JP2013007421A - Reinforced composite pipe - Google Patents

Reinforced composite pipe Download PDF

Info

Publication number
JP2013007421A
JP2013007421A JP2011139675A JP2011139675A JP2013007421A JP 2013007421 A JP2013007421 A JP 2013007421A JP 2011139675 A JP2011139675 A JP 2011139675A JP 2011139675 A JP2011139675 A JP 2011139675A JP 2013007421 A JP2013007421 A JP 2013007421A
Authority
JP
Japan
Prior art keywords
composite pipe
foam
braided material
longitudinal direction
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011139675A
Other languages
Japanese (ja)
Inventor
Kojiro Inamori
康次郎 稲森
Toshiyuki Ando
俊之 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2011139675A priority Critical patent/JP2013007421A/en
Publication of JP2013007421A publication Critical patent/JP2013007421A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite pipe that has scratch resistance and can expose the pipe by compressing a coating material in a longitudinal direction.SOLUTION: The composite pipe has a thermal insulation layer composed of a resin foamer around the pipe, and a reinforced layer composed of a braided material 1 around the thermal insulation layer, wherein the maximum area of stitches 4 of the braded material 1 is less than 25 mm.

Description

本発明は複合管に関する。詳しくは、ビル用マルチエアコンの冷熱媒用配管のうち、主にビルの屋上で使用される複合管に関する。   The present invention relates to a composite tube. More specifically, the present invention relates to a composite pipe mainly used on the roof of a building among piping for a cooling medium of a multi air conditioner for a building.

ビル全体の空調を行うシステムとしてビル用マルチエアコンがある。ビル用マルチエアコンは一台の室外機で複数の空調機を運転するので効率がよく、近年、中小型のビルを中心に普及が進んでいる。ビル用マルチエアコンは、ビルの屋上に設置された室外ユニットと、ビル内に設置された室内ユニットと、それらを接続する冷熱媒用配管とから構成されている。
このうち冷熱媒配管は、屋内で使用される部分と、ビルの屋上を中心とする屋外で使用される部分とに分けられる。屋内で使用される冷熱媒用配管としては、管の周囲に高断熱な軟質樹脂発泡体を被覆した複合管が用いられてきた。しかし、屋外配管に前記軟質樹脂発泡体を使用すると、たとえばカラスに突かれたときに耐傷性が不足するという問題があった。
そこで冷熱媒用配管の屋外に暴露される部分は、金属製の保護カバーで覆うか、またはテープで保護されるのが一般的であった(特許文献1参照)。しかし、前記保護カバーは、管を敷設してから後付けされることになるので、工期の遅延、コストの上昇を招くという問題があった。
このような保護カバーを不要にした発明として特許文献2に記載のものがある。特許文献2では、発泡体の周囲を硬い非発泡シースで被覆することで、保護カバーがなくても耐傷性や耐候性をもたせた複合管を開示している。
There is a multi air conditioner for buildings as a system for air conditioning the entire building. Multi-air conditioners for buildings are efficient because a plurality of air conditioners are operated by a single outdoor unit, and in recent years, the spread of air conditioners is progressing mainly in small and medium buildings. The multi air conditioner for buildings is composed of an outdoor unit installed on the roof of the building, an indoor unit installed in the building, and a cooling medium pipe connecting them.
Among these, the cooling medium piping is divided into a portion used indoors and a portion used outdoors mainly on the rooftop of the building. As a pipe for a cooling medium used indoors, a composite pipe in which a highly heat-insulating soft resin foam is coated around the pipe has been used. However, when the soft resin foam is used for outdoor piping, there is a problem that the scratch resistance is insufficient when it is struck by a crow, for example.
Therefore, the portion of the cooling medium piping exposed to the outside is generally covered with a metal protective cover or protected with a tape (see Patent Document 1). However, since the protective cover is retrofitted after the pipe is laid, there is a problem that the construction period is delayed and the cost is increased.
There exists a thing of patent document 2 as invention which made such a protective cover unnecessary. Patent Document 2 discloses a composite pipe that is provided with scratch resistance and weather resistance by covering a foam with a hard non-foamed sheath without a protective cover.

特開2002−310382号公報JP 2002-310382 A 特開2006−308087号公報JP 2006-308087 A

しかし、特許文献2の複合管はシースが硬質なため、施工時に長手方向に人力で圧縮することは困難であった。このため、従来の軟質樹脂発泡体では可能だったエルボ接続手法、すなわち、発泡体を長手方向に圧縮して銅管を露出させ、銅管同士をろう付けしてから圧縮していた発泡体を元に戻す、という方法がとれなかった。
本発明は上述の課題を解決するためのものである。すなわち本発明は、耐傷性があり、かつ被覆材を長手方向に圧縮して管本体を露出させることが可能な複合管を提供するものである。
However, since the composite pipe of Patent Document 2 has a hard sheath, it has been difficult to compress manually in the longitudinal direction during construction. For this reason, the elbow connection method that was possible with conventional soft resin foams, that is, foams that were compressed after the copper pipes were exposed by compressing the foam in the longitudinal direction and brazing the copper pipes together I couldn't get it back.
The present invention is to solve the above-described problems. That is, the present invention provides a composite tube that is scratch resistant and capable of exposing a tube body by compressing a covering material in the longitudinal direction.

長手方向に圧縮するためには被覆材の発泡体は軟質でなければならない。これには、従来の軟質発泡体、例えば発泡倍率30倍以上の架橋ポリエチレン発泡体やゴム発泡体等を用いればよい。しかし、前述のように軟質発泡体だけでは耐傷性と耐候性に劣る。そこで本発明者らは、発泡体の周囲にフレキシブルかつ耐傷、耐候性に優れる素材として編組材を被覆すればよいと考えた。編組材とは金属やエンジニアリングプラスチックの繊維を平板やチューブ状に編み込んだフレキシブルかつ強靭な素材である。特に3本網代編みの編組材を用いれば、編組材の拡径、縮径が可能なため、1つの編素材で複数の断熱材径に対応できるという利点が付与される。
しかし、3本網代編みの編組材をそのまま使用することには問題があった。
3本網代編みの編組材は伸縮性を有し、長手方向に圧縮、あるいは伸長することで内径を変化させることができる。つまり、図1に示すように長手方向に最大限に圧縮(白矢印方向)したときに内径は最大となり、図2に示すように最大限に伸長(白矢印方向)したときに内径は最小となる。これら、最大限に圧縮あるいは伸長したときは編組の繊維間に隙間は見られない。しかし、最大圧縮と最大伸長の中間の状態では図3のように編組の繊維間に隙間4があき、その隙間をカラスに突かれると内部の断熱材が破損する可能性があった。
本発明者らは鋭意検討した結果、編組材を用い隙間の大きさがある一定値より小さくなるようにすればカラスは突かないか、突いてもすぐにあきらめるので樹脂発泡体が保護されることを見出した。つまり、隙間の大きさがある一定の大きさより小さくなるように編組材を織ればカラスに突かれることを抑制でき、かつ、その保護材の径を圧縮・伸長により変化させうることを見出し、この知見に基づき本発明をなすに至った。
すなわち上記課題は以下の手段により解決された。
(1)管の周囲に樹脂発泡体からなる断熱材層を有し、さらに前記断熱材層の周囲に編組材からなる保護強化層を有する複合管であって、前記編組材の隙間の最大面積が25mm以下であることを特徴とする複合管。
(2)前記樹脂発泡体が被覆管上、長手方向に易圧縮性であることを特徴とする(1)記載の複合管。
(3)前記編組材の編み方が3本網代編みであることを特徴とする(1)または(2)記載の複合管。
(4)(1)、(2)または(3)に記載の複合管を屋外の配管に使用した、ビル用空調マルチエアコンシステム。
(5)周囲に樹脂発泡体からなる断熱材層を有する管材に対し、軟質発泡体の周囲に編組材を長手方向に圧縮することにより拡径してからかぶせ、次に編組材を長手方向に伸長することにより縮径して軟質発泡体に密着させて、前記編組材の隙間の最大面積を25mm以下とすることを特徴とする、保護強化複合管の製造方法。
In order to compress in the longitudinal direction, the foam of the covering must be soft. For this purpose, a conventional soft foam, for example, a crosslinked polyethylene foam having a foaming ratio of 30 times or more, a rubber foam or the like may be used. However, as described above, the soft foam alone is inferior in scratch resistance and weather resistance. Therefore, the present inventors thought that the braided material should be covered around the foam as a material that is flexible and excellent in scratch resistance and weather resistance. A braided material is a flexible and tough material in which fibers of metal or engineering plastic are knitted into a flat plate or tube shape. In particular, if a braided material with three nets is used, the diameter of the braided material can be increased and reduced, so that the advantage that one knitted material can cope with a plurality of heat insulating material diameters is provided.
However, there is a problem in using the braided material of the three mesh knitting as it is.
The braided material of the triple mesh knitting has elasticity, and the inner diameter can be changed by compressing or extending in the longitudinal direction. That is, as shown in FIG. 1, the inner diameter is maximized when compressed to the maximum in the longitudinal direction (white arrow direction), and the inner diameter is minimized when expanded to the maximum (white arrow direction) as shown in FIG. Become. When these are compressed or stretched to the maximum, no gap is seen between the braided fibers. However, in a state between the maximum compression and the maximum extension, there is a gap 4 between the braided fibers as shown in FIG. 3, and if the gap is pierced by a crow, the internal heat insulating material may be damaged.
As a result of intensive studies, the present inventors have found that if the size of the gap is made smaller than a certain value using a braided material, the crow will not strike or will immediately give up even if it strikes, so that the resin foam is protected. I found. In other words, if weaving the braided material so that the size of the gap is smaller than a certain size, we find that it can be prevented from being struck by crows, and that the diameter of the protective material can be changed by compression / extension, The present invention has been made based on the findings.
That is, the said subject was solved by the following means.
(1) A composite pipe having a heat insulating material layer made of a resin foam around the pipe, and further having a protective reinforcing layer made of a braided material around the heat insulating material layer, wherein the maximum area of the gap of the braided material Is a composite pipe characterized by being 25 mm 2 or less.
(2) The composite tube according to (1), wherein the resin foam is easily compressible in the longitudinal direction on the cladding tube.
(3) The composite pipe according to (1) or (2), wherein the braided material is knitted in a triple net knitting.
(4) A building air conditioning multi-air conditioner system using the composite pipe according to (1), (2) or (3) for outdoor piping.
(5) The tube material having a heat insulating material layer made of a resin foam around the tube is covered with a soft foam that is expanded in diameter by compressing the braided material in the longitudinal direction, and then the braided material is placed in the longitudinal direction. A method for producing a protection-reinforced composite pipe, characterized in that the maximum diameter of the gap of the braided material is 25 mm 2 or less by reducing the diameter by elongating and adhering to a soft foam.

本発明によれば、屋外に配管したときにカラスに突かれることに対する耐傷性を有する複合管が提供できる。本発明の複合管は、施工後保護カバーで覆うなどの手間やコストが必要なく、かつ、軟質発泡材等からなる被覆材を手で圧縮することが可能で、エルボ接続手法が使用できる。本発明の保護強化複合管の製造方法によれば、網組材の径を圧縮・伸長により変化させることで、軟質発泡体等の被覆材に密着させて網組材を被覆し、複合管を保護・強化した複合管を製造することができる。   According to the present invention, it is possible to provide a composite pipe having scratch resistance against being struck by a crow when piped outdoors. The composite pipe of the present invention does not require labor and cost such as covering with a protective cover after construction, and can manually compress a covering material made of a soft foam material or the like, and an elbow connection method can be used. According to the method for manufacturing a protection-enhanced composite pipe of the present invention, the diameter of the netting material is changed by compression / elongation so that the netting material is covered with a covering material such as a soft foam, Protected and strengthened composite pipes can be manufactured.

実施例で用いたC1の編組材を長手方向に最大限に圧縮したときの隙間がない状態を示す正面図である。It is a front view which shows the state without a clearance gap when the braided material of C1 used in the Example is maximally compressed in the longitudinal direction. 実施例で用いたC1の編組材を長手方向に最大限に伸長したときの隙間がない状態を示す正面図である。It is a front view which shows the state which does not have a clearance gap when the braided material of C1 used in the Example expand | extended to the maximum in the longitudinal direction. 実施例で用いたC1の編組材を長手方向に中間程度に伸長し、隙間が最大となったときの状態を示す正面図である。It is a front view which shows the state when the braided material of C1 used in the Example is extended to the middle in the longitudinal direction and the gap becomes maximum. 本発明の複合管の一実施態様を模式的に示す断面図である。It is sectional drawing which shows typically one embodiment of the composite pipe | tube of this invention.

本発明の複合管は、管の周りに樹脂発泡体からなる断熱材層を有し、さらに網組材を被覆して強化したものであることを特徴とする。この複合管は特に、ビル用空調マルチエアコンシステムの屋外配管に使用するのに好適である。
図4は本発明の複合管の一実施態様を模式的に示す断面図である。管5の周囲に軟質発泡体6を被覆し、さらに軟質発泡体6の周囲に編組材1を被覆した複合管である。
(管)
本発明に用いられる管本体は、通常、ビル用空調マルチエアコンシステムの屋外配管に適用されるものであれば特に制限はなく、銅管、鋼管をはじめとする金属管の他、樹脂製の管、金属強化樹脂管などを用いることができる。管の厚みは特に制限はないが、通常0.8〜2.8mmである。管の太さも特に制限はないが、通常外径6.35〜53.98mmのものが使用される。
The composite pipe of the present invention is characterized by having a heat insulating material layer made of a resin foam around the pipe and further reinforced by covering with a netting material. This composite pipe is particularly suitable for use in outdoor piping of a building air-conditioning multi-air conditioner system.
FIG. 4 is a cross-sectional view schematically showing one embodiment of the composite pipe of the present invention. This is a composite pipe in which a soft foam 6 is covered around the pipe 5 and the braided material 1 is covered around the soft foam 6.
(tube)
The pipe body used in the present invention is not particularly limited as long as it is normally applied to outdoor piping of an air conditioning multi-air conditioner system for buildings. In addition to metal pipes such as copper pipes and steel pipes, resin pipes are used. A metal reinforced resin tube or the like can be used. The thickness of the tube is not particularly limited, but is usually 0.8 to 2.8 mm. The thickness of the tube is not particularly limited, but those having an outer diameter of 6.35 to 53.98 mm are usually used.

(網組材)
編組材は1本以上の繊維からなる条を編むことで作製される。条は繊維が複数のときは繊維を横に並べることで形成される。条を構成する繊維の本数に制限はないが一般に1〜10本、好ましくは2〜8本、さらに好ましくは3〜5本である。繊維径は0.1〜1.0mmが好ましく、0.3〜0.5mmがさらに好ましい。
繊維の素材は特に限定されないが、耐傷性が十分に高いものでなければならない。例えば、ステンレス、鉄、アルミ、銅、チタンといった金属繊維や、アラミド繊維、超高分子量ポリエチレンのような樹脂繊維、さらにカーボン繊維、ガラス繊維、セラミック繊維のような無機繊維が挙げられるが、これらに限定されるものではない。
編み方は、筒状に編まれるものであって長手方向に圧縮できるものであればよいが、圧縮したときに拡径することから3本網代編みが特に好ましい。径を変化させることができるので、1種の網組材でいろいろな径の複合管に対応できるので伸縮性を有する保護材で被覆した表面保護強化複合管を提供することができる。
編組材の隙間の最大面積とは、編組材を長手方向に圧縮あるいは伸長した際に、条の間の隙間面積が最大になったときの隙間1つあたりの面積である。これを図面を参照して説明する。
図1〜3は後述する実施例でC1として使用する網組材の正面図である。図1では網組材1について、長手方向に最大限圧縮(短縮)したときの状態を示し、拡径されて条2どうしの間に隙間はほぼない。図2は網組材1を逆に長手方向に最大限伸長したときの状態を示し、縮径されてやはり条2どうしの間に隙間はほぼない。これに対し、図3の中間の状態で条2どうしの間の隙間4が最も大きい。このとき図3の隙間4の面積を最大面積とする。図中、3は条2を形成する繊維を表す。なお、隙間4の面積はばらつきがあるが、最大面積は次の手順で算出した。まず、交差する条2が互いに直角をなすように編組材の長手方向の伸度を調節し、この状態で隙間4のうち面積が最も大きいものを選定する。次に、その隙間の長片と短辺の長さをノギスで測定し、前記長辺と短辺の長さの積を採用する。
条と条の隙間が生じる場合は、それが大きすぎると発泡体がカラスに突かれるため、前記編組材の隙間4の最大面積は長手方向に、上記の圧縮も伸長もしない、中間状態で、25mm以下であるが、好ましくは20mm以下、より好ましくは15mm以下である。隙間の最大面積は、耐傷性の観点からは小さければ小さいほどよいともいえるが、圧縮、伸長することを考慮するとある程度の隙間は必要であり、5mm以上であるのが実際的である。
網組材は、長手方向に圧縮して拡径した状態で軟質発泡体を被覆した管に被せ、今度は長手方向に伸長して縮径することにより軟質発泡体に密着させることが好ましい。
(Net assembly material)
The braided material is produced by knitting a strip composed of one or more fibers. When there are a plurality of fibers, the stripe is formed by arranging the fibers side by side. Although there is no restriction | limiting in the number of the fibers which comprise a strip | line, Generally it is 1-10, Preferably it is 2-8, More preferably, it is 3-5. The fiber diameter is preferably 0.1 to 1.0 mm, more preferably 0.3 to 0.5 mm.
The material of the fiber is not particularly limited, but must be sufficiently high in scratch resistance. Examples include metal fibers such as stainless steel, iron, aluminum, copper, and titanium, resin fibers such as aramid fibers and ultrahigh molecular weight polyethylene, and inorganic fibers such as carbon fibers, glass fibers, and ceramic fibers. It is not limited.
The knitting method is not particularly limited as long as it can be knitted in a cylindrical shape and can be compressed in the longitudinal direction. However, a triple mesh knitting is particularly preferable because the diameter increases when compressed. Since the diameter can be changed, it is possible to provide a composite pipe with a surface protection that is covered with a stretchable protective material because it can be used for composite pipes of various diameters with one type of netting material.
The maximum area of the gap in the braided material is the area per gap when the gap area between the strips is maximized when the braided material is compressed or expanded in the longitudinal direction. This will be described with reference to the drawings.
1 to 3 are front views of a netting material used as C1 in an embodiment described later. FIG. 1 shows a state in which the netting material 1 is maximally compressed (shortened) in the longitudinal direction, and the diameter is expanded so that there is almost no gap between the strips 2. FIG. 2 shows a state in which the netting material 1 is extended to the maximum in the longitudinal direction. The diameter is reduced and there is almost no gap between the strips 2. In contrast, the gap 4 between the strips 2 is the largest in the middle state of FIG. At this time, the area of the gap 4 in FIG. In the figure, 3 represents a fiber forming the strip 2. Note that although the area of the gap 4 varies, the maximum area was calculated by the following procedure. First, the longitudinal elongation of the braided material is adjusted so that the intersecting strips 2 are perpendicular to each other, and in this state, the one having the largest area among the gaps 4 is selected. Next, the length of the gap and the length of the short side are measured with a caliper, and the product of the length of the long side and the short side is adopted.
If the gap between the stripes occurs, if the foam is too large, the foam will be pierced by the crow, so the maximum area of the gap 4 of the braided material is in the longitudinal direction, neither compression nor extension, in the intermediate state, Although it is 25 mm 2 or less, it is preferably 20 mm 2 or less, more preferably 15 mm 2 or less. Although it can be said that the smaller the maximum area of the gap, the better from the viewpoint of scratch resistance, a certain amount of gap is necessary in consideration of compression and expansion, and it is practical that it is 5 mm 2 or more.
The netting material is preferably attached to the soft foam by covering the tube covered with the soft foam in a state of being compressed and expanded in the longitudinal direction, and then extending in the longitudinal direction and reducing the diameter.

(発泡体)
管本体を被覆する発泡体を構成する樹脂は、発泡体を長手方向に圧縮できれば特に限定されないが、ポリオレフィン、エチレン酢酸ビニル共重合体、塩化ビニル、ゴム、熱可塑性エラストマーなどが用いられる。これら樹脂は架橋しても非架橋でもよい。コストと性能のバランスを考えるとポリオレフィンが望ましい。本発明で長手方向に圧縮できる、易圧縮性とは大きくとも応力0.1MPa、好ましくは0.05MPaで、被覆発泡体を管から剥離させ、圧縮できることをいう。
樹脂発泡体の発泡方法は特に限定されないが架橋発泡、押出発泡、バッチ発泡等を使用することができる。発泡倍率の上げやすさ、発泡体の柔軟性、発泡体の歪回復性を考慮すると架橋発泡が望ましい。
(Foam)
The resin constituting the foam covering the tube body is not particularly limited as long as the foam can be compressed in the longitudinal direction, but polyolefin, ethylene vinyl acetate copolymer, vinyl chloride, rubber, thermoplastic elastomer, and the like are used. These resins may be crosslinked or non-crosslinked. Polyolefin is desirable considering the balance between cost and performance. In the present invention, easy compressibility, which can be compressed in the longitudinal direction, means that the coated foam can be peeled off from the tube and compressed at a stress of at most 0.1 MPa, preferably 0.05 MPa.
The foaming method of the resin foam is not particularly limited, and cross-linked foaming, extrusion foaming, batch foaming and the like can be used. In view of easiness of increasing the expansion ratio, flexibility of the foam, and strain recovery of the foam, crosslinked foaming is desirable.

発泡剤は特に限定されないが化学発泡剤、無機ガス、炭化水素等を使用することができる。
化学発泡剤としては、アゾジカルボンアミド、4−4’-オキシビス(ベンゼンスルホニルヒドラジド)、N,N´-ジニトロソペンタメチレンテトラミン、炭酸水素ナトリウム、ビステトラゾール・ジアンモニウム、ビステトラゾール・ピペラジン、5−フェニールテトラゾールなどが挙げられる。
無機ガスとしては二酸化炭素、窒素、ヘリウム、空気、水蒸気、フロン、代替フロンなどが挙げられる。
炭化水素系ガスとしては、エタン、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、ネオペンタン、n−ヘキサン、イソヘキサン、n−ヘプタン、イソヘプタン、シクロペンタン、シクロヘキサン、シクロヘプタンなどが挙げられる。
Although a foaming agent is not specifically limited, A chemical foaming agent, inorganic gas, a hydrocarbon, etc. can be used.
Examples of chemical blowing agents include azodicarbonamide, 4-4′-oxybis (benzenesulfonylhydrazide), N, N′-dinitrosopentamethylenetetramine, sodium hydrogen carbonate, bistetrazole / diammonium, bistetrazole / piperazine, 5- Examples include phenyltetrazole.
Examples of the inorganic gas include carbon dioxide, nitrogen, helium, air, water vapor, chlorofluorocarbon, and chlorofluorocarbon alternative.
Examples of the hydrocarbon gas include ethane, propane, n-butane, isobutane, n-pentane, isopentane, neopentane, n-hexane, isohexane, n-heptane, isoheptane, cyclopentane, cyclohexane and cycloheptane.

