JP2013006710A - Method for recovering indium tin oxide and method for manufacturing indium tin oxide target - Google Patents

Method for recovering indium tin oxide and method for manufacturing indium tin oxide target Download PDF

Info

Publication number
JP2013006710A
JP2013006710A JP2011138794A JP2011138794A JP2013006710A JP 2013006710 A JP2013006710 A JP 2013006710A JP 2011138794 A JP2011138794 A JP 2011138794A JP 2011138794 A JP2011138794 A JP 2011138794A JP 2013006710 A JP2013006710 A JP 2013006710A
Authority
JP
Japan
Prior art keywords
ito
indium tin
tin oxide
solution
hydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011138794A
Other languages
Japanese (ja)
Other versions
JP5651544B2 (en
Inventor
Atsushi Fujimaru
篤 藤丸
Shinji Isoda
伸二 磯田
Yasuo Mihara
康雄 美原
Tomonori Yamazaki
友紀 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2011138794A priority Critical patent/JP5651544B2/en
Publication of JP2013006710A publication Critical patent/JP2013006710A/en
Application granted granted Critical
Publication of JP5651544B2 publication Critical patent/JP5651544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for recovering indium tin oxide, which can recover high purity ITO from an ITO scrap, and to provide a method for manufacturing an indium tin oxide target of excellent productivity of target reproduction.SOLUTION: The method for recovering indium tin oxide includes steps of: obtaining a solution by dissolving the ITO scrap in hydrochloric acid; obtaining a slurry liquid containing hydroxide of indium tin by adding a sodium hydroxide solution to the solution to neutralize the solution; depositing a hydrate of the ITO by a hydrothermal reaction of the slurry liquid; and drying the hydrate at a predetermined temperature.

Description

本発明は、酸化インジウムスズの回収方法及び酸化インジウムスズターゲットの製造方法に関する。   The present invention relates to a method for recovering indium tin oxide and a method for manufacturing an indium tin oxide target.

液晶ディスプレイやプラズマディスプレイ等のフラットパネルディスプレイにおいては、電極として酸化インジウムスズ(以下、「ITO」という)膜たる透明導電膜が用いられている。ITO膜の成膜には、量産性等を考慮してスパッタリング装置が広く利用され、この種のスパッタリング装置としては、インジウムスズからなるターゲットを用い、酸素ガスを導入した反応性スパッタリングによりITO膜を成膜するものやITO製のターゲットを用い、当該ターゲットに高周波電力を投入してITO膜を成膜するものがある。   In flat panel displays such as liquid crystal displays and plasma displays, a transparent conductive film as an indium tin oxide (hereinafter referred to as “ITO”) film is used as an electrode. In order to form an ITO film, a sputtering apparatus is widely used in consideration of mass productivity and the like. As this type of sputtering apparatus, an ITO film is formed by reactive sputtering using a target made of indium tin and introducing oxygen gas. There are those that form a film and those that use a target made of ITO and deposit an ITO film by applying high-frequency power to the target.

ここで、スパッタリング装置による成膜方法は収率が低いことが一般に知られている。他方、上記ターゲットに含まれるインジウムは、資源的に乏しい希少金属である。このため、インジウムを有効利用して製造コストの低下を図る等のためには、ターゲットライフまで使用した使用済みのターゲットを回収して再利用するだけでなく、成膜時、真空チャンバに設置したシールドやアノード部材等のスパッタリング装置の構成部品に付着、堆積したものまで回収して再利用する必要があるが、使用済みのターゲットや構成部品から回収したもの(以下、これらを「ITOスクラップ」という)には、アルミニウムや鉄といった不純物が含まれている。ITO製のターゲットに不純物が含まれていると、成膜したITO膜の抵抗値が高くなり、フラットパネルディスプレイの電極として利用できない場合が生じる。   Here, it is generally known that a film forming method using a sputtering apparatus has a low yield. On the other hand, indium contained in the target is a rare metal with scarce resources. For this reason, in order to effectively reduce the manufacturing cost by effectively using indium, the used target used up to the target life is not only collected and reused but also placed in a vacuum chamber during film formation. It is necessary to collect and reuse even the deposits and deposits on the components of the sputtering equipment such as the shield and anode member, but those collected from the used targets and components (hereinafter referred to as “ITO scrap”) ) Contains impurities such as aluminum and iron. When impurities are contained in the ITO target, the resistance value of the deposited ITO film becomes high, and there are cases where it cannot be used as an electrode of a flat panel display.

従来、ITOスクラップから高純度でインジウムを回収する方法は例えば特許文献1で知られている。このものでは、先ず、ITOスクラップを塩酸に溶解させ、溶解した溶解液のpHが0.5〜4になるようにアルカリ溶液を添加して中和する。これにより、スズのみが水酸化スズとして沈殿する。次に、水酸化スズを除去した後、硫化水素ガスを吹き込んで銅や亜鉛を硫化銅や硫化亜鉛として析出させる。最後に、硫化銅及び硫化亜鉛を除去し、電気分解することでインジウムが回収される。然し、上記従来例のものでは、インジウムとスズとを分離回収するため、ITOスクラップから高純度のITOターゲットを再生する上で効率のよいものではなかった。つまり、一旦分離回収したインジウムとスズとを夫々酸化させて酸化インジウム及び酸化スズとし、これら酸化インジウム及び酸化スズを混錬し、混錬により得られた混錬物を成形し、成形したものを焼成するといった多くの工程が必要となり、ターゲット再生の生産性も悪い。   Conventionally, a method for recovering indium with high purity from ITO scrap is known, for example, in Patent Document 1. In this method, first, ITO scrap is dissolved in hydrochloric acid, and neutralized by adding an alkaline solution so that the pH of the dissolved solution becomes 0.5-4. Thereby, only tin precipitates as tin hydroxide. Next, after removing the tin hydroxide, hydrogen sulfide gas is blown to precipitate copper or zinc as copper sulfide or zinc sulfide. Finally, copper sulfide and zinc sulfide are removed and electrolysis is performed to recover indium. However, in the above conventional example, indium and tin are separated and recovered, it is not efficient in reproducing a high-purity ITO target from ITO scrap. In other words, indium and tin once separated and recovered are oxidized into indium oxide and tin oxide, these indium oxide and tin oxide are kneaded, a kneaded product obtained by kneading is molded, and a molded product is obtained. Many processes such as firing are required, and the productivity of target regeneration is also poor.

