * b * color system.

そこで、発明者らは、ノリ養殖場におけるノリ藻体の色落ち現象が窒素、リン、及び鉄の栄養塩類のうちのいずれの貧栄養化に起因するかを迅速に判断することができ、これによってノリ養殖上においてノリ藻体の色落ち現象が発見されたときには迅速にかつ的確に施肥をしてノリ藻体の色落ちを防止し、また、回復させることができる方法について鋭意検討した結果、意外なことには、L***表色系のa*値及びb*値による色彩判定によって、色落ち現象が窒素欠乏、リン欠乏、鉄欠乏、又はその組合せのいずれに起因するものであるかを迅速に判断することができ、また、この色落ちの原因となった栄養塩類をノリ養殖場に重点的に施肥することにより、容易にかつ確実にノリ藻体の色落ちを防止し、また、回復させることができることを見出し、本発明を確立した。 Therefore, the inventors can quickly determine which of the nutrients of nitrogen, phosphorus, and iron is caused by the color fading phenomenon of the laver body in the laver farm, As a result of diligently investigating a method that can quickly and accurately fertilize and prevent the color loss of the laver body when it is discovered on the aquaculture of laver, Surprisingly, depending on the color determination based on the a * and b * values of the L * a * b * color system, the color fading phenomenon is caused by nitrogen deficiency, phosphorus deficiency, iron deficiency, or a combination thereof. In addition, it is possible to quickly and reliably prevent the discoloration of laver alga bodies by applying fertilizer to the laver farms with emphasis on the nutrients that caused this discoloration. And can also be recovered Found that were established present invention.

従って、本発明は、従来技術で問題であった上記課題を解決して、ノリ藻体の色落ちを効果的に防止及び回復する方法を提供することを目的とする。   Accordingly, an object of the present invention is to solve the above-mentioned problems that have been a problem in the prior art, and to provide a method for effectively preventing and recovering the color fading of a laver body.

すなわち、本発明者らは、上記の課題を解決するため、ノリ藻体の色落ち原因が窒素、リン、鉄のいずれかによるかを迅速、かつ明確に判定し、適切な施肥方法を確立したものである。具体的には、目視により、あるいは、稲等の農産物の葉の測定に用いられているSPAD値でノリ藻体の色落ちの有無を判定した後、工業製品の色彩判定に一般的に用いられているL***表色系のa*値及びb*値を用いてノリ藻体の色落ちが窒素欠乏、リン欠乏、鉄欠乏、又はその組み合わせによるかを迅速に判断し、色落ち原因となる窒素、リン又は鉄から選ばれる1種又は2種以上を含む肥料をノリ養殖場に施肥し、ノリ藻体の色彩を回復することを特徴とするノリ藻体の色落ち防止及び回復方法を確立したものである。 That is, in order to solve the above-mentioned problems, the present inventors quickly and clearly determined whether the cause of discoloration of the laver body is nitrogen, phosphorus, or iron, and established an appropriate fertilization method. Is. Specifically, it is generally used for judging the color of industrial products after judging the presence or absence of color loss of a laver body by visual observation or the SPAD value used for the measurement of leaves of agricultural products such as rice. Quickly determine if the color loss of the green algal body is due to nitrogen deficiency, phosphorus deficiency, iron deficiency, or a combination thereof using the a * and b * values of the L * a * b * color system Fertilizer containing one or more selected from nitrogen, phosphorus, or iron that causes discoloration is fertilized on a laver farm, and the color of the laver body is recovered. A recovery method has been established.

本発明の要旨とするところは、次の(1)〜(13)である。
(1)ノリ養殖場において色落ちノリ藻体であると判定されたノリ藻体について、この色落ちノリ藻体の色彩をL***表色系による色彩判定法によって測定し、得られたa*値及びb*値の測定結果から色落ち現象の原因が窒素、リン、及び鉄からなる栄養塩類のうちのいずれの貧栄養化に起因するかを判断し、この判断結果に基づいて貧栄養化の原因栄養塩類を含む肥料をノリ養殖場に施肥することを特徴とするノリ藻体の色落ちの防止及び回復方法。
The gist of the present invention is the following (1) to (13).
(1) For a laver body that has been determined to be a discolored laver body in a laver farm, the color of this discolored laver body is measured by a color determination method using the L * a * b * color system, and obtained. From the measurement results of the obtained a * value and b * value, it is determined whether the cause of the color fading phenomenon is due to the eutrophication among nutrient salts composed of nitrogen, phosphorus, and iron, and based on this determination result A method for preventing and recovering color loss of laver bodies comprising fertilizing fertilizer containing nutrients that cause undernutrition to a laver farm.

(2)ノリ藻体が色落ちノリ藻体であるか否かの判定をSPAD値による色彩判定法によって行うことを特徴とする前記(1)に記載のノリ藻体の色落ち防止及び回復方法。   (2) The method for preventing and restoring color loss of a laver body according to (1), wherein the determination as to whether or not the laver body is a discolored laver body is performed by a color determination method based on a SPAD value. .

(3)L***表色系色彩判定法により測定されたa*値及びb*値について、a*値が3〜5であってb*値が10〜13であるときを鉄の単独欠乏と判断し、鉄分をノリ養殖場に施肥することを特徴とする前記(1)又は(2)に記載のノリ藻体の色落ち防止及び回復方法。 (3) For the a * value and b * value measured by the L * a * b * color system color judgment method, the value when the a * value is 3 to 5 and the b * value is 10 to 13 is iron The method according to (1) or (2) above, wherein the iron content is fertilized in a laver farm, and the method for preventing and recovering color loss of laver bodies.

(4)L***表色系色彩判定法により測定されたa*値及びb*値について、a*値が0以下であってb*値が7〜20であるときを窒素の単独欠乏と判断し、窒素分をノリ養殖場に施肥することを特徴とする前記(1)又は(2)に記載のノリ藻体の色落ち防止及び回復方法。 (4) For the a * value and b * value measured by the L * a * b * colorimetric color determination method, the nitrogen value is determined when the a * value is 0 or less and the b * value is 7 to 20. The method according to (1) or (2) above, wherein it is judged that it is a single deficiency, and the nitrogen content is fertilized in a laver farm.

(5)L***表色系色彩判定法により測定されたa*値及びb*値について、a*値が3〜5であってb*値が7〜9であるときをリンの単独欠乏と判断し、リン分をノリ養殖場に施肥することを特徴とする前記(1)又は(2)に記載のノリ藻体の色落ち防止及び回復方法。 (5) For the a * value and b * value measured by the L * a * b * color system color judgment method, the case where the a * value is 3 to 5 and the b * value is 7 to 9 The method according to (1) or (2) above, wherein the phosphorus content is fertilized in a laver farm.

(6)L***表色系色彩判定法により測定されたa*値及びb*値について、a*値が1〜4であってb*値が4〜7であるときを鉄及びリンの複合欠乏と判断し、鉄分及びリン分をノリ養殖場に施肥することを特徴とする前記(1)又は(2)に記載のノリ藻体の色落ち防止及び回復方法。 (6) For the a * value and b * value measured by the L * a * b * color system color judgment method, the case where the a * value is 1 to 4 and the b * value is 4 to 7 The method for preventing and recovering color loss of laver bodies according to (1) or (2) above, wherein the iron and phosphorus contents are fertilized in a laver farm, with a complex deficiency of phosphorus and phosphorus being determined.