架橋発泡の場合は、発生ガス量の多いアゾジカルボンアミドの使用が好ましく、押出発泡とバッチ発泡の場合は、樹脂へのガス溶解量が多く環境負荷の小さい二酸化炭素の使用が好ましい。
樹脂発泡体の発泡倍率は、発泡体を長手方向に圧縮できれば特に限定されないが、一般的に5〜50倍、好ましくは10〜40倍、さらに好ましくは15〜35倍である。
発泡前の樹脂に対して、結晶化核剤、結晶化促進剤、気泡化核剤、酸化防止剤、帯電防止剤、紫外線防止剤、光安定剤、蛍光増白剤、顔料、染料、相溶化剤、滑剤、強化剤、架橋剤、架橋助剤、可塑剤、増粘剤、減粘剤などの各種添加剤を本発明の目的を損なわない範囲で適宜配合してもよい。
樹脂発泡体からなる断熱層の厚さは特に制限はないが、通常8〜20mmである。
In the case of cross-linking foaming, it is preferable to use azodicarbonamide having a large amount of generated gas. In the case of extrusion foaming and batch foaming, it is preferable to use carbon dioxide having a large amount of dissolved gas in the resin and having a small environmental load.
The expansion ratio of the resin foam is not particularly limited as long as the foam can be compressed in the longitudinal direction, but is generally 5 to 50 times, preferably 10 to 40 times, and more preferably 15 to 35 times.
Crystallization nucleating agent, crystallization accelerator, bubbling nucleating agent, antioxidant, antistatic agent, ultraviolet light inhibitor, light stabilizer, fluorescent whitening agent, pigment, dye, compatibilization for resin before foaming Various additives such as an agent, a lubricant, a reinforcing agent, a cross-linking agent, a cross-linking aid, a plasticizer, a thickener, and a thickener may be appropriately blended within a range not impairing the object of the present invention.
Although the thickness of the heat insulation layer which consists of a resin foam does not have a restriction | limiting in particular, Usually, it is 8-20 mm.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらに限定されるものではない。
[実施例1〜4および比較例1〜3]
表1に示す管(A)に樹脂断熱材としての発泡体(B)を厚さ10mmで被覆し、さらに網組材(C)を被覆して複合管を作製した。発泡体被覆管は、管の表面に短冊状の樹脂発泡体を丸めて、短冊の端部同士を融着する方法により被覆して作製した。なお、編組材を被覆する際には、まず編組材を長手方向に圧縮して編組材を拡径してからその中に発泡体被覆管を通し、次に編組材を長手方向に引っ張ることで樹脂発泡体と編組材を密着させた。
表中に示す記号の意味は以下の通りである。
・管(A)
A1:銅管(φ22.22mm外径、肉厚1mm)
・樹脂発泡体(B)
B1:架橋ポリエチレン発泡体(商品名:フォームエース、古河電気工業製)
B2:ゴム発泡体(商品名:アーマフレックス、ウチヤマコーポレーション製)
B3:ポリエチレンシース付き非架橋ポリプロピレン発泡体(商品名:ビルメイト、古河電気工業製)
・編組材(C)
C1:SUS製編組材、繊維径0.5mm、条構成繊維本数5本、編み方 3本網代編み、1隙間の最大面積、4mm
C2:SUS製編組材、繊維径0.5mm、条構成繊維本数3本、編み方 3本網代編み、1隙間の最大面積、25mm
C3:SUS製編組材、繊維径0.5mm、条構成繊維本数2本、編み方 3本網代編み、1隙間の最大面積、30mm
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these.
[Examples 1-4 and Comparative Examples 1-3]
A pipe (A) shown in Table 1 was coated with a foam (B) as a resin heat insulating material with a thickness of 10 mm, and further coated with a netting material (C) to produce a composite pipe. The foam-coated tube was produced by rolling a strip-shaped resin foam on the surface of the tube and coating the ends of the strips by fusion. When covering the braided material, the braided material is first compressed in the longitudinal direction to expand the diameter of the braided material, then the foam-coated tube is passed through it, and then the braided material is pulled in the longitudinal direction. The resin foam and the braided material were brought into close contact with each other.
The meanings of the symbols shown in the table are as follows.
・ Tube (A)
A1: Copper tube (φ22.22mm outer diameter, wall thickness 1mm)
・ Resin foam (B)
B1: Cross-linked polyethylene foam (trade name: Foam Ace, manufactured by Furukawa Electric)
B2: Rubber foam (trade name: Armaflex, manufactured by Uchiyama Corporation)
B3: Non-crosslinked polypropylene foam with polyethylene sheath (trade name: Billmate, manufactured by Furukawa Electric)
-Braiding material (C)
C1: Braided material made of SUS, fiber diameter of 0.5 mm, number of strip constituting fibers, 5 knitting methods, 3 net knitting, 1 gap maximum area, 4 mm 2
C2: braided material made of SUS, fiber diameter 0.5 mm, number of strip-constituting fibers 3 knitting methods, 3 net knitting, maximum gap area, 25 mm 2
C3: braided material made of SUS, fiber diameter 0.5 mm, number of strip-constituting fibers 2, knitting method 3 net knitting, maximum area of gap, 30 mm 2

作製した複合管について以下のとおり圧縮性と耐傷性を評価した。結果を表1に示した。
(圧縮性の評価)
複合管の網組材を取り外し、樹脂発泡体を長手方向に人力で圧縮して、圧縮性を評価した。
元の長さの半分に圧縮できれば圧縮性は○、そうでなければ×と判断した。
(耐傷性の評価)
複合管をカラスが入った檻の中に入れて1週間放置し、編組材の下の樹脂発泡体の耐傷性を評価した。樹脂発泡体に管まで達する穴や食いちぎられた跡があれば×、そうでなければ○と判断した。
The produced composite pipe was evaluated for compressibility and scratch resistance as follows. The results are shown in Table 1.
(Evaluation of compressibility)
The composite pipe net assembly was removed, and the resin foam was manually compressed in the longitudinal direction to evaluate the compressibility.
The compressibility was judged to be good if it could be compressed to half the original length, and x if not.
(Scratch resistance evaluation)
The composite tube was placed in a cage containing crows and allowed to stand for 1 week, and the scratch resistance of the resin foam under the braided material was evaluated. If there was a hole reaching the tube or a bit of a bite on the resin foam, it was judged as x.

Figure 2013007421
Figure 2013007421

比較例1の複合管は、耐傷性はあったものの圧縮ができなかった。比較例2、3の複合管は耐傷性が不足した。
これに対し実施例1〜4の複合管は圧縮性、耐傷性ともに十分な複合管であった。
Although the composite pipe of Comparative Example 1 had scratch resistance, it could not be compressed. The composite pipes of Comparative Examples 2 and 3 lacked scratch resistance.
On the other hand, the composite pipes of Examples 1 to 4 were composite pipes with sufficient compressibility and scratch resistance.

1 編組材
2 条
3 繊維
4 隙間
5 管
6 軟質発泡体(樹脂発泡体)
1 Braided material 2 Article 3 Fiber 4 Crevice 5 Pipe 6 Soft foam (resin foam)

Claims (5)

管の周囲に樹脂発泡体からなる断熱材層を有し、さらに前記断熱材層の周囲に編組材からなる保護強化層を有する複合管であって、前記編組材の隙間の最大面積が25mm以下であることを特徴とする複合管。 A composite pipe having a heat insulating material layer made of a resin foam around the pipe, and further having a protective reinforcing layer made of a braided material around the heat insulating material layer, wherein the maximum area of the gap of the braided material is 25 mm 2 A composite tube characterized by: 前記樹脂発泡体が被覆管上、長手方向に易圧縮性であることを特徴とする請求項1記載の複合管。   The composite pipe according to claim 1, wherein the resin foam is easily compressible in the longitudinal direction on the cladding pipe. 前記編組材の編み方が3本網代編みであることを特徴とする請求項1または2記載の複合管。   The composite pipe according to claim 1 or 2, wherein the braided material is knitted with three nets. 請求項1、2または3に記載の複合管を屋外の配管に使用した、ビル用空調マルチエアコンシステム。   A building air conditioning multi-air conditioner system using the composite pipe according to claim 1, 2 or 3 for outdoor piping. 周囲に樹脂発泡体からなる断熱材層を有する管材に対し、軟質発泡体の周囲に編組材を長手方向に圧縮することにより拡径してからかぶせ、次に編組材を長手方向に伸長することにより縮径して軟質発泡体に密着させて、前記編組材の隙間の最大面積を25mm以下とすることを特徴とする、保護強化複合管の製造方法。 The tube material having a heat insulating material layer made of a resin foam around the tube is covered with a soft foam by expanding the diameter of the braided material by compressing it in the longitudinal direction, and then extending the braided material in the longitudinal direction. The method for producing a protection-reinforced composite pipe, characterized in that the maximum area of the gap of the braided material is 25 mm 2 or less by reducing the diameter of the braided material and making it tightly contact with a soft foam.
JP2011139675A 2011-06-23 2011-06-23 Reinforced composite pipe Pending JP2013007421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011139675A JP2013007421A (en) 2011-06-23 2011-06-23 Reinforced composite pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011139675A JP2013007421A (en) 2011-06-23 2011-06-23 Reinforced composite pipe