特開2000−169991号公報JP 2000-169991 A

本発明は、以上の点に鑑み、ITOスクラップから高純度のITOとして回収することができる酸化インジウムスズの回収方法及びターゲット再生の生産性のよい酸化インジウムスズターゲットの製造方法を提供することをその課題とする。   In view of the above points, the present invention provides a method for recovering indium tin oxide that can be recovered from ITO scrap as high-purity ITO and a method for manufacturing an indium tin oxide target with good target regeneration productivity. Let it be an issue.

上記課題を解決するために、本発明のITOの回収方法は、酸化インジウムスズ含有のスクラップを酸に溶解させて所定の溶解液を得る第1工程と、この溶解液にアルカリ溶液を添加して中和し、インジウムスズの水酸化物を含むスラリー液を得る第2工程と、スラリー液を水熱反応させて酸化インジウムスズを含む水和物を析出させる第3工程と、前記水和物を所定温度で乾燥する第4工程と、を含むことを特徴とする。   In order to solve the above problems, the ITO recovery method of the present invention includes a first step of dissolving a scrap containing indium tin oxide in an acid to obtain a predetermined solution, and adding an alkaline solution to the solution. A second step of neutralizing and obtaining a slurry liquid containing a hydroxide of indium tin, a third step of hydrothermally reacting the slurry liquid to precipitate a hydrate containing indium tin oxide, and the hydrate. And a fourth step of drying at a predetermined temperature.

本発明によれば、第1工程にてITOスクラップを溶解し、第2工程にて溶解した溶解液にアルカリ溶液を添加して中和させた後、第3工程にてインジウムスズの水酸化物を含むスラリー液を水熱反応させる。これにより、スラリー液中にインジウムやスズ以外の不純物が溶解した状態となり、ITOの水和物が析出する。このため、析出したITOの水和物は高純度となる。そして、第4工程にて水和物を所定温度で乾燥すれば、高純度のITOが回収される。   According to the present invention, ITO scrap is dissolved in the first step, neutralized by adding an alkaline solution to the solution dissolved in the second step, and then indium tin hydroxide in the third step. The slurry liquid containing is hydrothermally reacted. Thereby, impurities other than indium and tin are dissolved in the slurry liquid, and ITO hydrate is precipitated. For this reason, the deposited ITO hydrate has high purity. And if a hydrate is dried at predetermined temperature in a 4th process, highly purified ITO will be collect | recovered.

このように本発明は、ITOスクラップから高純度でITOを直接回収でき、しかも、この回収したITOからITOターゲットを再生する場合、インジウムとスズとを分離回収してITOターゲットを再生する上記従来例と比較して、少ない工程数でITOターゲットを再生できるため、ターゲット再生の生産性がよく、製造コストの低下を図ることができる。   As described above, the present invention can recover ITO directly from ITO scrap with high purity, and when reproducing the ITO target from the collected ITO, the above-described conventional example in which indium and tin are separated and recovered to regenerate the ITO target. Since the ITO target can be regenerated with a small number of steps, the productivity of target regeneration is good, and the manufacturing cost can be reduced.

本発明において、ITOを高い回収率で回収するために、スラリー液をpH5〜6の範囲内に調整することが望ましい。pH5未満では、析出反応が不十分となるためITOの回収率が低くなり(50%未満)、他方、pH6を超えると、水熱反応中にスラリー液に不純物が溶解し難くなり、回収したITO中の不純物濃度が高くなる。   In this invention, in order to collect | recover ITO with a high collection | recovery rate, it is desirable to adjust a slurry liquid in the range of pH 5-6. If the pH is less than 5, the precipitation reaction becomes insufficient, so that the ITO recovery rate is low (less than 50%). On the other hand, if the pH exceeds 6, impurities are hardly dissolved in the slurry during the hydrothermal reaction, and the recovered ITO is recovered. Impurity concentration inside increases.

本発明において、水熱反応の反応温度を50℃〜240℃の範囲内に設定することが望ましい。これにより、スラリー液中にインジウムやスズ以外の不純物が溶解した状態でITOの水和物が確実に析出させることができる。反応温度が50℃未満では、析出速度が過剰に遅くなるという不具合があり、240℃を超えると、容器が溶け出し(腐食し)コンタミの原因となるという不具合がある。   In the present invention, it is desirable to set the reaction temperature of the hydrothermal reaction within the range of 50 ° C to 240 ° C. Thereby, ITO hydrate can be reliably deposited in a state where impurities other than indium and tin are dissolved in the slurry liquid. When the reaction temperature is less than 50 ° C., there is a problem that the deposition rate is excessively slow, and when it exceeds 240 ° C., there is a problem that the container is melted (corroded) and causes contamination.