(7)L***表色系色彩判定法により測定されたa*値及びb*値について、a*値が0以下であってb*値が3〜−1であるときを鉄及び窒素の複合欠乏と判断し、鉄分及び窒素分をノリ養殖場に施肥することを特徴とする前記(1)又は(2)に記載のノリ藻体の色落ち防止及び回復方法。 (7) For the a * value and the b * value measured by the L * a * b * color system color judgment method, when the a * value is 0 or less and the b * value is 3 to -1, And the method for preventing and recovering discoloration of the laver body according to (1) or (2) above, wherein fertilizer is fertilized with iron and nitrogen in a laver farm.

(8)L***表色系色彩判定法により測定されたa*値及びb*値について、a*値が0以下であってb*値が3〜7であるときを窒素及びリンの複合欠乏と判断し、窒素分及びリン分をノリ養殖場に施肥することを特徴とする前記(1)又は(2)に記載のノリ藻体の色落ち防止及び回復方法。 (8) For the a * value and b * value measured by the L * a * b * color system color determination method, nitrogen and when the a * value is 0 or less and the b * value is 3 to 7 The method according to (1) or (2) above, wherein it is judged that phosphorus is deficient in complex and fertilizes a nitrogen content and a phosphorus content in a laver farm.

(9)L***表色系色彩判定法により測定されたa*値及びb*値について、a*値が0以下であってb*値が−1以上であるときを窒素、リン、及び鉄の複合的欠乏と判断し、各成分を複合してノリ養殖場に施肥することを特徴とする前記(1)又は(2)に記載のノリ藻体の色落ち防止及び回復方法。 (9) For the a * value and b * value measured by the L * a * b * color system color determination method, nitrogen is determined when the a * value is 0 or less and the b * value is −1 or more. The method for preventing and recovering discoloration of a laver body according to (1) or (2) above, wherein it is judged as a complex deficiency of phosphorus and iron, and each component is combined and applied to a laver farm. .

(10)前記窒素、リン、及び鉄からなる栄養塩類の単独欠乏又は複合欠乏に起因するノリ藻体の色落ちに対して、ノリ養殖場に穏効性の固形肥料を適用することを特徴とする前記(1)〜(9)のいずれか1項に記載のノリ藻体の色落ち防止及び回復方法。   (10) A modest solid fertilizer is applied to a laver farm for discoloration of a laver body caused by a single deficiency or a complex deficiency of nutrients composed of nitrogen, phosphorus, and iron. The method according to any one of (1) to (9), wherein the discoloration prevention and recovery method of the laver body.

(11)鉄分を供給する肥料として、炭酸化製鋼スラグを用いることを特徴とする前記(1)〜(10)に記載のノリ藻体の色落ち防止及び回復方法。   (11) The method for preventing discoloration and recovering laver bodies according to (1) to (10) above, wherein carbonated steel slag is used as a fertilizer for supplying iron.

(12)鉄を含む複数の栄養塩類の複合的欠乏による色落ちに対して、腐植物質に炭酸化製鋼スラグを混合した穏効性の固形肥料を施肥することを特徴とする前記(1)〜(11)に記載のノリ藻体の色落ち防止及び回復方法。   (12) The above-described (1) to (1), wherein a mild solid fertilizer in which carbonated steel slag is mixed with humic substances is fertilized against discoloration due to a complex deficiency of a plurality of nutrient salts including iron. (11) The method for preventing and recovering discoloration of laver bodies according to (11).

(13)穏効性の固形肥料は、ナイロン製メッシュ袋内に収容してノリ網の下部に設置することを特徴とする前記(1)〜(12)に記載のノリ藻体の色落ち防止及び回復方法。   (13) The mildly solid fertilizer is housed in a nylon mesh bag and placed at the bottom of the laver net, and the color of the laver body according to (1) to (12) is prevented. And recovery methods.

本発明により、ノリ藻体の色落ちの原因物質となっている栄養塩を迅速に判断し、ノリ藻体の色落ちを防止し、更に早期に回復させることが可能となる。   According to the present invention, it is possible to quickly determine the nutrient salt that causes the discoloration of the laver body, to prevent the discoloration of the laver body, and to recover more quickly.

図1は、本発明におけるノリ藻体の色落ち判定方法を説明するためのフローチャートである。FIG. 1 is a flowchart for explaining a method for determining discoloration of a laver body in the present invention.

図2は、コントロール、窒素欠、リン欠、鉄欠、窒素及びリン欠、窒素及び鉄欠、リン及び鉄欠で培養した場合のL***表色系のa*値、b*値の違いを示すグラフ図である。FIG. 2 shows L * a * b * color system a * values and b * when cultured in control, nitrogen-deficient, phosphorus-deficient, iron-deficient, nitrogen and phosphorus-deficient, nitrogen and iron-deficient, phosphorus and iron-deficient . It is a graph which shows the difference in a value.

図3は、コントロール、窒素欠、リン欠、鉄欠、窒素及びリン欠、窒素及び鉄欠、リン及び鉄欠で培養した場合のL***表色系のL*値の違いを示すグラフ図である。FIG. 3 shows the difference in L * value of L * a * b * color system when cultured in control, nitrogen-deficient, iron-deficient, nitrogen and phosphorus-deficient, nitrogen and iron-deficient, phosphorus and iron-deficient. FIG.

図4は、水中の溶存態鉄濃度の経日変化を示すグラフ図である。FIG. 4 is a graph showing daily changes in the concentration of dissolved iron in water.

図5は、水中の無機態窒素濃度の経日変化を示すグラフ図である。FIG. 5 is a graph showing daily changes in the concentration of inorganic nitrogen in water.

図6は、水中のリン酸態リン濃度の経日変化を示すグラフ図である。FIG. 6 is a graph showing the daily change of the phosphate phosphorus concentration in water.

以下に、図1に示したノリ藻体の色落ち判定方法のフローに基づいて、本発明方法の好適な実施の形態を詳細に説明する。
先ず、ノリ養殖場において、ノリ藻体が色落ちであるか否かの判定を行うが、目視で明らかに色落ちであると判断される場合には、特にSPAD値による色彩判定法で判定する必要はなく、ノリ藻体の色落ちが目視で明確に判断できない場合は、SPAD値によりノリの色落ちを判定する。
In the following, a preferred embodiment of the method of the present invention will be described in detail based on the flow of the method for determining discoloration of a laver body shown in FIG.
First, in the laver farm, it is determined whether or not the laver body is discolored, but when it is determined that the color is clearly discolored visually, it is determined by the color determination method based on the SPAD value in particular. There is no need, and when the color loss of the laver body cannot be clearly determined visually, the color loss of the laver is determined by the SPAD value.

ノリの葉緑体の中には、緑色の光合成色素であるクロロフィルaも含まれており、その含有量を示すのがSPAD値であり、色落ちノリ藻体との相関性を示す知見がある。具体的には、ノリ養殖場において採取されたノリ藻体のSPAD値を測定し、例えば、その平均値(n=5〜20)が3以下であるものを色落ちと判定する。   Chlorophyll a which is a green photosynthetic pigment is also included in the chloroplasts of laver, the SPAD value indicates the content thereof, and there is a knowledge indicating the correlation with discolored laver bodies. . Specifically, the SPAD value of the laver body collected in the laver farm is measured, and, for example, the average value (n = 5 to 20) of 3 or less is determined to be discoloration.

次に、目視で明らかに色落ちであると判断される場合や、SPAD値が3以下の場合には、色落ちであると判断し、次のステップであるL***表色系の色彩判定法による測色を行い、ノリ養殖場に不足している栄養塩類を特定し、最適な配合割合によって施肥を行う。 Next, when it is visually determined that the color is fading or when the SPAD value is 3 or less, it is determined that the color is fading, and the next step is the L * a * b * color system. Measure the color using the color judgment method, identify the nutrients that are lacking in the laver farm, and apply fertilizer at the optimum blending ratio.

次に、ノリ養殖場における色落ちノリ藻体の色彩から、いずれの栄養塩によるものであるかを判定する方法について説明する。
ノリ藻体の赤黒い色彩はフィコエリスリン(赤)やフィコシアニン(青)によるところが大きい。本発明は、色彩をL***表色系で評価するため、赤や青の色彩の変化を捉えることができ、ノリ藻体の色落ちを細分化して評価することができる。
Next, a method for determining which nutrient salt is used from the color of the discolored laver body in the laver farm will be described.
The red-black color of Nori-algae is largely due to phycoerythrin (red) and phycocyanin (blue). Since the present invention evaluates colors in the L * a * b * color system, it can capture changes in the colors of red and blue, and can subdivide and evaluate the color loss of the laver body.

ここで、L***表色系とは、人間の色覚に対応した表色系の一つであり、工業製品や食品に至るまで幅広い分野で採用されている。L*値が「彩度」であり白〜黒の度合いを示す。a*値は、「色相」の中の赤っぽさから緑っぽさを示す。b*値は、「色相」の中の黄色っぽさから青っぽさを示す。各評価軸を3次元で表すことにより、対象物の色を色空間の中の位置として捉えることができ、複数の色の比較も容易に行うことができる。欠乏した栄養塩類による色落ちの特徴をL***表色系で表現し、定量化することにより、ノリ藻体の色彩、即ちL***表色系の数値から色落ちの原因となる栄養塩類を特定することが可能となる。 Here, the L * a * b * color system is one of color systems corresponding to human color vision and is used in a wide range of fields from industrial products to foods. The L * value is “saturation” and indicates the degree of white to black. The a * value indicates redness to greenishness in the “hue”. The b * value indicates the yellowish to blueishness in the “hue”. By representing each evaluation axis in three dimensions, the color of the object can be grasped as a position in the color space, and a plurality of colors can be easily compared. By expressing and quantifying the color fading characteristics of the deficient nutrients in the L * a * b * color system, the color fading from the color of the laver body, that is, the L * a * b * color system It becomes possible to identify the nutrients that cause this.

この結果、L***表色系の各数値の内、a*値3〜5及びb*値10〜13の場合を鉄の単独欠乏と判断し、鉄分をノリ養殖場に重点的に施肥すればよい。また、L***表色系の各数値の内、a*値0以下及びb*値7〜20の場合を窒素の単独欠乏と判断し、窒素分をノリ養殖場に重点的に施肥すればよい。更に、L***表色系の各数値の内、a*値3〜5及びb*値7〜9の場合をリンの単独欠乏と判断し、リン分をノリ養殖場に重点的に施肥すればよい。 As a result, among the numerical values of the L * a * b * color system, the cases where the a * value is 3 to 5 and the b * value is 10 to 13 are judged as iron deficiency, and the iron content is focused on the Nori farm. Apply fertilizer. In addition, among the numerical values of the L * a * b * color system, the case where the a * value is 0 or less and the b * value is 7 to 20 is judged as a single deficiency of nitrogen, and the nitrogen content is focused on the Nori farm. Just fertilize. Furthermore, among the numerical values of the L * a * b * color system, when the a * value is 3 to 5 and the b * value is 7 to 9, it is judged that phosphorus is deficient alone, and the phosphorus content is focused on the Nori farm. Apply fertilizer.

そして、L***表色系の各数値の内、a*値1〜4及びb*値4〜7の場合を鉄及びリンの複合欠乏と判断し、鉄分及びリン分をノリ養殖場に重点的に施肥すればよい。L***表色系の各数値の内、a*値0以下及びb*値3〜−1の場合を鉄及び窒素の複合欠乏と判断し、鉄分及び窒素分をノリ養殖場に重点的に施肥すればよい。L***表色系の各数値の内、a*値0以下及びb*値3〜7の場合を窒素及びリンの複合欠乏と判断し、窒素分及びリン分をノリ養殖場に重点的に施肥すればよい。 Then, among the numerical values of the L * a * b * color system, the cases of a * values 1 to 4 and b * values 4 to 7 are judged to be complex deficiencies of iron and phosphorus, and the iron and phosphorus contents are cultured. Fertilizer should be applied to the place. Among each value of L * a * b * color system, a * value of 0 or less and b * value of 3 to -1 are judged as a complex deficiency of iron and nitrogen, and iron and nitrogen content are put into the laver farm Fertilizer should be applied intensively. Among the values of L * a * b * color system, a * value of 0 or less and b * value of 3-7 is judged as a combined deficiency of nitrogen and phosphorus, and the nitrogen content and phosphorus content are put into the Nori farm Fertilizer should be applied intensively.

更に、L***表色系の各数値の内、上記以外のa*値0以下及びb*値−1以上の場合を窒素、リン、鉄の複合欠乏と判断し、これら各成分を複合してノリ養殖場に施肥すればよい。 Further, among the numerical values of the L * a * b * color system, the cases where the a * value is 0 or less and the b * value is −1 or more other than those described above are determined to be a composite deficiency of nitrogen, phosphorus and iron, and each of these components It is sufficient to fertilize the laver farm with a combination of

次に、具体的な施肥方法について説明する。
窒素、リン、及び鉄からなる栄養塩類のうちのいずれかの欠乏(貧栄養化)に起因する色落ちに対して、施肥する肥料としては、特に限定されるものではないが、液体肥料ではなく、好ましくは穏効性(遅効性)の固形肥料を適用することが望ましい。液肥の場合、天気や海況によっては施肥直後に海域に拡散してしまい、ノリ藻体が摂取できない可能性が生じるからである。一方、穏効性の固形肥料であれば、時間をかけて窒素、リン、鉄分が溶出するため、目的とするノリ養殖場の栄養塩類の濃度を比較的長期に亘って一定に保つことが可能となる。
Next, a specific fertilizing method will be described.
The fertilizer to be fertilized against discoloration caused by deficiency (oligotrophic) of any of the nutrients consisting of nitrogen, phosphorus, and iron is not particularly limited, but is not liquid fertilizer Preferably, it is desirable to apply a mild (slow) solid fertilizer. This is because in the case of liquid fertilizer, depending on the weather and sea conditions, the fertilizer spreads into the sea immediately after fertilization, and there is a possibility that the laver body cannot be ingested. On the other hand, if it is a mild solid fertilizer, nitrogen, phosphorus, and iron are eluted over time, so the concentration of nutrients in the target laver farm can be kept constant over a relatively long period of time. It becomes.

表1を用いて、欠乏する栄養塩類に対する固形肥料の施肥方法について説明する。
鉄を供給する穏効性の固形肥料としては、それが穏効性であれば特に制限されるものではないが、炭酸化処置をした製鋼スラグを用いることが特に望ましい。製鉄所から発生する製鋼スラグは、鉄分を20質量%前後も含有しており、安価な鉄の供給材として用いることができる。しかし、製鋼スラグは、f−CaO(可溶性石灰)も1〜2質量%前後含んでいるため、水中のpHを一時的に上昇させ易いという性質がある。このため、「炭酸化処理」を施し、f−CaOをCaCO3とした「炭酸化製鋼スラグ」とし、溶出水のpH上昇の程度を抑制することが望ましい。製鋼スラグの炭酸化処理は、製鋼スラグを二酸化炭素又は炭酸含有水と接触させることにより実施することができる。この操作により、CaOはCaCO3となり、また、CaCO3は製鋼スラグの表面上に形成されるため、残存するCaOの急激な溶出を抑制することができる。このような炭酸化処理を製鋼スラグに施すことにより、水域での一時的なpHの上昇を防ぐことができる。
The fertilization method of the solid fertilizer with respect to the nutrient salt which lacks is demonstrated using Table 1. FIG.
The mild solid fertilizer that supplies iron is not particularly limited as long as it is mild, but it is particularly desirable to use steelmaking slag that has been carbonized. Steelmaking slag generated from steelworks contains about 20% by mass of iron, and can be used as an inexpensive iron supply material. However, steelmaking slag contains about 1 to 2% by mass of f-CaO (soluble lime), and therefore has the property of easily raising the pH in water temporarily. For this reason, it is desirable to perform a “carbonation treatment” to obtain a “carbonated steelmaking slag” in which f-CaO is CaCO 3 and to suppress the degree of pH increase of the elution water. Carbonation treatment of steelmaking slag can be carried out by bringing the steelmaking slag into contact with carbon dioxide or carbonic acid-containing water. By this operation, CaO becomes CaCO 3 , and since CaCO 3 is formed on the surface of the steelmaking slag, rapid elution of the remaining CaO can be suppressed. By applying such carbonation treatment to the steelmaking slag, a temporary increase in pH in the water area can be prevented.

更に、鉄を含む複数の栄養塩類の複合欠乏による色落ちに対しては、窒素、リン、鉄の複合供給材として、腐植物質に炭酸化スラグを混合した穏効性の固形肥料を製作し、施肥することが望ましい。ここで使用する腐植物質としては、間伐材を腐葉土化したもの等が好ましいが、この他にも、有機物、食品残渣等を発酵させて得られ、無機態の窒素やリンを豊富に含む魚かす等でもよい。その発酵の過程では、有機物はバクテリアによって分解され、無機物となり、得られた腐植物質中にはノリ藻体が栄養塩として容易に摂取し得る無機態窒素(硝酸態窒素、アンモニア態窒素)やリン酸態リンが多量に含まれている。これらの栄養塩類がノリ養殖場の海水中に溶出し、窒素、リンの供給源となる。また、分解過程に生成される有機酸の一種である腐植酸は金属イオンとの錯体形成能を有しており、炭酸化製鋼スラグから溶出する鉄イオンと錯体を形成し、長時間海水中に溶存態として存在できるため、ノリ藻体が鉄分として摂取することができる。   Furthermore, for color fading due to the complex deficiency of multiple nutrients containing iron, as a combined supply of nitrogen, phosphorus, and iron, we produced a mild solid fertilizer that mixed humic substances with carbonated slag, It is desirable to fertilize. The humic substances used here are preferably those obtained by converting thinned wood into humus, but in addition to this, it is obtained by fermenting organic matter, food residues, etc., and it is a fish meal rich in inorganic nitrogen and phosphorus. Etc. In the process of fermentation, organic matter is decomposed by bacteria to become inorganic matter. In the obtained humic substances, inorganic nitrogen (nitrate nitrogen, ammonia nitrogen) and phosphorus that can be easily ingested as nutrient salts by the sorghum body. Contains a large amount of acid phosphorus. These nutrients elute into the seawater of the laver farm and become a source of nitrogen and phosphorus. Humic acid, a kind of organic acid produced in the decomposition process, has the ability to form a complex with metal ions, forms a complex with iron ions eluted from carbonated steelmaking slag, and remains in seawater for a long time. Since it can exist as a dissolved state, the laver body can be ingested as iron.

炭酸化製鋼スラグと腐植物質との配合比率を変えて溶出実験を行った場合、炭酸化製鋼スラグと腐植物質との質量比が2:1である場合に最も効率良く鉄が溶出し、それ以上炭酸化製鋼スラグの配合比率を多くしても鉄の溶出量に変化が見られない。このことから、鉄を主に供給したい場合には、炭酸化製鋼スラグと腐植物質及び/又は魚かすとをその配合比率(質量比)が炭酸化製鋼スラグ:腐植物質(魚かす)=2:1となるように混合すればよい。勿論、腐植物質(魚かす)と炭酸化製鋼スラグとは、貧栄養化の栄養塩類が何であるかによって、その配合比率を自在に変えることができる。鉄だけでなく窒素、リンが欠乏している場合には、基本的な配合(製鋼スラグ:腐植物質=2:1)に加えて、施肥先のノリ養殖場における貧栄養化の事情に応じて、窒素、リン濃度がノリの生育に十分な程度(窒素;0.1mg/L、リン;0.01mg/L)となるように腐植物質若しくは魚かすを加えればよい。また、窒素、リンの単独欠乏の場合には、腐植物質若しくは魚かすを単独で施肥すればよい。   When the elution experiment was conducted by changing the blending ratio of carbonated steelmaking slag and humic substances, iron was eluted most efficiently when the mass ratio of carbonized steelmaking slag and humic substances was 2: 1. Even if the blending ratio of carbonated steelmaking slag is increased, there is no change in the elution amount of iron. From this, when mainly supplying iron, the compounding ratio (mass ratio) of carbonated steelmaking slag and humic substances and / or fish meal is carbonated steelmaking slag: humic substance (fish meal) = 2: What is necessary is just to mix so that it may become one. Of course, the mixing ratio of humic substances (fish meal) and carbonated steel slag can be freely changed depending on what nutrient nutrients are under-nutrition. When not only iron but also nitrogen and phosphorus are deficient, in addition to the basic composition (steel slag: humic substance = 2: 1), depending on the situation of eutrophication at the fertilizer farm Then, humic substances or fish meals may be added so that the concentration of nitrogen and phosphorus is sufficient to grow the paste (nitrogen: 0.1 mg / L, phosphorus: 0.01 mg / L). In the case of a single deficiency of nitrogen and phosphorus, humic substances or fish meal may be fertilized alone.

ノリ藻体は、ノリの胞子を着生させたノリ網をノリ養殖場に出してから30日以内に刈り取られるが、この養殖期間を通して周辺海域の鉄濃度を少なくとも15μg/Lに維持するためには、穏効性の固形肥料をナイロン製メッシュ袋内に収容し、ノリ網の下部にノリ網1m 2当り100kg以下の割合で設置すればよい。このように穏効性の固形肥料をナイロン製メッシュ袋内に収容してノリ網の下部に設置することにより、ノリ養殖が終われば、メッシュ袋を引き上げて容易に固形肥料を撤去することができ、ノリ養殖場の水質悪化を未然に防止することができる。 Nori-algae can be harvested within 30 days after the Nori nets on which Nori spores have grown are put on the Nori farm, but to maintain the iron concentration in the surrounding sea area at least 15 μg / L throughout the cultivation period. Contains a mild solid fertilizer in a nylon mesh bag and 1m It may be installed at a rate of 100 kg or less per 2 . By storing the mild solid fertilizer in a nylon mesh bag and installing it in the lower part of the laver net in this way, the solid fertilizer can be easily removed by lifting the mesh bag after the laver culture is finished. In addition, it is possible to prevent deterioration of the water quality of the laver farm.

Figure 2013009601
Figure 2013009601

〔実施例1:ノリ藻体の色落ち原因物質の特定〕
ノリ藻体の培養に使用するコントロール培地(PES)から窒素、リン、及び鉄の栄養塩類のうちのいずれか1種又は2種以上を取り除くことにより、これら窒素、リン、及び鉄の栄養塩類のうちのいずれかが欠乏した単独欠乏又は複合欠乏の培地を調製し、この調製された培地を用いて色落ちノリ藻体を養殖し、欠乏した栄養塩類による光合成色素の減少パターンをL***表色系による色彩判定法で確認できるか否かを検討した。
[Example 1: Identification of causative substance causing discoloration of laver body]
By removing any one or more of nitrogen, phosphorus and iron nutrients from the control medium (PES) used for cultivation of Nori-algae, the nutrients of these nitrogen, phosphorus and iron are removed. A single-deficient or complex-deficient medium in which one of them is deficient is prepared, the discolored laver alga body is cultivated using this prepared medium, and the decrease pattern of the photosynthetic pigment by the deficient nutrients is expressed as L * a *. It was examined whether it can be confirmed by a color determination method using a b * color system.

ノリ藻体については、条件を揃えるために、ろ過滅菌海水に栄養強化培地を加えたPES培地(コントロール)で約1週間培養した。その後、各栄養塩類を除いた培地に移し、色落ちパターンの異なるノリ藻体を準備した。また、培地としては、コントロールとして栄養塩類が潤沢に含まれた表2に示す組成のPES培地を用い、このPES培地から窒素源である硝酸ナトリウムのみを除いた窒素の単独欠乏培地、リン源(グリセロリン酸ナトリウム)のみを除いたリンの単独欠乏培地、鉄源である硫酸第一アンモニウム鉄のみを除いた鉄の単独欠乏培地、上記の窒素源及び鉄源を除いた窒素及び鉄の複合欠乏培地、窒素源及びリン源を除いた窒素及びリンの複合欠乏培地、リン源及び鉄源を除いたリン及び鉄の複合欠乏培地をそれぞれ調製すると共に、PES培地を加えないろ過滅菌海水のみの窒素、リン、及び鉄の複合欠乏培地を用意し、合計8種の培地を準備して実験を行った。   The seaweed was cultured in a PES medium (control) obtained by adding a nutrient-enriched medium to filter-sterilized seawater for about one week in order to make the conditions uniform. Then, it moved to the culture medium except each nutrient salt, and prepared a laver body with a different discoloration pattern. In addition, as a medium, a PES medium having a composition shown in Table 2 containing abundant nutrients as a control was used, and a nitrogen-only deficient medium, phosphorus source (excluding only sodium nitrate as a nitrogen source from this PES medium) Phosphorus single deficient medium excluding only sodium glycerophosphate) Iron deficient medium excluding only ferrous ammonium sulfate, which is the iron source, and nitrogen and iron complex deficient medium excluding the above nitrogen source and iron source A nitrogen- and phosphorus complex-deficient medium excluding the nitrogen source and the phosphorus source, and a phosphorus- and iron-complex-deficient medium excluding the phosphorus source and the iron source, respectively, and nitrogen in only filter-sterilized seawater without the addition of the PES medium, A phosphorus- and iron-complex deficient medium was prepared, and a total of eight types of mediums were prepared for experiments.

Figure 2013009601
Figure 2013009601

上記の各単独欠乏培地及び複合欠乏培地を用い、10日間培養された各色落ちノリ藻体について、その色彩を測色計(コニカミノルタ製測色計CM-700d)で計測した。計測の際にはノリ藻体の色が均一に、かつ明確に分かるように、スライドガラス上にノリ藻体の2枚を重ねて広げ、もう一枚のスライドガラスで挟んでずれないようにした。測定する箇所を試料面開口部(直径φ3mm)に置いて測定した。測定条件は、視野角を10°、光源D65(太陽光に準ずる)、拡散照明方式をSCE(拡散光のみを受光し、より目視に近い条件)とした。一条件につき5〜20箇所で測定し、各L*値、a*値、b*値の平均値と、標準偏差値とを求めた。
結果を表3に示す。
Using each of the above-mentioned single deficient medium and complex deficient medium, the color of each discolored laver body cultured for 10 days was measured with a colorimeter (colorimeter CM-700d manufactured by Konica Minolta). In order to make clear and clear the color of the green algae body when measuring, we spread two sheets of the green algae body on the slide glass and sandwiched it between the other glass slides so as not to slip. . The measurement site was placed in the sample surface opening (diameter φ3 mm). The measurement conditions were a viewing angle of 10 °, a light source D65 (similar to sunlight), and a diffuse illumination method SCE (a condition that received only diffused light and was closer to visual observation). Measurement was performed at 5 to 20 locations per condition, and the average value and standard deviation value of each L * value, a * value, and b * value were determined.
The results are shown in Table 3.

Figure 2013009601
Figure 2013009601

また、コントロール、窒素欠、リン欠、鉄欠、窒素及びリン欠、窒素及び鉄欠、又は、リン及び鉄欠の培地を用いて10日間培養した場合のL***表色系におけるa*値、b*値の違いを図2に示し、同じくL***表色系におけるL*値の違いを図3に示す。 Further, in the L * a * b * color system when cultured for 10 days using a medium of control, nitrogen deficiency, phosphorus deficiency, iron deficiency, nitrogen and phosphorus deficiency, nitrogen and iron deficiency, or phosphorus and iron deficiency a * value, b * difference values shown in FIG. 2, also shows the difference in L * value in the L * a * b * color system in FIG.

単独欠乏培地又は複合欠乏培地を用いた培養開始から10日目における各色落ちノリ藻体のa*値及びb*値の結果から、色落ちノリ藻体のa*値及びb*値が欠乏した栄養塩類によって特徴付けされることが分かる(図2参照)。コントロールと比較して、窒素欠乏ではb*値が大きく変わらない一方で、a*値が約7減少し、赤みが減っていることが分かる。リン欠乏では、a*値、b*値共に約2又は3減少しており、緑分が増え、赤みが減少した。そして、鉄欠乏はa*値は約1減少し、b*値は殆ど変わらず、その結果、緑分が増した。リン及び鉄欠乏では、コントロールよりもa*値が約8減少し、b*値が約4減少しており、鉄、リンの単独欠乏よりも色落ちしていた。窒素及びリン欠乏でのa*値は、窒素欠乏と同様に0以下であるが、b*値は窒素欠乏よりも減少し、黄色みが減少している。そして、複合欠乏では、a*値、b*値共に約13、約8と大きく減少した。 The results of a single deficient medium or a * and b * values of each color fading glue algal at 10 days after initiation of culture using the composite deficient medium, a * and b * values of discoloration glue algal deficient It can be seen that it is characterized by nutrients (see Figure 2). Compared to the control, it can be seen that the b * value does not change significantly with nitrogen deficiency, while the a * value decreases by about 7 and the redness is reduced. In phosphorus deficiency, both a * value and b * value decreased by about 2 or 3, green content increased and redness decreased. Iron deficiency decreased the a * value by about 1, and the b * value remained almost unchanged, resulting in an increase in green content. In phosphorus and iron deficiency, the a * value was reduced by about 8 and the b * value was reduced by about 4 compared to the control, and the color faded more than the iron and phosphorus deficiency alone. The a * value in nitrogen and phosphorus deficiency is 0 or less as in the case of nitrogen deficiency, but the b * value is smaller than in nitrogen deficiency and the yellowness is decreased. In the compound deficiency, both the a * value and the b * value were greatly reduced to about 13 and about 8.

同様に、単独欠乏培地又は複合欠乏培地を用いた培養開始から10日目における各色落ちノリ藻体のL*値からは、コントロールよりも全ての実験区で彩度が増すことが分かったが、欠乏した栄養塩類による違いは殆ど見られなかった(図3参照)。 Similarly, from the L * value of each discolored laver alga body on the 10th day from the start of culture using a single deficient medium or a complex deficient medium, it was found that the saturation increased in all experimental plots compared to the control, There was almost no difference due to the lack of nutrients (see FIG. 3).

以上のことより、L***表色系のうちのa*値及びb*値から、ノリ藻体の色落ちの原因となる欠乏栄養塩類の判定が可能であることが判明した。また、表3及び図2に示す結果から、L***表色系において、a*値3〜5及びb*値10〜13の場合に鉄の単独欠乏と判断され、a*値0以下及びb*値7〜20の場合に窒素の単独欠乏と判断され、a*値3〜5及びb*値7〜9の場合にリンの単独欠乏と判断され、また、a*値1〜4及びb*値4〜7の場合に鉄及びリンの複合欠乏と判断され、a*値0以下及びb*値3〜−1の場合に鉄及び窒素の複合欠乏と判断され、a*値0以下及びb*値3〜7の場合に窒素及びリンの複合欠乏と判断され、更に、上記以外のa*値0以下及びb*値−1以上の場合に窒素、リン、鉄の複合欠乏と判断されることが判明した。 From the above, it was found that the deficient nutrients that cause discoloration of the laver body can be determined from the a * value and b * value in the L * a * b * color system. Further, from the results shown in Table 3 and FIG. 2, in the L * a * b * color system, when the a * value is 3 to 5 and the b * value is 10 to 13, it is determined that iron is deficient alone, and the a * value 0 is less and b * determined that nitrogen alone deficiency when the value 7-20, it is determined that phosphorus alone deficiency when the a * value 3-5 and b * values 7-9, also, a * value 1 -4 and b * values of 4 to 7 are judged to be a composite deficiency of iron and phosphorus, and a * values of 0 or less and b * values of 3 to -1 are judged to be a composite deficiency of iron and nitrogen, and a * the value 0 is less and b * determined in the case of the value 3-7 composite lack of nitrogen and phosphorus, further, nitrogen in the case of a * value less than 0 and b * values -1 or more than the above, phosphorus, complex iron It was found to be deficient.

〔実施例2:固形肥料設置によるノリ藻体の色落ち防止及び回復〕
下記表4に示すパイロットプラント実験水槽2系列に東京湾海水を10,000L引き入れ、実験水槽と貯水槽との閉鎖循環を1ヶ月間行い、初期の海水に含まれた植物プランクトンによって栄養塩類(窒素、リン、鉄)を摂取させ、貧栄養海水を準備した。その後、一方に炭酸化製鋼スラグと腐植物質の混合材(以下、「施肥材」という。)を60kg設置した。施肥材は、炭酸化スラグと腐植物質を質量比で2:1に混合し、12kgずつナイロン製メッシュ袋に入れた。水槽2系列に設置したノリ網は、0.7m×2mの網に殻胞子を着生させ、冷凍保存したものを用いた。ノリ網は一日約2時間干出するように干潮水位より約20cm高いところに設置した。干出は、実際のノリ養殖場と同様に、網に付着した植物プランクトンや雑藻を除去するために行った。それ以外は、ノリ網の四方を塩ビパイプで固定し、浮きを装着して、水面で漂わせた。各水槽の水温、pHを連続測定した。実験期間中、海水温はノリ養殖場のある東京湾富津沖と同様に推移した。pHは、実海水と同様に8.0〜8.3で、ほぼ一定であった。また、週3回、各系列の海水を採取し、水質(窒素、リン、鉄)を分析した。
[Example 2: Prevention and recovery of discoloration of laver body by solid fertilizer installation]
Ten thousand liters of Tokyo Bay seawater is drawn into the two pilot plant experimental water tanks shown in Table 4 below, and the closed circulation between the experimental water tank and the water tank is conducted for one month, and nutrients (nitrogen) are added by phytoplankton contained in the initial seawater. , Phosphorus and iron) and prepared oligotrophic seawater. Thereafter, 60 kg of a mixed material of carbonated steel slag and humic substances (hereinafter referred to as “fertilizer”) was placed on one side. As a fertilizer, carbonated slag and humic substances were mixed at a mass ratio of 2: 1, and each 12 kg was put in a nylon mesh bag. The glue nets installed in the two water tanks were prepared by allowing shell spores to grow on a 0.7 m × 2 m net and storing them frozen. The Nori net was installed about 20cm higher than the low tide level so that it would dry out for about 2 hours a day. Drying was performed to remove phytoplankton and other algae attached to the net, as in the actual laver farm. Other than that, I fixed the four sides of the ladle net with PVC pipes, attached floats, and floated on the surface of the water. The water temperature and pH of each water tank were continuously measured. During the experiment, the seawater temperature remained the same as that off Futtsu, Tokyo Bay, where the laver farm is located. The pH was 8.0 to 8.3 as in the case of real seawater and was almost constant. In addition, seawater of each series was collected three times a week and analyzed for water quality (nitrogen, phosphorus, iron).

Figure 2013009601
Figure 2013009601

施肥材の有無による海水中の鉄濃度を経時的に比較した結果を図4に示す。設置直後から10日間で9μg/Lの濃度上昇が確認された。その後、施肥材からの溶出が続き、35日目には、15μg/Lに達した。   The result of comparing the iron concentration in seawater with and without fertilizer over time is shown in FIG. A concentration increase of 9 μg / L was confirmed in 10 days immediately after installation. Thereafter, elution from the fertilizer continued and reached 15 μg / L on the 35th day.

施肥材の有無による海水中の無機態窒素濃度を経時的に比較した結果を図5に示す。設置から10日目まで約0.18mg/Lの濃度上昇が見られた。その後、ノリ藻体の生育、水槽中の植物プランクトンの増殖に伴い、水槽中の濃度は減少した。   FIG. 5 shows the result of comparison of the inorganic nitrogen concentration in seawater with and without fertilizer over time. A concentration increase of about 0.18 mg / L was observed from the installation to the 10th day. Subsequently, the concentration in the aquarium decreased with the growth of the laver body and the proliferation of phytoplankton in the aquarium.

施肥材の有無による海水中のリン酸態リン濃度を経時的に比較した結果を図6に示す。リンは、20日目までに0.06mg/Lの濃度上昇が確認された。その後、殆ど減少することなく、高濃度を維持した。リンはノリ藻体、植物プランクトン共に摂取量が窒素の1/10以下となるため、濃度の変化が窒素に比べて小さい結果となった。   FIG. 6 shows the results of comparison of the phosphate phosphorus concentration in seawater with and without fertilizer over time. Phosphorus was confirmed to increase in concentration by 0.06 mg / L by the 20th day. Thereafter, the high concentration was maintained with almost no decrease. Since the intake amount of phosphorus for both Nori alga and phytoplankton was 1/10 or less of nitrogen, the change in concentration was smaller than that of nitrogen.

ノリ胞子の発芽は実験開始から16日目で2系列において確認できた。しかし、34日目には施肥材無しの水槽では、ノリ藻体は殆ど確認できなかった。一方で、施肥材有では順調に成長を続け、48日目には葉長約1cmにまでなった。   Nori spore germination was confirmed in two lines on the 16th day from the start of the experiment. However, on the 34th day, almost no algae bodies could be confirmed in the water tank without fertilizer. On the other hand, in the presence of fertilizer, it continued to grow steadily, and the leaf length reached about 1 cm on the 48th day.

50日目に施肥材有の水槽中の鉄濃度が15μg/Lを下回り、鉄分を供給するために、製鋼スラグと腐植物質の基本配合(2:1)を10kg追肥した。58日目に鉄濃度が20μg/Lとなり、鉄欠乏が解消された。   On the 50th day, the iron concentration in the water tank with fertilizer was less than 15 μg / L, and 10 kg of fertilizer was added to the basic composition (2: 1) of steelmaking slag and humic substances to supply iron. On day 58, the iron concentration reached 20 μg / L, and iron deficiency was resolved.

その後、64日目には施肥材有の水層中のノリ藻体の退色を目視で判断し、L***表色系にて測定したところ、a*値が−0.71及びb*値が7.28となり、窒素欠乏による色落ちであると判断した。この結果を踏まえて、無機態窒素、特にアンモニア態窒素を含む魚かす肥料を2kg追加したところ、色彩は直ちに回復し、70日目にはa*値が5以上及びb*値が13以上と望ましい基準にまで回復した。 Thereafter, on the 64th day, the color fading of the laver alga in the water layer with fertilizer was visually determined and measured in the L * a * b * color system. The a * value was −0.71 and The b * value was 7.28, and it was judged that color fading was caused by nitrogen deficiency. Based on this result, when 2 kg of fish meal fertilizer containing inorganic nitrogen, especially ammonia nitrogen, was added, the color immediately recovered and on the 70th day, the a * value was 5 or more and the b * value was 13 or more. Recovered to the desired standard.

実験後期にノリ網の一部からノリ藻体を採取した結果、施肥材有の水槽では、0.7m×2mの網全体から湿質量で936g(乾質量93.6g)、乾海苔にして約30枚分に相当する量にまで栽培できたことが分かった。   As a result of collecting laver algae from a part of the laver net in the latter half of the experiment, in the aquarium with fertilizer, weighed 936 g (dry mass 93.6 g) from the entire 0.7 m x 2 m net, about 30 min in dry seaweed It turned out that it was able to cultivate to the quantity equivalent to the sheet.

Claims (13)

ノリ養殖場において色落ちノリ藻体であると判定されたノリ藻体について、この色落ちノリ藻体の色彩をL***表色系による色彩判定法によって測定し、得られたa*値及びb*値の測定結果から色落ち現象の原因が窒素、リン、及び鉄からなる栄養塩類のうちのいずれの貧栄養化に起因するかを判断し、この判断結果に基づいて貧栄養化の原因栄養塩類を含む肥料をノリ養殖場に施肥することを特徴とするノリ藻体の色落ちの防止及び回復方法。 About the laver alga body determined to be a faint laver body in the laver farm, the color of this discolored laver body was measured by a color judgment method using the L * a * b * color system, and a obtained From the measurement results of the * and b * values, determine whether the cause of the color fading phenomenon is due to the eutrophication of nutrient salts consisting of nitrogen, phosphorus, and iron, and based on the results of this determination A method for preventing and recovering discoloration of Nori alga bodies, characterized by fertilizing fertilizers containing nutrients causing causative to a Nori farm. ノリ藻体が色落ちノリ藻体であるか否かの判定をSPAD値による色彩判定法によって行うことを特徴とする請求項1に記載のノリ藻体の色落ち防止及び回復方法。   The method for preventing and restoring color loss of a laver body according to claim 1, wherein the determination of whether the laver body is a discolored laver body is performed by a color determination method based on a SPAD value. ***表色系色彩判定法により測定されたa*値及びb*値について、a*値が3〜5であってb*値が10〜13であるときを鉄の単独欠乏と判断し、鉄分をノリ養殖場に施肥することを特徴とする請求項1又は2に記載のノリ藻体の色落ち防止及び回復方法。 About a * value and b * value measured by L * a * b * color system color judgment method, when a * value is 3 to 5 and b * value is 10 to 13, single deficiency of iron The method according to claim 1 or 2, wherein the iron content is fertilized in a laver farm. ***表色系色彩判定法により測定されたa*値及びb*値について、a*値が0以下であってb*値が7〜20であるときを窒素の単独欠乏と判断し、窒素分をノリ養殖場に施肥することを特徴とする請求項1又は2に記載のノリ藻体の色落ち防止及び回復方法。 Regarding the a * value and b * value measured by the L * a * b * colorimetric color judgment method, when the a * value is 0 or less and the b * value is 7 to 20, the nitrogen deficiency is 3. The method for preventing and restoring color loss of laver bodies according to claim 1 or 2, wherein the nitrogen content is fertilized in a laver farm. ***表色系色彩判定法により測定されたa*値及びb*値について、a*値が3〜5であってb*値が7〜9であるときをリンの単独欠乏と判断し、リン分をノリ養殖場に施肥することを特徴とする請求項1又は2に記載のノリ藻体の色落ち防止及び回復方法。 For a * value and b * value measured by L * a * b * color system color judgment method, when a * value is 3 to 5 and b * value is 7 to 9, single deficiency of phosphorus The method according to claim 1 or 2, wherein the phosphorus content is fertilized in a laver farm. ***表色系色彩判定法により測定されたa*値及びb*値について、a*値が1〜4であってb*値が4〜7であるときを鉄及びリンの複合欠乏と判断し、鉄分及びリン分をノリ養殖場に施肥することを特徴とする請求項1又は2に記載のノリ藻体の色落ち防止および回復方法。 For the a * value and b * value measured by the L * a * b * color system color judgment method, when the a * value is 1 to 4 and the b * value is 4 to 7, The method for preventing and recovering color loss of laver bodies according to claim 1 or 2, characterized in that it is judged to be complex deficiency and fertilized with iron and phosphorus in a laver farm. ***表色系色彩判定法により測定されたa*値及びb*値について、a*値が0以下であってb*値が3〜−1であるときを鉄及び窒素の複合欠乏と判断し、鉄分及び窒素分をノリ養殖場に施肥することを特徴とする請求項1又は2に記載のノリ藻体の色落ち防止及び回復方法。 Regarding the a * value and b * value measured by the L * a * b * colorimetric color judgment method, when the a * value is 0 or less and the b * value is 3 to -1, The method for preventing and recovering color loss of laver bodies according to claim 1 or 2, characterized in that it is judged as a complex deficiency and fertilized with iron and nitrogen in a laver farm. ***表色系色彩判定法により測定されたa*値及びb*値について、a*値が0以下であってb*値が3〜7であるときを窒素及びリンの複合欠乏と判断し、窒素分及びリン分をノリ養殖場に施肥することを特徴とする請求項1又は2に記載のノリ藻体の色落ち防止及び回復方法。 Regarding the a * value and b * value measured by the L * a * b * colorimetric color judgment method, the combination of nitrogen and phosphorus when the a * value is 0 or less and the b * value is 3 to 7 3. The method for preventing and recovering color loss of laver bodies according to claim 1 or 2, characterized in that it is determined to be deficient and nitrogen and phosphorus are fertilized in a laver farm. ***表色系色彩判定法により測定されたa*値及びb*値について、a*値が0以下であってb*値が−1以上であるときを窒素、リン、及び鉄の複合的欠乏と判断し、各成分を複合してノリ養殖場に施肥することを特徴とする請求項1又は2に記載のノリ藻体の色落ち防止及び回復方法。 For the a * value and b * value measured by the L * a * b * color system color determination method, when the a * value is 0 or less and the b * value is −1 or more, nitrogen, phosphorus, and 3. The method for preventing and recovering color loss of laver bodies according to claim 1 or 2, characterized in that it is judged as a complex deficiency of iron, and each component is combined and applied to a laver farm. 前記窒素、リン、及び鉄からなる栄養塩類の単独欠乏又は複合欠乏に起因するノリ藻体の色落ちに対して、ノリ養殖場に穏効性の固形肥料を適用することを特徴とする請求項1〜9のいずれか1項に記載のノリ藻体の色落ち防止及び回復方法。   A mild solid fertilizer is applied to a laver farm for discoloration of a laver body due to a single deficiency or a complex deficiency of nutrients composed of nitrogen, phosphorus, and iron. The discoloration prevention and recovery method of a laver body of any one of 1-9. を供給する肥料として、炭酸化製鋼スラグを用いることを特徴とする請求項1〜10のいずれか1項に記載のノリ藻体の色落ち防止及び回復方法。 As a fertilizer supplying iron content, discoloration prevention and recovery method of laver alga body according to any one of claims 1 to 10, wherein the use of carbonation steelmaking slag. 鉄を含む複数の栄養塩類の複合欠乏による色落ちに対して、腐植物質に炭酸化製鋼スラグを混合した穏効性の固形肥料を施肥することを特徴とする請求項1〜11いずれか1項に記載のノリ藻体の色落ち防止及び回復方法。   A mild solid fertilizer in which carbonated steel slag is mixed with humic substances is fertilized against discoloration due to a composite deficiency of a plurality of nutrient salts containing iron. The discoloration prevention and recovery method of a laver body as described in 2. 穏効性の固形肥料は、ナイロン製メッシュ袋内に収容してノリ網の下部に設置することを特徴とする請求項1〜12のいずれか1項に記載のノリ藻体の色落ち防止及び回復方法。   The mild solid fertilizer is housed in a nylon mesh bag and installed in the lower part of the laver net, preventing discoloration of the laver body according to any one of claims 1 to 12, and Recovery method.
JP2011142555A 2011-06-28 2011-06-28 Method for preventing and restoring discoloration of laver body Active JP5505374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011142555A JP5505374B2 (en) 2011-06-28 2011-06-28 Method for preventing and restoring discoloration of laver body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011142555A JP5505374B2 (en) 2011-06-28 2011-06-28 Method for preventing and restoring discoloration of laver body

Publications (2)

Publication Number Publication Date
JP2013009601A true JP2013009601A (en) 2013-01-17
JP5505374B2 JP5505374B2 (en) 2014-05-28

Family

ID=47684101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011142555A Active JP5505374B2 (en) 2011-06-28 2011-06-28 Method for preventing and restoring discoloration of laver body

Country Status (1)

Country Link
JP (1) JP5505374B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112557A (en) * 2011-11-28 2013-06-10 Nippon Steel & Sumitomo Metal Corp Artificial mineral dissolved-liquid and method for supplying the same
JP2015107061A (en) * 2013-12-03 2015-06-11 新日鐵住金株式会社 Method for growing sea weed

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102334749B1 (en) * 2021-03-31 2021-12-06 주식회사 팜한농 Nutrient for seaweed and uses thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002207012A (en) * 2001-01-09 2002-07-26 Kozen Honten:Kk Method for determining quality of laver
JP2007055947A (en) * 2005-08-25 2007-03-08 Daiichi Seimou Co Ltd Algicidal and fungicidal treating agent for culturing laver, algicidal and fungicidal treating agent and method for treating cultured laver
JP2009273425A (en) * 2008-05-16 2009-11-26 Taki Chem Co Ltd Fertilizer container for laver culture
JP2010259450A (en) * 2009-03-27 2010-11-18 Jfe Mineral Co Ltd Method for restoring or preventing color fading of laver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002207012A (en) * 2001-01-09 2002-07-26 Kozen Honten:Kk Method for determining quality of laver
JP2007055947A (en) * 2005-08-25 2007-03-08 Daiichi Seimou Co Ltd Algicidal and fungicidal treating agent for culturing laver, algicidal and fungicidal treating agent and method for treating cultured laver
JP2009273425A (en) * 2008-05-16 2009-11-26 Taki Chem Co Ltd Fertilizer container for laver culture
JP2010259450A (en) * 2009-03-27 2010-11-18 Jfe Mineral Co Ltd Method for restoring or preventing color fading of laver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112557A (en) * 2011-11-28 2013-06-10 Nippon Steel & Sumitomo Metal Corp Artificial mineral dissolved-liquid and method for supplying the same
JP2015107061A (en) * 2013-12-03 2015-06-11 新日鐵住金株式会社 Method for growing sea weed

Also Published As

Publication number Publication date
JP5505374B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
US11746067B2 (en) Methods and compositions for treating soil and plants
US20190008126A1 (en) Mixotrophic method of aquaculture
Schrader et al. Development of phytoplankton communities and common off-flavors in a biofloc technology system used for the culture of channel catfish (Ictalurus punctatus)
Padmavathi et al. Efficacy of probiotics in improving water quality and bacterial flora in fish ponds
JP5505374B2 (en) Method for preventing and restoring discoloration of laver body
KR102334749B1 (en) Nutrient for seaweed and uses thereof
Castillo-Soriano et al. Nitrogen dynamics model in zero water exchange, low salinity intensive ponds of white shrimp, Litopenaeus vannamei, at Colima, Mexico
CN105237178B (en) A kind of ecotype aquatic products Algae culture solution
Álvarez-García et al. Effect of fertigation using fish production wastewater on Pelargonium x zonale growth and nutrient content
Cai et al. Allelopathic interactions between the red-tide causative dinoflagellate Prorocentrum donghaiense and the diatom Phaeodactylum tricornutum
JP6316579B2 (en) Raising seaweed
Riis et al. Growth rate of an aquatic bryophyte (Warnstorfia fluitans (Hedw.) Loeske) from a high arctic lake: effect of nutrient concentration
CN105272556A (en) Aquaculture biofertilizer and preparation method thereof
Yi et al. Techniques to mitigate clay turbidity problems in fertilized earthen fish ponds
CN109205794A (en) The preparation and application of yeast tunning matrix and pond water quality regulator
Lewandowska et al. Effect of iron limitation on cells of the diatom Cyclotella meneghiniana Kützing
Gitari Lime and manure application to acid soils and their effects on bio-chemical Soil properties and maize performance at Kavutiri-Embu County
CN109503272A (en) A kind of fertilizer and preparation method thereof suitable for aquaculture
CN108658683A (en) A kind of vegetables high-performance bio bacterial manure and the preparation method and application thereof
CN107151169A (en) A kind of preparation method of aquaculture organisms fertilizer
CN107868765A (en) A kind of KBM microorganisms modifying agent and its preparation method and application
TWI671277B (en) Sputum manure production liquid fertilizer and application thereof
Ghofar et al. The effects of varying dilution levels of wastewater on the cultivation of Spirulina sp.
CN107792929A (en) A kind of salt reduction alkali method
Abbo Inoculating fish sludge from aquaponics with microbes to enhance mineralisation of phosphorus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R151 Written notification of patent or utility model registration

Ref document number: 5505374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350