Publications (1)

Publication Number Publication Date
JP2013007421A true JP2013007421A (en) 2013-01-10

Family

ID=47674936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011139675A Pending JP2013007421A (en) 2011-06-23 2011-06-23 Reinforced composite pipe

Country Status (1)

Country Link
JP (1) JP2013007421A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016217426A (en) * 2015-05-19 2016-12-22 積水化学工業株式会社 Cold/hot water conduit piping system
CN106885060A (en) * 2017-03-07 2017-06-23 宁波和谐信息科技有限公司 A kind of cement-base composite material pipe based on textile technology
JP2021127825A (en) * 2020-02-17 2021-09-02 株式会社Subaru Hose fastener

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61148987U (en) * 1985-03-08 1986-09-13
JPH08159379A (en) * 1994-12-02 1996-06-21 Zojirushi Corp Heat insulating pipe
JPH09119590A (en) * 1995-10-25 1997-05-06 Cable Kabaa Kogyo:Kk Coating body for piping
JP2002323194A (en) * 2001-03-02 2002-11-08 Brugg Rohrsyst Gmbh Preliminary heat insulated flexible pipe conduit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61148987U (en) * 1985-03-08 1986-09-13
JPH08159379A (en) * 1994-12-02 1996-06-21 Zojirushi Corp Heat insulating pipe
JPH09119590A (en) * 1995-10-25 1997-05-06 Cable Kabaa Kogyo:Kk Coating body for piping
JP2002323194A (en) * 2001-03-02 2002-11-08 Brugg Rohrsyst Gmbh Preliminary heat insulated flexible pipe conduit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016217426A (en) * 2015-05-19 2016-12-22 積水化学工業株式会社 Cold/hot water conduit piping system
CN106885060A (en) * 2017-03-07 2017-06-23 宁波和谐信息科技有限公司 A kind of cement-base composite material pipe based on textile technology
JP2021127825A (en) * 2020-02-17 2021-09-02 株式会社Subaru Hose fastener
JP7473276B2 (en) 2020-02-17 2024-04-23 株式会社Subaru Hose Fixtures

Similar Documents

Publication Publication Date Title
CA2726948C (en) Elastomeric low temperature insulation
JP5249530B2 (en) Insulated pipe conduit
JP2013007421A (en) Reinforced composite pipe
EP4399461A2 (en) Hvacr pipe
JP2012227977A (en) Binding and shock absorbing adhesive sheet for wiring harness
JP5280740B2 (en) Compound pipe
JP5955572B2 (en) Refractory double-layer tube and method for producing the same
JP2008051123A (en) Stretchable thermal and noise insulation sheet and its manufacturing method
US11191982B2 (en) Fire-protection element and fire-protection wrap
CN202474730U (en) Internally-expandable insulated cable protection pipe
JP2010025189A (en) Pipe support material and pipe support structure using the same
JP2020152809A (en) Fire-resistant molding
JP2011185505A (en) Flexible duct
JPH08247348A (en) Duct hose
CN214727016U (en) High-polymer carbon fiber film with good flame retardance
JP7097484B1 (en) Fireproof material, fireproof structure
JP2011099552A (en) Thermally-expandable covering material for piping
JPH08219335A (en) Duct hose
CN105927262B (en) Negative pressure air duct and driving face
JP2000052463A (en) Flameproof shutter
CN218914212U (en) Multi-channel flame-retardant antistatic plastic pipe
JP2003166397A (en) Reinforcing woven fabric
JP2018184978A (en) Resin duct
CN221374797U (en) Polyvinyl chloride pipe
JP5861960B2 (en) Soundproof material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150707