ところで、ITOスクラップが、例えば一般のスパッタリング装置で用いられるアルミナ製の防着板から回収したものである場合、このITOスクラップには、アルミやアルミの酸化物が不純物として多く含まれていることが多い。このような場合には、第1工程に先立ち、当該ITOスクラップをアルカリ溶液に溶解させる工程を更に含むことが望ましい。ITOスクラップに含まれるアルミニウムを事前に除去しておくことで、水熱反応における不純物除去効果を高く維持することができ、回収されるITOの純度を一層高めることができる。   By the way, when the ITO scrap is recovered from, for example, an alumina deposition plate used in a general sputtering apparatus, the ITO scrap may contain a large amount of aluminum or aluminum oxide as impurities. Many. In such a case, it is desirable to further include a step of dissolving the ITO scrap in an alkaline solution prior to the first step. By removing the aluminum contained in the ITO scrap in advance, the effect of removing impurities in the hydrothermal reaction can be maintained high, and the purity of the recovered ITO can be further increased.

また、本発明のITOターゲットの製造方法は、請求項1乃至4の何れか1項記載のITOの回収方法により得られたITOの水和物を乾燥し焼成してITOターゲットを製造することを特徴とする。これによれば、ITOの水和物を乾燥及び焼成するという簡単な工程により、ITOターゲットを製造できる。   Moreover, the manufacturing method of the ITO target of this invention is manufacturing the ITO target by drying and baking the ITO hydrate obtained by the ITO collection | recovery method of any one of Claims 1 thru | or 4. Features. According to this, an ITO target can be manufactured by a simple process of drying and baking ITO hydrate.

本発明の実施形態のITOの回収方法を説明する工程図。Process drawing explaining the collection | recovery method of ITO of embodiment of this invention. 本発明の他の実施形態のITOの回収方法を説明する工程図。Process drawing explaining the collection | recovery method of ITO of other embodiment of this invention. 本発明の実施例1を示す表。The table | surface which shows Example 1 of this invention. 本発明の実施例2を示す表。The table | surface which shows Example 2 of this invention. 本発明の実施例3を示す表。The table | surface which shows Example 3 of this invention. 本発明の実施例4を示す表。The table | surface which shows Example 4 of this invention. 本発明の実施例5を示す表。The table | surface which shows Example 5 of this invention.

以下、図面を参照して、使用済みのITOターゲットを粉砕してITOスクラップを作製し、このITOスクラップからITOを回収する場合を例に、本発明の実施形態のITOの回収方法及び酸化インジウムスズターゲットの製造方法を説明する。ITOターゲットの粉砕方法としては、ロールミルやクラッシャー等が挙げられる。このとき、ITOスクラップは粉砕されていればよく、粉砕後の平均粒径は特に限定されない。   Hereinafter, with reference to the drawings, an ITO recovery method and indium tin oxide according to an embodiment of the present invention will be described by taking as an example a case where ITO scrap is produced by pulverizing a used ITO target and ITO is recovered from this ITO scrap. A method for manufacturing the target will be described. Examples of the method for pulverizing the ITO target include a roll mill and a crusher. At this time, the ITO scrap should just be grind | pulverized and the average particle diameter after a grinding | pulverization is not specifically limited.

第1工程では、上記ITOスクラップが酸に溶解される。酸としては、ITOスクラップを溶解し得るものであれば特に限定はなく、例えば、塩酸、硫酸及び硝酸を用いることができ、特に、ITOに対する溶解能の高い塩酸を用いることが好ましい。   In the first step, the ITO scrap is dissolved in acid. The acid is not particularly limited as long as it can dissolve the ITO scrap. For example, hydrochloric acid, sulfuric acid and nitric acid can be used, and hydrochloric acid having a high dissolving ability for ITO is particularly preferable.

第2工程では、上記溶解液にアルカリ溶液を添加して中和し、インジウムスズの水酸化物(水酸化インジウム及び水酸化スズ)を含むスラリー液を得る。アルカリ溶液としては、例えば25%水酸化ナトリウム溶液を用いることができる。この場合、スラリー液の濃度は、10〜500g/lの範囲内であることが望ましい。10g/l未満では、回収されるITOの量が少なく生産効率が悪く、他方、500g/lを超えると、粘度が高くなり過ぎて流動性がなくなるため、作業性が悪くなるという不具合がある。   In the second step, an alkaline solution is added to the solution and neutralized to obtain a slurry containing indium tin hydroxide (indium hydroxide and tin hydroxide). As the alkaline solution, for example, a 25% sodium hydroxide solution can be used. In this case, the concentration of the slurry liquid is desirably in the range of 10 to 500 g / l. If it is less than 10 g / l, the amount of recovered ITO is small and the production efficiency is poor. On the other hand, if it exceeds 500 g / l, the viscosity becomes too high and the fluidity is lost.

次に、pH調整工程として、上記スラリー液にアルカリ溶液が更に添加され、pHが5〜6の範囲内に調整される。添加するアルカリ溶液としては、例えば25%水酸化ナトリウム溶液を用いることができる。pH5未満では、析出反応が不十分となり、ITOの回収率が50未満になってしまう。pH6を超えると、後述する水熱反応時にスラリー液中に不純物が溶解し難くなり、回収されるITOに含まれる不純物の濃度が高くなる。   Next, as a pH adjustment step, an alkaline solution is further added to the slurry solution, and the pH is adjusted within the range of 5-6. As the alkaline solution to be added, for example, a 25% sodium hydroxide solution can be used. If the pH is less than 5, the precipitation reaction becomes insufficient and the ITO recovery rate becomes less than 50. When the pH exceeds 6, impurities hardly dissolve in the slurry during a hydrothermal reaction described later, and the concentration of impurities contained in the recovered ITO increases.

