JP2013008562A - Biofuel cell, bioreactor, and biosensor - Google Patents

Biofuel cell, bioreactor, and biosensor Download PDF

Info

Publication number
JP2013008562A
JP2013008562A JP2011140603A JP2011140603A JP2013008562A JP 2013008562 A JP2013008562 A JP 2013008562A JP 2011140603 A JP2011140603 A JP 2011140603A JP 2011140603 A JP2011140603 A JP 2011140603A JP 2013008562 A JP2013008562 A JP 2013008562A
Authority
JP
Japan
Prior art keywords
electrode
conductive material
heat
outside
biofuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011140603A
Other languages
Japanese (ja)
Inventor
Shuji Fujita
修二 藤田
Hiroki Mita
洋樹 三田
Hideki Sakai
秀樹 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2011140603A priority Critical patent/JP2013008562A/en
Publication of JP2013008562A publication Critical patent/JP2013008562A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a biofuel cell capable of controlling the temperature of its electrode and an area in the vicinity thereof at a temperature optimum to a catalytic reaction.SOLUTION: To provide a biofuel cell A comprising: an electrode 2 which becomes a reaction field of an oxidation reduction reaction of fuel using an oxidoreductase as a catalyst; and an insulating heat conductive material 3 arranged in such a manner that at least a part of which contacts with the electrode 2, and at the same time at least a part of which is exposed to the outside of a battery case 1. In the biofuel cell A, the temperature of the electrode 2 and an area in the vicinity thereof can be controlled by bringing a hot-heat source or a cold-heat source in contact with the part of the insulating heat conductive material 3, the part being exposed to the outside of the battery case 1, thus transmitting hot-heat or cold-heat to the electrode 2.

Description

本技術は、バイオ燃料電池、バイオリアクタ及びバイオセンサに関する。より詳しくは、電極及びその近傍の温度を酵素の触媒反応に最適な温度に制御し得るバイオ燃料電池などに関する。   The present technology relates to a biofuel cell, a bioreactor, and a biosensor. More specifically, the present invention relates to a biofuel cell that can control the temperature of an electrode and the vicinity thereof to an optimum temperature for an enzyme catalytic reaction.

近年、アノード又はカソードの少なくとも一方の電極上に触媒として酸化還元酵素を固定したバイオ燃料電池が開発されてきている。バイオ燃料電池では、グルコースやエタノールなどの通常の工業触媒では反応が困難な燃料から効率良く電子を取り出して高い容量を得ることができる。このため、バイオ燃料電池では、燃料溶液としてグルコースやエタノール等を含む飲料などの液体を用いることも可能となる。例えば、特許文献1には、飲料を燃料とする燃料電池部を備えた電力供給装置が開示されている。   In recent years, biofuel cells in which an oxidoreductase is immobilized as a catalyst on at least one of an anode and a cathode have been developed. In a biofuel cell, a high capacity can be obtained by efficiently extracting electrons from a fuel that is difficult to react with normal industrial catalysts such as glucose and ethanol. For this reason, in the biofuel cell, it is also possible to use a liquid such as a beverage containing glucose, ethanol or the like as the fuel solution. For example, Patent Literature 1 discloses a power supply device including a fuel cell unit that uses beverage as fuel.

特開2009−048858号公報JP 2009-048858 A

バイオ燃料電池において十分な性能を引き出すためには、電極あるいはその近傍の温度を酵素の活性至適温度に維持し、触媒反応を効率良く進行させる必要がある。酵素の活性至適温度は、37℃程度であり、バイオ燃料電池が使用される温度(通常は室温)よりも高いのが通常である。   In order to bring out sufficient performance in a biofuel cell, it is necessary to maintain the temperature of the electrode or the vicinity thereof at the optimum temperature for the activity of the enzyme and to promote the catalytic reaction efficiently. The optimum temperature for the activity of the enzyme is about 37 ° C. and is usually higher than the temperature at which the biofuel cell is used (usually room temperature).

そこで、本技術は、電極及びその近傍の温度を酵素の触媒反応に最適な温度に制御し得るバイオ燃料電池を提供することを主な目的とする。   Therefore, the main object of the present technology is to provide a biofuel cell that can control the temperature of the electrode and the vicinity thereof to an optimum temperature for the catalytic reaction of the enzyme.

上記課題解決のため、本技術は、酸化還元酵素を触媒とした燃料の酸化還元反応の反応場となる電極と、少なくとも一部が電極に接触するとともに、少なくとも一部が電池筐体外に露出して配置された絶縁性熱伝導材と、を有するバイオ燃料電池を提供する。このバイオ燃料電池では、絶縁性熱伝導材の電池筐体外に露出する部分に温熱源あるいは冷熱源を接触させることにより、電極に温熱あるいは冷熱を伝導して、電極及びその近傍の温度を制御できる。
本技術に係るバイオ燃料電池は、さらに、前記電極に対して接触可能に供給される燃料の貯留空間を挟んで前記電極に対向して配置され、少なくとも一部が電池筐体外に露出された熱伝導材を有することが好ましい。この熱伝導材を介して外気温を燃料の貯留空間に伝導することにより、加熱あるいは冷却された電極及びその近傍との温度差によって燃料を熱対流させ撹拌できる。
本技術に係るバイオ燃料電池は、前記絶縁性熱伝導材の電池筐体外に露出する部分および/または前記熱伝導材の電池筐体外に露出する部分を被覆し得る断熱材を有し、該断熱材が、前記絶縁性熱伝導材の電池筐体外に露出する部分および/または前記熱伝導材の電池筐体外に露出する部分を被覆する位置と被覆しない位置との間で位置変更可能に構成されていることが好ましい。また、本技術に係るバイオ燃料電池は、前記断熱材が、前記絶縁性熱伝導材の電池筐体外に露出する部分および/または前記熱伝導材の電池筐体外に露出する部分を被覆しない位置にある場合に、前記絶縁性熱伝導材の電池筐体外に露出する部分および/または前記熱伝導材の電池筐体外に露出する部分に接触配置される冷却材を有することが好ましい。これらの断熱材及び冷却材を有することにより、上記絶縁性熱伝導材及び上記熱伝導材を介した熱伝導を制御して、電池の使用状況に応じて電極及び電池筐体内の温度を所望の温度に設定できる。
本技術に係るバイオ燃料電池は、前記絶縁性熱伝導材の電池筐体外に露出する部分を人体表面側に位置させた状態で前記電池筐体を身体に装着するための部材を有することが好ましい。この部材は、絶縁性熱伝導材の電池筐体外に露出する部分に接触さえる熱源として体温を利用する際に用いられる。
また、本技術は、酸化還元酵素を触媒とした物質の酸化還元反応の反応場となる電極と、少なくとも一部が電極に接触するとともに、少なくとも一部が筐体外に露出して配置された絶縁性熱伝導材と、を有するバイオリアクタを提供する。さらに、本技術は、酸化還元酵素を触媒とした物質の酸化還元反応の反応場となる電極と、少なくとも一部が電極に接触するとともに、少なくとも一部が筐体外に露出して配置された絶縁性熱伝導材と、を有するバイオセンサをも提供する。これらのバイオリアクタ及びバイオセンサにおいても、絶縁性熱伝導材の筐体外に露出する部分に温熱源あるいは冷熱源を接触させることにより、反応素子となる電極に温熱あるいは冷熱を伝導して、電極及びその近傍の温度を制御できる。
In order to solve the above problems, the present technology provides an electrode serving as a reaction field for a redox reaction of a fuel using an oxidoreductase as a catalyst, and at least a part of the electrode is in contact with the electrode and at least a part of the electrode is exposed outside the battery case. And a biofuel cell having an insulating heat conductive material disposed in a row. In this biofuel cell, it is possible to control the temperature of the electrode and the vicinity thereof by conducting the heat or cold to the electrode by contacting the heat source or the cold source with the exposed portion of the insulating heat conductive material outside the battery case. .
The biofuel cell according to the present technology is further arranged so as to face the electrode with a storage space for fuel supplied to be in contact with the electrode, and at least a part of the heat is exposed to the outside of the battery casing. It is preferable to have a conductive material. By conducting the outside air temperature to the fuel storage space through this heat conducting material, the fuel can be convected and stirred by the temperature difference between the heated or cooled electrode and its vicinity.
The biofuel cell according to the present technology includes a heat insulating material capable of covering a portion of the insulating heat conductive material exposed to the outside of the battery housing and / or a portion of the heat conductive material exposed to the outside of the battery housing. The material can be repositioned between a position where the insulating heat conductive material is exposed to the outside of the battery case and / or a position where the heat conductive material is exposed to the outside of the battery case and a position where the material is not covered. It is preferable. Further, the biofuel cell according to the present technology is such that the heat insulating material does not cover a portion of the insulating heat conductive material exposed outside the battery housing and / or a portion of the heat conductive material exposed outside the battery housing. In some cases, it is preferable to have a coolant disposed in contact with a portion of the insulating heat conductive material exposed to the outside of the battery housing and / or a portion of the heat conductive material exposed to the outside of the battery housing. By having these heat insulating material and cooling material, the heat conduction through the insulating heat conducting material and the heat conducting material is controlled, and the temperature inside the electrode and the battery housing is set to a desired value according to the use state of the battery. Can be set to temperature.
The biofuel cell according to the present technology preferably includes a member for attaching the battery casing to the body in a state where a portion of the insulating heat conductive material exposed to the outside of the battery casing is positioned on the human body surface side. . This member is used when body temperature is used as a heat source that comes into contact with a portion of the insulating heat conductive material exposed to the outside of the battery casing.
In addition, the present technology provides an electrode serving as a reaction field for a redox reaction of a substance using an oxidoreductase as a catalyst, and at least a part of the electrode is in contact with the electrode, and at least a part is exposed outside the housing. And a bioreactor having a heat conductive material. Furthermore, the present technology provides an electrode that serves as a reaction field for the oxidation-reduction reaction of a substance that uses an oxidoreductase as a catalyst, and an insulation that is disposed so that at least a portion thereof is in contact with the electrode and at least a portion is exposed outside the housing. There is also provided a biosensor having a heat conductive material. Also in these bioreactors and biosensors, by contacting a heat source or a cold source with a portion exposed to the outside of the casing of the insulating heat conductive material, the hot or cold heat is conducted to the electrode as the reaction element, and the electrode and The temperature in the vicinity can be controlled.

