JP2013006708A - Method for producing carbon nanotube film - Google Patents

Method for producing carbon nanotube film Download PDF

Info

Publication number
JP2013006708A
JP2013006708A JP2011138720A JP2011138720A JP2013006708A JP 2013006708 A JP2013006708 A JP 2013006708A JP 2011138720 A JP2011138720 A JP 2011138720A JP 2011138720 A JP2011138720 A JP 2011138720A JP 2013006708 A JP2013006708 A JP 2013006708A
Authority
JP
Japan
Prior art keywords
substrate
metal catalyst
temperature
atmosphere
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011138720A
Other languages
Japanese (ja)
Other versions
JP5636337B2 (en
Inventor
Hisazumi Oshima
大島  久純
Yasuhiko Hayashi
靖彦 林
Toru Iijima
徹 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Nagoya Institute of Technology NUC
Original Assignee
Denso Corp
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nagoya Institute of Technology NUC filed Critical Denso Corp
Priority to JP2011138720A priority Critical patent/JP5636337B2/en
Publication of JP2013006708A publication Critical patent/JP2013006708A/en
Application granted granted Critical
Publication of JP5636337B2 publication Critical patent/JP5636337B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a carbon nanotube film having excellent reproducibility, capable of spinning stably a carbon nanotube.SOLUTION: A metal catalyst is deposited on the surface of a planar substrate, and then the atmosphere of the substrate is changed as shown in Fig.1, to thereby produce a carbon nanotube film on the surface of the substrate. Namely, the atmosphere of the substrate is replaced with hydrogen gas, and the temperature of the substrate and its atmosphere is raised up to 500°C which is a metal catalyst activation temperature, and kept at the temperature for 3 minutes. Successively, the temperature of the substrate and its atmosphere is lowered to 200-500°C, and hydrocarbon gas is introduced into the atmosphere of the substrate. Then, after keeping the temperature of the substrate and its atmosphere as it is for 0-3 minutes, the temperature of the substrate and its atmosphere is raised up to 700°C which is a CNT synthesis temperature. The temperature of the substrate and its atmosphere is kept at 700°C for 10 minutes, while introducing the hydrocarbon gas therein, to thereby form a carbon nanotube film.

Description

本発明は、カーボンナノチューブからなるカーボンナノチューブ膜の製造方法に関し、詳しくは、そのカーボンナノチューブ膜を構成するカーボンナノチューブをロープ状に紡績可能なカーボンナノチューブ膜の製造方法に関する。   The present invention relates to a method for producing a carbon nanotube film made of carbon nanotubes, and more particularly, to a method for producing a carbon nanotube film capable of spinning carbon nanotubes constituting the carbon nanotube film in a rope shape.

従来、カーボンナノチューブからなるカーボンナノチューブ膜を基板の表面に形成し、そのカーボンナノチューブ膜の一部をピンセット等により引き出すことでそのカーボンナノチューブをロープ状に紡績することが提案されている(例えば、特許文献1,2参照)。ここで、特許文献1では、金属触媒が蒸着された基板を300〜400℃で10時間アニールした後、その基板を不活性ガス中で500〜700℃に加熱して更に炭化水素ガスを導入することによってカーボンナノチューブ膜を製造している。また、特許文献2では、金属触媒膜が形成された基板を不活性ガス中で700℃に加熱して更に炭化水素ガスを導入することによってカーボンナノチューブ膜を製造している。   Conventionally, it has been proposed that a carbon nanotube film made of carbon nanotubes is formed on the surface of a substrate, and a part of the carbon nanotube film is pulled out by tweezers to spin the carbon nanotubes in a rope shape (for example, patents) References 1 and 2). Here, in patent document 1, after annealing the board | substrate with which the metal catalyst was vapor-deposited at 300-400 degreeC for 10 hours, the board | substrate is heated in inert gas at 500-700 degreeC, and hydrocarbon gas is introduce | transduced further. Thus, a carbon nanotube film is manufactured. Further, in Patent Document 2, a carbon nanotube film is manufactured by heating a substrate on which a metal catalyst film is formed at 700 ° C. in an inert gas and further introducing a hydrocarbon gas.

特開2004−107196号公報JP 2004-107196 A 特許4512750号公報Japanese Patent No. 4512750

しかしながら、前記いずれの特許文献に記載の方法も、再現性がなかった。すなわち、本願出願人の実験では、前記各特許文献に記載の条件で製造されたカーボンナノチューブ膜は、紡績できたりできなかったりして特性が不安定であった。そこで、本発明は、良好な再現性を有し、カーボンナノチューブを安定して紡績することのできるカーボンナノチューブ膜の製造方法の提供を目的としてなされた。   However, none of the methods described in the above patent documents has reproducibility. In other words, in the experiment conducted by the applicant of the present application, the carbon nanotube film produced under the conditions described in the above patent documents could not be spun or could not be spun. Therefore, the present invention has been made for the purpose of providing a method for producing a carbon nanotube film that has good reproducibility and can stably spin carbon nanotubes.