第3工程では、上記各工程を経たスラリー液が水熱反応される。水熱反応には次の水熱反応装置が用いられる。即ち、水熱反応装置としては、スラリー液を注入する内筒とステンレス製の外筒とからなる公知のオートクレーブ(「密閉式溶解るつぼ」ともいう)と、このオートクレーブを収容して加熱する恒温槽とで構成されるものが用いられる。   In a 3rd process, the slurry liquid which passed through each said process is hydrothermally reacted. The following hydrothermal reactor is used for the hydrothermal reaction. That is, as a hydrothermal reactor, a known autoclave (also referred to as “sealing type melting crucible”) composed of an inner cylinder for injecting slurry and an outer cylinder made of stainless steel, and a thermostatic chamber for containing and heating the autoclave What is comprised is used.

上記水熱反応装置にて水熱反応させる場合、先ず、るつぼ内に上記スラリー液を注入し、るつぼを恒温槽の所定位置に設置する。そして、恒温槽によりるつぼを所定温度に加熱する。これにより、スラリー液中に不純物が溶解した状態で、ITOの水和物が析出する。このため、析出したITOの水和物は高純度となる。水熱反応の反応温度は、50℃〜240℃に調整することが望ましい。このとき、るつぼ内の圧力は、123.39hPa〜36078.98hPaとなる。50℃未満では、ITOの水和物が析出しないか、析出しても水和物の量が少ない。他方、240℃を超えると、AlやFeの析出が始まり、不純物の除去性能が低下する。水熱反応の反応時間は、反応温度に応じて、例えば2min〜4hの範囲内で設定できる。   When hydrothermal reaction is performed in the hydrothermal reactor, first, the slurry liquid is poured into a crucible, and the crucible is installed at a predetermined position in a thermostatic bath. And a crucible is heated to predetermined temperature with a thermostat. Thereby, ITO hydrate precipitates in a state where impurities are dissolved in the slurry liquid. For this reason, the deposited ITO hydrate has high purity. The reaction temperature of the hydrothermal reaction is desirably adjusted to 50 ° C to 240 ° C. At this time, the pressure in the crucible is 123.39 hPa to 36078.98 hPa. Below 50 ° C., ITO hydrate does not precipitate or even if it precipitates, the amount of hydrate is small. On the other hand, when it exceeds 240 ° C., precipitation of Al and Fe starts, and the performance of removing impurities deteriorates. The reaction time of the hydrothermal reaction can be set within a range of 2 min to 4 h, for example, depending on the reaction temperature.

水熱反応後の液を濾別した後、第4工程では、ITOの水和物を洗浄し、乾燥することで、粒径が0.1〜2μm(SEM観察結果による)の一次粒子が凝集した二次粒子の状態で平均粒径が1〜5μmの範囲内のITOの粉末が回収される。水和物の洗浄液としては、主に水が用いられる。また、乾燥温度は、例えば90℃に設定できる。   After the liquid after the hydrothermal reaction is filtered off, in the fourth step, the ITO hydrate is washed and dried, thereby agglomerating primary particles of 0.1 to 2 μm (according to SEM observation results). ITO powder having an average particle size in the range of 1 to 5 μm is recovered in the state of the secondary particles. As the hydrate cleaning liquid, water is mainly used. The drying temperature can be set at 90 ° C., for example.

上記にて回収されたITOからITOターゲットを再生する場合、公知の構造の成形機を用いて所定形状に成形した後、成形されたものを所定の条件下で焼成することで、ITOターゲットが製造(再生)される。焼成条件としては、例えば、大気中で、焼成温度を500℃、焼成時間を1hに設定すればよい。   When regenerating an ITO target from the ITO collected as described above, an ITO target is manufactured by forming the product into a predetermined shape using a molding machine having a known structure and then firing the molded product under predetermined conditions. (Replayed). As firing conditions, for example, the firing temperature may be set to 500 ° C. and the firing time may be set to 1 h in the air.

以上によれば、ITOスクラップを塩酸に溶解し、溶解した溶解液に水酸化ナトリウム溶液を添加して中和させた後、中和により得られたインジウムスズの水酸化物を含むスラリー液を水熱反応させる。このとき、スラリー液中にインジウムやスズ以外の不純物が溶解した状態で、ITOの水和物が析出する。このため、析出したITOの水和物は高純度のものとなる。そして、このITOの水和物を所定温度で乾燥すれば、高純度のITOの粉末が回収される。従って、ITOスクラップから高純度でITOを直接回収できる。しかも、水熱反応前に先立ち、スラリー液をpH5〜6の範囲内に調整することでITOの回収率を50%以上にすることができる。   According to the above, after dissolving ITO scrap in hydrochloric acid and adding the sodium hydroxide solution to the dissolved solution to neutralize it, the slurry solution containing indium tin hydroxide obtained by neutralization is washed with water. Heat reaction. At this time, ITO hydrate precipitates in a state where impurities other than indium and tin are dissolved in the slurry. For this reason, the deposited ITO hydrate has a high purity. And if this ITO hydrate is dried at a predetermined temperature, highly pure ITO powder is recovered. Therefore, ITO can be directly recovered from ITO scrap with high purity. In addition, prior to the hydrothermal reaction, the recovery rate of ITO can be increased to 50% or more by adjusting the slurry liquid within the range of pH 5-6.

これにより、回収したITOからITOターゲットを再生すれば、インジウムとスズとを分離回収してITOターゲットを製造する従来方法に比べて、少ない工程数でITOターゲットを再生できるため、ターゲット再生の生産性がよく、製造コストの低下を図ることができる。   As a result, if the ITO target is regenerated from the recovered ITO, the ITO target can be regenerated with a smaller number of steps than the conventional method of producing an ITO target by separating and recovering indium and tin. The manufacturing cost can be reduced.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではない。上記実施形態では、アルカリ溶液として水酸化ナトリウム溶液を用いる場合について説明したが、水酸化ナトリウム溶液以外のアルカリ溶液を用いる場合でもITOスクラップから高純度のITOを回収できることを確認した。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. Although the case where a sodium hydroxide solution is used as the alkaline solution has been described in the above embodiment, it has been confirmed that high-purity ITO can be recovered from the ITO scrap even when an alkaline solution other than the sodium hydroxide solution is used.