本技術により、電極及びその近傍の温度を触媒反応に最適な温度に制御し得るバイオ燃料電池が提供される。   The present technology provides a biofuel cell that can control the temperature of the electrode and the vicinity thereof to an optimum temperature for the catalytic reaction.

本技術の第一実施形態に係るバイオ燃料電池の構成を説明するための模式図である。It is a mimetic diagram for explaining composition of a biofuel cell concerning a first embodiment of this art. 第一実施形態に係るバイオ燃料電池の変形例の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the modification of the biofuel cell which concerns on 1st embodiment. 本技術の第二実施形態に係るバイオ燃料電池の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the biofuel cell which concerns on 2nd embodiment of this technique. 本技術の第三実施形態に係るバイオ燃料電池の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the biofuel cell which concerns on 3rd embodiment of this technique. 本技術の第四実施形態に係るバイオ燃料電池の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the biofuel cell which concerns on 4th embodiment of this technique. 本技術の第五実施形態に係るバイオ燃料電池の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the biofuel cell which concerns on 5th embodiment of this technique. 本技術に係るバイオ燃料電池を身体に装着するための構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure for mounting | wearing the body with the biofuel cell which concerns on this technique.

以下、本技術を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。説明は以下の順序で行う。

1.第一実施形態に係るバイオ燃料電池
(1)電池構造
(2)電極材料
(3)絶縁性熱伝導体材料
(4)燃料
(5)酵素
(6)集電体・プロトン伝導体・セパレータ
2.第一実施形態の変形例に係るバイオ燃料電池
(1)電池構造
(2)断熱材
3.第二実施形態に係るバイオ燃料電池
(1)電池構造
(2)熱伝導体材料
4.第三実施形態に係るバイオ燃料電池
5.第四実施形態に係るバイオ燃料電池
6.第五実施形態に係るバイオ燃料電池
7.バイオリアクタ及びバイオセンサ
Hereinafter, preferred embodiments for carrying out the present technology will be described. In addition, embodiment described below shows an example of typical embodiment of this technique, and, thereby, the scope of this technique is not interpreted narrowly. The description will be made in the following order.

1. 1. Biofuel cell according to the first embodiment (1) Battery structure (2) Electrode material (3) Insulating heat conductor material (4) Fuel (5) Enzyme (6) Current collector / proton conductor / separator 2. Biofuel cell according to modification of first embodiment (1) Cell structure (2) Heat insulating material 3. Biofuel cell according to the second embodiment (1) Cell structure (2) Thermal conductor material 4. Biofuel cell according to the third embodiment 5. Biofuel cell according to the fourth embodiment 6. Biofuel cell according to fifth embodiment Bioreactor and biosensor

1.第一実施形態に係るバイオ燃料電池
図1に、本技術の第一実施形態に係るバイオ燃料電池の構成を示す。
1. Biofuel Cell According to First Embodiment FIG. 1 shows a configuration of a biofuel cell according to the first embodiment of the present technology.

(1)電池構造
図中、符号Aで示すバイオ燃料電池は、電池筐体1と、電池筐体1内に配設された電極2と、少なくとも一部が電極2に接触するとともに、少なくとも一部が電池筐体1外に露出して配置された絶縁性熱伝導体3と、を含んでなる。
(1) Battery structure In the figure, a biofuel cell indicated by symbol A includes a battery housing 1, an electrode 2 disposed in the battery housing 1, and at least a part of which is in contact with the electrode 2, and at least one And an insulating heat conductor 3 that is disposed so as to be exposed outside the battery housing 1.

ここでは電極2としてひとつの電極のみを図示しているが、バイオ燃料電池Aは、燃料の酸化反応により電子を取り出す負極(燃料極)と、外部から供給される酸素の還元反応を行なう正極(空気極)とを有する。以下、「電極2」と称する場合は、負極であってもよく、正極であってもよいものとして説明を行う。   Here, only one electrode is shown as the electrode 2, but the biofuel cell A has a negative electrode (fuel electrode) that extracts electrons by a fuel oxidation reaction and a positive electrode (reduction reaction of oxygen supplied from the outside) (fuel electrode). Air electrode). Hereinafter, the term “electrode 2” may be a negative electrode or a positive electrode.

バイオ燃料電池Aは、上記した構成に加えて、燃料、集電体、セパレータおよびプロトン伝導体などの通常のバイオ燃料電池が備える構成を有している。燃料は、負極に接触する状態で電池筐体1の貯留空間11内に充填される。電池筐体1には、内部に燃料を供給するための供給口が設けられ得る。また、電池筐体1には、正極に接触される空気を内部に導入するための導入口も設けられ得る。負極及び正極はそれぞれ集電体に電気的に接続され、各集電体には負極で取り出された電子を正極に送り込む外部回路が接続され得る。セパレータは、ショート防止のため、負極と正極との間に配置される。また、負極と正極との間には、プロトン伝導体(電解液)が電極に接触して充填される。   In addition to the above-described configuration, the biofuel cell A has a configuration included in a normal biofuel cell such as a fuel, a current collector, a separator, and a proton conductor. The fuel is filled in the storage space 11 of the battery housing 1 in a state of being in contact with the negative electrode. The battery housing 1 may be provided with a supply port for supplying fuel therein. The battery housing 1 may also be provided with an introduction port for introducing air that is in contact with the positive electrode. Each of the negative electrode and the positive electrode is electrically connected to a current collector, and each current collector can be connected to an external circuit that sends electrons extracted by the negative electrode to the positive electrode. The separator is disposed between the negative electrode and the positive electrode to prevent a short circuit. In addition, a proton conductor (electrolytic solution) is filled between the negative electrode and the positive electrode in contact with the electrode.

電極2上あるいは電極2内には、燃料の酸化反応あるいは酸素の還元反応を触媒する酵素が存在する。酵素は、電子の授受が可能な限りにおいて、電極2上あるいは電極2内に限られず、電極2近傍に存在していてもよい。   An enzyme that catalyzes the oxidation reaction of fuel or the reduction reaction of oxygen exists on or in the electrode 2. The enzyme is not limited to or on the electrode 2 as long as electrons can be exchanged, and may exist in the vicinity of the electrode 2.

絶縁性熱伝導体3は、電池筐体1外に露出する部分からの温熱あるいは冷熱を接触する電極2に伝導し、電極2及びその近傍の温度を変化させるために機能する。従って、絶縁性熱伝導体3の電池筐体1外に露出する部分に温熱源あるいは冷熱源を接触させることにより、電極2及びその近傍の温度を所望の温度に制御することが可能となる。   The insulative heat conductor 3 conducts heat or cold from a portion exposed to the outside of the battery housing 1 to the contacted electrode 2 and functions to change the temperature of the electrode 2 and the vicinity thereof. Therefore, the temperature of the electrode 2 and the vicinity thereof can be controlled to a desired temperature by bringing the heat source or the cold source into contact with the portion of the insulating heat conductor 3 exposed to the outside of the battery casing 1.

温熱源を用いる場合、絶縁性熱伝導体3を介して電極2を酵素が高い触媒活性を示し得る温度に温めることができる。これにより、低温環境下においても、十分な電池性能を得ることが可能となる。温熱源としては、ヒーター等の汎用の加熱手段を用いてもよいが、人の体温を利用することで電極2を活性至適温度である37℃程度に維持することができる。常時ユビキタスに利用可能な体温を用いることで、室温下においても、バイオ燃料電池Aの内部エネルギーあるいは外部エネルギーを使用したり、別途熱源を用意したりすることなく、電池性能を高められる。   When using a heat source, the electrode 2 can be heated to a temperature at which the enzyme can exhibit high catalytic activity via the insulating heat conductor 3. Thereby, sufficient battery performance can be obtained even in a low temperature environment. Although a general-purpose heating means such as a heater may be used as the heat source, the electrode 2 can be maintained at about 37 ° C., which is the optimum temperature for activity, by using the human body temperature. By using a body temperature that can be used ubiquitously at all times, battery performance can be improved without using internal or external energy of the biofuel cell A or preparing a separate heat source even at room temperature.

また、飲料を燃料として用いようとする場合、飲料が冷やされていると、供給口から飲料を電池筐体内に供給した直後は、低い温度のために燃料の酸化反応の効率が低く、十分な出力を得るためには内部に充填された飲料が室温にまで温まるのを待つ必要がある。このような場合、バイオ燃料電池Aでは、絶縁性熱伝導体3が外気温を迅速に電極2に伝導するため、電極2及びこれに接触する飲料の温度を迅速に室温にまで温めることができ、短時間で発電を開始することができる。さらに、ヒーターや体温等の温熱源を利用すれば、より短い時間で、あるいは瞬時に、発電を開始することも可能となる。   In addition, when the beverage is to be used as fuel, if the beverage is cooled, immediately after the beverage is supplied into the battery case from the supply port, the efficiency of the oxidation reaction of the fuel is low due to the low temperature. In order to obtain output, it is necessary to wait for the beverage filled inside to warm to room temperature. In such a case, in the biofuel cell A, since the insulating heat conductor 3 quickly conducts the outside air temperature to the electrode 2, the temperature of the electrode 2 and the beverage in contact therewith can be quickly raised to room temperature. Power generation can be started in a short time. Furthermore, if a heat source such as a heater or body temperature is used, power generation can be started in a shorter time or instantaneously.

一方、冷熱源を用いる場合、絶縁性熱伝導体3を介して電極2を酵素の触媒活性がないか、あるいは極めて低くなるような低温に冷やすことができる。これにより、バイオ燃料電池Aを使用しない期間において、酵素の経時的な自然劣化を抑制して、性能を維持した状態で電池を保管することが可能となる。冷熱源としては、熱交換器や冷却材などの汎用の冷却手段を用いることができる。   On the other hand, when a cold heat source is used, the electrode 2 can be cooled to a low temperature through which the enzyme has no catalytic activity or becomes extremely low through the insulating heat conductor 3. As a result, during the period when the biofuel cell A is not used, the natural degradation of the enzyme over time can be suppressed, and the cell can be stored while maintaining the performance. As the cold heat source, general-purpose cooling means such as a heat exchanger and a coolant can be used.

(2)電極材料
電極2の材料は、多孔質カーボン、カーボンペレット、カーボンペーパー、カーボンフェルト、炭素繊維又は炭素微粒子の積層体などのカーボン系材料とされる。このうち、特に多孔質のカーボン系材料が好ましい。
(2) Electrode material The material of the electrode 2 is a carbon-based material such as porous carbon, carbon pellets, carbon paper, carbon felt, carbon fiber, or a laminate of carbon fine particles. Of these, porous carbon-based materials are particularly preferable.

(3)絶縁性熱伝導体材料
絶縁性熱伝導体材料3の材料は、窒化アルミニウム、窒化ホウ素及びアルミナなどの焼結セラミックをフィラーとして含む高分子化合物が挙げられる。高分子化合物には、ポリフェニレンスルフィド、エポキシ樹脂、ポリカーボネート樹脂及びシリコーンなどが用いられる。また、絶縁性熱伝導体材料3の材料には、窒化珪素及び炭化珪素などの各種セラミック類を用いることもできる。絶縁性熱伝導体材料3と電極2は、ペースト状の絶縁性高熱伝導材により接着することが可能である。
(3) Insulating thermal conductor material Examples of the material of the insulating thermal conductor material 3 include polymer compounds containing sintered ceramics such as aluminum nitride, boron nitride, and alumina as fillers. As the polymer compound, polyphenylene sulfide, epoxy resin, polycarbonate resin, silicone, or the like is used. In addition, various ceramics such as silicon nitride and silicon carbide can be used as the material of the insulating heat conductor material 3. The insulating heat conductor material 3 and the electrode 2 can be bonded by a paste-like insulating high heat conductive material.

(4)燃料
燃料は、バイオ燃料電池の燃料として使用可能な物質であって、負極上の酸化酵素の基質となり得る物質を一以上含む液体であることが好ましい。燃料として使用可能な物質は、例えば、糖、アルコール、アルデヒド、脂質及びタンパク質などが挙げられる。具体的には、グルコース、フルクトース、ソルボース等の糖類、エタノール、グリセリン等のアルコール類、酢酸、ピルビン酸等の有機酸などが挙げられる。この他にも、脂肪類やタンパク質、これらの糖代謝の中間生成物である有機酸などが挙げられる。なお、燃料溶液には、市販の飲料を用いることができる。
(4) Fuel The fuel is a substance that can be used as a fuel for a biofuel cell, and is preferably a liquid containing at least one substance that can be a substrate for an oxidase on the negative electrode. Examples of substances that can be used as fuel include sugars, alcohols, aldehydes, lipids, and proteins. Specific examples include sugars such as glucose, fructose, and sorbose, alcohols such as ethanol and glycerin, and organic acids such as acetic acid and pyruvic acid. In addition, fats and proteins, organic acids that are intermediate products of these sugar metabolisms, and the like can be mentioned. In addition, a commercially available drink can be used for the fuel solution.

(5)酵素
負極上あるいは負極内には、燃料の酸化還元反応を触媒し、電子を取り出すための酵素が存在する。このような酵素として、グルコースデヒドロゲナーゼ、アルコールデヒドロゲナーゼ、アルデヒドレダクターゼ、アルデヒドデヒドロゲナーゼ、ラクテートデヒドロゲナーゼ、ヒドロキシパルベートレダクターゼなどが挙げられる。負極には、酸化型補酵素、補酵素酸化酵素及び電子伝達メディエーターを固定してもよい。
(5) Enzyme On the negative electrode or in the negative electrode is an enzyme that catalyzes the redox reaction of the fuel and extracts electrons. Examples of such enzymes include glucose dehydrogenase, alcohol dehydrogenase, aldehyde reductase, aldehyde dehydrogenase, lactate dehydrogenase, and hydroxy parbet reductase. An oxidized coenzyme, a coenzyme oxidase, and an electron transfer mediator may be fixed to the negative electrode.

正極上あるいは正極内には、外部から供給される酸素の還元反応を触媒する酵素が存在する。このような酵素として、酸素を反応基質とするオキシダーゼ活性を有する酵素であって、例えばラッカーゼやビリルビンオキシダーゼ、アスコルビン酸オキシダーゼなどが挙げられる。正極には、電子伝達メディエーターを固定してもよい。   An enzyme that catalyzes the reduction reaction of oxygen supplied from the outside exists on or in the positive electrode. Examples of such an enzyme include an enzyme having an oxidase activity using oxygen as a reaction substrate, such as laccase, bilirubin oxidase, and ascorbate oxidase. An electron transfer mediator may be fixed to the positive electrode.

電極2上に酵素が存在する態様は、酵素が固定化膜によって電極表面に固定化されている態様に限定されず、例えば、酸化還元反応を触媒し反応触媒として作用する微生物を電極表面に付着させる態様でもよい。酵素、補酵素及び電子伝達メディエーターの固定化膜による固定化は、従来公知の手法により行うことができる。固定化は、特にポリペプチドなどの生体由来ポリマーを用いて固定化膜を形成することにより行うことが好ましい。なお、ここで「電極の表面」とは、電極の外表面と、電極が多孔質材料により形成される場合には電極内部の空隙の表面と、の両者を含むものとする。   The mode in which the enzyme is present on the electrode 2 is not limited to the mode in which the enzyme is immobilized on the electrode surface by the immobilized membrane. For example, a microorganism that catalyzes a redox reaction and acts as a reaction catalyst is attached to the electrode surface. It is also possible to adopt the mode. Immobilization of an enzyme, a coenzyme and an electron transfer mediator using an immobilization membrane can be performed by a conventionally known method. The immobilization is particularly preferably performed by forming an immobilization film using a bio-derived polymer such as a polypeptide. Here, the “surface of the electrode” includes both the outer surface of the electrode and the surface of the void inside the electrode when the electrode is formed of a porous material.

(6)集電体・プロトン伝導体・セパレータ
集電体は、電池性能の観点から好ましくは金属部材とされる。プロトン伝導体には、電子伝導性がなく、Hの輸送が可能な電解質が用いられる。プロトン伝導体には、例えば、緩衝物質を含む電解液が用いられる。電解液には、特にpH7付近の中性緩衝液が好適に用いられる。セパレータは、電解液あるいはその組成成分を透過可能な材料により形成され、例えばセルロース系不織布やセロファンなどによって形成される。
(6) Current collector / proton conductor / separator The current collector is preferably a metal member from the viewpoint of battery performance. As the proton conductor, an electrolyte that has no electron conductivity and can transport H + is used. As the proton conductor, for example, an electrolytic solution containing a buffer substance is used. As the electrolytic solution, a neutral buffer solution around pH 7 is particularly preferably used. The separator is formed of a material that can permeate the electrolytic solution or its constituent components, and is formed of, for example, a cellulose-based nonwoven fabric or cellophane.

