JP2013007624A - Displacement observation method and displacement observation system - Google Patents

Displacement observation method and displacement observation system Download PDF

Info

Publication number
JP2013007624A
JP2013007624A JP2011139711A JP2011139711A JP2013007624A JP 2013007624 A JP2013007624 A JP 2013007624A JP 2011139711 A JP2011139711 A JP 2011139711A JP 2011139711 A JP2011139711 A JP 2011139711A JP 2013007624 A JP2013007624 A JP 2013007624A
Authority
JP
Japan
Prior art keywords
displacement
predetermined
image
observation
flange end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011139711A
Other languages
Japanese (ja)
Other versions
JP5909890B2 (en
Inventor
Takashi Hitomi
尚 人見
Nobufumi Takeda
宣典 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2011139711A priority Critical patent/JP5909890B2/en
Publication of JP2013007624A publication Critical patent/JP2013007624A/en
Application granted granted Critical
Publication of JP5909890B2 publication Critical patent/JP5909890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To simply perform accurate displacement observation regarding a bridge girder at low cost.SOLUTION: A displacement observation method includes the steps of: photographing a bridge girder 2 which is an observation target and the side face of a floor slab 7 with a digital video camera 200; extracting still images for every predetermined time from video obtained by photography to perform binarization processing for images within a predetermined range including a flange 5 in the respective still images regarding the flange 5 at a predetermined part, in which a member whose image is included in the still images is H type steel 4, and dimensions in the vertical direction are identified; and specifying a flange end 6 in the images on which the binarization processing is performed within the predetermined range to calculate a displacement amount of the flange 5 on the basis of displacement of unit of the number of pixels among the respective still images at the flange end 6 and the identified dimensions.

Description

本発明は、変位観測方法および変位観測システムに関するものであり、具体的には、橋梁の橋桁や床版に関する精度良好な変位観測を簡便かつ低コストで行う技術に関する。   The present invention relates to a displacement observation method and a displacement observation system, and more specifically to a technique for easily and inexpensively observing displacement with good accuracy for bridge girders and floor slabs of bridges.

各種構造物は様々な外力によって変形を生じることがある。構造物に劣化、損傷などが生じている場合、そうした変形は大きくなる傾向にある。従って構造物の健全性を把握するために変形の観測は重要となる。従来の手法としては、構造物の観測箇所に達する仮設の足場を組み、該当観測箇所に測定子を当接させたダイヤルゲージを設置し、このダイヤルゲージの表示値を観測する手法があるが、観測に際し設置する仮設構造物が大がかりとなり計測が容易でなかった。別の手法として、構造物に振動センサや加速度計を取付け、その計測値の積分処理等を行って変位量を観測するといった技術も提案されている。また他にも、予め観測箇所の画像を撮影しておき、この画像と以後撮影した画像とのずれを観測箇所の変位量として求める手法などもある。   Various structures may be deformed by various external forces. When a structure is deteriorated or damaged, such deformation tends to increase. Therefore, it is important to observe deformation to understand the soundness of the structure. As a conventional method, there is a method of constructing a temporary scaffold that reaches the observation point of the structure, installing a dial gauge with a measuring element in contact with the corresponding observation point, and observing the display value of this dial gauge. The temporary structure to be installed for the observation was large and measurement was not easy. As another method, a technique has been proposed in which a vibration sensor or an accelerometer is attached to a structure, and the displacement is observed by integrating the measured values. In addition, there is a method in which an image of an observation location is captured in advance, and a deviation between this image and the captured image is obtained as a displacement amount of the observation location.

実公平1−36976号公報No. 1-33696 特開平5−339909号公報JP-A-5-339909

観測箇所に計測器具等を直接据え付けて目視観測を行うといった技術に比べ、いわゆる遠隔観測を可能にする点で、撮影画像に基づく変位観測の技術は優れているが、いくつかの課題が残されている。   Displacement observation technology based on photographed images is superior in terms of enabling so-called remote observation compared to the technology of directly observing measuring instruments installed at the observation location, but some problems remain. ing.

例えば、画像撮影の対象であり、撮影画像間での変位量比較の対象とする観測箇所について、その選定が難しいという課題がある。撮影画像間での変位を確実にとらえるためには、撮影可能な相応のサイズの部材を観測箇所として選定しておく必要があるが、そのような観測箇所の選定が出来ない場合、撮影画像間における画素変位と、実際の観測箇所の移動距離すなわち変位量との対応関係を考慮することが非常に難しくなる。この場合、良好な精度の変位量も得られないことになる。更に、従来技術において、観測箇所を正面から捉えた撮影を行えば、撮影画像間の変位量と実際の変位量との対応関係も単純であり、変位量算定も実行可能であるが、撮影時における撮影手段の視準方向が、観測箇所に正対していない場合、撮影画像間の変位量と実際の変位量との対応関係を定めることが難しく、変位量を求めること自体難しくなる。特に、所定スパンで橋脚間に渡された橋桁やそこに架設された床版においては、自動車や鉄道等の移動物体による変位が生じやすく、効率的で確実な変位観測の技術が求められていた。   For example, there is a problem that it is difficult to select an observation location that is a target of image capturing and is a target of displacement amount comparison between captured images. In order to capture the displacement between the captured images with certainty, it is necessary to select a member of an appropriate size that can be captured as an observation location. It is very difficult to consider the correspondence between the pixel displacement at and the movement distance of the actual observation location, that is, the displacement amount. In this case, a displacement with good accuracy cannot be obtained. Furthermore, in the conventional technology, if the imaging is performed by capturing the observation location from the front, the correspondence between the displacement amount between the captured images and the actual displacement amount is simple, and the displacement amount calculation can be performed. If the collimation direction of the imaging means in the above does not face the observation location, it is difficult to determine the correspondence between the displacement amount between the captured images and the actual displacement amount, and it is difficult to determine the displacement amount itself. In particular, the bridge girder passed between the piers with a predetermined span and the floor slab installed on the bridge slab are prone to displacement due to moving objects such as automobiles and railways, and there has been a demand for efficient and reliable displacement observation technology. .

そこで本発明では、橋梁に関する精度良好な変位観測を簡便かつ低コストで行う技術の提供を目的とする。   Accordingly, an object of the present invention is to provide a technique for easily and inexpensively observing a displacement with good accuracy related to a bridge.

上記課題を解決する本発明の変位観測方法は、観測対象である橋梁の橋桁ないし床版の側面をデジタルビデオカメラにより撮影する工程と、前記撮影で得た映像から所定時間毎の静止画像を抽出し、該静止画像中に画像が含まれている部材であり、鉛直方向の寸法が判明している所定箇所に関し、各静止画像において前記所定箇所を含む所定範囲の画像について二値化処理を行う工程と、二値化処理された前記所定範囲の画像において前記所定箇所の端部を特定し、該特定した端部の各静止画像間での画素数単位の変位と前記判明している寸法とに基づいて前記所定箇所の変位量を算定する工程と、を含むことを特徴とする。   The displacement observation method of the present invention that solves the above problems includes a step of photographing a side surface of a bridge girder or floor slab of a bridge to be observed with a digital video camera, and extracting still images at predetermined time intervals from the image obtained by the photographing. The binarization processing is performed on the image in the predetermined range including the predetermined portion in each still image with respect to the predetermined portion where the image is included in the still image and the vertical dimension is known. A step, an end portion of the predetermined position in the binarized image of the predetermined range, and a displacement in units of the number of pixels between the still images of the specified end portion and the known dimensions And calculating a displacement amount of the predetermined portion based on the above.