また、上記実施形態では、ITOスクラップをITOターゲットを粉砕したものとしたが、スパッタリング装置の構成部品たる防着板から剥離回収したものとできる。図2を参照して、本発明の他の実施形態について、防着板から剥離回収したITOスクラップからITOを回収する場合を例に説明する。   Moreover, in the said embodiment, although the ITO scrap was what grind | pulverized the ITO target, it can be made to peel and collect from the adhesion prevention board which is a component of a sputtering device. With reference to FIG. 2, another embodiment of the present invention will be described by taking as an example the case of recovering ITO from the ITO scrap peeled and recovered from the deposition preventing plate.

防着板から剥離したITOスクラップは一般にアルミニウムを含む。そこで、本実施形態では、上記第1工程に先立ち、アルカリ溶解工程を行う。アルカリ溶解工程では、ITOスクラップをアルカリ溶液に溶解させ、ITOスクラップに含まれるアルミニウムを溶解除去する。アルカリ溶液としては、例えば25%水酸化ナトリウム溶液を用いることができる。なお、アルカリ溶解工程以外の工程については、上記実施形態と同じであるため、その説明を省略する。   The ITO scrap peeled off from the deposition plate generally contains aluminum. Therefore, in the present embodiment, an alkali dissolution step is performed prior to the first step. In the alkali melting step, the ITO scrap is dissolved in an alkaline solution, and aluminum contained in the ITO scrap is dissolved and removed. As the alkaline solution, for example, a 25% sodium hydroxide solution can be used. In addition, about processes other than an alkali dissolution process, since it is the same as the said embodiment, the description is abbreviate | omitted.

本実施形態によれば、ITOスクラップに含まれるアルミニウムを事前に除去しておくことで、水熱反応中にスラリー液に溶解するアルミニウムの量が減少するため、水熱反応における不純物除去効果を高く維持することができ、回収されるITOの純度を一層高めることができる。   According to this embodiment, by removing aluminum contained in the ITO scrap in advance, the amount of aluminum dissolved in the slurry liquid during the hydrothermal reaction is reduced, so the effect of removing impurities in the hydrothermal reaction is increased. The purity of the collected ITO can be further increased.

実施例1では、In及びSn並びに不純物であるAl及びFeを塩酸に溶解し、この溶解したものにその他の不純物を含む原子吸光分析用標準溶液を混合し、混合により得られたものを標準試料とした。この標準試料たる溶解液のICP発光分析を行なったところ、上記標準試料に含まれるIn-Snの濃度は94.15%(In:82.67%、Sn:11.48%)であり、In-Sn以外の不純物濃度は、Al:4.51%、Ca:0.1703%、Cu:0.0815%、Fe:0.7693%、Ni:0.0700%、Pb:0.0628%、Si:0.0846%、Zr:0.0961%であった。この溶解液に25%の水酸化ナトリウム溶液を添加して中和し、水酸化インジウム及び水酸化スズを含むスラリー液を得て、得られたスラリー液に25%水酸化ナトリウム溶液を更に添加してpHを5.02に調整した。なお、スラリー液の濃度は、100g/lであった。そして、pH調整後のスラリー液をオーエムラボテック社製の密閉式溶解るつぼに収容し、このるつぼを恒温槽に入れてスラリー液を水熱反応させ、ITOの水和物を析出させた。ここで、水熱反応の温度を50℃、220℃、230℃、240℃に設定し、反応時間を2分、5分、3時間、4時間、24時間に設定した。析出した水和物を濾別し、水洗し、90℃の温度で乾燥させて粉末(試料#1〜#16)を得た。この粉末を500℃の温度で焼成し、この焼成したもののX線回折分析を行ったところ、ITOであることが確認された。得られた粉末状のITOを塩酸に溶解させ、その溶解液のICP発光分析を行った結果を図3に示す。これによれば、In-Sn濃度が高い高純度のITO(試料#1〜#16)が回収されたことが確認された。特に、水熱反応の温度を50℃〜220℃に設定し、反応時間を5分〜3時間に設定した場合に、In-Sn濃度を97%以上に高めることができることが確認された(試料#2、3、7、8)。また、反応温度を230℃〜240℃に設定し、反応時間を5分〜1時間に設定した場合も、In-Sn濃度を97%以上に高めることができることが確認された(試料#10、11、14、15)。   In Example 1, In and Sn and impurities, Al and Fe, are dissolved in hydrochloric acid, and a standard solution for atomic absorption analysis containing other impurities is mixed with the dissolved one, and a sample obtained by mixing is used as a standard sample. It was. When ICP emission analysis was performed on the lysate as the standard sample, the concentration of In-Sn contained in the standard sample was 94.15% (In: 82.67%, Sn: 11.48%). Concentration of impurities other than In-Sn Al: 4.51%, Ca: 0.1703%, Cu: 0.0815%, Fe: 0.7693%, Ni: 0.0700%, Pb: 0.0628%, Si: 0.0846%, Zr: 0.0961%. A 25% sodium hydroxide solution is added to the solution to neutralize it to obtain a slurry solution containing indium hydroxide and tin hydroxide, and a 25% sodium hydroxide solution is further added to the resulting slurry solution. The pH was adjusted to 5.02. The concentration of the slurry liquid was 100 g / l. Then, the slurry liquid after pH adjustment was accommodated in a closed melting crucible manufactured by OM Lab Tech Co., Ltd., and the crucible was placed in a thermostatic bath to cause hydrothermal reaction of the slurry liquid, thereby precipitating ITO hydrate. Here, the temperature of the hydrothermal reaction was set to 50 ° C., 220 ° C., 230 ° C., and 240 ° C., and the reaction time was set to 2 minutes, 5 minutes, 3 hours, 4 hours, and 24 hours. The precipitated hydrate was separated by filtration, washed with water, and dried at a temperature of 90 ° C. to obtain powders (samples # 1 to # 16). This powder was baked at a temperature of 500 ° C., and X-ray diffraction analysis of the baked product was confirmed to be ITO. The obtained powdered ITO was dissolved in hydrochloric acid, and the result of ICP emission analysis of the solution is shown in FIG. According to this, it was confirmed that high-purity ITO (samples # 1 to # 16) having a high In-Sn concentration was recovered. In particular, it was confirmed that the In-Sn concentration can be increased to 97% or more when the temperature of the hydrothermal reaction is set to 50 ° C. to 220 ° C. and the reaction time is set to 5 minutes to 3 hours (sample). # 2, 3, 7, 8). It was also confirmed that the In-Sn concentration could be increased to 97% or higher when the reaction temperature was set to 230 ° C to 240 ° C and the reaction time was set to 5 minutes to 1 hour (sample # 10, 11, 14, 15).

実施例2では、スラリー液のpHを5.89に調整した以外は、実施例1と同様の方法とした。本実施例にて析出させたITOの水和物を濾別し、水洗し、90℃で乾燥させてITOの粉末(試料#21〜#36)を回収した。回収したITOを塩酸に溶解させ、その溶解液のICP発光分析を行った結果を図4に示す。これによれば、上記実施例1の結果と同様に、In-Sn濃度が高い高純度のITO(試料#21〜#36)が回収されたことが確認された。上記実施例1と同様に、水熱反応の温度を50℃〜220℃に設定し、反応時間を5分〜3時間に設定した場合に、In-Sn濃度を97%以上に高めることができることが確認された(試料#22、23、27、28)。また、反応温度を230℃〜240℃に設定し、反応時間を5分〜1時間に設定した場合も、In-Sn濃度を97%以上に高めることができることが確認された(試料#30、31、34、35)。   In Example 2, the method was the same as Example 1 except that the pH of the slurry was adjusted to 5.89. The ITO hydrate precipitated in this example was filtered off, washed with water, and dried at 90 ° C. to recover ITO powder (samples # 21 to # 36). The collected ITO was dissolved in hydrochloric acid, and the result of ICP emission analysis of the dissolved solution is shown in FIG. According to this, it was confirmed that high-purity ITO (samples # 21 to # 36) having a high In-Sn concentration was recovered, similar to the result of Example 1 above. As in Example 1 above, the In-Sn concentration can be increased to 97% or more when the temperature of the hydrothermal reaction is set to 50 ° C. to 220 ° C. and the reaction time is set to 5 minutes to 3 hours. Was confirmed (Samples # 22, 23, 27, and 28). Further, it was confirmed that the In-Sn concentration could be increased to 97% or more when the reaction temperature was set to 230 ° C. to 240 ° C. and the reaction time was set to 5 minutes to 1 hour (sample # 30, 31, 34, 35).

実施例3では、スラリー液のpHを6.50又は4.5に調整した以外は、実施例1と同様の方法とした。本実施例にて析出させたITOの水和物を濾別し、水洗し、90℃で乾燥させてITOの粉末(試料#41〜#44)を回収した。回収したITOを塩酸に溶解させ、その溶解液のICP発光分析を行った結果を図5に示す。これによれば、スラリー液のpHを6.50に調整した場合には、In-Sn濃度が低くなり、高純度のITOを回収できないことが確認された(試料#41、42)。また、pHを4.5に調整した場合には、ITOの回収率が40%以下と低くなることが確認された(試料#43、44)。   In Example 3, the method was the same as Example 1 except that the pH of the slurry was adjusted to 6.50 or 4.5. The ITO hydrate precipitated in this example was filtered off, washed with water, and dried at 90 ° C. to recover ITO powder (samples # 41 to # 44). The collected ITO was dissolved in hydrochloric acid, and the result of ICP emission analysis of the dissolved solution is shown in FIG. According to this, when the pH of the slurry was adjusted to 6.50, it was confirmed that the In-Sn concentration was low and high-purity ITO could not be recovered (samples # 41 and 42). Further, when the pH was adjusted to 4.5, it was confirmed that the ITO recovery rate was as low as 40% or less (samples # 43 and 44).

実施例4では、スラリー液の濃度を10g/l又は500g/lに調整した以外は、実施例1と同様の方法とした。本実施例にて析出させたITOの水和物を濾別し、水洗し、90℃で乾燥させてITOの粉末(試料#51〜#58)を回収した。回収したITOを塩酸に溶解させ、その溶解液のICP発光分析を行った結果を図6に示す。これによれば、スラリー液の濃度を10g/l〜500g/lの範囲内に調整すれば、In-Sn濃度を97%以上に高めることができることが確認された(試料#51〜#58)。   In Example 4, the method was the same as Example 1 except that the concentration of the slurry liquid was adjusted to 10 g / l or 500 g / l. The ITO hydrate precipitated in this example was filtered off, washed with water, and dried at 90 ° C. to recover ITO powder (samples # 51 to # 58). The collected ITO was dissolved in hydrochloric acid, and the result of ICP emission analysis of the dissolved solution is shown in FIG. According to this, it was confirmed that the In-Sn concentration can be increased to 97% or more by adjusting the concentration of the slurry liquid within the range of 10 g / l to 500 g / l (Samples # 51 to # 58). .