なお、本実施形態の構成は、負極及び正極の両方に燃料溶液が接触する「浸水系」の場合、及び負極のみが燃料溶液に接触する「大気暴露系」の場合の両方に適用可能である。また、本実施形態の構成は、電池本体に電池部が1つ設けられた「単セル」構造のものだけでなく、複数の電池部が直列又は並列に接続されている構造のものにも適用することが可能である。   The configuration of the present embodiment is applicable to both the “immersion system” in which the fuel solution is in contact with both the negative electrode and the positive electrode, and the “atmosphere exposure system” in which only the negative electrode is in contact with the fuel solution. . In addition, the configuration of the present embodiment is applicable not only to a “single cell” structure in which one battery part is provided in the battery body, but also to a structure in which a plurality of battery parts are connected in series or in parallel. Is possible.

2.第一実施形態の変形例に係るバイオ燃料電池
図2に、本技術の第一実施形態の変形例に係るバイオ燃料電池の構成を示す。
2. FIG. 2 shows a configuration of a biofuel cell according to a modification of the first embodiment of the present technology.

(1)電池構造
図中、符号Bで示すバイオ燃料電池は、電池筐体1と、電池筐体1内に配設された電極2と、少なくとも一部が電極2に接触するとともに、少なくとも一部が電池筐体1外に露出して配置された絶縁性熱伝導体3と、を含んでなる。絶縁性熱伝導体3の一部は、断熱材31によって被覆されている。
(1) Battery structure In the figure, a biofuel cell indicated by symbol B includes a battery casing 1, an electrode 2 disposed in the battery casing 1, and at least a part of which is in contact with the electrode 2 and at least one of them. And an insulating heat conductor 3 that is disposed so as to be exposed outside the battery housing 1. A part of the insulating heat conductor 3 is covered with a heat insulating material 31.

バイオ燃料電池Bにおいて、絶縁性熱伝導体3は、電極2への接触部分と電池筐体1外への露出部分との間が細い柱体となるように形成されている。電池筐体1外に露出する部分からの温熱あるいは冷熱は、柱体部分を伝導し、電極2の温度を変化させる。絶縁性熱伝導体3は、電極2への接触面および電池筐体1外への露出面を除き、柱体部分を含めて断熱材31によって覆われている。これにより、電池筐体1外に露出する部分から電極2への接触部分への熱伝導を効率化できる。   In the biofuel cell B, the insulating heat conductor 3 is formed so that a thin column is formed between the contact portion to the electrode 2 and the exposed portion to the outside of the battery housing 1. Heat or cold from the portion exposed to the outside of the battery housing 1 is conducted through the column portion and changes the temperature of the electrode 2. The insulating heat conductor 3 is covered with a heat insulating material 31 including the columnar portion except for the contact surface to the electrode 2 and the exposed surface to the outside of the battery housing 1. Thereby, the heat conduction from the part exposed outside the battery housing 1 to the contact part to the electrode 2 can be made efficient.

断熱材31を有する点及び絶縁性熱伝導体3の形状以外のバイオ燃料電池Bの構成は、バイオ燃料電池Aと同様であるので説明を省略する。   Since the configuration of the biofuel cell B other than the point having the heat insulating material 31 and the shape of the insulating heat conductor 3 is the same as that of the biofuel cell A, the description thereof is omitted.

(2)断熱材
断熱材31の材料には、グラスウール、ロックウール、羊毛及び炭化コルク等の繊維素材、ウレタン、フェノールフォーム、発砲スチロール、発砲ポリプロピレン等の発泡素材などが利用できる。また、中空構造により断熱性を確保してもよい。
(2) Heat insulating material As the material of the heat insulating material 31, fiber materials such as glass wool, rock wool, wool and carbonized cork, and foam materials such as urethane, phenol foam, foamed polystyrene, foamed polypropylene and the like can be used. Moreover, you may ensure heat insulation by a hollow structure.

3.第二実施形態に係るバイオ燃料電池
図3に、本技術の第二実施形態に係るバイオ燃料電池の構成を示す。
3. Biofuel Cell According to Second Embodiment FIG. 3 shows a configuration of a biofuel cell according to the second embodiment of the present technology.

(1)電池構造
図中、符号Cで示すバイオ燃料電池は、電池筐体1と、電池筐体1内に配設された電極2と、少なくとも一部が電極2に接触するとともに、少なくとも一部が電池筐体1外に露出して配置された絶縁性熱伝導体3と、を含んでなる。さらに、バイオ燃料電池Cは、電極2に対して接触可能に供給される燃料の貯留空間11を挟んで電極2に対向して配置され、少なくとも一部が電池筐体1外に露出された熱伝導材4を有する。
(1) Battery structure In the figure, the biofuel cell indicated by symbol C includes a battery housing 1, an electrode 2 disposed in the battery housing 1, and at least a part of which is in contact with the electrode 2, and at least one And an insulating heat conductor 3 that is disposed so as to be exposed outside the battery housing 1. Furthermore, the biofuel cell C is disposed so as to face the electrode 2 with a fuel storage space 11 supplied so as to come into contact with the electrode 2, and at least part of the heat is exposed to the outside of the battery housing 1. Conductive material 4 is provided.

熱伝導体4は、電池筐体1外に露出する部分から外気温を電池筐体1内の燃料の貯留空間11に伝導する。従って、例えば絶縁性熱伝導体3の電池筐体1外に露出する部分に温熱源を接触させ、電極2及びその近傍の温度を外気温よりも高い温度とした場合には、熱伝導体4付近との温度差により、貯留空間11内の燃料溶液を熱対流(図中矢印参照)させることができる。   The heat conductor 4 conducts the outside air temperature from the portion exposed to the outside of the battery housing 1 to the fuel storage space 11 in the battery housing 1. Therefore, for example, when a heat source is brought into contact with the portion of the insulating heat conductor 3 exposed to the outside of the battery housing 1 and the temperature of the electrode 2 and its vicinity is higher than the outside air temperature, the heat conductor 4 The fuel solution in the storage space 11 can be subjected to thermal convection (see the arrow in the figure) due to the temperature difference with the vicinity.

バイオ燃料電池では、酸化還元反応の進行に伴って、電極近傍の燃料溶液中にpHや燃料濃度、生成物濃度の勾配が形成され、これらによって反応が阻害される場合がある。バイオ燃料電池Cでは、上記のように貯留空間11内の燃料溶液を熱対流させることで、勾配が形成されないようにしたり、形成された勾配を解消するようにしたりでき、電池性能の低下防止あるいは回復が可能である。   In the biofuel cell, as the oxidation-reduction reaction proceeds, gradients of pH, fuel concentration, and product concentration are formed in the fuel solution near the electrode, and the reaction may be inhibited by these. In the biofuel cell C, as described above, the fuel solution in the storage space 11 is convected by heat to prevent the gradient from being formed or to eliminate the formed gradient. Recovery is possible.

熱伝導材4を有する点以外のバイオ燃料電池Cの構成は、バイオ燃料電池Aと同様であるので説明を省略する。   The configuration of the biofuel cell C other than the point having the heat conducting material 4 is the same as that of the biofuel cell A, and thus the description thereof is omitted.

(2)熱伝導体材料
熱伝導体材料4の材料は、窒化アルミニウム、窒化ホウ素及びアルミナなどの焼結セラミックおよび窒化珪素及び炭化珪素などの各種セラミック類や、それらをフィラーとして含むかもしくは単独でポリフェニレンスルフィド、エポキシ樹脂、ポリカーボネート樹脂及びシリコーンなどの高分子化合物が用いられる。また、アルミニウムや銅などの各種金属および、それらにアルマイト加工など被膜処理を施したものも熱伝導体として用いることができる。これらセラミック、高分子化合物、金属を混合して用いてもよい。
(2) Thermal conductor material The material of the thermal conductor material 4 includes sintered ceramics such as aluminum nitride, boron nitride, and alumina, and various ceramics such as silicon nitride and silicon carbide, or includes them alone as a filler. Polymer compounds such as polyphenylene sulfide, epoxy resin, polycarbonate resin and silicone are used. Also, various metals such as aluminum and copper, and those obtained by subjecting them to a coating treatment such as anodizing can be used as the heat conductor. You may mix and use these ceramics, a high molecular compound, and a metal.

4.第三実施形態に係るバイオ燃料電池
図4に、本技術の第三実施形態に係るバイオ燃料電池の構成を示す。
4). Biofuel Cell According to Third Embodiment FIG. 4 shows a configuration of a biofuel cell according to the third embodiment of the present technology.

図中、符号Dで示すバイオ燃料電池は、電池筐体1と、電池筐体1内に配設された電極2と、少なくとも一部が電極2に接触するとともに、少なくとも一部が電池筐体1外に露出して配置された絶縁性熱伝導体3aと、を含んでなる。さらに、バイオ燃料電池Dは、絶縁性熱伝導材3aの電池筐体1外に露出する部分を被覆し得る断熱材31を有する。   In the figure, a biofuel cell indicated by a symbol D includes a battery casing 1, an electrode 2 disposed in the battery casing 1, and at least a part of which is in contact with the electrode 2, and at least a part of the battery casing. 1 and an insulating heat conductor 3a disposed so as to be exposed to the outside. Further, the biofuel cell D has a heat insulating material 31 that can cover a portion of the insulating heat conductive material 3a exposed to the outside of the battery housing 1.

図4(A)は、絶縁性熱伝導材3aが電池筐体1外に露出した状態を示し、(B)は、絶縁性熱伝導材3aが電池筐体1外に露出する部分が断熱材31により被覆された状態を示す。断熱材31は、絶縁性熱伝導材3aの電池筐体1外に露出する部分を被覆する位置((B)参照)と、被覆しない位置((A)参照)との間で位置変更が可能に構成されている。ここでは、断熱材31と一体に絶縁性熱伝導材3bを設け、絶縁性熱伝導材3aが露出する状態では、絶縁性熱伝導材3bを介して温熱あるいは冷熱が電極2に伝導される構成を示した。絶縁性熱伝導材3bは断熱材31とともにスライドし、これによって絶縁性熱伝導材3aが断熱材31に被覆されて、電極2への温熱あるいは冷熱の伝導が遮断される。   4A shows a state where the insulating heat conductive material 3a is exposed to the outside of the battery housing 1, and FIG. 4B shows a portion where the insulating heat conductive material 3a is exposed to the outside of the battery housing 1 as a heat insulating material. The state covered with 31 is shown. The position of the heat insulating material 31 can be changed between a position (see (B)) that covers a portion of the insulating heat conductive material 3a exposed to the outside of the battery casing 1 (see (B)) and a position that does not cover (see (A)). It is configured. Here, the insulating heat conductive material 3b is provided integrally with the heat insulating material 31, and in a state where the insulating heat conductive material 3a is exposed, warm or cold heat is conducted to the electrode 2 through the insulating heat conductive material 3b. showed that. The insulating heat conductive material 3b slides together with the heat insulating material 31, whereby the insulating heat conductive material 3a is covered with the heat insulating material 31, and the conduction of warm or cold heat to the electrode 2 is cut off.

バイオ燃料電池Dでは、図4(A)に示す状態では、絶縁性熱伝導材3bに温熱源あるいは冷熱源を接触させることにより、電極2及びその近傍の温度を所望の温度に制御できる。一方、(B)に示す状態では、温熱源あるいは冷熱源からの熱伝導を断熱材31により遮断して、電極2及びその近傍の加熱あるいは冷却を停止したり、あるいは所定温度とされた電極2及びその近傍の温度を維持したりできる。   In the state shown in FIG. 4A, in the biofuel cell D, the temperature of the electrode 2 and the vicinity thereof can be controlled to a desired temperature by bringing the heat source or the cold source into contact with the insulating heat conductive material 3b. On the other hand, in the state shown in (B), heat conduction from the heat source or the cold source is blocked by the heat insulating material 31, and heating or cooling of the electrode 2 and its vicinity is stopped, or the electrode 2 at a predetermined temperature is used. And the temperature in the vicinity thereof can be maintained.

例えば、温熱源として人の体温を利用する場合、図4(A)に示す状態では、絶縁性熱伝導材3bに人体表面を接触させる。これにより、電極2及びその近傍並びに燃料溶液(飲料)の温度を酵素の活性至適温度である37℃程度に加温、維持できる。電池を使用しない場合には、(B)に示すように身体表面からの熱伝導を断熱材31により遮断して、電極2及びその近傍の加熱を停止する。   For example, when the human body temperature is used as a heat source, the surface of the human body is brought into contact with the insulating heat conductive material 3b in the state shown in FIG. Thereby, the temperature of the electrode 2 and its vicinity and the fuel solution (beverage) can be heated and maintained at about 37 ° C. which is the optimum temperature of the enzyme activity. When the battery is not used, heat conduction from the body surface is blocked by the heat insulating material 31 as shown in (B), and heating of the electrode 2 and the vicinity thereof is stopped.

断熱材31の材料は、上述したバイオ燃料電池Bと同様とできる。また、断熱材31を有する点以外のバイオ燃料電池Dの構成は、バイオ燃料電池Aと同様であるので説明を省略する。   The material of the heat insulating material 31 can be the same as that of the biofuel cell B described above. Moreover, since the structure of the biofuel cell D other than the point which has the heat insulating material 31 is the same as that of the biofuel cell A, description is abbreviate | omitted.

5.第四実施形態に係るバイオ燃料電池
図5に、本技術の第四実施形態に係るバイオ燃料電池の構成を示す。
5). Biofuel Cell According to Fourth Embodiment FIG. 5 shows a configuration of a biofuel cell according to the fourth embodiment of the present technology.

図中、符号Eで示すバイオ燃料電池は、電池筐体1と、電池筐体1内に配設された電極2と、少なくとも一部が電極2に接触するとともに、少なくとも一部が電池筐体1外に露出して配置された絶縁性熱伝導体3aと、絶縁性熱伝導材3aの電池筐体1外に露出する部分を被覆し得る断熱材31と、を含んでなる。さらに、バイオ燃料電池Eは、電極2に対して接触可能に供給される燃料の貯留空間11を挟んで電極2に対向して配置され、少なくとも一部が電池筐体1外に露出された熱伝導材4aと、熱伝導材4aの電池筐体1外に露出する部分を被覆し得る断熱材41と、を有する。   In the figure, a biofuel cell indicated by symbol E includes a battery housing 1, an electrode 2 disposed in the battery housing 1, and at least a part of which is in contact with the electrode 2, and at least a part of the battery housing. 1 includes an insulating heat conductor 3a disposed so as to be exposed outside, and a heat insulating material 31 capable of covering a portion of the insulating heat conductive material 3a exposed to the outside of the battery housing 1. Furthermore, the biofuel cell E is disposed opposite to the electrode 2 with a fuel storage space 11 supplied so as to come into contact with the electrode 2, and at least part of the heat is exposed to the outside of the battery housing 1. The conductive material 4a and the heat insulating material 41 which can coat | cover the part exposed outside the battery housing | casing 1 of the heat conductive material 4a are included.

図5(A)は、絶縁性熱伝導材3aが電池筐体1外に露出し、かつ熱伝導材4aの電池筐体1外に露出する部分が断熱材41により被覆された状態を示す。また、(B)は、絶縁性熱伝導材3aが電池筐体1外に露出し、かつ、熱伝導材4aも露出する状態を示す。さらに、(C)は、絶縁性熱伝導材3aの電池筐体1外に露出する部分が断熱材31により被覆され、かつ熱伝導材4aの電池筐体1外に露出する部分も断熱材41により被覆された状態を示す。ここでは、断熱材41と一体に熱伝導材4bを設け、熱伝導材4aが露出する状態では、熱伝導材4bを介して外気温が電池筐体1内の燃料の貯留空間11に伝導される構成を示した。熱伝導材4bは断熱材41とともにスライドし、これによって熱伝導材4aが断熱材41に被覆されて、貯留空間11への外気温の伝導が遮断される。なお、断熱材31と一体に絶縁性熱伝導材3bの構成は、上述したバイオ燃料電池Dと同様である。   FIG. 5A shows a state in which the insulating heat conductive material 3a is exposed to the outside of the battery housing 1 and a portion of the heat conducting material 4a exposed to the outside of the battery housing 1 is covered with the heat insulating material 41. (B) shows a state in which the insulating heat conductive material 3a is exposed to the outside of the battery housing 1 and the heat conductive material 4a is also exposed. Furthermore, (C) shows that the portion of the insulating heat conductive material 3a exposed to the outside of the battery housing 1 is covered with the heat insulating material 31, and the portion of the heat conductive material 4a exposed to the outside of the battery housing 1 is also the heat insulating material 41. The state covered by is shown. Here, when the heat conductive material 4b is provided integrally with the heat insulating material 41 and the heat conductive material 4a is exposed, the outside air temperature is conducted to the fuel storage space 11 in the battery housing 1 through the heat conductive material 4b. The configuration is shown. The heat conductive material 4b slides together with the heat insulating material 41, whereby the heat conductive material 4a is covered with the heat insulating material 41, and the conduction of the outside air temperature to the storage space 11 is cut off. The configuration of the insulating heat conductive material 3b integrally with the heat insulating material 31 is the same as that of the biofuel cell D described above.

バイオ燃料電池Eでは、図5(A)に示す状態では、絶縁性熱伝導材3bに温熱源あるいは冷熱源を接触させることにより、電極2及びその近傍の温度を所望の温度に制御できる。この際、熱伝導材4aは断熱材41により被覆されているため、熱源からの温熱あるいは冷熱が効率的に電極2及びその近傍に蓄熱される。   In the state shown in FIG. 5A, in the biofuel cell E, the temperature of the electrode 2 and the vicinity thereof can be controlled to a desired temperature by bringing the heat source or the cold source into contact with the insulating heat conductive material 3b. At this time, since the heat conductive material 4a is covered with the heat insulating material 41, the heat or cold from the heat source is efficiently stored in the electrode 2 and the vicinity thereof.

引き続き、バイオ燃料電池Eを図5(B)に示す状態とすると、熱伝導材4bを介して外気温が電池筐体1内の燃料の貯留空間11に伝導され、電極2及びその近傍との温度差により、貯留空間11内の燃料溶液を熱対流(図中矢印参照)させることができる。   Subsequently, when the biofuel cell E is in the state shown in FIG. 5B, the outside air temperature is conducted to the fuel storage space 11 in the battery housing 1 via the heat conducting material 4b, and the electrode 2 and the vicinity thereof are connected. Due to the temperature difference, the fuel solution in the storage space 11 can be subjected to thermal convection (see arrows in the figure).

(C)に示す状態では、温熱源あるいは冷熱源からの熱伝導を断熱材31により遮断して、電極2及びその近傍の加熱あるいは冷却を停止したり、あるいは所定温度とされた電極2及びその近傍の温度を維持したりできる。この際、熱伝導材4aも断熱材41により被覆することで、電極2及びその近傍の温度を効果的に維持できる。   In the state shown in (C), heat conduction from the heat source or the cold source is cut off by the heat insulating material 31, and heating or cooling of the electrode 2 and its vicinity is stopped, or the electrode 2 and its temperature set at a predetermined temperature The temperature in the vicinity can be maintained. At this time, by covering the heat conductive material 4a with the heat insulating material 41, the temperature of the electrode 2 and the vicinity thereof can be effectively maintained.

例えば、温熱源として人の体温を利用する場合、図5(A)に示す状態では、絶縁性熱伝導材3bに人体表面を接触させる。これにより、電極2及びその近傍並びに燃料溶液(飲料)の温度を酵素の活性至適温度である37℃程度に加温、維持できる。酸化還元反応の進行に伴って電極近傍の燃料溶液中にpHや燃料濃度、生成物濃度の勾配が形成され、出力が低下してきた場合には、(B)に示すように断熱材41による熱伝導材4aの被覆を解除し、外気温を貯留空間11内に導入して燃料溶液を熱対流させる。これにより、形成された勾配を解消して、電池性能を回復できる。電池を使用しない場合には、身体表面から絶縁性熱伝導材3aへの熱伝導を断熱材31により遮断し、電極2及びその近傍並びに燃料溶液の熱を熱伝導材4aを介して外気に放熱した後、(C)に示すように断熱材41により熱伝導材4aも被覆し、電池を保管する。   For example, when the human body temperature is used as a heat source, the surface of the human body is brought into contact with the insulating heat conductive material 3b in the state shown in FIG. Thereby, the temperature of the electrode 2 and its vicinity and the fuel solution (beverage) can be heated and maintained at about 37 ° C. which is the optimum temperature of the enzyme activity. As the oxidation-reduction reaction proceeds, a gradient of pH, fuel concentration, and product concentration is formed in the fuel solution in the vicinity of the electrode, and when the output decreases, as shown in FIG. The covering of the conductive material 4a is released, the outside air temperature is introduced into the storage space 11, and the fuel solution is convected. Thereby, the formed gradient can be eliminated and the battery performance can be recovered. When the battery is not used, heat conduction from the body surface to the insulating heat conductive material 3a is blocked by the heat insulating material 31, and the heat of the electrode 2 and its vicinity and the fuel solution is radiated to the outside air through the heat conductive material 4a. Then, as shown in (C), the heat conductive material 4a is also covered with the heat insulating material 41, and the battery is stored.

断熱材31,41の材料は、上述したバイオ燃料電池Bの断熱材31と同様とできる。また、断熱材41と、熱伝導体4a、熱伝導体4bを有する点以外のバイオ燃料電池Eの構成は、バイオ燃料電池Dと同様であるので説明を省略する。   The material of the heat insulating materials 31 and 41 can be the same as that of the heat insulating material 31 of the biofuel cell B described above. Moreover, since the structure of the biofuel cell E other than the point which has the heat insulating material 41, the heat conductor 4a, and the heat conductor 4b is the same as that of the biofuel cell D, description is abbreviate | omitted.

6.第五実施形態に係るバイオ燃料電池
図6に、本技術の第五実施形態に係るバイオ燃料電池の構成を示す。
6). Biofuel Cell According to Fifth Embodiment FIG. 6 shows a configuration of a biofuel cell according to the fifth embodiment of the present technology.

図中、符号Fで示すバイオ燃料電池は、電池筐体1と、電池筐体1内に配設された電極2と、少なくとも一部が電極2に接触するとともに、少なくとも一部が電池筐体1外に露出して配置された絶縁性熱伝導体3aと、を含んでなる。さらに、バイオ燃料電池Fは、絶縁性熱伝導材3aの電池筐体1外に露出する部分に接触配置される冷却材5を有する。   In the figure, a biofuel cell indicated by a symbol F includes a battery housing 1, an electrode 2 disposed in the battery housing 1, at least a part of which is in contact with the electrode 2, and at least a part of the battery housing. 1 and an insulating heat conductor 3a disposed so as to be exposed to the outside. Furthermore, the biofuel cell F has a coolant 5 disposed in contact with a portion of the insulating heat conductive material 3a exposed to the outside of the battery casing 1.

図6(A)は、絶縁性熱伝導材3aが電池筐体1外に露出した状態を示し、(B)は、絶縁性熱伝導材3aの電池筐体1外に露出する部分に冷却材5が接触した状態を示す。冷却材5は、断熱材31が形成する収容空間内に着脱可能に取り付けられることが好ましい。冷却材5は、絶縁性熱伝導材3aの電池筐体1外に露出する部分を被覆する位置((B)参照)と、被覆しない位置((A)参照)との間で位置変更が可能に構成されている。ここでは、断熱材31と一体に絶縁性熱伝導材3bを設け、絶縁性熱伝導材3aが露出する状態では、絶縁性熱伝導材3bを介して温熱あるいは冷熱が電極2に伝導される構成を示した。絶縁性熱伝導材3bは断熱材31及び冷却材5とともにスライドし、これによって絶縁性熱伝導材3aに冷却材5が接触し、電極2への冷熱が伝導される。   FIG. 6A shows a state in which the insulating heat conductive material 3a is exposed outside the battery housing 1, and FIG. 6B shows a coolant on the portion of the insulating heat conductive material 3a exposed outside the battery housing 1. 5 shows a contact state. It is preferable that the coolant 5 is detachably attached in the accommodation space formed by the heat insulating material 31. The position of the coolant 5 can be changed between a position (see (B)) where the insulating heat conductive material 3a is exposed to the portion exposed to the outside of the battery casing 1 (see (B)) and a position where it is not covered (see (A)). It is configured. Here, the insulating heat conductive material 3b is provided integrally with the heat insulating material 31, and in a state where the insulating heat conductive material 3a is exposed, warm or cold heat is conducted to the electrode 2 through the insulating heat conductive material 3b. showed that. The insulating heat conductive material 3b slides together with the heat insulating material 31 and the coolant 5, whereby the coolant 5 comes into contact with the insulating heat conductive material 3a, and the cold heat to the electrode 2 is conducted.

バイオ燃料電池Fでは、図6(A)に示す状態では、絶縁性熱伝導材3bに温熱源を接触させることにより、電極2及びその近傍の温度を所望の温度に制御できる。一方、(B)に示す状態では、冷却材5からの冷熱の伝導により、電極2及びその近傍を冷却できる。   In the state shown in FIG. 6A, in the biofuel cell F, the temperature of the electrode 2 and the vicinity thereof can be controlled to a desired temperature by bringing the heat source into contact with the insulating heat conductive material 3b. On the other hand, in the state shown in (B), the electrode 2 and its vicinity can be cooled by conduction of cold heat from the coolant 5.

例えば、温熱源として人の体温を利用する場合、図6(A)に示す状態では、絶縁性熱伝導材3bに人体表面を接触させる。これにより、電極2及びその近傍並びに燃料溶液(飲料)の温度を酵素の活性至適温度である37℃程度に加温、維持できる。電池を使用しない場合には、(B)に示すように絶縁性熱伝導材3aに冷却材5を接触させて、電極2及びその近傍の温度を下げ、酵素の触媒反応を低下あるいは停止させる。   For example, when a human body temperature is used as a heat source, the surface of the human body is brought into contact with the insulating heat conductive material 3b in the state shown in FIG. Thereby, the temperature of the electrode 2 and its vicinity and the fuel solution (beverage) can be heated and maintained at about 37 ° C. which is the optimum temperature of the enzyme activity. When the battery is not used, the coolant 5 is brought into contact with the insulating heat conductive material 3a as shown in (B), the temperature of the electrode 2 and its vicinity is lowered, and the catalytic reaction of the enzyme is reduced or stopped.

冷却材5を着脱可能な構成とした場合、予め冷蔵庫等で冷やしておいた冷却材5を絶縁性熱伝導材3aに接触させることで、電極2及びその近傍の温度を酵素の劣化や変性を防止可能な温度に速やかに下げることができる。これにより、バイオ燃料電池Fの使用を中止する際に、性能を維持した状態で電池を保管することが可能となる。   When the coolant 5 is configured to be detachable, the temperature of the electrode 2 and its vicinity can be reduced or denatured by bringing the coolant 5 that has been cooled in a refrigerator or the like into contact with the insulating heat conductive material 3a. The temperature can be quickly lowered to a preventable temperature. Thereby, when the use of the biofuel cell F is stopped, it becomes possible to store the battery while maintaining the performance.

断熱材31の材料は、上述したバイオ燃料電池Bと同様とできる。また、冷却材5を有する点以外のバイオ燃料電池Fの構成は、バイオ燃料電池Dと同様であるので説明を省略する。   The material of the heat insulating material 31 can be the same as that of the biofuel cell B described above. Moreover, since the structure of the biofuel cell F other than the point which has the coolant 5 is the same as that of the biofuel cell D, description is abbreviate | omitted.

図7には、本技術に係るバイオ燃料電池を身体に装着するための構成を示す。   FIG. 7 shows a configuration for attaching the biofuel cell according to the present technology to the body.

上述のように、本技術に係るバイオ燃料電池は、絶縁性熱伝導体3の電池筐体1外に露出する部分を身体表面に接触させることで、体温を利用して電極2を活性至適温度である37℃程度に温め、維持することができる。   As described above, in the biofuel cell according to the present technology, the portion exposed to the outside of the battery housing 1 of the insulating heat conductor 3 is brought into contact with the body surface, so that the electrode 2 is optimally activated using body temperature. It can be warmed and maintained at a temperature of about 37 ° C.

図中、符号Gで示すバイオ燃料電池は、絶縁性熱伝導体3の電池筐体1外に露出する部分が身体表面に接触した状態で電池を装着するための部材として、バンド6a(A)やクリップ6b(B)を有する。   In the figure, the biofuel cell indicated by symbol G is a band 6a (A) as a member for mounting the battery in a state where the portion of the insulating heat conductor 3 exposed to the outside of the battery housing 1 is in contact with the body surface. And a clip 6b (B).

バンド6aは、例えば腕時計や指輪のように、腕や指の表面に絶縁性熱伝導体3の露出部を接触させて電池を保持するために用いられる。また、クリップ6bは、例えば衣類の襟や袖、あるいは腰部分や胸元部分にバイオ燃料電池Gを取り付けるために用いられる。この際、絶縁性熱伝導体3の露出部が皮膚表面に直接接触して装着されることが好ましい。ただし、電池筐体1の絶縁性熱伝導体3の露出部側が人体表面側に位置する状態であれば、衣類を介して皮膚表面に接して装着される場合にも体温の利用は可能である。   The band 6a is used to hold the battery by bringing the exposed portion of the insulating heat conductor 3 into contact with the surface of the arm or finger, for example, like a wristwatch or a ring. The clip 6b is used for attaching the biofuel cell G to, for example, a collar or sleeve of clothing, a waist portion or a chest portion. At this time, it is preferable that the exposed portion of the insulating heat conductor 3 is attached in direct contact with the skin surface. However, as long as the exposed portion side of the insulating heat conductor 3 of the battery housing 1 is located on the human body surface side, the body temperature can be used even when the battery housing 1 is worn in contact with the skin surface through clothing. .

7.バイオリアクタ及びバイオセンサ
上述したバイオ燃料電池における絶縁性熱伝導材を介した電極及びその近傍の温度制御は、酸化還元酵素を触媒とした物質の酸化還元反応の反応場となる電極を備え、生体触媒を用いて生化学反応を行うバイオリアクタや、該生化学反応による基質特異的な物質の変化により該物質を検出するバイオセンサにも応用が可能である。このようなバイオリアクタあるいはバイオセンサは、酸化還元酵素を固定した電極を反応素子とする。
7). Bioreactor and biosensor In the above-described biofuel cell, the electrode through the insulating heat conductive material and the temperature control in the vicinity thereof are provided with an electrode serving as a reaction field for the oxidation-reduction reaction of a substance using an oxidoreductase as a catalyst. The present invention can also be applied to a bioreactor that performs a biochemical reaction using a catalyst and a biosensor that detects the substance by a change in a substrate-specific substance caused by the biochemical reaction. Such a bioreactor or biosensor uses an electrode on which an oxidoreductase is immobilized as a reaction element.

絶縁性熱伝導材を介して電極(反応素子)及びその近傍の温度を生化学反応に最適な温度に加温することで、生化学反応の速度を高めることができる。このため、上記のバイオリアクタあるいはバイオセンサでは、従来に比べて高い反応速度で所望の物質の反応を行ったり、高い感度で所望の物質の検出を行ったりできる。また、逆に、絶縁性熱伝導材を介して電極(反応素子)及びその近傍を冷却すれば、バイオリアクタあるいはバイオセンサを使用しない期間において、酵素の経時的な自然劣化を抑制して、性能を維持した状態で保管することが可能となる。   The temperature of the biochemical reaction can be increased by heating the electrode (reaction element) and the temperature in the vicinity thereof to an optimum temperature for the biochemical reaction via the insulating heat conductive material. Therefore, in the bioreactor or biosensor described above, a desired substance can be reacted at a higher reaction rate than in the past, or a desired substance can be detected with high sensitivity. Conversely, if the electrode (reaction element) and its vicinity are cooled via an insulating heat conducting material, natural degradation of the enzyme over time can be suppressed during periods when the bioreactor or biosensor is not used. It is possible to store it while maintaining

なお、本技術は、以下のような構成もとることができる。
(1)酸化還元酵素を触媒とした燃料の酸化還元反応の反応場となる電極と、少なくとも一部が電極に接触するとともに、少なくとも一部が電池筐体外に露出して配置された絶縁性熱伝導材と、を有するバイオ燃料電池。
(2)前記電極に対して接触可能に供給される燃料の貯留空間を挟んで前記電極に対向して配置され、少なくとも一部が電池筐体外に露出された熱伝導材を有する上記(1)記載のバイオ燃料電池。
(3)前記絶縁性熱伝導材の電池筐体外に露出する部分および/または前記熱伝導材の電池筐体外に露出する部分を被覆し得る断熱材を有し、該断熱材が、前記絶縁性熱伝導材の電池筐体外に露出する部分および/または前記熱伝導材の電池筐体外に露出する部分を被覆する位置と被覆しない位置との間で位置変更可能に構成されている上記(2)記載のバイオ燃料電池。
(4)前記断熱材が、前記絶縁性熱伝導材の電池筐体外に露出する部分および/または前記熱伝導材の電池筐体外に露出する部分を被覆しない位置にある場合に、前記絶縁性熱伝導材の電池筐体外に露出する部分および/または前記熱伝導材の電池筐体外に露出する部分に接触配置される冷却材を有する上記(3)記載のバイオ燃料電池。
(5)前記絶縁性熱伝導材の電池筐体外に露出する部分を人体表面側に位置させた状態で前記電池筐体を身体に装着するための部材を有する上記(1)〜(4)のいずれかに記載のバイオ燃料電池。
(6)酸化還元酵素を触媒とした物質の酸化還元反応の反応場となる電極と、少なくとも一部が電極に接触するとともに、少なくとも一部が筐体外に露出して配置された絶縁性熱伝導材と、を有するバイオリアクタ。
(7)酸化還元酵素を触媒とした物質の酸化還元反応の反応場となる電極と、少なくとも一部が電極に接触するとともに、少なくとも一部が筐体外に露出して配置された絶縁性熱伝導材と、を有するバイオセンサ。
In addition, this technique can also take the following structures.
(1) Insulating heat disposed at least partly in contact with the electrode and at least partly exposed to the outside of the battery case, and an electrode serving as a reaction field for fuel redox reaction using oxidoreductase as a catalyst And a biofuel cell having a conductive material.
(2) The above (1), comprising a heat conductive material disposed opposite to the electrode with a fuel storage space supplied so as to come into contact with the electrode, and at least a part of which is exposed outside the battery casing. The biofuel cell as described.
(3) It has a heat insulating material which can coat | cover the part exposed outside the battery housing | casing of the said insulating heat conductive material and / or the part exposed outside the battery housing | casing of the said heat conductive material, and this heat insulating material is the said insulating property. (2) The position of the heat conducting material exposed to the outside of the battery case and / or the position of the heat conducting material exposed to the outside of the battery case is changeable between a position covering and a position not covering the part. The biofuel cell as described.
(4) When the heat insulating material is in a position not covering the portion of the insulating heat conductive material exposed to the outside of the battery case and / or the portion of the heat conductive material exposed to the outside of the battery case, the insulating heat The biofuel cell according to (3), further comprising a coolant disposed in contact with a portion of the conductive material exposed to the outside of the battery housing and / or a portion of the heat conductive material exposed to the outside of the battery housing.
(5) The above (1) to (4) having a member for mounting the battery case on the body in a state where the portion of the insulating heat conductive material exposed outside the battery case is positioned on the human body surface side The biofuel cell according to any one of the above.
(6) Insulating heat conduction in which an electrode serving as a reaction field for the oxidation-reduction reaction of a substance using oxidoreductase as a catalyst, and at least part of which is in contact with the electrode and at least part of which is exposed outside the housing And a bioreactor.
(7) Insulating heat conduction in which an electrode serving as a reaction field for the oxidation-reduction reaction of a substance using oxidoreductase as a catalyst, and at least a part of which is in contact with the electrode and at least a part of which is exposed outside the housing And a biosensor.

本技術に係るバイオ燃料電池は、電極及びその近傍の温度を酵素の触媒反応に最適な温度に制御し得るため、酵素の活性至適温度よりも低温あるいは高温の使用環境においても十分な性能を得ることができる。   The biofuel cell according to the present technology can control the temperature of the electrode and the vicinity thereof to an optimum temperature for the catalytic reaction of the enzyme, so that it has sufficient performance even in a use environment at a temperature lower or higher than the optimum temperature of the enzyme activity. Obtainable.

A,B,C,D,E,F,G:バイオ燃料電池、1:電池筐体、11:貯留空間、2:電極、3,3a,3b:絶縁性熱伝導体、31、41:断熱材、4,4a,4b:熱伝導体、5:冷却材、6a:バンド、6b:クリップ
A, B, C, D, E, F, G: biofuel cell, 1: battery housing, 11: storage space, 2: electrode, 3, 3a, 3b: insulating heat conductor, 31, 41: heat insulation Material, 4, 4a, 4b: Thermal conductor, 5: Coolant, 6a: Band, 6b: Clip

Claims (7)

酸化還元酵素を触媒とした燃料の酸化還元反応の反応場となる電極と、
少なくとも一部が電極に接触するとともに、少なくとも一部が電池筐体外に露出して配置された絶縁性熱伝導材と、を有するバイオ燃料電池。
An electrode serving as a reaction field for the oxidation-reduction reaction of the fuel catalyzed by oxidoreductase,
A biofuel cell comprising: an insulative heat conductive material disposed at least partially in contact with the electrode and at least partially exposed outside the battery housing.
前記電極に対して接触可能に供給される燃料の貯留空間を挟んで前記電極に対向して配置され、少なくとも一部が電池筐体外に露出された熱伝導材を有する請求項1記載のバイオ燃料電池。   2. The biofuel according to claim 1, further comprising a heat conducting material that is disposed to face the electrode across a storage space for fuel that is supplied so as to come into contact with the electrode, and at least a part of which is exposed outside the battery casing. battery. 前記絶縁性熱伝導材の電池筐体外に露出する部分および/または前記熱伝導材の電池筐体外に露出する部分を被覆し得る断熱材を有し、
該断熱材が、前記絶縁性熱伝導材の電池筐体外に露出する部分および/または前記熱伝導材の電池筐体外に露出する部分を被覆する位置と被覆しない位置との間で位置変更可能に構成されている請求項2記載のバイオ燃料電池。
A heat insulating material capable of covering a portion of the insulating heat conductive material exposed outside the battery case and / or a portion of the heat conductive material exposed outside the battery case;
The heat insulating material can be repositioned between a position where the insulating heat conductive material is exposed to the outside of the battery case and / or a position where the heat conductive material is exposed to the outside of the battery case and a position where the heat insulating material is not covered. The biofuel cell according to claim 2, which is configured.
前記断熱材が、前記絶縁性熱伝導材の電池筐体外に露出する部分および/または前記熱伝導材の電池筐体外に露出する部分を被覆しない位置にある場合に、
前記絶縁性熱伝導材の電池筐体外に露出する部分および/または前記熱伝導材の電池筐体外に露出する部分に接触配置される冷却材を有する請求項3記載のバイオ燃料電池。
When the heat insulating material is in a position that does not cover a portion of the insulating heat conductive material exposed outside the battery housing and / or a portion of the heat conductive material exposed outside the battery housing,
The biofuel cell according to claim 3, further comprising a coolant disposed in contact with a portion of the insulating heat conductive material exposed to the outside of the battery housing and / or a portion of the heat conductive material exposed to the outside of the battery housing.
前記絶縁性熱伝導材の電池筐体外に露出する部分を人体表面側に位置させた状態で前記電池筐体を身体に装着するための部材を有する請求項4記載のバイオ燃料電池。   5. The biofuel cell according to claim 4, further comprising a member for attaching the battery case to a body in a state where a portion of the insulating heat conductive material exposed to the outside of the battery case is positioned on a human body surface side. 酸化還元酵素を触媒とした物質の酸化還元反応の反応場となる電極と、
少なくとも一部が電極に接触するとともに、少なくとも一部が筐体外に露出して配置された絶縁性熱伝導材と、を有するバイオリアクタ。
An electrode serving as a reaction field for the oxidation-reduction reaction of a substance catalyzed by oxidoreductase,
A bioreactor comprising: an insulative heat conductive material disposed at least partially in contact with the electrode and at least partially exposed outside the housing.
酸化還元酵素を触媒とした物質の酸化還元反応の反応場となる電極と、
少なくとも一部が電極に接触するとともに、少なくとも一部が筐体外に露出して配置された絶縁性熱伝導材と、を有するバイオセンサ。
An electrode serving as a reaction field for the oxidation-reduction reaction of a substance catalyzed by oxidoreductase,
A biosensor comprising: an insulative heat conductive material disposed at least partially in contact with the electrode and at least partially exposed outside the housing.
JP2011140603A 2011-06-24 2011-06-24 Biofuel cell, bioreactor, and biosensor Withdrawn JP2013008562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011140603A JP2013008562A (en) 2011-06-24 2011-06-24 Biofuel cell, bioreactor, and biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011140603A JP2013008562A (en) 2011-06-24 2011-06-24 Biofuel cell, bioreactor, and biosensor

Publications (1)

Publication Number Publication Date
JP2013008562A true JP2013008562A (en) 2013-01-10

Family

ID=47675751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011140603A Withdrawn JP2013008562A (en) 2011-06-24 2011-06-24 Biofuel cell, bioreactor, and biosensor

Country Status (1)

Country Link
JP (1) JP2013008562A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058286A (en) * 2016-07-13 2016-10-26 广东工业大学 Microbial fuel battery capable of achieving bidirectional temperature control
CN106058289A (en) * 2016-07-13 2016-10-26 广东工业大学 Temperature-controlled microbial fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058286A (en) * 2016-07-13 2016-10-26 广东工业大学 Microbial fuel battery capable of achieving bidirectional temperature control
CN106058289A (en) * 2016-07-13 2016-10-26 广东工业大学 Temperature-controlled microbial fuel cell

Similar Documents

Publication Publication Date Title
JP5307316B2 (en) FUEL CELL, METHOD OF USING FUEL CELL, CATHODE ELECTRODE FOR FUEL CELL, ELECTRONIC DEVICE, ELECTRODE REACTION USE DEVICE, AND ELECTRODE REACTION USE DEVICE ELECTRODE
JP5233176B2 (en) Fuel cells and electronics
Barton Oxygen transport in composite mediated biocathodes
CN101884132A (en) Fuel cell, method of manufacturing same, electronic device, immobilized-enzyme electrode, method of manufacturing same, water repellent agent, and enzyme immobilization material
JP2006156354A (en) Electronic mediator, enzyme immobilization electrode, fuel cell, electronic apparatus, vehicle, power generation system, co-generation system and electrode reaction utilization apparatus
JP2006024555A (en) Fuel cell, electronic apparatus, vehicle, power generation system and cogeneration system
Moon et al. Minimum interspatial electrode spacing to optimize air-cathode microbial fuel cell operation with a membrane electrode assembly
JP5526841B2 (en) Fuel cell
JP2009049012A (en) Biofuel cell and manufacturing method thereof, electronic equipment, and enzyme-fixed electrode and manufacturing method thereof
Matsumoto et al. A liposome-based energy conversion system for accelerating the multi-enzyme reactions
EP2594664A1 (en) Device for immobilizing carbon dioxide
CN103907230A (en) Method for manufacturing fuel cell, fuel cell, and electronic device
Shitanda et al. Toward self-powered real-time health monitoring of body fluid components based on improved enzymatic biofuel cells
JP2013008562A (en) Biofuel cell, bioreactor, and biosensor
JP2005310613A (en) Electronic apparatus
JP5949897B2 (en) Biofuel cells and electronic devices
JP2009140824A (en) New fuel cell, and power supply device and electronic device using the fuel cell
JP2013084363A (en) Bio fuel cell module
JP6295630B2 (en) Biofuel cell
CN103959532A (en) Fuel cell
WO2013008725A1 (en) Biofuel cell
JP6671719B2 (en) Gas diffusion electrode material for biofuel cell, method for producing gas diffusion electrode material, biofuel cell provided with gas diffusion electrode material
JP2012099242A (en) Enzyme fuel cell
JP6728589B2 (en) Method for preparing enzyme electrode and method for storing enzyme electrode
WO2011126062A1 (en) Fuel cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902