本発明では、鉛直方向の寸法が設計図書等から予め判明している部分を含み、その変位方向も垂直方向となる部材、すなわち橋桁や床版について画像を撮影し、その撮影画像の解析処理を行うとしているため、撮影画像中の画素の寸法方向と実際の観測箇所での変位方向が元々一致しており、撮影画像における画素の変位量と観測箇所における実際の変位量との関係も明らかで、視準方向が観測箇所に対し正対していなくとも、実際の変位量を精度良好に求めることが可能となる。その結果、該当部材の鉛直方向の変位が撮影できる範囲内であれば、視準方向に囚われずデジタルビデオカメラの設置と、該当部材の撮影を行えるため、観測対象の周囲に障害物が多く存在するといった状況であっても、大がかりな仮設等を伴うことなくそうした状況に柔軟に対応して変位観測を実現することができる。   In the present invention, an image of a member including a part whose vertical dimension is previously known from a design book and the displacement direction of which is also a vertical direction, i.e., a bridge girder and a floor slab, is taken, and analysis processing of the photographed image is performed. As a result, the dimensional direction of the pixels in the captured image and the displacement direction at the actual observation location originally match, and the relationship between the displacement amount of the pixel in the captured image and the actual displacement amount at the observation location is also clear. Even if the collimation direction does not face the observation location, the actual displacement can be obtained with good accuracy. As a result, if the vertical displacement of the relevant member is within the range that can be photographed, the digital video camera can be installed and the relevant member can be photographed regardless of the collimation direction, so there are many obstacles around the observation target. Even in such a situation, displacement observation can be realized flexibly in response to such a situation without involving a large-scale temporary construction.

したがって、橋梁に関する精度良好な変位観測を簡便かつ低コストで行うことが可能となる。   Therefore, it is possible to perform displacement observation with good accuracy related to the bridge simply and at low cost.

なお、前記変位観測方法において、前記所定箇所についての所定時間毎の変位量についてフーリエ変換を実行し、前記所定箇所における変位の振動数を算定する工程を含むとしてもよい。本発明によれば、観測箇所に関して生じる変位がどのような振動数で生じているものか特定可能となり、例えば振動数に応じた変位対策なども考慮出来ることになる。   Note that the displacement observation method may include a step of performing Fourier transform on a displacement amount at a predetermined time for the predetermined location, and calculating a displacement frequency at the predetermined location. According to the present invention, it is possible to specify at what frequency the displacement generated with respect to the observation point is generated, and for example, a countermeasure against displacement according to the frequency can be considered.

また、本発明の変位観測システムは、観測対象である橋梁の橋桁ないし床版の側面を撮影するデジタルビデオカメラと、前記撮影でデジタルビデオカメラが得た映像データを取得し、該映像データから所定時間毎の静止画像を抽出し、該静止画像中に画像が含まれている部材であり、鉛直方向の寸法が判明している所定箇所に関し、各静止画像において前記所定箇所を含む所定範囲の画像について二値化処理を行う処理と、二値化処理された前記所定範囲の画像において前記所定箇所の端部を特定し、該特定した端部の各静止画像間での画素数単位の変位と前記判明している寸法とに基づいて前記所定箇所の変位量を算定する処理を実行する情報処理装置と、を含むことを特徴とする。   In addition, the displacement observation system of the present invention acquires a digital video camera that captures a side surface of a bridge girder or floor slab of a bridge to be observed, and video data obtained by the digital video camera during the shooting, and predetermined from the video data A predetermined range of images including the predetermined portion in each still image, with respect to a predetermined portion where a still image is extracted every time and the image is included in the still image and the vertical dimension is known. Processing for performing binarization processing on the image, specifying an end portion of the predetermined portion in the binarized image of the predetermined range, and a displacement in units of the number of pixels between the still images of the specified end portion And an information processing device that executes a process of calculating a displacement amount of the predetermined location based on the known dimensions.

本発明によれば、橋梁に関する精度良好な変位観測を簡便かつ低コストで行うことが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to perform a displacement observation with a sufficient precision regarding a bridge simply and at low cost.

本実施形態における変位観測システムの説明図である。It is explanatory drawing of the displacement observation system in this embodiment. 本実施形態における変位観測システムを構成する各装置類のハードウェア構成例を示す図である。It is a figure which shows the hardware structural example of each apparatus which comprises the displacement observation system in this embodiment. 本実施形態の変位観測方法の処理手順例を示す説明図である。It is explanatory drawing which shows the process sequence example of the displacement observation method of this embodiment. 本実施形態の二値化画像例を示す説明図である。It is explanatory drawing which shows the example of the binarized image of this embodiment. 本実施形態の変位例を示す説明図である。It is explanatory drawing which shows the example of a displacement of this embodiment. 本実施形態の処理結果例1を示す説明図である。It is explanatory drawing which shows the process result example 1 of this embodiment. 本実施形態の処理結果例2を示す説明図である。It is explanatory drawing which shows the process result example 2 of this embodiment.

−−−システム等の構成例−−−
以下に本発明の実施形態について図面を用いて詳細に説明する。図1は、本実施形態における変位観測システム10の説明図である。本実施形態の変位観測システム10(以下、変位観測システム10とする)は、橋梁に関する精度良好な変位観測を簡便かつ低コストで行うものであり、図1に示すように、情報処理装置100およびデジタルビデオカメラ200で構成されている。変位に関する観測対象となるのは橋梁1の橋桁2ないし床版7となる。橋梁1を車両や鉄道など所定の重量を持った移動体が通行すれば、移動体の自重や移動速度の大きさ等に応じて橋桁2や床版7が振動したり沈み込んだりすることとなる。つまり橋桁2や床版7は鉛直方向に変位することになる。橋梁1の健全性を診断する場合、こうした橋桁2や床版7の変位を観測し変位量を得ておくことは重要である。
--- System configuration example ---
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is an explanatory diagram of a displacement observation system 10 in the present embodiment. A displacement observation system 10 (hereinafter referred to as a displacement observation system 10) according to the present embodiment performs displacement observation with good accuracy on a bridge simply and at low cost. As shown in FIG. The digital video camera 200 is configured. The observation object regarding the displacement is the bridge girder 2 or the floor slab 7 of the bridge 1. If a moving body having a predetermined weight such as a vehicle or a railway passes through the bridge 1, the bridge girder 2 or the floor slab 7 vibrates or sinks according to the weight of the moving body or the magnitude of the moving speed. Become. That is, the bridge girder 2 and the floor slab 7 are displaced in the vertical direction. When diagnosing the soundness of the bridge 1, it is important to observe the displacement of the bridge girder 2 and the floor slab 7 to obtain the displacement amount.