実施例5では、防着板から剥離回収したITOスクラップを用意した。このITOスクラップに含まれるIn-Snの濃度は72.71%(In:65.7%、Sn:7.01%)であり、In-Sn以外の不純物濃度は、Al:4.82%、Ca:0.001%、Cu:0.002%、Fe:0.023%、Ni:0.002%、Pb:0.005%、Si:0.05%、Zr:0.02%であった。このITOスクラップを25%水酸化ナトリウム溶液に1時間溶解させ、ITOスクラップに含まれるアルミニウムを溶解除去した。その結果、図7に示すように、Al濃度が0.028%に低減されたことが確認された。次いで、ITOスクラップを塩酸に溶解し、溶解により得られた溶解液に25%水酸化ナトリウム溶液を添加して中和し、水酸化インジウム及び水酸化スズを含むスラリー液を得て、得られたスラリー液に25%水酸化ナトリウム溶液を更に添加してpHを5.39に調整した。そして、pH調整後のスラリー液を水熱反応させ、ITOの水和物を析出させた。水熱反応の温度は220℃、反応時間は1hに設定した。析出させたITOの水和物を濾別し、水洗し、90℃の温度で乾燥させてITO粉末を回収した。回収したITO粉末を塩酸に溶解させ、その溶解液のICP発光分析を行った結果を図7に示す。これによれば、In-Sn濃度が99.90%と高い高純度のITOが回収されたことが確認された。   In Example 5, ITO scraps peeled and collected from the deposition preventive plate were prepared. The concentration of In-Sn contained in this ITO scrap is 72.71% (In: 65.7%, Sn: 7.01%). The impurity concentration other than In-Sn is Al: 4.82%, Ca: 0.001%, Cu: 0.002. %, Fe: 0.023%, Ni: 0.002%, Pb: 0.005%, Si: 0.05%, Zr: 0.02%. This ITO scrap was dissolved in a 25% sodium hydroxide solution for 1 hour to dissolve and remove aluminum contained in the ITO scrap. As a result, as shown in FIG. 7, it was confirmed that the Al concentration was reduced to 0.028%. Next, the ITO scrap was dissolved in hydrochloric acid, and a 25% sodium hydroxide solution was added to the solution obtained by dissolution to neutralize the slurry, thereby obtaining a slurry solution containing indium hydroxide and tin hydroxide. A 25% sodium hydroxide solution was further added to the slurry to adjust the pH to 5.39. And the slurry liquid after pH adjustment was made to react hydrothermally, and the hydrate of ITO was deposited. The temperature of the hydrothermal reaction was set to 220 ° C., and the reaction time was set to 1 h. The deposited ITO hydrate was separated by filtration, washed with water, and dried at a temperature of 90 ° C. to recover ITO powder. The collected ITO powder was dissolved in hydrochloric acid, and the result of ICP emission analysis of the dissolved solution is shown in FIG. According to this, it was confirmed that high purity ITO with a high In-Sn concentration of 99.90% was recovered.

Claims (5)

酸化インジウムスズ含有のスクラップを酸に溶解させて所定の溶解液を得る第1工程と、
前記溶解液にアルカリ溶液を添加して中和し、インジウムスズの水酸化物を含むスラリー液を得る第2工程と、
前記スラリー液を水熱反応させて酸化インジウムスズを含む水和物を析出させる第3工程と、
前記水和物を所定温度で乾燥する第4工程と、を含むことを特徴とする酸化インジウムスズの回収方法。
A first step of dissolving a scrap containing indium tin oxide in an acid to obtain a predetermined solution;
A second step of neutralizing the solution by adding an alkaline solution to obtain a slurry containing indium tin hydroxide;
A third step of hydrothermally reacting the slurry liquid to precipitate a hydrate containing indium tin oxide;
And a fourth step of drying the hydrate at a predetermined temperature. A method for recovering indium tin oxide, comprising:
前記第3工程の水熱反応に先立ち、前記スラリー液をpH5〜6の範囲内に調整する工程を更に含むことを特徴とする請求項1記載の酸化インジウムスズの回収方法。   The method for recovering indium tin oxide according to claim 1, further comprising a step of adjusting the slurry liquid within a pH range of 5 to 6 prior to the hydrothermal reaction in the third step. 前記第3工程にて、水熱反応の反応温度を50℃〜240℃の範囲内に設定することを特徴とする請求項1または請求項2記載の酸化インジウムスズの回収方法。   The method for recovering indium tin oxide according to claim 1 or 2, wherein the reaction temperature of the hydrothermal reaction is set in a range of 50C to 240C in the third step. 前記第1工程に先立ち、酸化インジウムスズのスクラップをアルカリ溶液に溶解させる工程を更に含むことを特徴とする請求項1〜請求項3のいずれか1項に記載の酸化インジウムスズの回収方法。   The method for recovering indium tin oxide according to any one of claims 1 to 3, further comprising a step of dissolving indium tin oxide scrap in an alkaline solution prior to the first step. 請求項1〜請求項4のいずれか1項に記載の酸化インジウムスズの回収方法を実施して回収した酸化インジウムスズを所定形状に成形する工程と、成形されたものを所定の条件下で焼成する工程とを含むことを特徴とする酸化インジウムスズターゲットの製造方法。   A step of forming the indium tin oxide recovered by carrying out the method for recovering indium tin oxide according to any one of claims 1 to 4, and firing the formed in a predetermined condition And a process for producing an indium tin oxide target.
JP2011138794A 2011-06-22 2011-06-22 Method for recovering indium tin oxide and method for producing indium tin oxide target Active JP5651544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011138794A JP5651544B2 (en) 2011-06-22 2011-06-22 Method for recovering indium tin oxide and method for producing indium tin oxide target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011138794A JP5651544B2 (en) 2011-06-22 2011-06-22 Method for recovering indium tin oxide and method for producing indium tin oxide target

Publications (2)

Publication Number Publication Date
JP2013006710A true JP2013006710A (en) 2013-01-10
JP5651544B2 JP5651544B2 (en) 2015-01-14

Family

ID=47674404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011138794A Active JP5651544B2 (en) 2011-06-22 2011-06-22 Method for recovering indium tin oxide and method for producing indium tin oxide target

Country Status (1)

Country Link
JP (1) JP5651544B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104722563A (en) * 2015-03-18 2015-06-24 合肥鑫晟光电科技有限公司 Method for recycling indium on panel
CN111620367A (en) * 2020-06-08 2020-09-04 福建阿石创新材料股份有限公司 Method for recovering ITO powder from ITO residual target/waste target
CN112410585A (en) * 2020-10-22 2021-02-26 上海交通大学 Method for recovering gallium arsenide and copper from waste and old IC components containing gallium arsenide and application
CN113292345A (en) * 2021-05-28 2021-08-24 芜湖映日科技股份有限公司 Preparation process for recycling residual target after ITO target sputtering

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8029A (en) * 1851-04-08 Kellogg
JP2004123403A (en) * 2002-09-30 2004-04-22 Fuji Photo Film Co Ltd Method for manufacturing crystalline ito dispersion
JP2004123523A (en) * 2002-09-11 2004-04-22 Sumitomo Chem Co Ltd Method for producing indium oxide-tin oxide powder
JP2005022953A (en) * 2003-04-01 2005-01-27 Hitachi Maxell Ltd Complex indium oxide particle and its manufacturing method, and conductive paint, conductive coating film and conductive sheet
JP2011063494A (en) * 2009-09-18 2011-03-31 Mitsubishi Materials Corp Cylindrical indium tin oxide powder and method for producing the same
JP2011162375A (en) * 2010-02-08 2011-08-25 Dowa Electronics Materials Co Ltd Method for producing tin-doped indium oxide powder and the tin-doped indium oxide powder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8029A (en) * 1851-04-08 Kellogg
JP2004123523A (en) * 2002-09-11 2004-04-22 Sumitomo Chem Co Ltd Method for producing indium oxide-tin oxide powder
JP2004123403A (en) * 2002-09-30 2004-04-22 Fuji Photo Film Co Ltd Method for manufacturing crystalline ito dispersion
JP2005022953A (en) * 2003-04-01 2005-01-27 Hitachi Maxell Ltd Complex indium oxide particle and its manufacturing method, and conductive paint, conductive coating film and conductive sheet
JP2011063494A (en) * 2009-09-18 2011-03-31 Mitsubishi Materials Corp Cylindrical indium tin oxide powder and method for producing the same
JP2011162375A (en) * 2010-02-08 2011-08-25 Dowa Electronics Materials Co Ltd Method for producing tin-doped indium oxide powder and the tin-doped indium oxide powder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104722563A (en) * 2015-03-18 2015-06-24 合肥鑫晟光电科技有限公司 Method for recycling indium on panel
CN111620367A (en) * 2020-06-08 2020-09-04 福建阿石创新材料股份有限公司 Method for recovering ITO powder from ITO residual target/waste target
CN111620367B (en) * 2020-06-08 2022-06-28 福建阿石创新材料股份有限公司 Method for recovering ITO powder from ITO residual target/waste target
CN112410585A (en) * 2020-10-22 2021-02-26 上海交通大学 Method for recovering gallium arsenide and copper from waste and old IC components containing gallium arsenide and application
CN113292345A (en) * 2021-05-28 2021-08-24 芜湖映日科技股份有限公司 Preparation process for recycling residual target after ITO target sputtering

Also Published As

Publication number Publication date
JP5651544B2 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
JP7439087B2 (en) Battery recycling by hydrogen gas injection in leachate
JP6307709B2 (en) Method and apparatus for recovering indium or indium alloy
WO2008053618A1 (en) Method for collection of valuable metal from ito scrap
AU2013238535B2 (en) Method for producing high-purity nickel sulfate
WO2008053616A1 (en) Method for collection of valuable metal from ito scrap
WO2008053620A1 (en) Method for collection of valuable metal from ito scrap
JP5913639B2 (en) Method for producing indium oxide-tin oxide powder, method for producing ITO target, and method for producing indium hydroxide-metastannic acid mixture
JP5651544B2 (en) Method for recovering indium tin oxide and method for producing indium tin oxide target
WO2009110149A1 (en) Process for recovery of valuable metals from scrap izo
JP2014025141A (en) METHOD OF RECOVERING GALLIUM FROM InGa WASTE MATERIAL
JP2005314786A (en) Method for collecting indium
WO2005095659A1 (en) Method for producing indium-containing metal
JP4310388B2 (en) Indium recovery method
JP5217480B2 (en) Recovery method of crude indium
WO2017073392A1 (en) Method for producing seed crystal of cobalt powder
TWI516449B (en) Resource recovery of gallium and indium containing dust
KR101054840B1 (en) Method for preparing tin oxide powder recycled indium tin oxide waste scrap
JP2017082270A5 (en)
KR100932706B1 (en) Method for recycling indium from indium containing waste solution
JP2007039798A (en) Method for recovering indium, and its use
JP5339762B2 (en) Method for producing indium metal
JP2012072479A (en) Method for recovering indium and tin
JP2016094338A (en) Method for producing indium oxide and indium oxide
JP5177471B2 (en) Method for recovering indium hydroxide or indium
JP5898911B2 (en) Method for producing indium oxide and indium oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R150 Certificate of patent or registration of utility model

Ref document number: 5651544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250