前記目的を達するためになされた本発明のカーボンナノチューブ膜の製造方法は、基板に金属触媒を堆積させる第1工程と、前記金属触媒堆積後の前記基板を、不活性雰囲気中または還元雰囲気中で加熱することにより、前記金属触媒を活性化しかつ凝集させる第2工程と、前記活性化及び凝集後の金属触媒並びに前記基板の表面に、アモルファスカーボンを堆積させる第3工程と、前記アモルファスカーボンが堆積された前記基板に気相合成法によってカーボンナノチューブを形成する第4工程と、を備えたことを特徴とする。   The carbon nanotube film manufacturing method of the present invention made to achieve the above object includes a first step of depositing a metal catalyst on a substrate, and the substrate after the metal catalyst is deposited in an inert atmosphere or a reducing atmosphere. A second step of activating and aggregating the metal catalyst by heating, a third step of depositing amorphous carbon on the surface of the activated and agglomerated metal catalyst and the substrate, and depositing the amorphous carbon And a fourth step of forming carbon nanotubes on the substrate by vapor phase synthesis.

このように構成された本発明の方法では、第1工程にて基板に金属触媒を堆積させ、第2工程にて、前記金属触媒堆積後の基板を、不活性雰囲気中または還元雰囲気中で加熱することにより、前記金属触媒を活性化しかつ凝集させる。ここで、第1工程における金属触媒の堆積は、スパッタリング,蒸着等、周知の種々の方法で実施することができる。また、第2工程は、水素ガス雰囲気,ヘリウムガス雰囲気等の、周知の不活性雰囲気中または還元雰囲気中で、前記金属触媒堆積後の基板を加熱することで実施できる。また、前記凝集後の金属触媒が直径数nmの粒になるように、条件を設定するのが好ましい。   In the method of the present invention thus configured, the metal catalyst is deposited on the substrate in the first step, and the substrate after the metal catalyst deposition is heated in an inert atmosphere or a reducing atmosphere in the second step. By doing so, the metal catalyst is activated and aggregated. Here, the deposition of the metal catalyst in the first step can be performed by various known methods such as sputtering and vapor deposition. The second step can be performed by heating the substrate after the metal catalyst deposition in a known inert atmosphere or reducing atmosphere such as a hydrogen gas atmosphere or a helium gas atmosphere. The conditions are preferably set so that the agglomerated metal catalyst has a diameter of several nanometers.

そして、本願出願人は、前記活性化及び凝集後の金属触媒並びに前記基板の表面に直接カーボンナノチューブを形成するのではなく、アモルファスカーボンを堆積させた後に(第3工程)、カーボンナノチューブを形成するとよいことを発見した。このように、アモルファスカーボンが堆積された前記基板に、気相合成法(CVD法)によってカーボンナノチューブを形成することによって(第4工程)、得られたカーボンナノチューブ膜からは、カーボンナノチューブを安定してロープ状に紡績することができた。しかも、そのような実験には、良好な再現性が見られた。   The applicant of the present invention forms carbon nanotubes after depositing amorphous carbon (third step) instead of forming carbon nanotubes directly on the surface of the activated and aggregated metal catalyst and the substrate. I found a good thing. Thus, carbon nanotubes are stabilized from the obtained carbon nanotube film by forming carbon nanotubes by vapor phase synthesis (CVD) on the substrate on which amorphous carbon has been deposited (fourth step). Can be spun into a rope. Moreover, good reproducibility was found in such experiments.

なお、前記第2工程では、前記金属触媒堆積後の前記基板を、不活性雰囲気中または還元雰囲気中で金属触媒活性化温度以上に加熱し、前記第3工程では、前記加熱後の前記基板を、炭素原料ガスを含む雰囲気中で前記金属触媒活性化温度以下に保持し、前記第4工程では、炭素原料ガスを含む雰囲気中で前記基板を前記金属触媒活性化温度よりも高い温度に保持するのが好ましい。すなわち、前記第3工程では、前記加熱後の前記基板を、炭素原料ガスを含む雰囲気中で前記金属触媒活性化温度以下に保持することによって、前記基板及び金属触媒の表面に良好にアモルファスカーボンを堆積させることができる。このように、金属触媒活性化温度以下でアモルファスカーボンが堆積する原理は不明であるが、実験には良好な再現性が見られた。   In the second step, the substrate after the metal catalyst deposition is heated to a metal catalyst activation temperature or higher in an inert atmosphere or a reducing atmosphere, and in the third step, the substrate after the heating is heated. The substrate is held at a temperature lower than the metal catalyst activation temperature in an atmosphere containing a carbon source gas. In the fourth step, the substrate is held at a temperature higher than the metal catalyst activation temperature in an atmosphere containing a carbon source gas. Is preferred. That is, in the third step, by maintaining the heated substrate at a temperature lower than the metal catalyst activation temperature in an atmosphere containing a carbon source gas, amorphous carbon is satisfactorily formed on the surface of the substrate and the metal catalyst. Can be deposited. Thus, although the principle of depositing amorphous carbon below the metal catalyst activation temperature is unknown, the experiment showed good reproducibility.