橋梁1を構成する部材のうち、橋桁2については、例えばH型鋼4が構成に含まれることが多い。H型鋼4は仕様が規格化された部材であり、予め各箇所の寸法は判明している。H型鋼4は橋脚間に渡されて、その側面であるフランジ5の端部6を橋桁2の側面3に露出している。このフランジ端部6の厚みは仕様に応じて決まっており、つまり、鉛直方向の寸法が判明していると言える。   Of the members constituting the bridge 1, the bridge girder 2 often includes, for example, an H-shaped steel 4. The H-shaped steel 4 is a member whose specifications are standardized, and the dimensions of each part are already known. The H-shaped steel 4 is passed between the piers, and the end portion 6 of the flange 5 which is the side surface thereof is exposed to the side surface 3 of the bridge girder 2. The thickness of the flange end 6 is determined according to the specification, that is, it can be said that the vertical dimension is known.

そこで本実施形態では、一例としてH型鋼4のフランジ5の端部6について、その変位量を算定することとする。勿論、橋桁2を構成するH型鋼以外の部材、或いは床版7の構成部材であって、予め鉛直方向の寸法が判明している部分であれば、変位量の算定対象として採用できる。   Therefore, in the present embodiment, as an example, the displacement amount of the end portion 6 of the flange 5 of the H-shaped steel 4 is calculated. Needless to say, any member other than the H-shaped steel constituting the bridge girder 2 or a constituent member of the floor slab 7 whose dimension in the vertical direction is known in advance can be adopted as a displacement amount calculation target.

続いて、本実施形態の変位観測システム10を構成する各装置について、そのハードウェア構成を詳述する。図2は、本実施形態における変位観測システム10を構成する各装置らのハードウェア構成例を示す図である。本実施形態の変位観測システム10を構成する情報処理装置100は、コンピュータとして備えるべき、ハードディスクドライブなど不揮発性記憶装置たる記憶部101、RAMなど揮発性記憶装置たるメモリ103、記憶部101のプログラム102をメモリ103に読み出して実行するCPUたる演算部104、ユーザからの指示を受け付けるキーボードやマウス等の入力部105、処理結果を出力するディスプレイ装置やスピーカーといった出力部106、他装置とデータ授受を行うためのインターフェイス部107を備えている。   Subsequently, the hardware configuration of each device constituting the displacement observation system 10 of the present embodiment will be described in detail. FIG. 2 is a diagram illustrating a hardware configuration example of each device configuring the displacement observation system 10 in the present embodiment. The information processing apparatus 100 that constitutes the displacement observation system 10 of this embodiment includes a storage unit 101 that is a non-volatile storage device such as a hard disk drive, a memory 103 that is a volatile storage device such as a RAM, and a program 102 of the storage unit 101. The data is exchanged with an arithmetic unit 104 as a CPU that reads and executes the memory 103, an input unit 105 such as a keyboard and a mouse that receives instructions from a user, an output unit 106 such as a display device and a speaker that outputs processing results, and other devices. The interface unit 107 is provided.

また、変位観測システム10を前記情報処理装置100と共に構成するデジタルビデオカメラ200は、所定レベルのフレームレートで動画撮影が可能なビデオカメラであり、ビデオカメラとして備えるべき一般的構成は勿論具備している。このデジタルビデオカメラ200は、撮影用の光学系装置209や映像データの格納用媒体210(各種記録媒体とそのリーダライタ、ハードディスクドライブ等)の他に、映像データのデジタル処理など各種情報処理を実行するためのコンピュータチップが備わっている。このコンピュータチップは、不揮発性記憶装置たる記憶部201、揮発性記憶装置たるメモリ203、記憶部201からプログラム202をメモリ203に読み出して実行するCPUたる演算部204、および他装置とデータ授受を行うためのインターフェイス部207を含んでいる。   The digital video camera 200 that constitutes the displacement observation system 10 together with the information processing apparatus 100 is a video camera that can shoot moving images at a predetermined frame rate, and of course has a general configuration that should be provided as a video camera. Yes. This digital video camera 200 executes various information processing such as digital processing of video data in addition to the optical system device 209 for photographing and the storage medium 210 for video data (various recording media and their reader / writers, hard disk drives, etc.) A computer chip is provided. This computer chip exchanges data with a storage unit 201 that is a non-volatile storage device, a memory 203 that is a volatile storage device, a calculation unit 204 that is a CPU that reads and executes the program 202 from the storage unit 201, and other devices. The interface unit 207 is included.

続いて、変位観測システム10を構成する情報処理装置100の演算部104が、プログラム102の実行により実現する処理について説明する。情報処理装置100は、前記フランジ端部6を含む所定領域に対する撮影でデジタルビデオカメラ200が得た映像データを、例えば、デジタルビデオカメラ200のインターフェイス部207から取得し、該映像データから所定時間毎の静止画像を抽出し、該静止画像中に画像が含まれている部材であり、鉛直方向の寸法が判明している所定箇所、すなわちH型鋼4のフランジ端部6に関し、各静止画像において前記フランジ端部6を含む所定範囲の画像について二値化処理を行う処理を実行する。   Subsequently, a process realized by the execution of the program 102 by the arithmetic unit 104 of the information processing apparatus 100 configuring the displacement observation system 10 will be described. The information processing apparatus 100 acquires, for example, video data obtained by the digital video camera 200 by shooting for a predetermined area including the flange end 6 from the interface unit 207 of the digital video camera 200, and from the video data every predetermined time. Is a member that includes an image in the still image, and is related to a predetermined location where the vertical dimension is known, that is, the flange end 6 of the H-shaped steel 4 in each still image. Processing for performing binarization processing on an image in a predetermined range including the flange end 6 is executed.

画像の二値化処理は、例えば、画素の濃淡情報が一定閾値より小さければ白色、一定閾値より大きければ黒色といった具合に、各画素を黒白二色に振り分ける処理となる。こうした二値化処理の手法自体は従来手法を採用すればよい。また、こうした二値化処理を実行するためのプログラムが前記プログラム102には含まれている。   The image binarization process is a process of assigning each pixel to black and white, for example, white if the pixel density information is smaller than a certain threshold value, and black if it is larger than the certain threshold value. A conventional method may be adopted as the binarization processing method itself. The program 102 includes a program for executing such binarization processing.

