JP2013007805A - Light source unit, manufacturing method thereof, and beam shaping lens - Google Patents

Light source unit, manufacturing method thereof, and beam shaping lens Download PDF

Info

Publication number
JP2013007805A
JP2013007805A JP2011139085A JP2011139085A JP2013007805A JP 2013007805 A JP2013007805 A JP 2013007805A JP 2011139085 A JP2011139085 A JP 2011139085A JP 2011139085 A JP2011139085 A JP 2011139085A JP 2013007805 A JP2013007805 A JP 2013007805A
Authority
JP
Japan
Prior art keywords
beam shaping
shaping lens
lens
semiconductor laser
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011139085A
Other languages
Japanese (ja)
Inventor
Tomoya Sugita
知也 杉田
Tatsuhiko Sakamoto
達彦 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011139085A priority Critical patent/JP2013007805A/en
Publication of JP2013007805A publication Critical patent/JP2013007805A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • Projection Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten the time required for adjustment work of a light source unit, with respect to a light source unit using a semiconductor laser, a manufacturing method thereof, and a beam shaping lens for use in the light source unit.SOLUTION: A light source unit 4 includes: a base 3; a semiconductor laser 1 disposed on the base 3; and a beam shaping lens 2 which is disposed on the base 3 and adjusts an aspect ratio of an elliptic luminous flux emitted from the semiconductor laser 1. The beam shaping lens 2 includes an optical function part 7 for adjusting the aspect ratio and a flange part 8 provided in the outer periphery of the optical function part 7, and an auxiliary lens 9 for alignment of the beam shaping lens 2 is provided in the flange part 8.

Description

本発明は、半導体レーザを用いた光源ユニットとその製造方法およびこれに用いられるビーム整形レンズに関する。   The present invention relates to a light source unit using a semiconductor laser, a manufacturing method thereof, and a beam shaping lens used therefor.

一般に半導体レーザを用いた光源ユニットは、半導体レーザから出射される光線が、半導体接合面の平行方向と垂直方向とで広がり角が異なり楕円光束となるため、この楕円光束のアスペクト比を調整し円光束に変換させるビーム整形レンズが必要となる。   In general, in a light source unit using a semiconductor laser, the light beam emitted from the semiconductor laser becomes an elliptical light beam with different divergence angles between the parallel direction and the vertical direction of the semiconductor junction surface. A beam shaping lens to be converted into a light beam is required.

そして、楕円光束のアスペクト比を調整する場合、半導体レーザから出射される光線の光軸とビーム整形レンズの光軸を一致させるだけでなく、ビーム整形レンズの光軸を回転軸として回転調整し楕円光束のアスペクト比をキャンセルするように設定する必要がある。   When adjusting the aspect ratio of the elliptical luminous flux, not only make the optical axis of the light beam emitted from the semiconductor laser coincide with the optical axis of the beam shaping lens, but also adjust the rotation with the optical axis of the beam shaping lens as the rotation axis. It is necessary to set so as to cancel the aspect ratio of the luminous flux.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。   As prior art document information related to the invention of this application, for example, Patent Document 1 is known.

特開平9−258099号公報Japanese Patent Laid-Open No. 9-258099

しかしながら、このような光源ユニットは、半導体レーザやビーム整形レンズを、基台の上で一体化する構造であるため、基台上に半導体レーザを配置し、その後、ビーム整形レンズを、半導体レーザからの出射光線の状態を確認しながら位置決めしなければならず、プロジェクタなどの高出力用途においては、半導体レーザの出力の安定や出射後の冷却などで、調整作業に時間がかかってしまうという問題があった。   However, since such a light source unit has a structure in which a semiconductor laser and a beam shaping lens are integrated on a base, the semiconductor laser is arranged on the base, and then the beam shaping lens is separated from the semiconductor laser. In high-power applications such as projectors, there is a problem that adjustment work takes time due to stabilization of the output of the semiconductor laser and cooling after emission. there were.

そこで、本発明はこのような問題を解決し、光源ユニットの調整作業にかかる時間を短縮することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve such problems and to shorten the time required for the light source unit adjustment work.

そして、この目的を達成するために本発明は、基台と、基台に配置された半導体レーザと、基台に配置されて半導体レーザから出射された楕円光束のアスペクト比を調節するビーム整形レンズを備えた光源ユニットにおいて、ビーム整形レンズは、アスペクト比を調節する光学機能部と、この光学機能部の外周に設けたフランジ部を有し、フランジ部にビーム整形レンズの位置合わせ用の補助レンズを設けたのである。   In order to achieve this object, the present invention includes a base, a semiconductor laser disposed on the base, and a beam shaping lens that adjusts the aspect ratio of an elliptical light beam disposed on the base and emitted from the semiconductor laser. The beam shaping lens has an optical function part for adjusting the aspect ratio and a flange part provided on the outer periphery of the optical function part, and an auxiliary lens for aligning the beam shaping lens on the flange part. Is provided.

この構造により本発明は、光源ユニットの調整作業にかかる時間を短縮することが出来るのである。   With this structure, the present invention can shorten the time required for adjusting the light source unit.

本発明に係る光源ユニットの側面図Side view of a light source unit according to the present invention 同光源ユニットの上面図Top view of the light source unit 同光源ユニットを構成するビーム整形レンズの正面図Front view of the beam shaping lens that composes the light source unit 同ビーム整形レンズの配置における光軸調整方法を示す模式図Schematic diagram showing the optical axis adjustment method in the arrangement of the beam shaping lens 同ビーム整形レンズの配置における間隔調整方法を示す模式図Schematic diagram showing the spacing adjustment method in the arrangement of the beam shaping lens 同ビーム整形レンズの成形装置を示す模式図Schematic diagram showing the molding equipment for the beam shaping lens

以下、本発明の一実施の形態における光源ユニットについて図を用いて説明する。   Hereinafter, a light source unit according to an embodiment of the present invention will be described with reference to the drawings.

図1および図2は、半導体レーザ1とビーム整形レンズ2を基台3の主面上で一体化した光源ユニット4を示したものであり、半導体レーザ1から出射された楕円光束の発散光をビーム整形レンズ2によりアスペクト比を調整し円光束の平行光に変換して出射する機能を有している。   FIGS. 1 and 2 show a light source unit 4 in which a semiconductor laser 1 and a beam shaping lens 2 are integrated on the main surface of a base 3, and the divergent light of an elliptical light beam emitted from the semiconductor laser 1 is shown. The beam shaping lens 2 has a function of adjusting the aspect ratio, converting it into a parallel light beam of circular light, and emitting it.

また、ビーム整形レンズ2は、半導体レーザ1から出射された光線のアスペクト比を調整するため、そのレンズ構造を、半導体の接合面と水平な方向と垂直な方向とで開口数が異ならせるように、入射面には図3の破線5で示すような縦長の楕円形状レンズを配置し、出射面には実線6で示すような横長の楕円形状レンズを配置して、単一レンズで所望のビーム整形を実現している。なお、これらアスペクト比を調節する楕円形状レンズを光学機能部7と定義し、その外周に位置する平坦な領域を外部接続用のフランジ部8と定義する。   Further, the beam shaping lens 2 adjusts the aspect ratio of the light beam emitted from the semiconductor laser 1 so that the lens structure has a different numerical aperture between the semiconductor bonding surface and the horizontal and vertical directions. A vertically long elliptical lens as shown by the broken line 5 in FIG. 3 is arranged on the incident surface, and a horizontally long elliptical lens as shown by the solid line 6 is arranged on the outgoing surface, so that a desired beam can be obtained with a single lens. The shaping is realized. The elliptical lens that adjusts the aspect ratio is defined as the optical function unit 7, and the flat region located on the outer periphery thereof is defined as the external connection flange unit 8.