そして、その場合、前記第3工程では、前記加熱後の前記基板を、炭素原料ガスを含む雰囲気中で200℃以上前記金属触媒活性化温度以下に保持するのが更に好ましい。更により好ましくは、前記第3工程では、前記第2工程の終了後、前記基板を前記金属触媒活性化温度未満に降温してから炭素原料ガスを前記基板の雰囲気に導入するとよい。こうすることによって、前記基板及び金属触媒の表面に一層良好にアモルファスカーボンを堆積させることができる。   In that case, in the third step, it is more preferable to maintain the heated substrate at 200 ° C. or higher and the metal catalyst activation temperature or lower in an atmosphere containing a carbon source gas. Even more preferably, in the third step, after the end of the second step, the temperature of the substrate is lowered below the metal catalyst activation temperature, and then the carbon source gas is introduced into the atmosphere of the substrate. By doing so, amorphous carbon can be deposited more favorably on the surface of the substrate and the metal catalyst.

また、前記第3工程では、前記基板を前記金属触媒活性化温度以下に0〜180秒保持するのが好ましい。なお、前記金属触媒活性化温度以下に0秒保持した場合でも、その状態から基板が前記気相合成法に適した温度まで昇温する間に、アモルファスカーボンの堆積が起こるものと考えられる。   In the third step, it is preferable to hold the substrate at the metal catalyst activation temperature or lower for 0 to 180 seconds. Even when the temperature is kept below the metal catalyst activation temperature for 0 second, it is considered that the deposition of amorphous carbon occurs while the substrate is heated from that state to a temperature suitable for the vapor phase synthesis method.

本発明適用のカーボンナノチューブ膜製造工程の概要を表す説明図である。It is explanatory drawing showing the outline | summary of the carbon nanotube film | membrane manufacturing process of this invention application. その製造工程を模式的に表す説明図である。It is explanatory drawing which represents the manufacturing process typically. 第1実施例のカーボンナノチューブ膜の製造工程を表す説明図である。It is explanatory drawing showing the manufacturing process of the carbon nanotube film | membrane of 1st Example. そのカーボンナノチューブ膜からの紡績結果を表す写真である。It is a photograph showing the spinning result from the carbon nanotube film. 第2実施例のカーボンナノチューブ膜の製造工程を表す説明図である。It is explanatory drawing showing the manufacturing process of the carbon nanotube film | membrane of 2nd Example. 参考例におけるアモルファスカーボンの堆積を表す電子顕微鏡写真である。It is an electron micrograph showing deposition of amorphous carbon in a reference example. 比較例におけるカーボンナノチューブ膜の製造工程を表す説明図である。It is explanatory drawing showing the manufacturing process of the carbon nanotube film | membrane in a comparative example.

[実施形態の概要]
次に、本発明の実施形態を、図面と共に説明する。図1は、本発明を適用した実施形態としてのカーボンナノチューブ膜製造工程の概要を表す説明図である。また、図2は、その製造工程を模式的に表す説明図である。
[Outline of Embodiment]
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing an outline of a carbon nanotube film manufacturing process as an embodiment to which the present invention is applied. Moreover, FIG. 2 is explanatory drawing which represents the manufacturing process typically.

本実施形態では、先ず、図2(A)に例示するように平板状の基板1を用意し、(B)に例示するように、その基板1の表面に金属触媒3を堆積させた(第1工程)。続いて、その基板1の雰囲気を図1に示すように変化させて、当該基板1の表面にカーボンナノチューブ膜10(図2参照)を製造した。   In the present embodiment, first, a flat substrate 1 is prepared as illustrated in FIG. 2A, and a metal catalyst 3 is deposited on the surface of the substrate 1 as illustrated in FIG. 1 step). Subsequently, the atmosphere of the substrate 1 was changed as shown in FIG. 1 to manufacture a carbon nanotube film 10 (see FIG. 2) on the surface of the substrate 1.