なお、デジタルビデオカメラ200は、情報処理装置100からの映像データ取得要求をインターフェイス部207にて受け付け、この要求に応じて格納用媒体210から映像データを読み出し、これをインターフェイス部207を介して情報処理装置100に送信する。或いは、情報処理装置100のインターフェイス部107に接続された所定の読み取り装置に対し、ユーザがデジタルビデオカメラ200の格納用媒体210をセットし、前記読み取り装置が格納用媒体210から読み取った映像データを情報処理装置100に送るとしてもよい。   The digital video camera 200 receives a video data acquisition request from the information processing apparatus 100 at the interface unit 207, reads video data from the storage medium 210 in response to this request, and transmits this video data to the information via the interface unit 207. It transmits to the processing apparatus 100. Alternatively, the user sets the storage medium 210 of the digital video camera 200 to a predetermined reading apparatus connected to the interface unit 107 of the information processing apparatus 100, and the video data read from the storage medium 210 by the reading apparatus is read out. The information may be sent to the information processing apparatus 100.

また、前記情報処理装置は、二値化処理された前記所定範囲の画像において前記所定箇所の端部すなわちフランジ端部6を特定し、該特定したフランジ端部6の各静止画像間での画素数単位の変位と前記判明している寸法とに基づいて前記フランジ端部6の変位量を算定する処理を実行する。   In addition, the information processing device identifies an end portion of the predetermined portion, that is, the flange end portion 6 in the binarized image of the predetermined range, and pixels between the still images of the specified flange end portion 6 A process of calculating the displacement amount of the flange end 6 based on the displacement of several units and the known dimensions is executed.

二値化処理された前記所定範囲の画像においてフランジ端部6を特定する処理は、情報処理装置100が、例えば入力部105にてユーザから該当画像の指定を受けて特定する場合があげられる。或いは、情報処理装置100が、フランジ端部6の形状パターンのデータ(例:フランジ端部6を描画する際の各線分の長さと描画角度等のデータ)を記憶部101に保持していて、その形状パターンに合致する黒色画素の集合体をフランジ端部6と認識するといった画像認識処理を行う場合もあげられる。   The processing for specifying the flange end 6 in the binarized image of the predetermined range includes a case where the information processing apparatus 100 specifies the image by receiving the designation of the corresponding image from the user at the input unit 105, for example. Alternatively, the information processing apparatus 100 holds the shape pattern data of the flange end portion 6 (for example, data such as the length and drawing angle of each line segment when the flange end portion 6 is drawn) in the storage unit 101, There may be a case where an image recognition process is performed in which an aggregate of black pixels matching the shape pattern is recognized as the flange end 6.

また、特定したフランジ端部6の各静止画像間での画素数単位の変位は、例えば、各静止画像の座標平面上における、前記フランジ端部6に対応した画素の座標値を、一定時間間隔の静止画像間で比較し、各静止画像の前記座標値の間の距離を算定することで得られる。当然、画素の変位量がそのまま実際のフランジ端部6の変位量とならないから、その場合、画素の単位変位量(例:1ピクセル)あたりのフランジ端部6の実際の変位量(例:0.2mm)を示す係数値を情報処理装置100が記憶部101等に予め保持しておき、各静止画像の前記座標値の間の距離すなわち画素の変位量に前記係数値を乗算し、フランジ端部6の変位量を算定するとすればよい。   Further, the displacement in units of the number of pixels between the still images of the specified flange end portion 6 is, for example, the coordinate value of the pixel corresponding to the flange end portion 6 on the coordinate plane of each still image is expressed at a constant time interval. The still images are compared, and the distance between the coordinate values of each still image is calculated. Naturally, since the displacement amount of the pixel does not become the actual displacement amount of the flange end portion 6 as it is, in this case, the actual displacement amount of the flange end portion 6 (eg, 0 pixel) per unit displacement amount (eg, 1 pixel) of the pixel. .2 mm) is previously stored in the storage unit 101 or the like, and the distance between the coordinate values of each still image, that is, the displacement amount of the pixel is multiplied by the coefficient value, and the flange end The displacement amount of the part 6 may be calculated.

ここで、CPU等の演算部によりプログラムを実行することで、必要な機能を実装する例をあげたが、必要な機能を実現する電子回路等を前記情報処理装置100やデジタルビデオカメラ200が備えていて、同様の処理を実行するとしても勿論問題ない。   Here, an example in which a necessary function is implemented by executing a program by a calculation unit such as a CPU has been described. However, the information processing apparatus 100 and the digital video camera 200 include an electronic circuit or the like that realizes a necessary function. Of course, there is no problem even if the same processing is executed.

−−−変位観測方法の手順例−−−
次に、本実施形態における変位観測方法の処理手順について説明する。図3は、本実施形態における変位観測方法の処理手順例を示す説明図である。まず、変位観測対象である橋桁2の側面にレンズを向け、デジタルビデオカメラ200を設置する(s100)。橋桁2とデジタルビデオカメラ200との間の距離は、デジタルビデオカメラ200の望遠撮影機能において所定解像度で前記フランジ端部6を撮影できる距離となる。また、当然ではあるが、橋桁2におけるH型鋼4のフランジ端部6が撮影範囲に収まるよう、デジタルビデオカメラ200の設置高さ、上下左右のレンズ角度は調整される。
---- Example procedure of displacement observation method ---
Next, a processing procedure of the displacement observation method in the present embodiment will be described. FIG. 3 is an explanatory diagram illustrating a processing procedure example of the displacement observation method according to the present embodiment. First, the digital video camera 200 is installed with the lens facing the side surface of the bridge girder 2 that is the object of displacement observation (s100). The distance between the bridge beam 2 and the digital video camera 200 is a distance at which the flange end 6 can be photographed with a predetermined resolution in the telephoto photographing function of the digital video camera 200. Needless to say, the installation height of the digital video camera 200 and the upper, lower, left and right lens angles are adjusted so that the flange end 6 of the H-shaped steel 4 in the bridge girder 2 is within the photographing range.

上述のように設置がなされたデジタルビデオカメラ200のインターフェイス部207と、情報処理装置100のインターフェイス部107とは所定の通信ケーブル、ないし無線通信手段でデータ授受可能に接続しておくと好適である。   It is preferable that the interface unit 207 of the digital video camera 200 installed as described above and the interface unit 107 of the information processing apparatus 100 are connected so as to be able to exchange data using a predetermined communication cable or wireless communication means. .

デジタルビデオカメラ200は、観測担当者からの指示を例えばリモコンからの赤外線通信等を介して受信し、撮影を開始する(s101)。或いは、デジタルビデオカメラ200が、自身で備えるタイマー機能206等で予めセットされた一定時刻の到来を検知して、自律的に撮影を開始するとしてもよい。   The digital video camera 200 receives an instruction from the person in charge of observation through, for example, infrared communication from a remote controller, and starts shooting (s101). Alternatively, the digital video camera 200 may detect the arrival of a certain time set in advance by the timer function 206 provided by the digital video camera 200 and start shooting autonomously.

デジタルビデオカメラ200は、撮影の進行と共に、得られた映像データを格納用媒体210に格納している。或いは、デジタルビデオカメラ200はインターフェイス部207を介して接続された情報処理装置100に対し、映像データを一定時間毎またはリアルタイムにアップロードするとしてもよい。   The digital video camera 200 stores the obtained video data in the storage medium 210 as the shooting progresses. Alternatively, the digital video camera 200 may upload video data to the information processing apparatus 100 connected via the interface unit 207 at regular time intervals or in real time.

