JP2013008770A - Deposit cleaning method for film deposition apparatus - Google Patents

Deposit cleaning method for film deposition apparatus Download PDF

Info

Publication number
JP2013008770A
JP2013008770A JP2011139149A JP2011139149A JP2013008770A JP 2013008770 A JP2013008770 A JP 2013008770A JP 2011139149 A JP2011139149 A JP 2011139149A JP 2011139149 A JP2011139149 A JP 2011139149A JP 2013008770 A JP2013008770 A JP 2013008770A
Authority
JP
Japan
Prior art keywords
cleaning
film forming
hydrogen
gas
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011139149A
Other languages
Japanese (ja)
Inventor
Kunihiko Koike
国彦 小池
Toshiki Manabe
俊樹 真鍋
Shinji Yasui
晋示 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani International Corp
Original Assignee
Iwatani International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani International Corp filed Critical Iwatani International Corp
Priority to JP2011139149A priority Critical patent/JP2013008770A/en
Publication of JP2013008770A publication Critical patent/JP2013008770A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for cleaning away a deposit having deposited on a film deposition apparatus for forming a thin film on a semiconductor substrate.SOLUTION: The method for cleaning away a deposit having deposited on a film deposition apparatus comprises: supplying a hydrogen-based cleaning gas containing hydrogen or a hydrogen-argon mixed gas into a deposition chamber with a substrate stage temperature kept at a temperature when the chamber is unheated to a temperature of 400°C, and more preferably at 200 to 400°C; and using pulsed plasma, which is generated by a pulse power supply unit applying an electric power to an electrode placed in the deposition chamber, to act on a wall face part inside the deposition chamber.

Description

本発明は、半導体基板にシリコン膜等の薄膜を形成する成膜システムでの堆積物クリーニング方法に関し、特に、太陽電池製造過程で生じる堆積物のクリーニング方法に関する。   The present invention relates to a deposit cleaning method in a film forming system for forming a thin film such as a silicon film on a semiconductor substrate, and more particularly to a method for cleaning a deposit generated in a solar cell manufacturing process.

従来、CVD成膜装置にあっては、成膜に伴い生じるシリコン系の堆積物がチャンバー内面や、サセプタの表面に付着する。この付着した堆積物を除去するのに、NF等のハロゲンガスを含むクリーニングガスを使用している。ところが、従来のハロゲン系クリーニングガスは、環境負荷が大きく、取り出したクリーニングガスを処理するために、多大なコストを要するという問題があった。 Conventionally, in a CVD film forming apparatus, silicon-based deposits that accompany film formation adhere to the inner surface of the chamber and the surface of the susceptor. In order to remove the deposited deposit, a cleaning gas containing a halogen gas such as NF 3 is used. However, the conventional halogen-based cleaning gas has a large environmental load, and has a problem in that it requires a great cost to process the removed cleaning gas.

そこで近年、水素−アルゴンガスを使用し、チャンバー内に配置した電極間に電位を印加することにより、チャンバー内をクリーニングする技術が提案されている(特許文献1)。   Therefore, in recent years, a technique has been proposed in which the inside of a chamber is cleaned by using hydrogen-argon gas and applying a potential between electrodes arranged in the chamber (Patent Document 1).

特表2007−535119号公報Special table 2007-535119 gazette

前記水素−アルゴンを使用したクリーニング技術は、高周波誘導プラズマ(ICP)を利用するものであることから、装置が大掛かりとなり、ランニングコストが高価につくという問題を有している。このため、積層度をあまり求められない半導体基板(例えば太陽電池パネル)の製造には使用しにくいという問題があった。   Since the cleaning technique using hydrogen-argon uses high frequency induction plasma (ICP), there is a problem that the apparatus becomes large and the running cost is expensive. For this reason, there has been a problem that it is difficult to use in the manufacture of a semiconductor substrate (for example, a solar cell panel) that does not require a high degree of lamination.

また、前記水素−アルゴンを使用したクリーニング技術では、水素−アルゴンのガスコストがNFの数百分の1程度と安価である一方で、そのクリーニングレートがクリーニングガスとしてNFを使用したものに比べて1/1000程度(すなわち数nm/min)であり、コストとクリーニングレートとの積で見ると、高周波誘導プラズマとクリーニングガスの組み合わせでは、クリーニング方法としての十分な能力を発揮できないという問題もあった。 Further, the hydrogen - a cleaning technique using argon, hydrogen - while gas costs argon are inexpensive and few hundredths 1 degree of NF 3, in which the cleaning rate was used NF 3 as a cleaning gas Compared to 1/1000 (several nm / min), and the product of cost and cleaning rate, there is a problem that the combination of high frequency induction plasma and cleaning gas cannot demonstrate sufficient capability as a cleaning method. there were.

本発明は、このような点に鑑み、積層度をあまり求められない半導体基板の成膜装置に対して最適なクリーニング方法を提供することを目的とする。   SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide an optimum cleaning method for a semiconductor substrate deposition apparatus that does not require a high degree of lamination.

上述の目的を達成するために請求項1に記載の発明は、半導体基板に薄膜を形成する成膜装置に付着した堆積物をクリーニングするにあたり、
基板ステージの温度を非加熱状態〜400℃に維持した成膜チャンバー内に水素系クリーニングガスを供給し、前記成膜チャンバー内に配置した電極にパルス電源装置から電力を印加することで発生したパルスプラズマを成膜チャンバー内の壁面部分に作用させて、成膜装置に付着した堆積物をクリーニングするようにしたことを特徴としている。
In order to achieve the above object, the invention described in claim 1 is directed to cleaning deposits attached to a film forming apparatus for forming a thin film on a semiconductor substrate.
A pulse generated by supplying a hydrogen-based cleaning gas into a film forming chamber in which the temperature of the substrate stage is maintained at a non-heated state to 400 ° C., and applying power from a pulse power supply device to an electrode disposed in the film forming chamber. The plasma is applied to the wall surface portion in the film forming chamber to clean the deposits attached to the film forming apparatus.

また、請求項2に記載の発明は、請求項1の方法に使用する水素系クリーニングガスが水素−アルゴン混合ガスであることを特徴とし、請求項3に記載の発明は、請求項1の方法に使用する水素系クリーニングガスが水素ガスであることを特徴としている。   The invention according to claim 2 is characterized in that the hydrogen-based cleaning gas used in the method according to claim 1 is a hydrogen-argon mixed gas, and the invention according to claim 3 is a method according to claim 1. The hydrogen-based cleaning gas used in the step is hydrogen gas.

本発明では、成膜チャンバー内に配置した電極にパルス電源装置から電力を印加することで、パルス状にガスプラズマを作用させることができ、成膜装置に付着した堆積物をマイクロメーターレベルでクリーニングすることができる。   In the present invention, by applying power from the pulse power supply device to the electrode disposed in the film forming chamber, gas plasma can be applied in a pulsed manner, and deposits adhering to the film forming device are cleaned at a micrometer level. can do.

高周波誘導プラズマ(ICP)では、10Torr以下の真空雰囲気でないと使用できないことから精密な真空度制御が必要であるが、パルスプラズマは真空域から大気圧まで広い範囲で使用できるため、ラフな圧力制御で一定のプラズマを得ることができ、ハンドリングが容易であるという利点がある。   High-frequency induction plasma (ICP) requires precise vacuum control because it can only be used in a vacuum atmosphere of 10 Torr or less, but pulsed plasma can be used in a wide range from vacuum to atmospheric pressure, so rough pressure control Therefore, there is an advantage that a constant plasma can be obtained and handling is easy.

パルスプラズマは直流電源を使用することができることからシステムを安価に構成することが出来るうえ、パルス幅、デューティ比を選ぶことにより、プラズマ強度を容易に変更することができる利点がある。   Since pulsed plasma can use a DC power source, the system can be constructed at low cost, and the plasma intensity can be easily changed by selecting the pulse width and duty ratio.

さらに、本発明はクリーニングレートが大きく、コストとクリーニングレートとの積もNFと比べて大きくなることから、従来のハロゲン系クリーニングガスによるクリーニング方法の代替技術として十分な能力を有している。 Furthermore, since the present invention has a large cleaning rate and the product of the cost and the cleaning rate is larger than that of NF 3 , the present invention has a sufficient capability as an alternative technique for a conventional cleaning method using a halogen-based cleaning gas.

そのうえ、本発明では、プラズマとして作用するガス種が水素単独、あるは水素とアルゴンであることから、環境負荷が小さく、ランニングコストを抑えることができる。   In addition, in the present invention, since the gas species acting as plasma is hydrogen alone, or hydrogen and argon, the environmental load is small and the running cost can be suppressed.

図は本発明のクリーニング方法に使用する実験装置の概略構成図である。The figure is a schematic configuration diagram of an experimental apparatus used in the cleaning method of the present invention.

この実験装置は、真空容器(1)と、この真空容器(1)内に対向する状態で配置した一対の電極(2)と、該電極(2)に電力を供給するパルスプラズマ発生電源装置(3)と、真空容器(1)内と連通している真空ポンプ(4)とで構成してある。   This experimental apparatus includes a vacuum vessel (1), a pair of electrodes (2) arranged in a state of being opposed to each other in the vacuum vessel (1), and a pulsed plasma generation power supply device that supplies power to the electrodes (2) ( 3) and a vacuum pump (4) communicating with the inside of the vacuum vessel (1).

パルスプラズマ発生電源装置(3)は図示を省略した商用電源が接続してある。また、電極(2)は円形のステンレス製のものを上下に配置してあり、上部電極(2u)は熱による破壊を防ぐために冷却装置により冷却し、下部電極(2d)はクリーニングしやすくするために、ヒータにより加熱する構造になっている。   A commercial power source (not shown) is connected to the pulsed plasma generating power source device (3). In addition, the electrodes (2) are made of circular stainless steel, and the upper electrode (2u) is cooled by a cooling device to prevent destruction by heat, and the lower electrode (2d) is easy to clean. In addition, the heater is heated.

また、下部電極(2d)には、絶縁体であるセラミック板(5)を置き、そのセラミック板(5)の中心に10mmの孔を開け、その上に処理材であるシリコンウエハ(6)を設置した。なお、シリコンウエハ(6)の外側での沿面放電を防止するために、周囲にカプトンテープを貼って固定した。   A ceramic plate (5) as an insulator is placed on the lower electrode (2d), a 10 mm hole is formed in the center of the ceramic plate (5), and a silicon wafer (6) as a treatment material is placed thereon. installed. In addition, in order to prevent creeping discharge on the outside of the silicon wafer (6), Kapton tape was stuck around and fixed.

一対の電極間距離(ギャップ)は10〜90mmの間で調整可能に構成してあり、今回は30mmに固定して実験を行なった。   The distance (gap) between the pair of electrodes is adjustable between 10 mm and 90 mm, and this time, the experiment was performed with the distance fixed to 30 mm.

上述の構成からなる実験装置を使用しての実験では、真空容器(1)内のセラミック板(5)上に処理材であるシリコンウエハ(6)を設置し、真空容器(1)を密閉し、ロータリー式真空ポンプ(4)を作動させて、真空容器(1)内を真空引きした後、200Paまで水素−アルゴンガスを供給し、パルスプラズマ発生電源装置(3)を用いて低圧下で水素+アルゴンプラズマを生成し、ガス割合と基板ステージ温度とをパラメータとしてp−シリコン膜のクリーニングを行なった。   In an experiment using the experimental apparatus having the above-described configuration, a silicon wafer (6) as a processing material is placed on the ceramic plate (5) in the vacuum vessel (1), and the vacuum vessel (1) is sealed. After operating the rotary vacuum pump (4) to evacuate the vacuum vessel (1), hydrogen-argon gas is supplied up to 200 Pa, and hydrogen is used under low pressure using a pulsed plasma generation power supply (3). + Argon plasma was generated, and the p-silicon film was cleaned using the gas ratio and the substrate stage temperature as parameters.

サンプル1から7について、表1に示す条件でプラズマ処理を行い、高周波グロー放電発光表面分析装置(GDS)の測定結果からクリーニングレートを計算した。サンプル試料としてシリコンウエハ上に窒化シリコン膜(0.3μm)+p−シリコン膜(1.0μm)を成膜したものを使用し、p−シリコンが検出され始めてから、窒素が測定されるまでの時間をクリーニング時間と定義する。
なお、実験条件は以下のように設定した。
電極ギャップ : 30mm
気圧 : 200Pa
パルス幅・周期 : 40μs/200μs
電圧 : 1.0kV
処理時間 : 3min
Samples 1 to 7 were subjected to plasma treatment under the conditions shown in Table 1, and the cleaning rate was calculated from the measurement results of a high-frequency glow discharge luminescence surface analyzer (GDS). Using a silicon nitride film (0.3 μm) + p-silicon film (1.0 μm) formed on a silicon wafer as a sample sample, the time from the start of detection of p-silicon to the measurement of nitrogen Is defined as the cleaning time.
The experimental conditions were set as follows.
Electrode gap: 30mm
Atmospheric pressure: 200 Pa
Pulse width / period: 40 μs / 200 μs
Voltage: 1.0 kV
Processing time: 3min

Figure 2013008770
Figure 2013008770

GDSの測定結果を表にまとめると、表2に示すようになる。   Table 2 summarizes the GDS measurement results.

Figure 2013008770
Figure 2013008770

未処理のSiについて、クリーニング時間は26.0secであることから、厚さ1μmのp−Siの測定に26.0sec必要となることが分かるので、No.1からNo.7のサンプルについて、
クリーニング深さ:x(μm)=1−(クリーニング時間/26.0)
クリーニングレート:c(μm/min)=x/3
で求められる。
For untreated Si, the cleaning time is 26.0 sec, so it can be seen that 26.0 sec is required for the measurement of p-Si with a thickness of 1 μm. For samples No. 1 to No. 7,
Cleaning depth: x (μm) = 1− (cleaning time / 26.0)
Cleaning rate: c (μm / min) = x / 3
Is required.

クリーニングレートを基板温度と混合ガス割合をパラメータとした表に重ね合わせたものを表3に示す。   Table 3 shows the cleaning rate superimposed on a table using the substrate temperature and the mixed gas ratio as parameters.

Figure 2013008770
Figure 2013008770

上述の結果、最も良好なクリーニングレートは、0.112μm/minであり、そのときの条件は、水素:アルゴンの比が9:1で、基板加熱温度が300℃であったが、おおよそマイクロメーターオーダー、すなわち100ナノメーターオーダーのクリーニングレートを得ることができた。   As a result, the best cleaning rate was 0.112 μm / min. The conditions at that time were a hydrogen: argon ratio of 9: 1 and a substrate heating temperature of 300 ° C. A cleaning rate on the order of 100 nanometers could be obtained.

上記の各実験例では、基板ステージ温度を 200℃、300℃、400℃に加熱したが、実作業では、直前処理の基板ステージ温度(非加熱状態)で行なうようにしてもよい。   In each of the above experimental examples, the substrate stage temperature was heated to 200 ° C., 300 ° C., and 400 ° C. However, in actual work, the substrate stage temperature may be set at the immediately preceding substrate stage temperature (non-heated state).

本発明は、環境負荷が小さく、またクリーニングレートが大きいことから、半導体基板成膜装置、特に太陽電池パネル用成膜装置をクリーニングするのに適している。   The present invention is suitable for cleaning a semiconductor substrate film forming apparatus, particularly a solar cell panel film forming apparatus, because it has a low environmental load and a high cleaning rate.

Claims (5)

半導体基板に薄膜を形成する成膜装置に付着した堆積物をクリーニングするにあたり、
基板ステージの温度を非加熱状態〜400℃に維持した成膜チャンバー内に水素系クリーニングガスを供給し、前記成膜チャンバー内に配置した電極にパルス電源装置から電力を印加することで発生したパルスプラズマを成膜チャンバー内の壁面部分に作用させて、成膜装置に付着した堆積物をクリーニングするようにした成膜装置での堆積物クリーニング方法。
In cleaning the deposits attached to the film forming device that forms a thin film on a semiconductor substrate,
A pulse generated by supplying a hydrogen-based cleaning gas into a film forming chamber in which the temperature of the substrate stage is maintained at a non-heated state to 400 ° C., and applying power from a pulse power supply device to an electrode disposed in the film forming chamber. A deposit cleaning method in a film forming apparatus in which plasma is applied to a wall surface portion in a film forming chamber to clean the deposits attached to the film forming apparatus.
水素系クリーニングガスが水素ガスとアルゴンガスとの混合ガスである請求項1に記載の成膜装置での堆積物クリーニング方法。   2. The deposit cleaning method for a film forming apparatus according to claim 1, wherein the hydrogen-based cleaning gas is a mixed gas of hydrogen gas and argon gas. 水素系クリーニングガスが水素ガスである請求項1に記載の成膜装置での堆積物クリーニング方法。   The deposit cleaning method in the film forming apparatus according to claim 1, wherein the hydrogen-based cleaning gas is hydrogen gas. クリーニング時に基板ステージの温度を200℃〜400℃に維持する請求項1から3のいずれか1項に記載の成膜装置での堆積物クリーニング方法。   The method for cleaning deposits in a film forming apparatus according to any one of claims 1 to 3, wherein the temperature of the substrate stage is maintained at 200 ° C to 400 ° C during cleaning. 半導体基板が太陽電池用基板である請求項1〜4のいずれか1項に記載の成膜装置での堆積物クリーニング方法。   The method for cleaning deposits in a film forming apparatus according to claim 1, wherein the semiconductor substrate is a solar cell substrate.
JP2011139149A 2011-06-23 2011-06-23 Deposit cleaning method for film deposition apparatus Pending JP2013008770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011139149A JP2013008770A (en) 2011-06-23 2011-06-23 Deposit cleaning method for film deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011139149A JP2013008770A (en) 2011-06-23 2011-06-23 Deposit cleaning method for film deposition apparatus

Publications (1)

Publication Number Publication Date
JP2013008770A true JP2013008770A (en) 2013-01-10

Family

ID=47675886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011139149A Pending JP2013008770A (en) 2011-06-23 2011-06-23 Deposit cleaning method for film deposition apparatus

Country Status (1)

Country Link
JP (1) JP2013008770A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9580800B2 (en) 2014-03-05 2017-02-28 Samsung Electronics Co., Ltd. Method for operating semiconductor manufacturing equipment
WO2019239872A1 (en) * 2018-06-11 2019-12-19 東京エレクトロン株式会社 Film-forming apparatus, and method for cleaning film-forming apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006192A (en) * 1988-06-28 1991-04-09 Mitsubishi Denki Kabushiki Kaisha Apparatus for producing semiconductor devices
JPH1112740A (en) * 1997-06-23 1999-01-19 Nissin Electric Co Ltd Vaporization device of liquid raw material, and cleaning method of cvd device provided therewith
JP2001059177A (en) * 1999-08-23 2001-03-06 Mitsubishi Heavy Ind Ltd Method for cleaning plasma cvd device
JP2005503250A (en) * 2001-08-31 2005-02-03 アピト コープ.エス.アー. Method for producing powder comprising composite particles and apparatus for carrying out the method
JP2006100551A (en) * 2004-09-29 2006-04-13 Mitsubishi Heavy Ind Ltd Plasma deposition method, plasma processing device, solar cell and manufacturing method thereof
JP2007201029A (en) * 2006-01-25 2007-08-09 National Institute Of Advanced Industrial & Technology Method for cleaning article stained with carbon material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006192A (en) * 1988-06-28 1991-04-09 Mitsubishi Denki Kabushiki Kaisha Apparatus for producing semiconductor devices
JPH1112740A (en) * 1997-06-23 1999-01-19 Nissin Electric Co Ltd Vaporization device of liquid raw material, and cleaning method of cvd device provided therewith
JP2001059177A (en) * 1999-08-23 2001-03-06 Mitsubishi Heavy Ind Ltd Method for cleaning plasma cvd device
JP2005503250A (en) * 2001-08-31 2005-02-03 アピト コープ.エス.アー. Method for producing powder comprising composite particles and apparatus for carrying out the method
JP2006100551A (en) * 2004-09-29 2006-04-13 Mitsubishi Heavy Ind Ltd Plasma deposition method, plasma processing device, solar cell and manufacturing method thereof
JP2007201029A (en) * 2006-01-25 2007-08-09 National Institute Of Advanced Industrial & Technology Method for cleaning article stained with carbon material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9580800B2 (en) 2014-03-05 2017-02-28 Samsung Electronics Co., Ltd. Method for operating semiconductor manufacturing equipment
WO2019239872A1 (en) * 2018-06-11 2019-12-19 東京エレクトロン株式会社 Film-forming apparatus, and method for cleaning film-forming apparatus
JP2019216140A (en) * 2018-06-11 2019-12-19 東京エレクトロン株式会社 Deposition device and cleaning method in deposition device

Similar Documents

Publication Publication Date Title
JP5211332B2 (en) Plasma CVD apparatus, DLC film and thin film manufacturing method
TWI469215B (en) Plasma processing method
TW201303998A (en) Plasma processing apparatus and plasma processing method
US20100015358A1 (en) Apparatus and method for surface finishing of metals and metalloids, metal oxides and metalloid oxides, and metal nitrides and metalloid nitrides
TWI429782B (en) Plasma film-forming method and plasma cvd device
TWI564412B (en) Sputtering device and sputtering method
JP2013008770A (en) Deposit cleaning method for film deposition apparatus
JP2016032028A5 (en)
JP5842761B2 (en) Diamond production method and DC plasma CVD apparatus
US9548214B2 (en) Plasma etching method of modulating high frequency bias power to processing target object
JP2007080898A (en) Electrostatic chuck, thin-film manufacturing apparatus provided therewith, thin-film manufacturing method, and substrate surface treatment method
JP2008205279A (en) Method and device for depositing silicon-based thin film
JP2011108615A (en) Plasma treatment device
JP2001250814A (en) Plasma treatment device
JP4919272B2 (en) Carbon nanotube forming apparatus and carbon nanotube forming method
JP6383910B2 (en) Plasma CVD apparatus and film manufacturing method
JP2006005007A (en) Method and device for forming amorphous silicon layer
JP4890313B2 (en) Plasma CVD equipment
WO2004028220A1 (en) Method and apparatus for generating and maintaining a plasma
JP2010225751A (en) Device for growing atomic layer
CN105543736A (en) Plasma surface treatment method of ruthenium-plated molybdenum plate
JP4420577B2 (en) Method and apparatus for nitriding silicon wafer
JP2015098617A (en) Film deposition apparatus
Schrader et al. Micro-structured electrode arrays: Plasma based sterilization and coating over a wide pressure range
TW201034526A (en) Plasma treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150331