すなわち、図1に示すように、基板1の雰囲気を水素ガスで置換し、基板1及びその雰囲気を金属触媒活性化温度としての500℃まで昇温させて3分間その温度に保持した。この工程(第2工程)により、基板1に堆積された金属触媒3は、活性化すると共に、図2(C)に例示するように直径数nmの粒状に凝集しているものと推定される。   That is, as shown in FIG. 1, the atmosphere of the substrate 1 was replaced with hydrogen gas, and the temperature of the substrate 1 and the atmosphere was raised to 500 ° C. as the metal catalyst activation temperature and held at that temperature for 3 minutes. By this step (second step), it is presumed that the metal catalyst 3 deposited on the substrate 1 is activated and aggregated into particles having a diameter of several nm as illustrated in FIG. 2C. .

続いて、基板1及びその雰囲気を200〜500℃まで降温し、基板1の雰囲気に炭化水素ガス(炭素原料ガスの一例)を導入した。そして、基板1及びその雰囲気を0〜3分間その温度に保持した後、CNT合成温度(気相合成法に適した温度)としての700℃まで基板1及びその雰囲気を昇温した。この低温での保持及び昇温中の工程(第3工程)により、図2(D)に例示するように、前記凝集した金属触媒3とその金属触媒3が堆積された基板1の表面(上面)とに、アモルファスカーボン5が堆積されているものと推定される。なお、この推定の正当性については、後に説明するように検証されている。   Subsequently, the temperature of the substrate 1 and its atmosphere was lowered to 200 to 500 ° C., and a hydrocarbon gas (an example of a carbon source gas) was introduced into the atmosphere of the substrate 1. And after hold | maintaining the board | substrate 1 and its atmosphere at the temperature for 0 to 3 minutes, the board | substrate 1 and its atmosphere were heated up to 700 degreeC as CNT synthesis | combination temperature (temperature suitable for a gaseous-phase synthesis method). As shown in FIG. 2D, the surface of the substrate 1 on which the agglomerated metal catalyst 3 and the metal catalyst 3 are deposited (upper surface) is formed by this low temperature holding and temperature rising step (third step). ), It is presumed that amorphous carbon 5 is deposited. The validity of this estimation has been verified as will be described later.

続いて、基板1及びその雰囲気を炭化水素ガスを導入しながら700℃に10分間保持した。この工程(第4工程)により、図2(E)に例示するように、基板1の表面にカーボンナノチューブ7が気相合成法によって合成されて林立し、多数のカーボンナノチューブ7からなるカーボンナノチューブ膜10が形成された。最後に、カーボンナノチューブ膜10形成後の基板1の雰囲気を水素ガスで置換し、基板1及びその雰囲気を室温まで降温させた後、カーボンナノチューブ膜10が形成された基板1を取り出すことができた。   Subsequently, the substrate 1 and its atmosphere were held at 700 ° C. for 10 minutes while introducing hydrocarbon gas. By this step (fourth step), as illustrated in FIG. 2E, the carbon nanotubes 7 are formed on the surface of the substrate 1 by the vapor-phase synthesis method and are erected to form a carbon nanotube film composed of a large number of carbon nanotubes 7. 10 was formed. Finally, the atmosphere of the substrate 1 after the carbon nanotube film 10 was formed was replaced with hydrogen gas, and after the substrate 1 and the atmosphere were cooled to room temperature, the substrate 1 on which the carbon nanotube film 10 was formed could be taken out. .

以下に、具体的な実施例について説明する。
[第1実施例]
30nmの熱酸化膜を形成したシリコン基板(SUMCO製6インチシリコン(100)ウェハを20mm角に切出したもの)の上にスパッタによりアルミナを15nm成膜したものを基板とし、この基板へ鉄を1.5nmスパッタにて形成し、金属触媒とした。この基板を減圧型のCVD装置(アイクストロン社製BlackMagic)に入れ、真空排気後水素を導入し圧力9.6hPaにて500℃まで昇温し、この温度で3分間保持した。次に、基板温度を400℃まで降温し、前記水素ガス雰囲気にアセチレンガス(炭素原料ガス及び炭化水素ガスの一例)を導入し、圧力8.5hPaにて0秒保持した。続いて、300℃/minの昇温速度でCNT合成温度の700℃まで昇温し、10分間保持することによってカーボンナノチューブを合成した。合成停止はアセチレンガスを止めることにより行い、前記CVD装置のヒータへの通電を止めて冷却した。図3に、この第1実施例の製造工程における時間と温度及び処理雰囲気との関係を示したので、参照されたい。
Specific examples will be described below.
[First embodiment]
A silicon substrate with a 30-nm thermal oxide film (a SUMCO 6-inch silicon (100) wafer cut into a 20 mm square) with a 15 nm alumina film formed by sputtering is used as the substrate. A metal catalyst was formed by sputtering at 5 nm. This substrate was placed in a reduced pressure CVD apparatus (BlackMagic manufactured by Ixtron), and after evacuation, hydrogen was introduced, the temperature was raised to 500 ° C. at a pressure of 9.6 hPa, and this temperature was maintained for 3 minutes. Next, the substrate temperature was lowered to 400 ° C., acetylene gas (an example of a carbon source gas and a hydrocarbon gas) was introduced into the hydrogen gas atmosphere, and the pressure was maintained at 8.5 hPa for 0 second. Subsequently, the carbon nanotubes were synthesized by raising the temperature to 700 ° C., which is the CNT synthesis temperature, at a heating rate of 300 ° C./min and holding for 10 minutes. The synthesis was stopped by stopping the acetylene gas, and the energization to the heater of the CVD apparatus was stopped to cool. FIG. 3 shows the relationship between time, temperature, and processing atmosphere in the manufacturing process of the first embodiment.