一方、情報処理装置100は、映像データ取得要求をデジタルビデオカメラ200に通知する(s102)。他方、デジタルビデオカメラ200は、情報処理装置100からの映像データ取得要求をインターフェイス部207にて受け付け、この要求に応じて格納用媒体210から映像データを読み出し、これをインターフェイス部207を介して情報処理装置100に送信する(s103)。或いは、情報処理装置100のインターフェイス部107に接続された所定の読み取り装置に対し、ユーザがデジタルビデオカメラ200の格納用媒体210をセットし、前記読み取り装置が格納用媒体210から読み取った映像データを情報処理装置100に送るとしてもよい。   On the other hand, the information processing apparatus 100 notifies the digital video camera 200 of a video data acquisition request (s102). On the other hand, the digital video camera 200 accepts a video data acquisition request from the information processing apparatus 100 at the interface unit 207, reads video data from the storage medium 210 in response to this request, and transmits the video data to the information via the interface unit 207. It transmits to the processing apparatus 100 (s103). Alternatively, the user sets the storage medium 210 of the digital video camera 200 to a predetermined reading apparatus connected to the interface unit 107 of the information processing apparatus 100, and the video data read from the storage medium 210 by the reading apparatus is read out. The information may be sent to the information processing apparatus 100.

こうして情報処理装置100は、前記フランジ端部6を含む所定領域に関する映像データを、前記デジタルビデオカメラ200から取得し(s104)、記憶部101に格納する。また情報処理装置100は、前記ステップで取得した映像データを即座に或いは一定期間毎に記憶部101から読み出し、1/30秒といった所定時間毎すなわち各フレームの静止画像を抽出する(s105)。動画からの静止画像の抽出処理については既存の技術を適用すればよい。   In this way, the information processing apparatus 100 acquires video data relating to a predetermined area including the flange end 6 from the digital video camera 200 (s104) and stores it in the storage unit 101. Further, the information processing apparatus 100 reads out the video data acquired in the step immediately or at regular intervals from the storage unit 101, and extracts a still image of each frame, that is, every predetermined time such as 1/30 second (s105). Existing technology may be applied to the process of extracting a still image from a moving image.

次に情報処理装置100は、前記ステップで抽出した各静止画像において、前記H型鋼4のフランジ端部6を含む所定範囲の画像について二値化処理を行う(s106)。画像の二値化処理は、例えば、画素の濃淡情報(コントラスト情報)が示す値と一定閾値とを比較し、濃淡値が閾値より小さければ白色、逆に濃淡値が閾値より大きければ黒色といった具合に、各画素を黒白二色に振り分ける処理となる。こうした二値化処理の手法自体は従来手法を採用すればよい。また、こうした二値化処理を実行するためのプログラムが前記プログラム102には含まれている。   Next, the information processing apparatus 100 performs binarization processing on an image in a predetermined range including the flange end portion 6 of the H-shaped steel 4 in each still image extracted in the step (s106). The binarization processing of the image is performed by, for example, comparing the value indicated by the shading information (contrast information) of the pixel with a certain threshold, white if the shading value is smaller than the threshold, and black if the shading value is greater than the threshold. In addition, each pixel is divided into two colors, black and white. A conventional method may be adopted as the binarization processing method itself. The program 102 includes a program for executing such binarization processing.

続いて情報処理装置100は、前記ステップで二値化処理された前記所定範囲の画像において、前記所定箇所の端部すなわちフランジ端部6を特定する(s107)。二値化処理された前記所定範囲の画像(図4参照)においてフランジ端部6を特定する処理は、情報処理装置100が、例えば入力部105にてユーザから該当画像の指定(範囲指定や要素指定など)を受けて特定する場合があげられる。或いは、情報処理装置100が、フランジ端部6の形状パターンのデータ(例:フランジ端部6を描画する際の各線分の長さ、線分間の距離、描画角度等のデータ)を記憶部101に保持していて、その形状パターンに合致する黒色画素の集合体をフランジ端部6と認識するといった画像認識処理を行う場合もあげられる。   Subsequently, the information processing apparatus 100 identifies the end portion of the predetermined portion, that is, the flange end portion 6 in the image of the predetermined range binarized in the step (s107). In the process of specifying the flange end 6 in the binarized image of the predetermined range (see FIG. 4), the information processing apparatus 100 designates the corresponding image from the user (for example, range designation or element) using the input unit 105, for example. For example). Alternatively, the information processing apparatus 100 stores data on the shape pattern of the flange end 6 (eg, data such as the length of each line segment, the distance between line segments, and the drawing angle when the flange end 6 is drawn). In other words, an image recognition process may be performed in which an aggregate of black pixels matching the shape pattern is recognized as the flange end 6.

情報処理装置100は、前記ステップで特定したフランジ端部6の、各静止画像間での画素数単位の変位と前記判明している寸法とに基づいて前記フランジ端部6の変位量を算定する(s108)。フランジ端部6の各静止画像間での画素数単位の変位は、例えば、各静止画像の座標平面上における、前記フランジ端部6に対応した画素の座標値を、一定時間間隔の静止画像間で比較し、各静止画像の前記座標値の間の距離を算定することで得られる。当然、画素の変位量がそのまま実際のフランジ端部6の変位量とならないから、その場合、既知の寸法値に対する画素数から単位画素あたりの変位量を示す係数値を情報処理装置100が記憶部101等に予め保持しておき、各静止画像の前記座標値の間の距離すなわち画素の変位量に前記係数値を乗算し、フランジ端部6の変位量を算定するとすればよい。   The information processing apparatus 100 calculates the displacement amount of the flange end portion 6 based on the displacement in units of the number of pixels between the still images of the flange end portion 6 specified in the step and the known dimensions. (S108). The displacement in units of the number of pixels between the still images of the flange end 6 is, for example, the coordinate value of the pixel corresponding to the flange end 6 on the coordinate plane of each still image, between the still images at fixed time intervals. And calculating the distance between the coordinate values of each still image. Naturally, since the displacement amount of the pixel does not directly become the displacement amount of the flange end portion 6, the information processing apparatus 100 stores a coefficient value indicating the displacement amount per unit pixel from the number of pixels with respect to the known dimension value. The distance between the coordinate values of each still image, that is, the displacement amount of the pixel may be multiplied by the coefficient value to calculate the displacement amount of the flange end 6.