そして、このような光源ユニット4を組み立てるには、まず半導体レーザ1を基台3の所定位置に配置する。なお、半導体レーザ1は、CANタイプやサブマウント実装タイプなど様々なタイプが存在するが、半導体レーザ1の位置および角度は、基台3に設けた当て面やボンディングに用いるはんだの厚さ等の制御により高精度な実装可能であり、従って、基台3に対する半導体レーザ1から出射された光線の光軸もまた高い精度で決定される。   In order to assemble such a light source unit 4, first, the semiconductor laser 1 is disposed at a predetermined position on the base 3. There are various types of semiconductor lasers 1 such as a CAN type and a submount mounting type, but the position and angle of the semiconductor laser 1 are determined such as the contact surface provided on the base 3 and the thickness of solder used for bonding. It is possible to mount with high accuracy by the control. Therefore, the optical axis of the light beam emitted from the semiconductor laser 1 with respect to the base 3 is also determined with high accuracy.

次いでビーム整形レンズ2を配置するのであるが、このとき半導体レーザ1の光軸に対してビーム整形レンズ2の光軸を一致させることと、ビーム整形レンズ2の焦点を半導体レーザ1の出射面に一致するようにビーム整形レンズ2と半導体レーザ1の間隔をあわせることと、ビーム整形レンズ2の直交する開口数の向き(以下、アスペクト比の方向と称す)を楕円光束のアスペクト比をキャンセルするようにビーム整形レンズ2の光軸を回転軸とした回転方向をあわせることが求められる。   Next, the beam shaping lens 2 is disposed. At this time, the optical axis of the beam shaping lens 2 is made to coincide with the optical axis of the semiconductor laser 1, and the focal point of the beam shaping lens 2 is set on the emission surface of the semiconductor laser 1. The interval between the beam shaping lens 2 and the semiconductor laser 1 is adjusted so that they coincide with each other, and the direction of the numerical aperture (hereinafter referred to as the aspect ratio direction) of the beam shaping lens 2 is canceled to cancel the aspect ratio of the elliptical luminous flux. In addition, it is required to match the rotation direction with the optical axis of the beam shaping lens 2 as the rotation axis.

そして、このビーム整形レンズ2においては、光学機能部7の外周に位置するフランジ部8に一対の補助レンズ9をビーム整形レンズのアスペクト比の方向を示すように、実線6の楕円形状レンズの長軸上に対称配置したことにより、先に述べた光軸調整、間隔調整および回転調整といったビーム整形レンズ2の配置にまつわる調整作業を、半導体レーザ1を用いることなく行うことができ、調整作業にかかる時間を短縮することが出来るのである。   In this beam shaping lens 2, the length of the elliptical lens indicated by the solid line 6 is set so that the pair of auxiliary lenses 9 are indicated on the flange portion 8 positioned on the outer periphery of the optical function portion 7 in the direction of the aspect ratio of the beam shaping lens. The symmetrical arrangement on the axis makes it possible to perform the adjustment operations related to the arrangement of the beam shaping lens 2 such as the optical axis adjustment, the interval adjustment, and the rotation adjustment described above without using the semiconductor laser 1, and the adjustment work is required. The time can be shortened.

すなわち、ビーム整形レンズ2を基台3に配置する際、フランジ部8の平坦面と半導体レーザ1の出射面あるいは基台3の壁面を用いて、これらの平行度や間隔により光軸調整や間隔調整の粗調整ができ、また、フランジ部8に一対の補助レンズ9を形成することで、このビーム整形レンズ2のアスペクト比の方向を示す補助レンズ9が、ビーム整形レンズ2の光軸を中心とした回転方向の位置を示すマークとなり、ビーム整形レンズ2の回転方向の粗調整に用いることができる。   That is, when the beam shaping lens 2 is arranged on the base 3, the flat surface of the flange portion 8 and the emission surface of the semiconductor laser 1 or the wall surface of the base 3 are used to adjust the optical axis and the distance depending on the parallelism and the distance between them. Coarse adjustment is possible, and the auxiliary lens 9 indicating the direction of the aspect ratio of the beam shaping lens 2 is formed around the optical axis of the beam shaping lens 2 by forming a pair of auxiliary lenses 9 on the flange portion 8. The mark indicates the position in the rotation direction, and can be used for coarse adjustment in the rotation direction of the beam shaping lens 2.

さらに、この補助レンズ9に対して、半導体レーザ1とは異なる調整用光源(特に図示せず)から調整用光線10を出射して、その結像状態を観察することで微調整を行うことができる。この、ビーム整形レンズ2の配置における微調整は、粗調整された一対の補助レンズ9に対して、図4、図5に示すように半導体レーザ1とは異なる調整用光源(特に図示せず)から調整用光線10を出射し、その結像状態たとえば半導体レーザ1の出射端面に沿った基台3の壁面の現れる調整用光線の集光点の形状や大きさや位置を観察することで、先に述べた光軸調整、間隔調整および回転調整を精度よく確認しながら位置決めし、その後UV接着剤12などを用いて接着固定することができる。これにより従来の課題となっていた調整作業における半導体レーザ1の出力安定化や冷却に要する時間を大幅に削減することができる。   Further, fine adjustment can be performed on the auxiliary lens 9 by emitting an adjustment light beam 10 from an adjustment light source (not shown) different from that of the semiconductor laser 1 and observing its imaging state. it can. This fine adjustment in the arrangement of the beam shaping lens 2 is performed with respect to a pair of coarsely adjusted auxiliary lenses 9 as shown in FIGS. 4 and 5, and an adjustment light source different from the semiconductor laser 1 (not shown). The adjustment light beam 10 is emitted from the light source, and the shape, size and position of the focusing point of the adjustment light beam appearing on the wall surface of the base 3 along the emission end face of the semiconductor laser 1 are observed. The optical axis adjustment, the interval adjustment, and the rotation adjustment described in (1) can be positioned while accurately confirming, and thereafter, the adhesive can be fixed by using the UV adhesive 12 or the like. As a result, the time required for stabilizing the output and cooling of the semiconductor laser 1 in the adjustment work, which has been a conventional problem, can be greatly reduced.

また、ビーム整形レンズ2の光軸調整は、半導体レーザ1とビーム整形レンズ2の光軸が平行で側方にずれる横ズレと、光軸が傾く傾斜ズレに大別され、前者の横ズレについては、調整用光線の集光点の位置合わせを行えばよく、後者の傾斜ズレに対しては、図4に示すように、調整用光線10が補助レンズ9に対して斜め入射となるため、その集光点における結像状態に、コマ収差や集光位置の位置ずれが生じるため、これらを確認しながら微調整することができる。   The optical axis adjustment of the beam shaping lens 2 is roughly divided into a lateral deviation in which the optical axes of the semiconductor laser 1 and the beam shaping lens 2 are parallel and shifted laterally, and an inclination deviation in which the optical axis is inclined. Is sufficient to align the focusing point of the adjustment beam, and the adjustment beam 10 is obliquely incident on the auxiliary lens 9 as shown in FIG. Since coma aberration and misalignment of the condensing position occur in the imaging state at the condensing point, fine adjustment can be performed while confirming these.

また、回転調整についても、ビーム整形レンズ2の回転方向がズレるものであることから、上述した横ズレの調整と同様に、集光点の位置ズレの修正により微調整することができる。   In addition, since the rotation direction of the beam shaping lens 2 is also shifted in the rotation adjustment, it can be finely adjusted by correcting the position shift of the condensing point, similarly to the adjustment of the lateral shift described above.

また、半導体レーザ1とビーム整形レンズ2との間隔調整については、図5に示すように、補助レンズ9により集光される調整用光線10のビーム径が所定の大きさとなることを確認することで微調整できる。なお、このビーム径を観察するにあたっては、基台3に調整用光線10が照射される壁面領域が設けられている。   Further, regarding the adjustment of the distance between the semiconductor laser 1 and the beam shaping lens 2, as shown in FIG. 5, it is confirmed that the beam diameter of the adjustment light beam 10 collected by the auxiliary lens 9 becomes a predetermined size. Can be fine-tuned. In observing the beam diameter, a wall surface area on which the adjustment beam 10 is irradiated is provided on the base 3.

この場合、ビーム整形レンズ2と半導体レーザ1との間隔が狭かったり広かったりすると調整用光線10の集光位置でのビーム径が大きくなり、これとは逆に集光位置でのビーム径が最小のときにビーム整形レンズ2の焦点距離とこの間隔が一致することになるので、この光源ユニット4におけるビーム整形レンズ2に求める光学特性の許容範囲となるように焦点径を調節するのである。   In this case, if the distance between the beam shaping lens 2 and the semiconductor laser 1 is narrow or wide, the beam diameter at the condensing position of the adjustment light beam 10 is large, and conversely, the beam diameter at the condensing position is minimum. Since the focal length of the beam shaping lens 2 coincides with this distance at this time, the focal diameter is adjusted so as to be within an allowable range of optical characteristics required for the beam shaping lens 2 in the light source unit 4.

なお、このようにビーム整形レンズ2の結像状態を確認する方法としては、所期の集光位置となる基台3の壁面に、調整用光線の結像点として許容できる径の貫通孔を設けることで、貫通孔に対する調整用光線のはみ出しを確認することでも微調整することができる。   As a method for confirming the image formation state of the beam shaping lens 2 in this way, a through-hole having a diameter that can be accepted as an image formation point of the adjustment light beam is formed on the wall surface of the base 3 that is an intended condensing position. By providing, fine adjustment can also be performed by confirming the protrusion of the adjustment light beam to the through hole.

また、この微調整に用いる調整用光源としては、He−Neレーザなどの低パワーで可視光の平行拘束を出射する光源を用いることが好ましく、半導体レーザ1とビーム整形レンズ2が近接することから考えて調整用光源はビーム整形レンズ2の出射面側に配置し、補助レンズ9を介した調整用光線10を基台3の壁面に集光させることが好ましい。   Moreover, as the light source for adjustment used for this fine adjustment, it is preferable to use a light source that emits a parallel constraint of visible light with a low power such as a He—Ne laser, because the semiconductor laser 1 and the beam shaping lens 2 are close to each other. Considering this, it is preferable that the adjustment light source is disposed on the exit surface side of the beam shaping lens 2 and the adjustment light beam 10 via the auxiliary lens 9 is condensed on the wall surface of the base 3.

なお、ビーム整形レンズ2に補助レンズ9を設けるには、ビーム整形レンズ2の基本構成となる入射面や出射面と同じ成形工程で成形することが望ましい。なぜなら、上述したようにビーム整形レンズ2は、入射面と出射面のそれぞれのアスペクト比の方向が直行するもので、このアスペクト比の方向を示すマークとして補助レンズ9を用いるのであるから、それぞれを個別に成形していては高精度な位置合わせが困難となるからである。   In order to provide the auxiliary lens 9 in the beam shaping lens 2, it is desirable to mold it by the same molding process as the incident surface and the exit surface which are the basic configuration of the beam shaping lens 2. This is because, as described above, the beam shaping lens 2 is such that the direction of the aspect ratio of each of the entrance surface and the exit surface is orthogonal, and the auxiliary lens 9 is used as a mark indicating the direction of this aspect ratio. This is because it is difficult to perform highly accurate positioning if molded separately.

そこで、これらを一体に成形する方法としては、一般的な光学レンズの成形方法である図6に示すような成形装置11を用いた光学材料12のモールド成形において、成形装置11が、ビーム整形レンズ2の入射面を成形する上金型13と、出射面を成形する下金型14と、これらの摺動規制を行うとともにビーム整形レンズ2の外周側面を成形する胴型15から構成され、下金型14の所定位置に補助レンズ9を形成するための成形面(特に図示せず)を設けておくことで、補助レンズ9が入射面や出射面の光学機能部7と一体に成形されるため、光学機能部7に対して補助レンズ9の位置精度が高められ、かつ、量産において高い再現性を確保することが出来る。   Therefore, as a method of integrally molding them, in the molding of the optical material 12 using the molding apparatus 11 as shown in FIG. 6, which is a general optical lens molding method, the molding apparatus 11 is a beam shaping lens. 2 is composed of an upper mold 13 that molds the incident surface, a lower mold 14 that molds the exit surface, and a body mold 15 that regulates sliding and molds the outer peripheral side surface of the beam shaping lens 2. By providing a molding surface (not shown) for forming the auxiliary lens 9 at a predetermined position of the mold 14, the auxiliary lens 9 is molded integrally with the optical function portion 7 on the entrance surface and the exit surface. Therefore, the positional accuracy of the auxiliary lens 9 with respect to the optical function unit 7 can be increased, and high reproducibility can be ensured in mass production.

本発明は、基台上で半導体レーザとビーム整形レンズを一体化した光源ユニットにおいて、生産性を高めることができるという効果を有し、特にレーザービームプロジェクタなどの高出力用途の光源ユニットにおいて有用となる。   INDUSTRIAL APPLICABILITY The present invention has an effect of improving productivity in a light source unit in which a semiconductor laser and a beam shaping lens are integrated on a base, and is particularly useful in a light source unit for high output applications such as a laser beam projector. Become.

1 半導体レーザ
2 ビーム整形レンズ
3 基台
4 光源ユニット
7 光学機能部
8 フランジ部
9 補助レンズ
DESCRIPTION OF SYMBOLS 1 Semiconductor laser 2 Beam shaping lens 3 Base 4 Light source unit 7 Optical function part 8 Flange part 9 Auxiliary lens

Claims (4)

基台と、この基台に配置された半導体レーザと、前記基台に配置されて前記半導体レーザから出射された楕円光束のアスペクト比を調節するビーム整形レンズを備え、前記ビーム整形レンズは、前記アスペクト比を調節する光学機能部と、この光学機能部の外周に設けたフランジ部を有し、前記フランジ部に前記ビーム整形レンズの位置合わせ用の補助レンズを設けたことを特徴とする光源ユニット。 A base, a semiconductor laser disposed on the base, and a beam shaping lens that is disposed on the base and adjusts an aspect ratio of an elliptical light beam emitted from the semiconductor laser, and the beam shaping lens includes: An optical function unit for adjusting an aspect ratio and a flange portion provided on an outer periphery of the optical function unit, and an auxiliary lens for aligning the beam shaping lens is provided on the flange portion. . 基台と、この基台に配置された半導体レーザと、前記基台上に配置されて前記半導体レーザから出射された楕円光束のアスペクト比を調節するビーム整形レンズとからなり、前記ビーム整形レンズは、前記アスペクト比を調節する光学機能部と、この光学機能部の外周に設けたフランジ部を有し、前記フランジ部に前記ビーム整形レンズの位置合わせ用の補助レンズを有する光源ユニットの製造方法であって、前記補助レンズに前記半導体レーザとは異なる調整用光源から調整用光線を出射して、その結像状態を確認することで位置合わせすることを特徴とした光源ユニットの製造方法。 A base, a semiconductor laser disposed on the base, and a beam shaping lens that is disposed on the base and adjusts an aspect ratio of an elliptical light beam emitted from the semiconductor laser. An optical function unit for adjusting the aspect ratio, and a flange unit provided on an outer periphery of the optical function unit, and the flange unit includes an auxiliary lens for alignment of the beam shaping lens. A method of manufacturing a light source unit, comprising: adjusting light by emitting an adjustment light beam from an adjustment light source different from the semiconductor laser to the auxiliary lens and confirming an imaging state thereof. 調整用光線はビーム整形レンズの射出面側に調整用光線を射出することを特徴とした請求項2に記載の光源ユニットの製造方法。 3. The method of manufacturing a light source unit according to claim 2, wherein the adjustment light beam is emitted to the exit surface side of the beam shaping lens. 半導体レーザから出射された楕円光束のアスペクト比を調節するビーム整形レンズであって、前記ビーム整形レンズは、前記アスペクト比を調節する光学機能部と、この光学機能部の外周に設けたフランジ部を有し、前記フランジ部に前記ビーム整形レンズの位置合わせ用の補助レンズを設けたことを特徴とするビーム整形レンズ。 A beam shaping lens for adjusting an aspect ratio of an elliptical light beam emitted from a semiconductor laser, wherein the beam shaping lens includes an optical function part for adjusting the aspect ratio and a flange part provided on an outer periphery of the optical function part. And a beam shaping lens provided with an auxiliary lens for positioning the beam shaping lens on the flange portion.
JP2011139085A 2011-06-23 2011-06-23 Light source unit, manufacturing method thereof, and beam shaping lens Withdrawn JP2013007805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011139085A JP2013007805A (en) 2011-06-23 2011-06-23 Light source unit, manufacturing method thereof, and beam shaping lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011139085A JP2013007805A (en) 2011-06-23 2011-06-23 Light source unit, manufacturing method thereof, and beam shaping lens

Publications (1)

Publication Number Publication Date
JP2013007805A true JP2013007805A (en) 2013-01-10

Family

ID=47675228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011139085A Withdrawn JP2013007805A (en) 2011-06-23 2011-06-23 Light source unit, manufacturing method thereof, and beam shaping lens

Country Status (1)

Country Link
JP (1) JP2013007805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019116469A1 (en) * 2017-12-13 2019-12-19 三菱電機株式会社 Optical element and parallel light generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019116469A1 (en) * 2017-12-13 2019-12-19 三菱電機株式会社 Optical element and parallel light generator

Similar Documents

Publication Publication Date Title
JP7040548B2 (en) Manufacturing method of multi-channel light emitting module and multi-channel light emitting module
US10466501B2 (en) Optoelectronic modules including an optical system tilted with respect to a focal plane
TW201610398A (en) Light emitter and light detector modules including vertical alignment features
JP2013231937A (en) Optical device and manufacturing method thereof
JP2015153889A (en) laser combining optical device
KR101623651B1 (en) Laser light source module and laser light source device
JP2007286211A (en) Optical member and optical communication module
CN102854632A (en) Laser light source collimating device, collimating device array, lighting system and projection equipment
JP2013007805A (en) Light source unit, manufacturing method thereof, and beam shaping lens
JP3976850B2 (en) Laser beam irradiation direction correction optical system for surveying instrument
JP5273182B2 (en) Optical scanning device manufacturing method and optical scanning device
JP2009271457A (en) Method for manufacturing optical element module
TW200947139A (en) Maskless exposure device
JP2018181927A (en) Optical module
US20140160447A1 (en) Image display device
US11183810B2 (en) Light source module and light source device including the same
US20230335971A1 (en) Light source device
JP2013008764A (en) Light source unit and method for manufacturing the same, and beam shaping lens
JP2007067271A (en) Laser module
JP7117611B2 (en) Beam conversion optical system and light source device
JP6964469B2 (en) Light source device and its manufacturing method
US20210278681A1 (en) Light shaping apparatus
US20200182434A1 (en) Light source module
US10207368B2 (en) Laser cutting apparatus and laser cutting method
CN100489650C (en) Projecting unit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902