以上の工程により得られた第1実施例のカーボンナノチューブ膜10の紡績性は良好であった。すなわち、図4に示すように、カーボンナノチューブ膜10の表面に、両面テープに柄を付けてなる引き出しテープ50を当接させてカーボンナノチューブ7(図2参照)を引き出したところ、ロープ状に紡績された紡績糸99が得られた。また、この実験には良好な再現性が見られた。   The spinnability of the carbon nanotube film 10 of the first example obtained by the above steps was good. That is, as shown in FIG. 4, when the carbon nanotubes 7 (see FIG. 2) are pulled out by contacting the surface of the carbon nanotube film 10 with a pull-out tape 50 having a pattern on a double-sided tape, the fibers are spun into a rope shape. A spun yarn 99 was obtained. Also, good reproducibility was seen in this experiment.

[第2実施例]
第2工程の金属触媒活性化後、基板温度を300℃まで降温してアセチレンガスを導入し、10秒間保持した(第3工程)。その他の工程は第1実施例と同様である。図5に、この第2実施例の製造工程における時間と温度及び処理雰囲気との関係を示したので、参照されたい。こうして得られたカーボンナノチューブ膜の紡績性も良好であり、実験には良好な再現性が見られた。
[Second Embodiment]
After the activation of the metal catalyst in the second step, the substrate temperature was lowered to 300 ° C. and acetylene gas was introduced and held for 10 seconds (third step). Other steps are the same as those in the first embodiment. FIG. 5 shows the relationship between time, temperature, and processing atmosphere in the manufacturing process of the second embodiment. The spinnability of the carbon nanotube film thus obtained was good, and good reproducibility was seen in the experiment.

[第3実施例]
第2工程の金属触媒活性化後、基板温度を500℃に保持したままアセチレンガスを導入し(第3工程)、次に昇温するまでの保持時間を10秒〜3分の間で変えながらカーボンナノチューブを合成した。こうして得られたカーボンナノチューブ膜の紡績性も良好であり、実験には良好な再現性が見られた。
[Third embodiment]
After activation of the metal catalyst in the second step, acetylene gas is introduced while maintaining the substrate temperature at 500 ° C. (third step), and the holding time until the temperature is raised next is changed from 10 seconds to 3 minutes. Carbon nanotubes were synthesized. The spinnability of the carbon nanotube film thus obtained was good, and good reproducibility was seen in the experiment.

[参考例]
なお、前記各実施例の第3工程、すなわち、基板温度を300〜500℃の低温に保持したままアセチレンガスを導入する工程によってアモルファスカーボンが基板表面に堆積されることを検証するため、本願出願人は次のような実験を行った。すなわち、金属触媒活性化後、基板温度を350℃に保持してアセチレンガスを導入し、3分間保持した後、CNT合成温度まで昇温させることなく基板を取り出した。その基板を電子顕微鏡にて観察した結果が、図6である。図6に示すように、基板の表面がアモルファスカーボンで覆われていることが分かる。
[Reference example]
In addition, in order to verify that amorphous carbon is deposited on the substrate surface by the third step of each of the above embodiments, that is, the step of introducing acetylene gas while maintaining the substrate temperature at a low temperature of 300 to 500 ° C. The person conducted the following experiment. That is, after activation of the metal catalyst, acetylene gas was introduced while maintaining the substrate temperature at 350 ° C., and after maintaining for 3 minutes, the substrate was taken out without raising the temperature to the CNT synthesis temperature. The result of observing the substrate with an electron microscope is shown in FIG. As shown in FIG. 6, it can be seen that the surface of the substrate is covered with amorphous carbon.