例えば、図5の例で示すように、時刻Aの静止画像におけるフランジ端部6の所定画素xの座標値(10,10)、時刻Aから1/30秒後の時刻Bの静止画像における前記所定画素xの座標値(10,12)、とする。この場合、画素xは1/30秒の間に、“12−10”=2ピクセルだけ鉛直方向に移動したことがわかる。前記フランジ端部6の鉛直方向の寸法、すなわちフランジ端部6の実際の厚みが例えば20mmであり、静止画像中での該当箇所を示す画素の数が100ピクセルであった場合、画素1ピクセルあたりのフランジ端部6の実際の寸法値は0.2(mm)となる。これは鉛直方向における単位画素変位あたりの実際の変位量に相当する値であり、情報処理装置100はこの値を係数値として記憶部101に予め保持している。この場合、情報処理装置100は、前記画素xの変位量たる2ピクセルに対し、前記係数値である0.2を乗算し、前記時刻A−B間でのフランジ端部6の変位量を“2×0.2”=0.4(mm)と算定する。上述のように、画像中での画素変位とフランジ端部6での実際の変位は両者とも鉛直方向で一致し、前記単位画素変位あたりのフランジ端部6の実際の変位量も特定されているから、フランジ端部6に正対せず例えば斜め横方向からの撮影がなされた場合であっても、得られた画像に基づいた誤差の無い変位量算定が行えることになる。   For example, as shown in the example of FIG. 5, the coordinate value (10, 10) of the predetermined pixel x of the flange end 6 in the still image at time A, the still image at time B 1/30 seconds after time A. The coordinate value (10, 12) of the predetermined pixel x is assumed. In this case, it can be seen that the pixel x has moved in the vertical direction by “12−10” = 2 pixels within 1/30 seconds. When the vertical dimension of the flange end 6, that is, the actual thickness of the flange end 6 is, for example, 20 mm, and the number of pixels indicating the corresponding part in the still image is 100 pixels, The actual dimension value of the flange end 6 is 0.2 (mm). This is a value corresponding to the actual displacement per unit pixel displacement in the vertical direction, and the information processing apparatus 100 holds this value in the storage unit 101 in advance as a coefficient value. In this case, the information processing apparatus 100 multiplies 2 pixels, which is the displacement amount of the pixel x, by 0.2, which is the coefficient value, to obtain the displacement amount of the flange end portion 6 between the time points A and B. Calculated as 2 × 0.2 ″ = 0.4 (mm). As described above, the pixel displacement in the image and the actual displacement at the flange end 6 both coincide in the vertical direction, and the actual displacement amount of the flange end 6 per unit pixel displacement is also specified. Therefore, even when the image is taken from the oblique lateral direction without facing the flange end 6, for example, the displacement amount calculation without error can be performed based on the obtained image.

勿論、上述のように各フレーム毎にフランジ端部6の変位量を算定するのではなく、沈み込みなど比較的長いタイムスパンでの変位に着目して、例えば0.5秒間隔での変位量算定を行うといった処理形態を採用してもよい。   Of course, instead of calculating the displacement amount of the flange end 6 for each frame as described above, focusing on the displacement in a relatively long time span such as sinking, for example, the displacement amount at intervals of 0.5 seconds A processing form in which calculation is performed may be employed.

情報処理装置100は、映像データから得られた各静止画像間に関して、上述したステップs108の処理を実行し、例えば、前記映像データから得ている全ての静止画像について処理を行って、その処理結果を出力部106に表示処理し(s109)、フローを終了することになる。処理結果としては図6に示すグラフのように、経過時間毎のフランジ端部6の変位量を示す折れ線グラフといったものがあげられる。   The information processing apparatus 100 performs the process of step s108 described above between the still images obtained from the video data, for example, performs processing on all the still images obtained from the video data, and the processing result Is displayed on the output unit 106 (s109), and the flow ends. As a processing result, there is a line graph indicating the amount of displacement of the flange end 6 for each elapsed time, as in the graph shown in FIG.

なお、前記情報処理装置100は、図6に例示したような経過時間毎の変位量データについてフーリエ変換を実行し、前記フランジ端部6における変位の振動数を算定する(s110)としてもよい。この場合、前記情報処理装置100は、記憶手段101にてフーリエ変換のプログラムを予め備えており、これを呼び出して実行することとなる。フーリエ変換の実行によって、前記経過時間毎の変位量データから、例えば図7に示すような振動数特性のグラフが得られる。図7のグラフにおいては、フランジ端部6での変位が振動数30Hzで生じている例を示している。このように、観測箇所における変位の振動数が判明することで、例えばその振動数に関する共振対策を橋梁に施すなど、橋梁の管理をより効果的なものとすることも出来る。   Note that the information processing apparatus 100 may perform Fourier transform on the displacement amount data for each elapsed time as illustrated in FIG. 6 to calculate the displacement frequency at the flange end 6 (s110). In this case, the information processing apparatus 100 is provided with a Fourier transform program in the storage unit 101 in advance, and is called and executed. By executing the Fourier transform, a graph of frequency characteristics as shown in FIG. 7 is obtained from the displacement amount data for each elapsed time, for example. The graph of FIG. 7 shows an example in which the displacement at the flange end 6 occurs at a frequency of 30 Hz. Thus, by determining the vibration frequency of the displacement at the observation location, it is possible to make the bridge management more effective, for example, by taking a resonance countermeasure related to the vibration frequency on the bridge.

以上のような本実施形態によれば、橋梁に関する精度良好な変位観測を簡便かつ低コストで行うことが可能となる。   According to the present embodiment as described above, it is possible to perform displacement observation with good accuracy related to the bridge simply and at low cost.

本発明の実施の形態について、その実施の形態に基づき具体的に説明したが、これに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。   Although the embodiment of the present invention has been specifically described based on the embodiment, the present invention is not limited to this, and various modifications can be made without departing from the scope of the invention.

1 橋梁
2 橋桁
3 橋桁の側面
4 H型鋼
5 フランジ
6 フランジ端部
7 床版
10 変位観測システム
100 情報処理装置
101 記憶部
102 プログラム
103 メモリ
104 演算部
105 入力部
106 出力部
107 インターフェイス部
200 デジタルビデオカメラ
201 記憶部
202 プログラム
203 メモリ
204 演算部
206 タイマー機能
207 インターフェイス部
DESCRIPTION OF SYMBOLS 1 Bridge 2 Bridge girder 3 Bridge girder side 4 H-shaped steel 5 Flange 6 Flange end 7 Floor slab 10 Displacement observation system 100 Information processing apparatus 101 Storage part 102 Program 103 Memory 104 Operation part 105 Input part 106 Output part 107 Interface part 200 Digital video Camera 201 Storage unit 202 Program 203 Memory 204 Calculation unit 206 Timer function 207 Interface unit

Claims (3)

観測対象である橋梁の橋桁ないし床版の側面をデジタルビデオカメラにより撮影する工程と、
前記撮影で得た映像から所定時間毎の静止画像を抽出し、該静止画像中に画像が含まれている部材であり、鉛直方向の寸法が判明している所定箇所に関し、各静止画像において前記所定箇所を含む所定範囲の画像について二値化処理を行う工程と、
二値化処理された前記所定範囲の画像において前記所定箇所の端部を特定し、該特定した端部の各静止画像間での画素数単位の変位と前記判明している寸法とに基づいて前記所定箇所の変位量を算定する工程と、
を含むことを特徴とする変位観測方法。
The process of photographing the side of the bridge girder or floor slab of the bridge to be observed with a digital video camera,
A still image is extracted every predetermined time from the video obtained by the shooting, and the still image is a member that includes the image. Performing binarization processing on a predetermined range of images including a predetermined location;
An end portion of the predetermined portion is specified in the binarized image of the predetermined range, and based on the displacement in units of the number of pixels between the still images of the specified end portion and the known dimensions. Calculating a displacement amount of the predetermined portion;
A displacement observation method comprising:
前記所定箇所についての所定時間毎の変位量についてフーリエ変換を実行し、前記所定箇所における変位の振動数を算定する工程を含むことを特徴とする請求項1に記載の変位観測方法。   The displacement observing method according to claim 1, further comprising a step of performing a Fourier transform on a displacement amount at a predetermined time for the predetermined portion and calculating a vibration frequency of the displacement at the predetermined portion. 観測対象である橋梁の橋桁ないし床版の側面を撮影するデジタルビデオカメラと、
前記撮影でデジタルビデオカメラが得た映像データを取得し、該映像データから所定時間毎の静止画像を抽出し、該静止画像中に画像が含まれている部材であり、鉛直方向の寸法が判明している所定箇所に関し、各静止画像において前記所定箇所を含む所定範囲の画像について二値化処理を行う処理と、
二値化処理された前記所定範囲の画像において前記所定箇所の端部を特定し、該特定した端部の各静止画像間での画素数単位の変位と前記判明している寸法とに基づいて前記所定箇所の変位量を算定する処理を実行する情報処理装置と、
を含むことを特徴とする変位観測システム。
A digital video camera that captures the side of the bridge girder or floor slab of the bridge being observed,
The video data obtained by the digital video camera in the shooting is obtained, a still image is extracted from the video data every predetermined time, and the still image includes the image, and the vertical dimension is found. Processing for performing binarization processing on an image in a predetermined range including the predetermined location in each still image with respect to the predetermined location
An end portion of the predetermined portion is specified in the binarized image of the predetermined range, and based on the displacement in units of the number of pixels between the still images of the specified end portion and the known dimensions. An information processing apparatus that executes a process of calculating a displacement amount of the predetermined portion;
A displacement observation system comprising:
JP2011139711A 2011-06-23 2011-06-23 Displacement observation method and displacement observation system Active JP5909890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011139711A JP5909890B2 (en) 2011-06-23 2011-06-23 Displacement observation method and displacement observation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011139711A JP5909890B2 (en) 2011-06-23 2011-06-23 Displacement observation method and displacement observation system

Publications (2)

Publication Number Publication Date
JP2013007624A true JP2013007624A (en) 2013-01-10
JP5909890B2 JP5909890B2 (en) 2016-04-27

Family

ID=47675096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011139711A Active JP5909890B2 (en) 2011-06-23 2011-06-23 Displacement observation method and displacement observation system

Country Status (1)

Country Link
JP (1) JP5909890B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078555A (en) * 2013-10-18 2015-04-23 公益財団法人鉄道総合技術研究所 Bridge pier soundness evaluation device and bridge pier soundness evaluation method
JP2015141151A (en) * 2014-01-30 2015-08-03 国立大学法人 和歌山大学 Measurement apparatus and bridge inspection method
CN106979763A (en) * 2017-05-09 2017-07-25 南京工业大学 A kind of Loads of Long-span Bridges dynamic displacement video sensor system
WO2018043251A1 (en) * 2016-08-31 2018-03-08 日本電気株式会社 Defect detecting device, defect detecting method, and computer-readable recording medium
CN110068282A (en) * 2019-03-18 2019-07-30 杭州电子科技大学 It is a kind of based on photogrammetric hoisting machinery Main beam deformation detection method
CN110455207A (en) * 2019-07-18 2019-11-15 嘉兴同禾传感技术有限公司 Bridge beam slab cuts with scissors gap-like state online recognition device and its application method
CN111962400A (en) * 2020-09-14 2020-11-20 上海同禾工程科技股份有限公司 Bridge dynamic linear monitoring system and monitoring method for bridge construction period
US10914572B2 (en) 2017-02-28 2021-02-09 Panasonic Intellectual Property Management Co., Ltd. Displacement measuring apparatus and displacement measuring method
US10982951B2 (en) 2017-02-28 2021-04-20 Panasonic Intellectual Property Management Co., Ltd. Axle-load measuring apparatus and axle-load measuring method
JP2021152250A (en) * 2020-03-24 2021-09-30 公益財団法人鉄道総合技術研究所 Resonance detection method for bridge and resonance detection device for the same and bridge resonance detection program
CN114087983A (en) * 2021-10-29 2022-02-25 深圳大学 Method for monitoring safety state of pier-beam supporting connection part
US11976960B2 (en) 2018-03-22 2024-05-07 Panasonic Intellectual Property Management Co., Ltd. Axle load measuring apparatus and axle load measuring method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07181075A (en) * 1993-12-22 1995-07-18 Hitachi Zosen Corp Method and apparatus for measuring displacement of object
JP2000162096A (en) * 1998-11-30 2000-06-16 Kurimoto Ltd Measuring method for vibration of civil enginnering and construction structure
JP2001272228A (en) * 2000-03-24 2001-10-05 Railway Technical Res Inst System and method for measuring amount of relative displacement
JP2004325209A (en) * 2003-04-24 2004-11-18 Kokusai Kogyo Co Ltd Measuring device and method for structure displacement
JP2006002873A (en) * 2004-06-18 2006-01-05 Nichizou Tec:Kk Method of designing damping device for attached structure on elevated highway
JP2006330772A (en) * 2005-05-23 2006-12-07 Hitachi Zosen Corp Distortion correction method for photographic image
JP2006329628A (en) * 2005-05-23 2006-12-07 Hitachi Zosen Corp Measuring method of deformation amount in structure
JP2006349578A (en) * 2005-06-17 2006-12-28 Taisei Corp Finished form confirmation system, method and program
JP2007139596A (en) * 2005-11-18 2007-06-07 Toshiba Corp Transportable motion measuring system and motion measuring method
JP2007240218A (en) * 2006-03-07 2007-09-20 Hitachi Zosen Corp Correction method at displacement measuring time by photographed image
JP2007256223A (en) * 2006-03-27 2007-10-04 Ntt Data Corp Structure abnormality determination system, structure abnormality determination method, and program
JP2010230423A (en) * 2009-03-26 2010-10-14 Saxa Inc Instrument and method for measuring amount of displacement
JP2011069797A (en) * 2009-09-28 2011-04-07 Saxa Inc Displacement measuring device and displacement measuring method
JP5834532B2 (en) * 2011-06-23 2015-12-24 株式会社大林組 Mode analysis method and mode analysis system

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07181075A (en) * 1993-12-22 1995-07-18 Hitachi Zosen Corp Method and apparatus for measuring displacement of object
JP2000162096A (en) * 1998-11-30 2000-06-16 Kurimoto Ltd Measuring method for vibration of civil enginnering and construction structure
JP2001272228A (en) * 2000-03-24 2001-10-05 Railway Technical Res Inst System and method for measuring amount of relative displacement
JP2004325209A (en) * 2003-04-24 2004-11-18 Kokusai Kogyo Co Ltd Measuring device and method for structure displacement
JP2006002873A (en) * 2004-06-18 2006-01-05 Nichizou Tec:Kk Method of designing damping device for attached structure on elevated highway
JP2006330772A (en) * 2005-05-23 2006-12-07 Hitachi Zosen Corp Distortion correction method for photographic image
JP2006329628A (en) * 2005-05-23 2006-12-07 Hitachi Zosen Corp Measuring method of deformation amount in structure
JP2006349578A (en) * 2005-06-17 2006-12-28 Taisei Corp Finished form confirmation system, method and program
JP2007139596A (en) * 2005-11-18 2007-06-07 Toshiba Corp Transportable motion measuring system and motion measuring method
JP2007240218A (en) * 2006-03-07 2007-09-20 Hitachi Zosen Corp Correction method at displacement measuring time by photographed image
JP2007256223A (en) * 2006-03-27 2007-10-04 Ntt Data Corp Structure abnormality determination system, structure abnormality determination method, and program
JP2010230423A (en) * 2009-03-26 2010-10-14 Saxa Inc Instrument and method for measuring amount of displacement
JP2011069797A (en) * 2009-09-28 2011-04-07 Saxa Inc Displacement measuring device and displacement measuring method
JP5834532B2 (en) * 2011-06-23 2015-12-24 株式会社大林組 Mode analysis method and mode analysis system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6011019802; 米山聡,外5名: 'デジタル画像相関法を用いた橋梁の非接触たわみ分布測定' 非破壊検査 第55巻,第3号, 20060301, p.119-125, 社団法人日本非破壊検査協会 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078555A (en) * 2013-10-18 2015-04-23 公益財団法人鉄道総合技術研究所 Bridge pier soundness evaluation device and bridge pier soundness evaluation method
JP2015141151A (en) * 2014-01-30 2015-08-03 国立大学法人 和歌山大学 Measurement apparatus and bridge inspection method
WO2018043251A1 (en) * 2016-08-31 2018-03-08 日本電気株式会社 Defect detecting device, defect detecting method, and computer-readable recording medium
JPWO2018043251A1 (en) * 2016-08-31 2019-06-27 日本電気株式会社 Defect detection apparatus, defect detection method, and computer readable recording medium
US10788320B2 (en) 2016-08-31 2020-09-29 Nec Corporation Defect detecting device, defect detecting method, and computer-readable recording medium
US10914572B2 (en) 2017-02-28 2021-02-09 Panasonic Intellectual Property Management Co., Ltd. Displacement measuring apparatus and displacement measuring method
US10982951B2 (en) 2017-02-28 2021-04-20 Panasonic Intellectual Property Management Co., Ltd. Axle-load measuring apparatus and axle-load measuring method
CN106979763A (en) * 2017-05-09 2017-07-25 南京工业大学 A kind of Loads of Long-span Bridges dynamic displacement video sensor system
US11976960B2 (en) 2018-03-22 2024-05-07 Panasonic Intellectual Property Management Co., Ltd. Axle load measuring apparatus and axle load measuring method
CN110068282B (en) * 2019-03-18 2020-10-09 杭州电子科技大学 Method for detecting deformation of main beam of hoisting machine based on photogrammetry
CN110068282A (en) * 2019-03-18 2019-07-30 杭州电子科技大学 It is a kind of based on photogrammetric hoisting machinery Main beam deformation detection method
CN110455207A (en) * 2019-07-18 2019-11-15 嘉兴同禾传感技术有限公司 Bridge beam slab cuts with scissors gap-like state online recognition device and its application method
CN110455207B (en) * 2019-07-18 2024-04-23 浙江同禾传感技术有限公司 Online recognition device for hinge joint state of bridge beam slab and use method thereof
JP2021152250A (en) * 2020-03-24 2021-09-30 公益財団法人鉄道総合技術研究所 Resonance detection method for bridge and resonance detection device for the same and bridge resonance detection program
JP7257729B2 (en) 2020-03-24 2023-04-14 公益財団法人鉄道総合技術研究所 Bridge resonance detection method, its resonance detection device, and bridge resonance detection program
CN111962400A (en) * 2020-09-14 2020-11-20 上海同禾工程科技股份有限公司 Bridge dynamic linear monitoring system and monitoring method for bridge construction period
CN114087983A (en) * 2021-10-29 2022-02-25 深圳大学 Method for monitoring safety state of pier-beam supporting connection part
CN114087983B (en) * 2021-10-29 2024-04-26 深圳大学 Pier-beam support connection position safety state monitoring method

Also Published As

Publication number Publication date
JP5909890B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5909890B2 (en) Displacement observation method and displacement observation system
JP5097765B2 (en) Measuring method, measuring program and measuring device
JP5741313B2 (en) Mode analysis method, mode analysis system, displacement measurement method, and displacement measurement system
CN108476282B (en) Photographing support device and photographing support method
KR101984778B1 (en) Method for multiple image cooperation on diagnosis exterior wall of structure and apparatus for performing the method
JP4005795B2 (en) Vibration measuring device and storage medium
JP7235242B2 (en) Monitoring system and monitoring method
JP4058421B2 (en) Vibration measuring apparatus and measuring method thereof
EP2476999A1 (en) Method for measuring displacement, device for measuring displacement, and program for measuring displacement
KR100458290B1 (en) Method for Measuring Displacement of Structural Members
JP6954367B2 (en) Measurement system, correction processing device, correction processing method, and program
JP6954451B2 (en) Vibration measurement system, vibration measurement device, vibration measurement method, and program
JP7504688B2 (en) Image processing device, image processing method and program
KR102227031B1 (en) Method for monitoring cracks on surface of structure by tracking of markers in image data
JP5834532B2 (en) Mode analysis method and mode analysis system
JP6954452B2 (en) Vibration measurement system, vibration measurement device, vibration measurement method, and program
WO2020145004A1 (en) Photography guide device
JP2019011995A (en) Rigidity measuring device, rigidity measuring method, and program
JP7078928B2 (en) Out-of-plane displacement measurement method using a two-dimensional grid pattern and its device
JP6563723B2 (en) Long member position measurement method
JPWO2019097576A1 (en) Measurement system, correction processing device, correction processing method, and program
KR102434414B1 (en) Vibration measuring system and method using moire pattern
Kalybek Modal analysis and finite element model updating of civil engineering structures using camera-based vibration monitoring systems
JP7060111B2 (en) Columnar structure diagnostic device
Alipour et al. Digital image and video-based measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5909890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150