この実験により、前記各実施例の第3工程によってアモルファスカーボンが基板表面に堆積されていることが検証された。次に、この第3工程を含まない比較例としての製造方法によりカーボンナノチューブ膜を製造し、その紡績性を調べた。   From this experiment, it was verified that amorphous carbon was deposited on the substrate surface in the third step of each of the above examples. Next, a carbon nanotube film was produced by a production method as a comparative example not including this third step, and the spinnability was examined.

[第1比較例]
第2工程の金属触媒活性化後、基板温度を600℃まで昇温してアセチレンガスを導入し、10秒間保持した。その他の工程は第1実施例と同様である。こうして得られたカーボンナノチューブ膜の紡績性は不良であった。
[First comparative example]
After the activation of the metal catalyst in the second step, the substrate temperature was raised to 600 ° C., acetylene gas was introduced, and held for 10 seconds. Other steps are the same as those in the first embodiment. The spinnability of the carbon nanotube film thus obtained was poor.

[第2比較例]
第2工程の金属触媒活性化後、そのまま基板温度を700℃まで昇温し、アセチレンガスを導入してカーボンナノチューブを合成した。こうして得られたカーボンナノチューブ膜の紡績性は不良であった。
[Second Comparative Example]
After activation of the metal catalyst in the second step, the substrate temperature was raised to 700 ° C. as it was, and acetylene gas was introduced to synthesize carbon nanotubes. The spinnability of the carbon nanotube film thus obtained was poor.

[第3比較例]
第2工程の金属触媒活性化を行わず、基板温度を400℃に保持してアセチレンガスを導入し、10秒間保持した後700℃まで昇温し、カーボンナノチューブを合成した。こうして得られたカーボンナノチューブ膜の紡績性は不良であった。
[Third comparative example]
Without activating the metal catalyst in the second step, acetylene gas was introduced while maintaining the substrate temperature at 400 ° C., held for 10 seconds, and then heated to 700 ° C. to synthesize carbon nanotubes. The spinnability of the carbon nanotube film thus obtained was poor.

[第4比較例]
これは、前述の特許文献1と同様の製造方法である。すなわち、金属触媒が蒸着された基板を300〜400℃で10時間アニールした後、その基板を不活性ガス中で500〜700℃に加熱して更にアセチレンを導入することによってカーボンナノチューブ膜を製造した。図7(A)に、この第4比較例の製造工程における時間と温度及び処理雰囲気との関係を示したので、参照されたい。こうして得られたカーボンナノチューブ膜は、紡績ができたりできなかったりし、特性が不安定であった。
[Fourth Comparative Example]
This is a manufacturing method similar to that of Patent Document 1 described above. That is, after annealing the substrate on which the metal catalyst was deposited at 300 to 400 ° C. for 10 hours, the substrate was heated to 500 to 700 ° C. in an inert gas to further introduce acetylene, thereby producing a carbon nanotube film. . FIG. 7A shows the relationship between time, temperature, and processing atmosphere in the manufacturing process of the fourth comparative example. The carbon nanotube film obtained in this way could not be spun and its characteristics were unstable.

[第5比較例]
これは、前述の特許文献2と同様の製造方法である。すなわち、金属触媒が蒸着された基板を不活性ガス中で700℃に加熱して更にアセチレンを導入することによってカーボンナノチューブ膜を製造した。図7(B)に、この第5比較例の製造工程における時間と温度及び処理雰囲気との関係を示したので、参照されたい。こうして得られたカーボンナノチューブ膜は、紡績ができなかった。
[Fifth Comparative Example]
This is a manufacturing method similar to that of Patent Document 2 described above. That is, the carbon nanotube film was manufactured by heating the substrate on which the metal catalyst was deposited to 700 ° C. in an inert gas and further introducing acetylene. FIG. 7B shows the relationship between time, temperature, and processing atmosphere in the manufacturing process of the fifth comparative example. The carbon nanotube film thus obtained could not be spun.

以上のように、本発明の方法によって製造されたカーボンナノチューブ膜では、カーボンナノチューブを安定して紡績することができ、良好な再現性を有することが分かった。なお、本発明は前記実施の形態及び実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の形態で実施することができる。例えば、金属触媒の種類を変更すれば、金属触媒活性化温度も変化する可能性がある。また、第2工程は、前述のような水素ガスによる還元雰囲気の代わりに、ヘリウムガス等による不活性雰囲気中で実行されてもよい。更に、使用する炭素原料ガスに応じて、適切なCNT合成温度も変化する。すなわち、前記実施形態の第1工程,第2工程,第4工程は、公知のカーボンナノチューブ膜の製造方法における対応する工程と置換してもよい。   As described above, it was found that the carbon nanotube film produced by the method of the present invention can spin carbon nanotubes stably and has good reproducibility. In addition, this invention is not limited to the said embodiment and Example at all, In the range which does not deviate from the summary of this invention, it can implement with a various form. For example, if the type of metal catalyst is changed, the metal catalyst activation temperature may also change. The second step may be performed in an inert atmosphere such as helium gas instead of the reducing atmosphere using hydrogen gas as described above. Furthermore, an appropriate CNT synthesis temperature also changes depending on the carbon source gas used. That is, the first step, the second step, and the fourth step of the embodiment may be replaced with the corresponding steps in the known carbon nanotube film manufacturing method.

1…基板 3…金属触媒
5…アモルファスカーボン 7…カーボンナノチューブ
10…カーボンナノチューブ膜 50…引き出しテープ
99…紡績糸
DESCRIPTION OF SYMBOLS 1 ... Substrate 3 ... Metal catalyst 5 ... Amorphous carbon 7 ... Carbon nanotube 10 ... Carbon nanotube film 50 ... Drawer tape 99 ... Spinning yarn

Claims (5)

基板に金属触媒を堆積させる第1工程と、
前記金属触媒堆積後の前記基板を、不活性雰囲気中または還元雰囲気中で加熱することにより、前記金属触媒を活性化しかつ凝集させる第2工程と、
前記活性化及び凝集後の前記基板の表面に、アモルファスカーボンを堆積させる第3工程と、
前記アモルファスカーボンが堆積された前記基板に気相合成法によってカーボンナノチューブを形成する第4工程と、
を備えたことを特徴とするカーボンナノチューブ膜の製造方法。
A first step of depositing a metal catalyst on a substrate;
A second step of activating and agglomerating the metal catalyst by heating the substrate after the metal catalyst deposition in an inert atmosphere or a reducing atmosphere;
A third step of depositing amorphous carbon on the surface of the substrate after the activation and aggregation;
A fourth step of forming carbon nanotubes by vapor phase synthesis on the substrate on which the amorphous carbon is deposited;
A method for producing a carbon nanotube film, comprising:
前記第2工程では、前記金属触媒堆積後の前記基板を、不活性雰囲気中または還元雰囲気中で金属触媒活性化温度以上に加熱し、
前記第3工程では、前記加熱後の前記基板を、炭素原料ガスを含む雰囲気中で前記金属触媒活性化温度以下に保持し、
前記第4工程では、炭素原料ガスを含む雰囲気中で前記基板を前記金属触媒活性化温度よりも高い温度に保持することを特徴とする請求項1に記載のカーボンナノチューブ膜の製造方法。
In the second step, the substrate after the metal catalyst deposition is heated to a metal catalyst activation temperature or higher in an inert atmosphere or a reducing atmosphere,
In the third step, the heated substrate is maintained at a temperature lower than the metal catalyst activation temperature in an atmosphere containing a carbon source gas,
2. The method of manufacturing a carbon nanotube film according to claim 1, wherein in the fourth step, the substrate is held at a temperature higher than the metal catalyst activation temperature in an atmosphere containing a carbon source gas.
前記第3工程では、前記加熱後の前記基板を、炭素原料ガスを含む雰囲気中で200℃以上前記金属触媒活性化温度以下に保持することを特徴とする請求項2に記載のカーボンナノチューブ膜の製造方法。   3. The carbon nanotube film according to claim 2, wherein in the third step, the heated substrate is held at 200 ° C. or more and the metal catalyst activation temperature or less in an atmosphere containing a carbon source gas. Production method. 前記第3工程では、前記第2工程の終了後、前記基板を前記金属触媒活性化温度未満に降温してから炭素原料ガスを前記基板の雰囲気に導入することを特徴とする請求項3に記載のカーボンナノチューブ膜の製造方法。   The said 3rd process WHEREIN: After completion | finish of the said 2nd process, after cooling the said board | substrate below the said metal catalyst activation temperature, carbon source gas is introduce | transduced into the atmosphere of the said board | substrate. Of manufacturing a carbon nanotube film. 前記第3工程では、前記基板を前記金属触媒活性化温度以下に0〜180秒保持することを特徴とする請求項2〜4のいずれか1項に記載のカーボンナノチューブ膜の製造方法。   5. The method of manufacturing a carbon nanotube film according to claim 2, wherein, in the third step, the substrate is held below the metal catalyst activation temperature for 0 to 180 seconds.
JP2011138720A 2011-06-22 2011-06-22 Method for producing carbon nanotube film Expired - Fee Related JP5636337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011138720A JP5636337B2 (en) 2011-06-22 2011-06-22 Method for producing carbon nanotube film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011138720A JP5636337B2 (en) 2011-06-22 2011-06-22 Method for producing carbon nanotube film

Publications (2)

Publication Number Publication Date
JP2013006708A true JP2013006708A (en) 2013-01-10
JP5636337B2 JP5636337B2 (en) 2014-12-03

Family

ID=47674402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011138720A Expired - Fee Related JP5636337B2 (en) 2011-06-22 2011-06-22 Method for producing carbon nanotube film

Country Status (1)

Country Link
JP (1) JP5636337B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015189619A (en) * 2014-03-28 2015-11-02 日立造船株式会社 Production apparatus of carbon nanotube
JP2017206413A (en) * 2016-05-18 2017-11-24 戸田工業株式会社 Carbon nanotubes and method for producing the same, and carbon nanotubes dispersion
JP2018177562A (en) * 2017-04-06 2018-11-15 アイシン精機株式会社 Production method of carbon nanotube composite
EP3623342A1 (en) 2017-09-27 2020-03-18 Sugita Densen Co., Ltd. Carbon nanotube array and its production method, and spun carbon nanotube yarn and its production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004250306A (en) * 2002-09-17 2004-09-09 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Method of growing matrix of carbon nanotube
JP2009173497A (en) * 2008-01-25 2009-08-06 Mie Univ Carbon nanotube synthetic method using paracrystalline catalyst
JP2010138064A (en) * 2008-12-15 2010-06-24 Sony Corp Method for producing carbon nanotube film, carbon nanotube film and carbon nanotube element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004250306A (en) * 2002-09-17 2004-09-09 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Method of growing matrix of carbon nanotube
JP2009173497A (en) * 2008-01-25 2009-08-06 Mie Univ Carbon nanotube synthetic method using paracrystalline catalyst
JP2010138064A (en) * 2008-12-15 2010-06-24 Sony Corp Method for producing carbon nanotube film, carbon nanotube film and carbon nanotube element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015189619A (en) * 2014-03-28 2015-11-02 日立造船株式会社 Production apparatus of carbon nanotube
JP2017206413A (en) * 2016-05-18 2017-11-24 戸田工業株式会社 Carbon nanotubes and method for producing the same, and carbon nanotubes dispersion
JP2018177562A (en) * 2017-04-06 2018-11-15 アイシン精機株式会社 Production method of carbon nanotube composite
JP7024202B2 (en) 2017-04-06 2022-02-24 株式会社アイシン Method for manufacturing carbon nanotube complex
EP3623342A1 (en) 2017-09-27 2020-03-18 Sugita Densen Co., Ltd. Carbon nanotube array and its production method, and spun carbon nanotube yarn and its production method
US11753303B2 (en) 2017-09-27 2023-09-12 Sugita Densen Co., Ltd. Carbon nanotube array and its production method, and spun carbon nanotube yarn and its production method

Also Published As

Publication number Publication date
JP5636337B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP4474502B2 (en) Method for producing carbon nanotube array
JP5054068B2 (en) Method for producing carbon nanotube film
JP4988330B2 (en) Method for producing nitrogen-doped single-walled carbon nanotubes
JP2006007213A (en) Production method of catalyst for producing carbon nanotube
JP2009536912A (en) Assisted selective growth of dense and vertically aligned carbon nanotubes
JP5636337B2 (en) Method for producing carbon nanotube film
US9828253B2 (en) Nanotube film structure
US7585484B2 (en) Apparatus and method for synthesizing carbon nanotubes
US9963347B2 (en) Method for making nanotube film
Schweiger et al. Controlling the diameter of aligned single-walled carbon nanotubes on quartz via catalyst reduction time
KR20070071177A (en) Method for manufacturing single-walled carbon nanotube on glass
CN113307252B (en) Method for preparing spinnable super-parallel carbon nanotube array
JP4977982B2 (en) Method for producing linear carbon material and method for producing functional device
CN105621388B (en) Single-walled carbon nanotube horizontal array and preparation method and application
JP2006298684A (en) Carbon-based one-dimensional material and method for synthesizing the same, catalyst for synthesizing carbon-based one-dimensional material and method for synthesizing the catalyst, and electronic element and method for manufacturing the element
KR101315763B1 (en) Vertical alignment method of carbon nanotube array
KR101626936B1 (en) Carbon nanofibers with sharp tip structure and carbon nanofibers growth method using of palladium catalyst
JP2007521949A (en) Method for producing a material layer on a support
JP5783669B2 (en) Method for forming catalytic metal fine particles
JP6175948B2 (en) Method for producing graphene
JP2009173493A (en) Method of manufacturing carbon fiber and carbon fiber
US20200102647A1 (en) Multilayer stack for the growth of carbon nanotubes by chemical vapor deposition
TWI667363B (en) Method for fabricating carbon nanotube array
KR102349695B1 (en) Method of manufacturing vertically aligned carbon nanotubes
KR101934162B1 (en) Method of manufacturing high quality SiC nanowire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141020

R150 Certificate of patent or registration of utility model

Ref document number: 5636337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees