JP2013006258A - Surface treatment method and method for manufacturing electrophotographic photoreceptor - Google Patents

Surface treatment method and method for manufacturing electrophotographic photoreceptor Download PDF

Info

Publication number
JP2013006258A
JP2013006258A JP2011142178A JP2011142178A JP2013006258A JP 2013006258 A JP2013006258 A JP 2013006258A JP 2011142178 A JP2011142178 A JP 2011142178A JP 2011142178 A JP2011142178 A JP 2011142178A JP 2013006258 A JP2013006258 A JP 2013006258A
Authority
JP
Japan
Prior art keywords
abrasive
treated
surface treatment
mohs hardness
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011142178A
Other languages
Japanese (ja)
Other versions
JP5800601B2 (en
JP2013006258A5 (en
Inventor
Satoshi Furushima
聡 古島
Kazunari Oyama
一成 大山
Tomohito Ozawa
智仁 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011142178A priority Critical patent/JP5800601B2/en
Publication of JP2013006258A publication Critical patent/JP2013006258A/en
Publication of JP2013006258A5 publication Critical patent/JP2013006258A5/ja
Application granted granted Critical
Publication of JP5800601B2 publication Critical patent/JP5800601B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a surface treatment method that prevents residue of abrasives and suppresses embedment and rubbing of fine powder and burrs generated from a workpiece while maintaining the ability of removing such an adhered matter as a deposited film, by honing processing at a high level, to obtain a clean surface of the workpiece.SOLUTION: The honing processing uses at least two injection guns for honing processing at one time with respect to one workpiece in one processing container, injects one or more sorts of abrasives having a Mohs hardness higher than that of the workpiece and one or more sorts of abrasives having a Mohs hardness lower than that of the workpiece from respective injection guns, and processes the surface by blasting a part to be processed with the abrasives in the order of one having a higher Mohs hardness.

Description

この発明は、被処理材の表面に研磨材を多数吹き付けて被処理材表面に付着した膜を除去し、清浄な表面を得るための表面処理方法に関する。
また、本発明で処理した基体ホルダーを用いた電子写真感光体の製造方法に関する。
The present invention relates to a surface treatment method for obtaining a clean surface by spraying a large number of abrasives on the surface of a material to be treated to remove a film adhered to the surface of the material to be treated.
The present invention also relates to a method for producing an electrophotographic photosensitive member using a substrate holder treated according to the present invention.

従来、堆積膜製造装置部品等の被処理材表面に付着した錆、金属等の付着膜、堆積膜、酸化膜や汚れなどを除去する場合、ホーニング、ブラストなどのピーニング処理方法により処理される。
この種の処理方法では、例えば研磨材として微細なガラス粒子を用い、これを水と一緒に圧縮空気により被処理材表面に吹き付けて被処理材表面を研磨する。研磨材として、用途に応じてセラミック系、ガラス系、金属系、樹脂系、氷やドライアイス等の微小粒子が用いられる。
Conventionally, when removing an adhesion film such as rust and metal, a deposition film, an oxide film, and dirt attached to a surface of a material to be processed such as a deposited film manufacturing apparatus component, it is processed by a peening treatment method such as honing and blasting.
In this type of processing method, for example, fine glass particles are used as an abrasive, and this is sprayed onto the surface of the material to be processed with compressed air together with water to polish the surface of the material to be processed. As the abrasive, ceramic, glass, metal, resin, fine particles such as ice and dry ice are used depending on the application.

そして、求められる表面の仕上がり状態に応じて、研磨材の形状、大きさ、硬さ、比重、吹き付け圧力、吹き付け速度、吹き付け量、懸濁液濃度等が適宜制御されている。しかし、付着膜の除去能力を大きくすると、以下の課題が生じる。即ち、被処理材の表面に研磨材残留物が残ったり、付着膜が被処理材に埋め込まれたり、摺り込まれたりする再付着の発生が多くなる(以下、「微粉付着」とも称する)。これを抑制するために、特許文献1にはホーニング処理後に微粉除去や付着物除去を行って清浄する方法が開示されている。また、特許文献2には、ホーニング処理で、研磨材や微粉等の研削屑を残留させないために、水に溶解するミョウバンを研磨材に用いる方法が開示されている。特許文献3には、被処理材に対して複数の噴射方向でホーニング処理することで、表面性の一様性を得る方法が開示されている。特許文献4には微小な平均粗さが一様でかつ平滑的な表面を得るために、2個の噴射ガンを用いて、1段目の衝撃力を2段目よりも大きくして複数回にわたって処理する方法が開示されている。   The shape, size, hardness, specific gravity, spraying pressure, spraying speed, spraying amount, suspension concentration, etc. of the abrasive are appropriately controlled according to the required surface finish. However, if the ability to remove the adhesion film is increased, the following problems occur. That is, the occurrence of re-adhesion increases in that the abrasive residue remains on the surface of the material to be processed, or the attached film is embedded or slid into the material to be processed (hereinafter also referred to as “fine powder adhesion”). In order to suppress this, Patent Document 1 discloses a method of cleaning by performing fine powder removal and deposit removal after the honing process. Patent Document 2 discloses a method in which alum that dissolves in water is used as an abrasive in order to prevent grinding waste such as abrasives and fine powder from remaining in the honing process. Patent Document 3 discloses a method for obtaining surface uniformity by honing a material to be processed in a plurality of injection directions. In Patent Document 4, in order to obtain a uniform and smooth surface with a minute average roughness, two impact guns are used and the impact force on the first stage is made larger than that on the second stage for a plurality of times. A method of processing is disclosed.

特開2007-108395号公報JP 2007-108395 A 特開2004-314273号公報JP 2004-314273 A 特開2002-361557号公報JP 2002-361557 A 特開平6-67441号公報JP-A-6-67441

しかしながら、上記従来技術においては以下のような課題が残されていた。特許文献1の方法では、微粉除去や付着物除去の効果は得られるものの、工程増が課題となることがあった。特許文献2の方法では、研磨材の残留防止効果は得られるものの、被処理材の付着膜除去能が不足することがあった。特許文献3の方法では、表面の一様性を得るという効果は認められるものの、微粉付着が課題になることがあった。特許文献4の方法では、平均粗さが一様な表面を得る効果は得られるものの、微粉付着が課題になることがあった。   However, the following problems remain in the above prior art. In the method of Patent Document 1, although the effect of fine powder removal and adhering matter removal can be obtained, an increase in the process sometimes becomes a problem. In the method of Patent Document 2, although the effect of preventing the remaining of the abrasive is obtained, the ability to remove the attached film of the material to be processed may be insufficient. In the method of Patent Document 3, although the effect of obtaining surface uniformity is recognized, fine powder adhesion sometimes becomes a problem. In the method of Patent Document 4, although the effect of obtaining a surface having a uniform average roughness can be obtained, adhesion of fine powder sometimes becomes a problem.

本発明は以上のような課題を解決し、付着膜を効率よく除去し、清浄な表面を得るための表面処理方法を提供することを目的としている。
即ち、本発明は、ホーニング処理による堆積膜等の付着物除去能力を高いレベルで維持しつつ微粉付着を抑制して、清浄な被処理材表面を得るための表面処理方法を提供する事を目的とする。
An object of the present invention is to solve the above problems, and to provide a surface treatment method for efficiently removing an adhesion film and obtaining a clean surface.
That is, the present invention aims to provide a surface treatment method for obtaining a clean surface to be treated while suppressing adhesion of fine powders while maintaining a high level of deposit removal ability such as a deposited film by honing treatment. And

また、本発明はプラズマCVD法による堆積膜製造装置に用いる部品に付着した付着膜を効率的に除去し、清浄な被処理材表面を得ることができ、その結果、堆積膜形成時のダストによる膜欠陥発生を抑制可能な表面処理方法を提供することを目的とする。
なお、ここでいう膜欠陥とは、基板上に付着したダストを基点として膜が異常成長したものである。
In addition, the present invention can efficiently remove the adhesion film adhering to the parts used in the deposited film manufacturing apparatus by the plasma CVD method and obtain a clean surface of the material to be processed. An object of the present invention is to provide a surface treatment method capable of suppressing the occurrence of film defects.
The film defect referred to here is an abnormal growth of the film based on the dust adhering to the substrate.

上記課題を解決するために、本発明に係わる表面処理方法は、研磨材を用いたホーニング処理により被処理材に対して表面剥離又は付着物除去をおこなう。1つの処理容器内で1つの被処理材に対して少なくとも2つのホーニング処理のための噴射ガンを同時に用い、モース硬度が被処理材よりも大きい少なくとも1種以上の研磨材とモース硬度が被処理材よりも小さい少なくとも1種以上の研磨材を個別の噴射ガンから噴射し、モース硬度が大きい研磨材から順に被処理部に吹き付けることを特徴とする。   In order to solve the above problems, the surface treatment method according to the present invention performs surface peeling or deposit removal on a material to be treated by a honing treatment using an abrasive. At least two honing treatment spray guns are simultaneously used for one material to be treated in one processing container, and at least one kind of abrasive having a Mohs hardness greater than the material to be treated and Mohs hardness to be processed It is characterized in that at least one kind of abrasive material smaller than the material is sprayed from individual spray guns, and sprayed onto the processing target in order from the abrasive material having the largest Mohs hardness.

本発明の表面処理方法によれば、極めて効率的に非常に良好な清浄状態の表面が得られる。プラズマCVD法の装置内で用いる部品、防着板や基板ステージ、基体ホルダー等の付着膜除去に適して用いることができる。
さらに、プラズマCVD法を用いたアモルファスシリコン電子写真感光体の製造方法において、本発明の表面処理方法により基体ホルダーの表面処理を行うことで画像欠陥の非常に少ない高画質対応の電子写真感光体を得ることができる。
According to the surface treatment method of the present invention, a very good clean surface can be obtained very efficiently. It can be suitably used for removing attached films such as components used in the plasma CVD apparatus, deposition preventing plate, substrate stage, and substrate holder.
Furthermore, in the method for producing an amorphous silicon electrophotographic photoreceptor using the plasma CVD method, the surface treatment of the substrate holder is performed by the surface treatment method of the present invention, whereby an electrophotographic photoreceptor capable of high image quality with very few image defects is obtained. Obtainable.

本発明の処理方法を行うための装置構成を説明する模式図Schematic diagram for explaining an apparatus configuration for carrying out the processing method of the present invention. 本発明の処理方法に用いることができるトレース処理を説明する模式図Schematic diagram illustrating the trace processing that can be used in the processing method of the present invention. 電子写真感光体の製造装置の一例を示した模式図Schematic diagram showing an example of an electrophotographic photoreceptor manufacturing apparatus 基体ホルダーを表面処理するときの噴射ガンの配置を説明する模式図Schematic diagram for explaining the arrangement of spray guns when surface-treating the substrate holder 電子写真感光体の層構成の一例を示す模式図Schematic diagram showing an example of the layer structure of an electrophotographic photosensitive member 本発明の処理方法に用いることができるホーニング処理装置の一例を示した模式図The schematic diagram which showed an example of the honing processing apparatus which can be used for the processing method of this invention 磁性研磨材の分離回収装置の例を説明する模式図Schematic diagram illustrating an example of a magnetic abrasive separation and recovery device 基体ホルダーの構成を説明する模式図Schematic diagram explaining the configuration of the substrate holder 研磨材衝突質量を測定する際に用いることができる研磨材回収容器の概略図Schematic of an abrasive collection container that can be used when measuring abrasive collision mass 噴流速度を測定するための羽根車式流速測定器の概略図Schematic diagram of impeller-type flow velocity measuring device for measuring jet velocity

本発明者らは、被処理材とホーニング処理に用いる研磨材の硬度に注目して検討を行った。硬度にはロックウェル硬度、ビッカース硬度、モース硬度、マルテンス硬度、ビアネル硬度等がある。ロックウェル硬度やビッカース硬度は押込み硬さであり、モース硬度、マルテンス硬度やビアネル硬度は引っかき硬度である。本発明者らは微粉付着抑制の点からは引っかき硬度に注目すべきと考えた。なお、マルテンス硬度とビアネル硬度は、ダイヤモンド圧子の引っかき傷の大きさで判定するものである。本検討においては微粒子形状の研磨材が被処理材の微粉やバリを発生させる点に着目するため、定性的ではあるが材質を直接比較可能なモース硬度に着目して検討を行った。その結果、被処理材よりもモース硬度が小さい研磨材でホーニング処理を行うと、微粉付着が減少することが解った。   The present inventors have studied by paying attention to the hardness of the material to be treated and the abrasive used for the honing treatment. Hardness includes Rockwell hardness, Vickers hardness, Mohs hardness, Martens hardness, Bianel hardness and the like. Rockwell hardness and Vickers hardness are indentation hardness, and Mohs hardness, Martens hardness and Bianel hardness are scratch hardness. The present inventors considered that the scratch hardness should be noted from the viewpoint of suppressing fine powder adhesion. The Martens hardness and the Bianel hardness are determined by the size of the scratches of the diamond indenter. In this study, in order to pay attention to the fact that fine-grained abrasives generate fine powder and burrs of the material to be treated, the examination was conducted focusing on Mohs hardness which is qualitative but can directly compare materials. As a result, it has been found that when the honing process is performed with an abrasive having a smaller Mohs hardness than the material to be treated, adhesion of fine powder is reduced.

しかし、モース硬度が小さい研磨材を用いた場合、付着膜除去能が小さくなり処理時間を延長しても十分に除去できない場合があった。一方、被処理材よりモース硬度が大きい研磨材を用いた場合、付着膜除去能は十分なものの微粉付着が多いことが解った。また、付着膜が除去された後もホーニング処理を続けると微粉付着が更に増加することが解った。
本発明者らは更に、微粉付着が生じた被処理材を被処理材よりもモース硬度が小さい研磨材でホーニング処理を行ったところ、処理後の微粉付着が減少することを確認した。これは以下のような作用によるものと考えられる。まず、被処理材よりも研磨材のモース硬度が小さいため被処理材のバリや微紛の発生が非常に少なくなっていると考えられる。そして、被処理材の微紛やバリが、被処理材に埋め込まれたり摺り込まれた状態においては、モース硬度が小さい研磨材を吹き付けると、埋め込まれたり摺り込まれた微紛やバリをかきとるように除去できるようである。さらに、かきとる際に、被処理材の表面に損傷を与えにくいので、新たなバリや微紛を発生させることがほとんどないと考えられる。
However, when an abrasive having a low Mohs hardness is used, the ability to remove the attached film is small, and even if the processing time is extended, it may not be sufficiently removed. On the other hand, it was found that when an abrasive having a Mohs hardness greater than that of the material to be treated was used, the attached film removal ability was sufficient, but there was much fine powder adhesion. Further, it was found that if the honing process is continued even after the adhered film is removed, the fine powder adhesion further increases.
The present inventors further confirmed that when the material to which the fine particles adhere was subjected to a honing process with an abrasive having a smaller Mohs hardness than the material to be treated, the fine powder adhesion after the treatment decreased. This is considered to be due to the following actions. First, since the Mohs hardness of the abrasive is smaller than that of the material to be treated, it is considered that the occurrence of burrs and fines in the material to be treated is very small. In the state where fine dust and burrs of the material to be treated are embedded or rubbed into the material to be treated, if an abrasive having a low Mohs hardness is sprayed, the fine powder or burrs that have been buried or rubbed in will be scraped off. It seems that it can be removed. Furthermore, since it is difficult to damage the surface of the material to be treated when scraping, it is considered that new burrs and fine particles are hardly generated.

そこで、本発明者らは、付着膜の除去が効率的になされ、微粉付着が抑制され、清浄な表面が得られる表面処理方法について更に鋭意検討を行った。
その結果、少なくとも2つのホーニング処理のための噴射ガンを同時に用い、少なくとも2つの研磨材を個別の噴射ガンから噴射し、各々の研磨材のモース硬度および被処理材のモース硬度を所定の関係とすることで前述した課題に対して大きな効果が得られることを見出した。
Therefore, the present inventors have further intensively studied a surface treatment method in which the adhesion film is efficiently removed, fine powder adhesion is suppressed, and a clean surface can be obtained.
As a result, at least two injection guns for honing treatment are used simultaneously, and at least two abrasives are injected from individual injection guns, and the Mohs hardness of each abrasive and the Mohs hardness of the material to be processed are in a predetermined relationship. As a result, it has been found that a great effect can be obtained with respect to the aforementioned problems.

すなわち、本発明は、1つの処理容器内で1つの被処理材に対して少なくとも2つのホーニング処理のための噴射ガンを同時に用い、モース硬度が被処理材よりも大きい少なくとも1種以上の研磨材とモース硬度が被処理材よりも小さい少なくとも1種以上の研磨材を個別の噴射ガンから噴射し、モース硬度が大きい研磨材から順に被処理部に吹き付けて表面処理することを特徴とする。   That is, the present invention simultaneously uses at least two injection guns for honing treatment for one material to be processed in one processing container, and has at least one kind of abrasive having a Mohs hardness higher than that of the material to be processed. The surface treatment is performed by spraying at least one type of abrasive having a smaller Mohs hardness than that of the material to be treated from individual spray guns and spraying the surface of the material to be treated in descending order of the Mohs hardness.

ここで、モース硬度が大きい研磨材から順に被処理部に吹き付けて表面処理するとは、モース硬度が被処理材よりも大きい研磨材を吹き付けて被処理材全面の処理を施し、それが終了した後に次の研磨材を吹き付けて処理を行うことのみを指すものではない。被処理材の被処理部において、モース硬度が被処理材よりも大きい研磨材を用いた処理が施され、続いて、モース硬度が先の研磨材よりも小さい研磨材を用いた処理が施されていれば良い。使用する研磨材が2種類の場合は、後から噴射する研磨材のモース硬度は被処理剤のモース硬度よりも小さい。
噴射ガンを3個以上使う場合も、モース硬度が大きい研磨材から順に被処理部に吹き付けて表面処理施されていれば良い。
Here, the surface treatment is performed by spraying the treated material in order from the polishing material having the larger Mohs hardness. After the polishing is performed, the polishing material having the larger Mohs hardness is sprayed on the entire surface of the treated material. It does not indicate only that the next abrasive is sprayed for processing. In the treated portion of the material to be treated, a process using an abrasive having a Mohs hardness greater than that of the material to be treated is performed, followed by a process using an abrasive having a Mohs hardness of less than the previous abrasive. It should be. When two kinds of abrasives are used, the Mohs hardness of the abrasives to be sprayed later is smaller than the Mohs hardness of the agent to be treated.
Even when three or more spray guns are used, it suffices that the surface treatment is performed by spraying the parts to be treated in order from the abrasive having the largest Mohs hardness.

図1(a)に、本発明に用いることができる処理装置の一例を示す。表面処理装置内に、付着膜104が付着した被処理材101と第1の噴射ガン102、第2の噴射ガン103を図のように配置する。ここでは、第1の噴射ガン102はモース硬度が被処理材よりも大きい研磨材を噴射し、第2の噴射ガン103はモース硬度が被処理材よりも小さい研磨材を噴射するものとする。   FIG. 1A shows an example of a processing apparatus that can be used in the present invention. In the surface treatment apparatus, the material 101 to which the adhesion film 104 adheres, the first injection gun 102, and the second injection gun 103 are arranged as shown in the figure. Here, it is assumed that the first injection gun 102 injects an abrasive having a Mohs hardness greater than that of the material to be processed, and the second injection gun 103 injects an abrasive having a Mohs hardness of less than that of the material to be processed.

具体的には、被処理材101の法線方向にZ軸を取り、Z軸と直行する面にXY平面を取る。付着膜104側をZ軸プラス側として被処理材101を設置し、噴射ガンをZ軸プラス側に設置する。加えて、Y軸のマイナス方向(Y軸矢印と逆方向)に被処理材を動かして処理する場合に、Y軸プラス側から第1の噴射ガン102、第2の噴射ガン103の順に配置する。その際、被処理部が、まず第1の噴射ガン102からの吹き付けによって処理され、次に第2の噴射ガン103からの吹き付けによって処理がなされるように噴射ガンの中心線を考慮して配置する。具体的には、第1の噴射ガン102から吹き付けられる噴流と第2の噴射ガン103から吹き付けられる噴流が被処理面に当たる前、すなわちZ軸のプラス側空間で互いに衝突することの無いように、噴射ガンを配置する。   Specifically, the Z axis is taken in the normal direction of the material 101 to be processed, and the XY plane is taken as a plane orthogonal to the Z axis. The workpiece 101 is installed with the adhesion film 104 side as the Z-axis plus side, and the spray gun is installed on the Z-axis plus side. In addition, when the material to be processed is moved in the negative direction of the Y axis (the direction opposite to the Y axis arrow), the first injection gun 102 and the second injection gun 103 are arranged in this order from the Y axis positive side. . At that time, the processing target part is arranged in consideration of the center line of the injection gun so that the processing is first performed by spraying from the first injection gun 102 and then processed by spraying from the second injection gun 103. To do. Specifically, before the jet flow blown from the first injection gun 102 and the jet flow blown from the second injection gun 103 hit the surface to be processed, that is, so as not to collide with each other in the positive side space of the Z axis. Place the spray gun.

また、図1(a)に示すように第1の噴射ガン102から吹き付けられる噴流の中心軸と第2の噴射ガン103から吹き付けられる噴流の中心軸とが被処理材上である程度以上の間隔105を有することが好ましい。これにより第1の噴射ガン102から吹き付けられる噴流と第2の噴射ガン103から吹き付けられる噴流が被処理材101に到達する前に互いに衝突して噴流の乱れが生じたり、研磨材が混合したりすることが防止される。   Further, as shown in FIG. 1 (a), the central axis of the jet flow blown from the first injection gun 102 and the central axis of the jet flow blown from the second injection gun 103 are spaced at a certain distance 105 on the workpiece. It is preferable to have. As a result, the jet flow blown from the first injection gun 102 and the jet flow blown from the second injection gun 103 collide with each other before reaching the material to be processed 101, resulting in turbulence of the jet flow or mixing of abrasives. Is prevented.

第1の噴射ガン102の噴流が衝突する被処理材上の領域(衝突領域108)と、第2の噴射ガン103の噴流が衝突する被処理材上の領域(衝突領域109)が重なり合わないように間隔105を設定することが好ましい。間隔105は、第1の噴射ガン102から吹き付けられる噴流の中心軸が被処理材101と交わる点から、第2の噴射ガン103から吹き付けられる噴流の中心軸が被処理材101と交わる点までの距離である。具体的な間隔は、噴射ガンと被処理材との距離、ノズルからの単位時間あたりの吐出量などの条件により衝突領域の大きさが異なるため、一意に決まるものではなく、使用する装置、条件ごとに適宜調整する。   The region on the material to be treated where the jet flow of the first injection gun 102 collides (collision region 108) and the region on the material to be treated where the jet flow of the second injection gun 103 collide (collision region 109) do not overlap. It is preferable to set the interval 105 as described above. The interval 105 is from the point where the central axis of the jet sprayed from the first injection gun 102 intersects the material 101 to the point where the central axis of the jet sprayed from the second injection gun 103 intersects the material 101. Distance. The specific interval is not uniquely determined because the size of the collision area varies depending on conditions such as the distance between the spray gun and the material to be processed and the discharge amount per unit time from the nozzle. Adjust as appropriate.

このように本発明の表面処理方法は、1つの被処理材に対して少なくとも2つの噴射ガンを同時に用いる。そして、モース硬度が被処理材よりも大きい少なくとも1種以上の研磨材とモース硬度が被処理材よりも小さい少なくとも1種以上の研磨材を個別の噴射ガンから噴射することが必要である。
研磨材の粒径は100番〜1000番メッシュ相当、または10〜100μmの範囲にあるものが好ましい。また研磨材の比重が0.5〜10の範囲にある微粉末で、形状は球状のものが好ましく用いられる。好適に用いられる研磨材の材質としては、鉄、ステンレス、ガラス、アルミナ、フェライト、ジルコニア、酸化クロム、炭化ケイ素、炭化ホウ素、窒化ホウ素、エポキシ樹脂、ナイロン、氷粒、ドライアイスペレットが挙げられる。
Thus, the surface treatment method of the present invention uses at least two spray guns simultaneously for one material to be treated. Then, it is necessary to inject at least one type of abrasive having a Mohs hardness greater than that of the material to be processed and at least one type of abrasive having a Mohs hardness smaller than that of the material to be processed from individual injection guns.
The abrasive preferably has a particle size equivalent to 100-1000 mesh or in the range of 10-100 μm. A fine powder having a specific gravity of 0.5 to 10 and having a spherical shape is preferably used. Examples of the material of the abrasive preferably used include iron, stainless steel, glass, alumina, ferrite, zirconia, chromium oxide, silicon carbide, boron carbide, boron nitride, epoxy resin, nylon, ice particles, and dry ice pellets.

このような本発明の表面処理は、モース硬度が被処理材よりも大きい研磨材の吹き付けに続いてモース硬度が大きい研磨材から順に被処理部に吹き付けるという連続した表面処理を複数回に分けて行うことが好ましい。モース硬度が被処理材よりも大きい研磨材の吹き付けによる付着膜除去は吹き付け時間が長くなるに従い、微紛およびバリの発生が増え、微粉付着が増加する傾向にある。更には、複数の微紛やバリが重なりあって埋め込まれたり摺り込まれたりしてしまう場合がある。このような状況においては、モース硬度が被処理材よりも小さい研磨材の吹き付けでこれら微粉やバリの除去を行う際に、微粉やバリの量が多いこと及びそれらが重なりあっていることにより除去しにくい。特に重なりあった微粉やバリは、モース硬度が被処理材よりも小さい研磨材の吹き付けによる除去効果を低減させる場合が多かった。   In the surface treatment of the present invention, the continuous surface treatment of spraying the polishing portion in order from the polishing material having the larger Mohs hardness followed by the spraying of the polishing material having the Mohs hardness larger than the processing material is divided into a plurality of times. Preferably it is done. The removal of the adhered film by spraying an abrasive having a Mohs hardness higher than that of the material to be treated tends to increase fine powder and burrs and increase fine powder adhesion as the spray time becomes longer. Furthermore, a plurality of fine powders and burrs may overlap and be embedded or rubbed. In such a situation, when these fine powders and burrs are removed by spraying an abrasive whose Mohs hardness is lower than that of the material to be treated, the removal is due to the large amount of fine powders and burrs and their overlapping. Hard to do. In particular, the overlapped fine powder and burrs often reduce the removal effect by spraying an abrasive having a Mohs hardness smaller than that of the material to be treated.

これに対して、モース硬度が大きい研磨材から順に被処理部に吹き付けるという一連の表面処理を複数回に分けて行う場合、1回の吹き付け時間が短くなり微紛およびバリの発生量を抑えることができる。また、微紛やバリが重なりあって埋め込まれたり摺り込まれたりすることも少なくなる。即ち、微粉付着が少なくなる。そのため、続くモース硬度が被処理材よりも小さい研磨材の吹き付けによる処理が短時間であっても埋め込まれたり摺り込まれたりした微紛やバリをほぼすべて除去することができる。   On the other hand, when performing a series of surface treatments in which the surface to be treated is sprayed in order from the abrasive material having the largest Mohs hardness in a plurality of times, the time of one spraying is shortened and the amount of fine dust and burrs generated is suppressed. Can do. In addition, fine powder and burrs overlap and are less likely to be embedded or rubbed. That is, fine powder adhesion is reduced. Therefore, it is possible to remove almost all fine particles and burrs embedded or slid even if the treatment by spraying an abrasive having a smaller Mohs hardness than the material to be treated is performed in a short time.

以上より、1回の吹き付け時間を短くして、モース硬度が被処理材よりも大きい研磨材の吹き付けに続いて、モース硬度が大きい研磨材から順に被処理部に吹き付けるという連続した表面処理を複数回に分けて施すことが、清浄な表面状態を得るために好ましい。
このような処理は研磨材ごとに別個の処理装置を用いて行うことも可能であるが、装置コストが高まり、装置設置面積が増大し、被処理材を移動する工程が必要なために処理時間が増加してしまう。このため同一容器内で、研磨材毎に個別の噴射ガンを同時に用いて表面処理する。
As described above, a plurality of continuous surface treatments in which one spraying time is shortened, followed by spraying an abrasive having a Mohs hardness greater than that of the material to be treated, followed by spraying the material to be treated in order from an abrasive having a large Mohs hardness. It is preferable to divide the treatment into times to obtain a clean surface state.
Such processing can be performed using a separate processing apparatus for each abrasive, but the processing cost increases because the apparatus cost increases, the apparatus installation area increases, and a process for moving the processing object is required. Will increase. For this reason, in the same container, the surface treatment is carried out by simultaneously using individual spray guns for each abrasive.

本発明において用いる研磨材は、研磨材コスト低減のために研磨材の分離回収−再利用可能な研磨材の組み合わせが好ましい。例えば、モース硬度が被処理材よりも大きい研磨材は固体で、モース硬度が被処理材よりも小さい研磨材は常温で液体または気体になる研磨材を冷却固化して用いることで、モース硬度が被処理材よりも大きい研磨材は回収して再利用可能となる。モース硬度が被処理材よりも小さい研磨材は常温で液体または気体となるため、モース硬度が被処理材よりも大きい研磨材に混入することが抑制され、効果維持に適している。なお、常温とは20℃±15℃(つまり、5℃以上35℃以下)の範囲を意味するものとする。   The abrasive used in the present invention is preferably a combination of abrasives that can be separated and recovered and reused to reduce abrasive costs. For example, an abrasive with a Mohs hardness greater than the material to be treated is solid, and an abrasive with a Mohs hardness less than the material to be treated is used by cooling and solidifying an abrasive that becomes liquid or gas at room temperature. An abrasive larger than the material to be treated can be recovered and reused. An abrasive having a smaller Mohs hardness than a material to be treated becomes a liquid or a gas at room temperature. Therefore, mixing with an abrasive having a larger Mohs hardness than the material to be treated is suppressed, and it is suitable for maintaining the effect. In addition, normal temperature shall mean the range of 20 degreeC +/- 15 degreeC (namely, 5 degreeC or more and 35 degrees C or less).

常温で液体となる研磨材、または常温で気体となる研磨材としては、研磨材として使用可能な強度と必要なモース硬度、そして扱いやすさと入手しやすさ、コストの点から、氷またはドライアイスが好ましい。氷を研磨材として用いる場合は、氷塊を粉砕し、微細な氷粒にして、水とともに噴射して表面処理を行う。ドライアイスを研磨材として用いる場合は、ドライアイスペレット粒を気流で噴射して表面処理を行う。   As an abrasive that becomes liquid at room temperature, or an abrasive that becomes gas at room temperature, ice or dry ice can be used because of its strength, required Mohs hardness, ease of handling and availability, and cost. Is preferred. When ice is used as an abrasive, the ice lump is crushed to form fine ice particles and sprayed with water for surface treatment. When dry ice is used as an abrasive, surface treatment is performed by spraying dry ice pellets with an air stream.

また、磁性材料で形成された研磨材(以下、単に「磁性の研磨材」とも称する)と非磁性材料で形成された研磨材(以下、単に「非磁性の研磨材」とも称する)とを用いることも、分離回収、再利用が可能で好ましい。
研磨材の選択以外にも、被処理部に吹き付ける研磨材の質量によっても、本発明の効果の程度が変化する。そこで、本発明者らは、被処理部に吹き付けられる単位時間における単位面積当たりの研磨材衝突エネルギー(以下、単に「研磨材衝突エネルギー」とも称する)と本発明の効果との関係を検討した。
Also, an abrasive formed of a magnetic material (hereinafter simply referred to as “magnetic abrasive”) and an abrasive formed of a non-magnetic material (hereinafter also simply referred to as “non-magnetic abrasive”) are used. This is also preferable because it can be separated and recovered and reused.
In addition to the selection of the abrasive material, the degree of the effect of the present invention varies depending on the mass of the abrasive material sprayed on the portion to be processed. Therefore, the present inventors have examined the relationship between the abrasive collision energy per unit area per unit time sprayed on the processing target (hereinafter also simply referred to as “abrasive collision energy”) and the effect of the present invention.

まず、被処理部に吹き付けられる単位時間における単位面積当たりの研磨材質量(以下、「研磨材衝突質量」とも称する)を以下のように算出した。噴射ガンの中心軸と被処理材が交わる点を求め、これを点110とした。次に、点110において被処理材に接する平面をXY平面とした。そして、XY平面において点110を中心とした直径1cmの円Sを決定し、その円S内に到達する単位時間あたりの研磨材の質量A(g)を測定して研磨材衝突質量を求めた。より具体的には、上記のようにして円Sに60秒間に到達する研磨材の質量Aを測定し、下記式より研磨材衝突質量を算出した。   First, the abrasive mass per unit area (hereinafter, also referred to as “abrasive collision mass”) per unit time sprayed on the portion to be treated was calculated as follows. A point where the central axis of the spray gun intersects with the material to be processed was obtained and designated as point 110. Next, the plane in contact with the material to be processed at the point 110 was taken as the XY plane. Then, a circle S having a diameter of 1 cm centered on the point 110 on the XY plane was determined, and the mass A (g) of the abrasive per unit time reaching the circle S was measured to obtain the abrasive collision mass. . More specifically, the mass A of the abrasive that reaches the circle S for 60 seconds as described above was measured, and the abrasive collision mass was calculated from the following formula.

1平方cm当たりに1秒間で衝突する研磨材衝突質量(D)[g/cm・sec]=A/(0.5×0.5×π×60)
研磨材の質量の測定には例えば図9に示すような研磨材回収容器901を用いることができる。図9において開口部902は直径1cmの円形となっている。そして研磨材回収容器901の開口部902の中心が点110と重なるように、かつ開口部902の円形状の縁が上記XY平面上となるように研磨材回収容器901を設置する。この状態で噴射ガンより所定時間の研磨材の吹き付けを行い、所定時間後に研磨材回収容器901内の研磨材を回収し、研磨材の質量を求める。
Abrasive collision mass (D) [g / cm 2 · sec] that collides in 1 second per square cm 2 = A / (0.5 × 0.5 × π × 60)
For the measurement of the mass of the abrasive, an abrasive collection container 901 as shown in FIG. 9 can be used, for example. In FIG. 9, the opening 902 is circular with a diameter of 1 cm. Then, the abrasive collection container 901 is installed so that the center of the opening 902 of the abrasive collection container 901 overlaps with the point 110 and the circular edge of the opening 902 is on the XY plane. In this state, the abrasive is sprayed from the spray gun for a predetermined time, and after a predetermined time, the abrasive in the abrasive recovery container 901 is recovered and the mass of the abrasive is obtained.

次に、被処理材に入射する噴流速度を図10(a)及び(b)のような羽根車式の速度計で計測した。噴射ガン1001からの噴流の中心軸1002を水平になるようにして羽根車1003に当てて、羽根車の回転数を計測して、噴流速度を算出した。羽根長10cm羽根幅2cmの長方形の羽根を8枚持つ羽根車1003を用いて、羽根幅2cmの中央かつ羽端から1cmのところ(図10(b)の1005の位置)に、噴流の中心軸1002が入射するように設置した。羽根車1003の中心軸1008と同軸に第1の歯車1009を設置し、第1の歯車1009とかみ合うように第2の歯車1006を設置し、第2の歯車1006の回転数を磁電式回転検出器1007(小野測器 AP−981)でカウントした。中心軸1008と第2の歯車1006の中心軸1010とは、平行である。
1秒あたりの回転数をBとしたときに、噴流速度は、下記式により算出した。
18×π×B [cm/sec]
Next, the jet velocity incident on the material to be treated was measured with an impeller type speedometer as shown in FIGS. 10 (a) and 10 (b). The central axis 1002 of the jet flow from the spray gun 1001 was applied horizontally to the impeller 1003, the rotational speed of the impeller was measured, and the jet velocity was calculated. Using an impeller 1003 having eight rectangular blades having a blade length of 10 cm and a blade width of 2 cm, the central axis of the jet is at the center of the blade width of 2 cm and 1 cm from the blade tip (position 1005 in FIG. 10B). It installed so that 1002 may inject. The first gear 1009 is installed coaxially with the central shaft 1008 of the impeller 1003, the second gear 1006 is installed so as to mesh with the first gear 1009, and the rotational speed of the second gear 1006 is detected by the magnetoelectric rotation detection. Counting was performed using a measuring instrument 1007 (Ono Sokki AP-981). The central axis 1008 and the central axis 1010 of the second gear 1006 are parallel.
When the number of rotations per second was B, the jet velocity was calculated by the following equation.
18 × π × B [cm / sec]

1cm当たり、1秒間での研磨材衝突エネルギー(E)は、噴流の中心軸線方向速度を噴流速度として、そのZ軸成分を算出し、下記式により求めた。
(1秒当たりの研磨材衝突質量)×(噴流速度のZ軸成分)×(噴流速度のZ軸成分)/2[g/sec
The abrasive collision energy (E) per 1 cm 2 per second was calculated from the following formula by calculating the Z-axis component with the jet velocity as the velocity in the central axial direction of the jet.
(Abrasive collision mass per second) × (Z-axis component of jet velocity) × (Z-axis component of jet velocity) / 2 [g / sec 2 ]

研磨のエネルギーは被処理材に衝突するZ軸方向の速度の寄与がY軸方向の被処理材を摺擦する速度の寄与よりも大きいので、研磨材衝突エネルギーの算出には噴流速度のZ軸成分を用いた。なお、研磨材衝突エネルギーは噴射する研磨材の速度や量だけでなく、噴射ガンの傾きや距離、拡がり角度にも依存するためこれらも考慮して研磨材衝突エネルギーを最適に調整することが好ましい。   Since the contribution of the velocity in the Z-axis direction that collides with the material to be treated is larger than the contribution of the velocity for rubbing the material to be treated in the Y-axis direction, the polishing energy is calculated by calculating the jet velocity Z-axis. Ingredients were used. The abrasive collision energy depends not only on the speed and amount of the abrasive to be sprayed, but also on the inclination, distance, and spread angle of the spray gun. Therefore, it is preferable to optimally adjust the abrasive collision energy in consideration of these factors. .

モース硬度が被処理材よりも大きい研磨材の研磨材衝突エネルギーE1が、モース硬度が被処理材よりも小さい研磨材の研磨材衝突エネルギーE2よりも小さい(E1<E2)場合には、以下のようになる。E1を十分な付着膜除去能が得られる値に設定するとE2が大きすぎてモース硬度が被処理材よりも小さい研磨材の吹き付けによる埋め込みや摺り込みがわずかながらではあるものの同時に発生してしまう場合がある。そのため、表面処理後に微粉付着がE1>E2の場合よりも多くなることがある。また、E2を微粉付着が発生しない値に設定した場合にはE1が小さくて付着膜除去能が低下する場合があった。ここで、研磨材衝突エネルギーは、水と研磨材の混合液を噴射する場合には、その混合液中の研磨材の質量から求めるものとする。またエアーにより研磨材のみを噴射する場合には、その研磨材の質量から求めるものとする。   When the abrasive collision energy E1 of the abrasive whose Mohs hardness is larger than that of the material to be treated is smaller than the abrasive collision energy E2 of the abrasive whose Mohs hardness is smaller than that of the material to be treated (E1 <E2), It becomes like this. When E1 is set to a value that can provide sufficient adhesion film removal ability, E2 is too large, and although embedding and rubbing due to spraying of an abrasive whose Mohs hardness is smaller than that of the material to be treated are generated at the same time, There is. Therefore, fine powder adhesion after the surface treatment may be larger than in the case of E1> E2. Further, when E2 is set to a value at which fine powder adhesion does not occur, E1 may be small and the attached film removing ability may be reduced. Here, the abrasive collision energy is obtained from the mass of the abrasive in the mixed liquid when the mixed liquid of water and abrasive is jetted. Further, when only the abrasive is sprayed by air, it is determined from the mass of the abrasive.

被処理材に対する研磨材の噴射の角度によっても、本発明の効果の程度が変化する。具体的には、図1(a)に示すように、被処理材101の法線方向にとったZ軸と第1の噴射ガンの中心軸とで成す噴射角106(θ1)を0°<θ1≦45°とすることが好ましい。
XZ面に対してY軸(−)側に噴射ガンがあるときは、角度θを正の値で表記し、Y軸(+)側に噴射ガンがあるときは、角度θを負の値で表記するものとした。さらに、Z軸と第2の噴射ガンの中心軸で成す噴射角107(θ2)は、θ1≦θ2<90°とすることが好ましい。噴射角θ1が45°を超える場合には、噴流速度の被処理材垂直方向成分が減少してくるので付着膜除去に要する、処理時間が長くなることがあった。また被処理材に垂直となる噴射角0°では被処理材に一度衝突した研磨材が処理領域内に留まりやすく、そこから排出されるまでに時間がかかる。そのために被処理材に一度衝突した研磨材が繰り返し被処理材表面に衝突する場合が生じ微粉付着が多くなる場合がある。また、噴射角θ1が0°未満になると第1の噴射ガンの中心軸方向と第2の噴射ガンの中心軸方向が逆となり、各々のガンから吹き付けられた研磨材が衝突領域外へ排出される方向が対面する。そのために研磨材がお互いに衝突することになり、研磨材の残留や、微紛、バリの埋め込み、摺り込みが増加する傾向にある。なお、噴流の拡がりにより、噴射角θ1が0°未満でなくても噴流の方向が対面する箇所が存在することがある。しかし、噴流の拡がりの外側ほど研磨材の密度や噴流速度が小さくなるために、中心軸の方向が対面しないように設置すれば上記のような現象はほとんど問題にならなかった。
The degree of the effect of the present invention varies depending on the angle of spraying of the abrasive with respect to the material to be processed. Specifically, as shown in FIG. 1A, the injection angle 106 (θ1) formed by the Z axis taken in the normal line direction of the workpiece 101 and the central axis of the first injection gun is 0 ° < It is preferable that θ1 ≦ 45 °.
When the injection gun is on the Y axis (−) side with respect to the XZ plane, the angle θ is expressed as a positive value. When the injection gun is on the Y axis (+) side, the angle θ is expressed as a negative value. It was supposed to be indicated. Furthermore, the injection angle 107 (θ2) formed by the Z axis and the central axis of the second injection gun is preferably θ1 ≦ θ2 <90 °. When the injection angle θ1 exceeds 45 °, the component in the vertical direction of the material to be processed of the jet velocity decreases, so that the processing time required for removing the adhered film may be long. In addition, at an injection angle of 0 ° perpendicular to the material to be processed, the abrasive material that once collided with the material to be processed tends to stay in the processing region, and it takes time to be discharged from there. Therefore, there is a case where the abrasive once collided with the material to be treated repeatedly collides with the surface of the material to be treated, resulting in an increase in fine powder adhesion. When the injection angle θ1 is less than 0 °, the central axis direction of the first injection gun and the central axis direction of the second injection gun are reversed, and the abrasive sprayed from each gun is discharged out of the collision area. Facing each other. For this reason, the abrasives collide with each other, and there is a tendency that the residual abrasives, fine powder, burrs are embedded and rubbed. Note that due to the expansion of the jet, there may be a portion where the jet direction faces even if the injection angle θ1 is not less than 0 °. However, since the density of the abrasive and the jet velocity become smaller toward the outside of the jet spread, the above phenomenon hardly poses a problem if it is installed so that the directions of the central axes do not face each other.

図1(b)のようにθ2<θ1となるように噴射ガンを設置すると装置構成上、間隔105が大きくなる。間隔105が大きくなると、被処理材の表面全てを処理するために被処理材または噴射ガンの移動距離が大きくなり処理時間の増大や、装置の大型化を伴ってしまう。このような観点からもθ1≦θ2が好ましい。また第1の噴射ガンの中心軸と第2の噴射ガンの中心軸が被処理材と噴射ガンの間のある一点で重なる様に配置した場合には、噴流の衝突により吹き付けが乱れ、安定した付着膜除去能や微粉付着抑制効果が得にくくなる。そのため被処理材の表面処理後の表面状態が不均一な仕上がりとなることがある。   When the injection gun is installed so that θ2 <θ1 as shown in FIG. 1B, the interval 105 is increased due to the apparatus configuration. When the interval 105 is increased, the movement distance of the material to be processed or the spray gun is increased in order to process the entire surface of the material to be processed, resulting in an increase in processing time and an increase in the size of the apparatus. From this point of view, θ1 ≦ θ2 is preferable. Further, when the central axis of the first injection gun and the central axis of the second injection gun are arranged so as to overlap at a certain point between the material to be processed and the injection gun, the spraying is disturbed and stabilized. It becomes difficult to obtain an adhesion film removing ability and a fine powder adhesion suppressing effect. For this reason, the surface condition of the material to be treated after the surface treatment may be uneven.

研磨材としては鉄またはステンレスで略球形の研磨材を用いることが特に好ましい。鉄またはステンレスは適度な延性があり、被処理材への埋め込みや摺り込みが発生しにくい。また、被処理材の微紛やバリの発生がSiCやアルミナ等のセラミック製の研磨材を用いた場合に比べて少ない傾向にある。また略球形な研磨材を選択することで被処理材の微紛やバリの発生を更に少なくすることができる。   As the abrasive, it is particularly preferable to use an approximately spherical abrasive made of iron or stainless steel. Iron or stainless steel has moderate ductility and is less likely to be embedded or rubbed into the material to be processed. Further, the generation of fine powder and burrs in the material to be processed tends to be smaller than when a ceramic abrasive such as SiC or alumina is used. Further, by selecting a substantially spherical abrasive, it is possible to further reduce the generation of fine powder and burrs on the material to be processed.

このような本発明は、アルミニウムやアルミニウム合金で構成された、プラズマCVD装置用の成膜炉内部品、例えば防着板や基板ホルダーの付着膜を除去して清浄な表面を得るために適して用いることができる。さらに、プラズマCVD法により、アモルファスシリコン系の電子写真感光体を製造するために用いるアルミニウム合金製の基体ホルダーの付着膜除去(表面剥離又は付着物除去)において、清浄な表面が得られる本発明の表面処理方法が適している。   The present invention as described above is suitable for obtaining a clean surface by removing an adhesion film on a deposition furnace or a substrate holder made of aluminum or an aluminum alloy, for example, a deposition apparatus for a plasma CVD apparatus. Can be used. Further, the present invention can provide a clean surface by plasma CVD method in removing the adhesion film (surface peeling or deposit removal) of an aluminum alloy substrate holder used for producing an amorphous silicon-based electrophotographic photosensitive member. A surface treatment method is suitable.

以下、アモルファスシリコン系の電子写真感光体の製造について説明する。
図3は、高周波電源を用いたRFプラズマCVD法による感光体の堆積装置の一例を模式的に示した図である。この装置は大別すると、反応容器3122を有する堆積装置3100、原料ガス供給装置3200、および、反応容器3122を減圧する為の排気装置(図示せず)から構成されている。反応容器3122内には、アースに接続された基体ホルダー3121に装着された導電性基体3112、導電性基体加熱用ヒーター3113、および、原料ガス導入管3114が設置されている。さらにカソード電極3111には高周波マッチングボックス3115を介して高周波電源(不図示)が接続されている。
The production of an amorphous silicon-based electrophotographic photosensitive member will be described below.
FIG. 3 is a diagram schematically showing an example of an apparatus for depositing a photoreceptor by RF plasma CVD using a high frequency power source. This apparatus is roughly composed of a deposition apparatus 3100 having a reaction vessel 3122, a raw material gas supply apparatus 3200, and an exhaust device (not shown) for depressurizing the reaction container 3122. In the reaction vessel 3122, a conductive substrate 3112 attached to a substrate holder 3121 connected to the ground, a conductive substrate heating heater 3113, and a source gas introduction pipe 3114 are installed. Further, a high frequency power source (not shown) is connected to the cathode electrode 3111 via a high frequency matching box 3115.

原料ガス供給装置3200は、SiH,H,CH,NO,B,CF等の原料ガスボンベ3221〜3225、バルブ3231〜3235、圧力調整器3261〜3265、流入バルブ3241〜3245、流出バルブ3251〜3255およびマスフローコントローラ3211〜3215から構成される。各原料ガスを封入した原料ガスボンベ3221〜3225は補助バルブ3260を介して反応容器3122内の原料ガス導入管3114に接続されている。 The source gas supply device 3200 includes source gas cylinders 3221 to 3225 such as SiH 4 , H 2 , CH 4 , NO, B 2 H 6 , CF 4 , valves 3231 to 3235, pressure regulators 3261 to 3265, and inflow valves 3241 to 3245. And outflow valves 3251 to 3255 and mass flow controllers 3211 to 3215. The source gas cylinders 3221 to 3225 in which each source gas is sealed are connected to a source gas introduction pipe 3114 in the reaction vessel 3122 via an auxiliary valve 3260.

次にこの装置を使った堆積膜の形成方法について説明する。本発明の表面処理方法で処理した基体ホルダー3121にあらかじめ脱脂洗浄した導電性基体3112を装着し、その後、反応容器3122内に設置する。次に、排気装置(図示せず)を運転し、反応容器3122内を排気する。真空計3119の表示を見ながら、反応容器3122内の圧力がたとえば1Pa以下の所定の圧力になったところで、基体加熱用ヒーター3113に電力を供給し、導電性基体3112を例えば50℃から350℃の所望の温度に加熱する。このとき、ガス供給装置3200より、Ar、He等の不活性ガスを反応容器3122内に供給して、不活性ガス雰囲気中で加熱を行うこともできる。次に、ガス供給装置3200より堆積膜形成に用いるガスを反応容器3122内に供給する。すなわち、必要に応じバルブ3231〜3235、流入バルブ3241〜3245、流出バルブ3251〜3255を開き、マスフローコントローラ3211〜3215に流量設定を行う。各マスフローコントローラの流量が安定したところで、真空計3119の表示を見ながらメインバルブ3118を操作し、反応容器3122内の圧力が所望の圧力になるように調整する。所望の圧力が得られたところで高周波電源(不図示)より高周波電力を印加すると同時に高周波マッチングボックス3115を操作し、反応空間3110にプラズマ放電を生起する。その後、速やかに高周波電力を所望の電力に調整し、堆積膜の形成を行う。このような操作を複数回行うことで複数の堆積層からなる電子写真感光体を形成することができる。   Next, a method for forming a deposited film using this apparatus will be described. A conductive substrate 3112 that has been degreased and washed in advance is mounted on the substrate holder 3121 that has been treated by the surface treatment method of the present invention, and then placed in the reaction vessel 3122. Next, an exhaust device (not shown) is operated to exhaust the reaction vessel 3122. While viewing the display of the vacuum gauge 3119, when the pressure in the reaction vessel 3122 reaches a predetermined pressure of, for example, 1 Pa or less, power is supplied to the heater 3113 for heating the substrate, and the conductive substrate 3112 is moved from 50 ° C. to 350 ° C., for example. To the desired temperature. At this time, an inert gas such as Ar or He can be supplied from the gas supply device 3200 into the reaction vessel 3122 and heated in an inert gas atmosphere. Next, a gas used to form a deposited film is supplied from the gas supply device 3200 into the reaction vessel 3122. That is, if necessary, the valves 3231 to 3235, the inflow valves 3241 to 3245, and the outflow valves 3251 to 3255 are opened, and the flow rate is set in the mass flow controllers 3211 to 3215. When the flow rate of each mass flow controller is stabilized, the main valve 3118 is operated while viewing the display of the vacuum gauge 3119 to adjust the pressure in the reaction vessel 3122 to a desired pressure. When a desired pressure is obtained, high-frequency power is applied from a high-frequency power source (not shown) and simultaneously the high-frequency matching box 3115 is operated to generate plasma discharge in the reaction space 3110. Thereafter, the high frequency power is quickly adjusted to a desired power, and a deposited film is formed. By performing such an operation a plurality of times, an electrophotographic photosensitive member composed of a plurality of deposited layers can be formed.

図5は作成された電子写真感光体の層構成の一例について示した模式図である。図5に示す電子写真感光体500は、導電性基体501の上にアモルファスシリコン系光受容層502が堆積された構造であって、光受容層502は下部注入阻止層505、光導電層503、中間層506、表面層504を含む構成である。下部注入阻止層505は、導電性基体側からの電荷の注入を阻止するために設けることが好ましい。また、中間層506は、上部からの電荷注入を低減し、帯電性を向上させるために設けることが好ましい。   FIG. 5 is a schematic view showing an example of the layer structure of the electrophotographic photosensitive member produced. An electrophotographic photoreceptor 500 shown in FIG. 5 has a structure in which an amorphous silicon-based light receiving layer 502 is deposited on a conductive substrate 501, and the light receiving layer 502 includes a lower injection blocking layer 505, a photoconductive layer 503, An intermediate layer 506 and a surface layer 504 are included. The lower injection blocking layer 505 is preferably provided to block charge injection from the conductive substrate side. In addition, the intermediate layer 506 is preferably provided in order to reduce charge injection from the top and improve the chargeability.

以下、実施例及び比較例により本発明を更に詳しく説明するが、本発明はこれらにより何ら制限されるものではない。
<実施例1>
被処理材としてアルミニウム合金板(5052)を8枚、ステンレス板(SUS304)を2枚、チタン合金板(SSAT−64)を2枚用意した。被処理材は長さ127mm、幅50mm、厚さ3mmの平板である。用意した金属平板上に図3に示すRFプラズマCVD法による堆積装置を用いて、表1に示す条件で水素化アモルファスシリコン(以後、「a−Si:H」とも称する)膜を約5μm堆積させて付着膜付の被処理材を作成した。その際、円筒状基体に金属平板を取り付けられるように加工した基体を用いて金属平板を取り付け、その基体を図3中の導電性基体3112の代わりに設置した。なお、アルミニウム合金板(5052)1枚、ステンレス板(SUS304)1枚、チタン合金板(SSAT−64)1枚は、膜を堆積させずに保管した。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not restrict | limited at all by these.
<Example 1>
Eight aluminum alloy plates (5052), two stainless steel plates (SUS304), and two titanium alloy plates (SSAT-64) were prepared as materials to be processed. The material to be treated is a flat plate having a length of 127 mm, a width of 50 mm, and a thickness of 3 mm. A hydrogenated amorphous silicon (hereinafter also referred to as “a-Si: H”) film is deposited by about 5 μm on the prepared metal flat plate under the conditions shown in Table 1 using a deposition apparatus by RF plasma CVD shown in FIG. Thus, a material to be treated with an attached film was prepared. At that time, a metal plate was attached using a substrate processed so that the metal plate could be attached to the cylindrical substrate, and the substrate was placed instead of the conductive substrate 3112 in FIG. One aluminum alloy plate (5052), one stainless steel plate (SUS304), and one titanium alloy plate (SSAT-64) were stored without depositing films.

次に、a−Si:H膜が堆積された被処理材を表2に示す条件で、表面処理を行った。表2の処理条件は、第1の噴射ガンから噴射される研磨材を研磨材−1として示し、第2の噴射ガンから噴射される研磨材を研磨材−2として示している。前述した図1(a)における第1の噴射ガンの噴射角106(θ1)は30°、第2の噴射ガンの噴射角107(θ2)は45°とした。また、噴射ガンのノズルは拡がり角度15°、噴射口径20mmのものを用い、噴射ガンの噴射口から噴射ガンの中心軸が被処理材に交わる点までの距離を100mmとした。また、間隔105は120mmとなるように設置した。   Next, the material to be processed on which the a-Si: H film was deposited was subjected to surface treatment under the conditions shown in Table 2. The processing conditions in Table 2 show the abrasive material injected from the first injection gun as abrasive material-1 and the abrasive material injected from the second injection gun as abrasive material-2. In FIG. 1A, the injection angle 106 (θ1) of the first injection gun is 30 °, and the injection angle 107 (θ2) of the second injection gun is 45 °. Further, the nozzle of the spray gun used was an expansion angle of 15 ° and a spray port diameter of 20 mm, and the distance from the spray port of the spray gun to the point where the central axis of the spray gun intersected the workpiece was set to 100 mm. The interval 105 was set to be 120 mm.

また、表2においては、第1の噴射ガンから吹き付けられる1cm当たりの研磨材衝突エネルギーをE1[g/sec]、第2の噴射ガンから吹き付けられる1cm当たりの研磨材衝突エネルギーをE2[g/sec]として示している。Mmは被処理材のモース硬度を、M1は研磨材−1のモース硬度を、M2は研磨材−2のモース硬度をそれぞれ示している。 In Table 2, the abrasive collision energy per cm 2 sprayed from the first spray gun is E1 [g / sec 2 ], and the abrasive collision energy per cm 2 sprayed from the second spray gun is E2. It is shown as [g / sec 2 ]. Mm represents the Mohs hardness of the material to be treated, M1 represents the Mohs hardness of the abrasive 1, and M2 represents the Mohs hardness of the abrasive 2.

表面処理には、図1に示す構成の処理装置を用いた。実施例1では、被処理材と研磨材のモース硬度の関係を変えて表面処理を行った。研磨材と同時に噴射する水は2L/分とし、混合させる研磨材の量を調節してE1,E2を調整した。なお、研磨材がドライアイスの場合、水は用いずに空気と共に噴射させた。
第1の噴射ガンに用いる研磨材の粒径は、120番メッシュ相当のものを用いた。また、その形状はいずれも略球形の形状のものを用いた。第2の噴射ガンに用いる研磨材の粒径は氷やドライアイスは略楕円球形で30番メッシュを通過したものを用いた。鉄は、150番メッシュ相当で略球形のものを用い、ナイロンは30番メッシュ相当で略円柱形状のものを用いた。アクリルは60番メッシュ相当の大きさで樹脂を粉砕した粒子を用いた。
For the surface treatment, a treatment apparatus having the configuration shown in FIG. 1 was used. In Example 1, the surface treatment was performed while changing the relationship between the Mohs hardness of the material to be treated and the abrasive. The water sprayed at the same time as the abrasive was 2 L / min, and E1 and E2 were adjusted by adjusting the amount of abrasive to be mixed. In addition, when the abrasive was dry ice, it was sprayed with air without using water.
The particle size of the abrasive used for the first spray gun was equivalent to 120 mesh. Also, the shape of each of them was substantially spherical. As the particle size of the abrasive used for the second spray gun, ice or dry ice having a substantially elliptical shape and passing through a 30th mesh was used. The iron used was approximately spherical with a mesh equivalent to 150 mesh, and the nylon was approximately cylindrical with a mesh equivalent to 30 mesh. As the acrylic, particles obtained by pulverizing a resin having a size corresponding to a 60th mesh were used.

被処理材への吹き付けは以下のように行った。図2(a)に噴射ガンの配置と被処理材の移動方向を示した表面処理装置内構成を示す。平板の長手方向127mmへ第1の噴射ガン202で処理を行い、続けて第2の噴射ガン203で処理されるように一方向(矢印207で示す方向)に被処理材201を動かすことにより被処理材の膜付着面全面の表面処理を行った。被処理材の移動速度は、5mm/秒とした。   The treatment material was sprayed as follows. FIG. 2A shows the internal structure of the surface treatment apparatus showing the arrangement of the spray gun and the moving direction of the material to be treated. Processing is performed by the first spray gun 202 in a longitudinal direction of 127 mm of the flat plate, and then the processed material 201 is moved in one direction (direction indicated by an arrow 207) so as to be processed by the second spray gun 203. Surface treatment of the entire surface of the treatment material on which the film was adhered was performed. The moving speed of the material to be treated was 5 mm / second.

図2(b)には、被処理材表面における処理進行方向を、研磨材の衝突領域205の移動順として示している。被処理材201の右端からY軸のプラス方向に衝突領域205が移動するように、被処理材201をY軸のマイナス方向(矢印207で示す方向)に動かして処理した。被処理材201の左端まで処理が達したら、衝突領域205をX軸プラス方向(X軸矢印方向)に15mm平行移動するように、被処理材201を動かす。更に、被処理材201の右端に衝突領域がくるように動かした後(衝突領域205‘)、同様に被処理材201の右端から左端に向けて処理した。なお、図2(b)には示していないが、衝突領域206も同様とした。実線の矢印208は噴射ガンから研磨材を噴射中の衝突領域の移動方向を示し、破線の矢印209は噴射ガンから研磨材を非噴射中の衝突領域の移動方向を示す。   FIG. 2B shows the processing progress direction on the surface of the material to be processed as the moving order of the abrasive collision area 205. The processed material 201 was moved in the negative direction of the Y axis (the direction indicated by the arrow 207) so that the collision area 205 moved from the right end of the processed material 201 in the positive direction of the Y axis. When the processing reaches the left end of the material 201 to be processed, the material 201 to be processed is moved so that the collision area 205 is translated by 15 mm in the X-axis plus direction (X-axis arrow direction). Furthermore, after moving so that a collision area | region may come to the right end of the to-be-processed material 201 (collision area | region 205 '), it processed from the right end of the to-be-processed material 201 toward the left end similarly. Although not shown in FIG. 2B, the collision region 206 is the same. A solid arrow 208 indicates the direction of movement of the collision area during which the abrasive is being injected from the injection gun, and a broken line arrow 209 indicates the direction of movement of the collision area during which the abrasive is not being injected from the injection gun.

このような処理をX軸方向の端部(X軸のマイナス側端部)から、もう一方の端部(X軸のプラス側端部)まで行い、これを1回の処理とした。このように、第1の噴射ガンの処理に続いて第2の噴射ガンでトレースするように処理するトレース処理を15回行って、処理終了とした。
実施例1−7では、被処理材の移動速度は、0.3mm/秒として、第1の噴射ガンの処理に続いて第2の噴射ガンでトレースするように処理するトレース処理を1回で、被処理材全面を処理した(1回処理)。つまり、トレース処理を1回行って、処理終了とした。
Such processing was performed from the end portion in the X-axis direction (the negative side end portion of the X axis) to the other end portion (the positive side end portion of the X axis), and this was performed as a single process. In this way, the processing for tracing with the second injection gun was performed 15 times following the processing for the first injection gun, and the processing was terminated.
In Example 1-7, the moving speed of the material to be processed is set to 0.3 mm / second, and the tracing process for tracing with the second injection gun is performed once after the first injection gun process. Then, the entire surface of the material to be treated was treated (one time treatment). That is, the trace process was performed once and the process was terminated.

Figure 2013006258
Figure 2013006258

Figure 2013006258
実施例1で表面処理した被処理材を以下の方法で評価した。評価結果を表4に示す。
Figure 2013006258
The material to be treated which was surface-treated in Example 1 was evaluated by the following method. The evaluation results are shown in Table 4.

(付着膜除去能評価)
表面処理後の被処理材を(株)日立ハイテクノロジーズ社製の超高分解能電界放出形走査電子顕微鏡S4800に設置し、EDAX社製のGenesisを用いてEPMA(Electron Probe Micro Analyzer)により、Si元素の定性分析を行った。そして、GenesisソフトでSi元素のマッピング分析を行い、Si元素が検出された部分の面積を得た。
以下の測定条件で信号ピークを確認して評価した。
加速電圧:20kV
照射電流:20nA
(Adhesion film removal ability evaluation)
The material to be treated after the surface treatment is placed in an ultra-high resolution field emission scanning electron microscope S4800 manufactured by Hitachi High-Technologies Corporation, and Si element is obtained by EPMA (Electron Probe Micro Analyzer) using Genesis manufactured by EDAX. A qualitative analysis was performed. And the mapping analysis of Si element was performed with Genesis software, and the area of the part where Si element was detected was obtained.
The signal peak was confirmed and evaluated under the following measurement conditions.
Acceleration voltage: 20 kV
Irradiation current: 20 nA

2mm×2mm視野を任意に5箇所選択して合計20mmを分析し、Si元素が検出された部分の合計面積と全評価面積の比(Si元素が検出された合計面積÷20mm)で評価した。Si元素が検出される面積は小さいほど、付着膜除去状態は良好として、以下のように評価した。
A:1%以下、B:1%より大きく3%以下、C:3%より大きく8%以下、D:8%より大きく15%以下、E:15%より大きい。E評価では明らかな膜残りが認められ、プラズマCVD装置用の成膜炉内部品の洗浄としては不十分と判断した。
Analyze a total of 20 mm 2 by arbitrarily selecting five 2 mm × 2 mm fields of view and evaluating by the ratio of the total area where the Si element was detected to the total evaluation area (total area where the Si element was detected ÷ 20 mm 2 ). did. The smaller the area where Si element is detected, the better the state of removal of the adhered film, and the following evaluation was made.
A: 1% or less, B: greater than 1% and 3% or less, C: greater than 3% and 8% or less, D: greater than 8% and 15% or less, E: greater than 15%. In the E evaluation, a clear film residue was observed, and it was judged that the film was insufficient for cleaning the components in the film forming furnace for the plasma CVD apparatus.

(微粉付着評価)
表面処理後の被処理材、及び膜堆積を行わず表面処理も施していない未処理の被処理材をともに純水のシャワー洗浄を行ったのち乾燥させた。シャワー洗浄は、純水を10L/分の流量で2分間おこなった。その後、表面処理後の被処理材、及び未処理の被処理材の表面全面に日新EM(株)のカーボン両面テープ(7314)を密着させて、カーボン両面テープに被処理材表面の付着物を転写させた。表面処理後の被処理材表面の付着物をカーボン両面テープに転写させた評価テープをT−1とした。また、表面処理を施していない被処理材表面の付着物をカーボン両面テープに転写させた評価テープをT−2とした。それぞれの評価テープを付着膜除去状態評価と同様に、超高分解能電界放出形走査電子顕微鏡S4800に設置し、EPMAで分析した。被処理材の母体元素(Al、Fe、Ni、Cr、Ti)のマッピング分析を行った。評価テープ各々、2mm×2mm視野を任意に5箇所選択して合計20mmをマッピング分析し、母体元素が検出された部分の合計面積(以下、「検出合計面積」とも称する)を求めた。
(Fine powder adhesion evaluation)
The treated material after the surface treatment and the untreated treated material that was not subjected to film deposition and not subjected to surface treatment were both dried after shower cleaning with pure water. The shower cleaning was performed with pure water at a flow rate of 10 L / min for 2 minutes. Thereafter, a carbon double-sided tape (7314) of Nissin EM Co., Ltd. is adhered to the entire surface of the surface-treated material and the untreated material, and the surface of the material to be treated is adhered to the carbon double-sided tape. Was transcribed. The evaluation tape obtained by transferring the deposit on the surface of the treated material after the surface treatment onto the carbon double-sided tape was designated as T-1. Moreover, T-2 was set as the evaluation tape which transferred the deposit | attachment on the to-be-processed material surface which has not surface-treated to the carbon double-sided tape. Each evaluation tape was installed in an ultra-high resolution field emission scanning electron microscope S4800 and analyzed by EPMA in the same manner as in the evaluation of the attached film removal state. Mapping analysis of the base elements (Al, Fe, Ni, Cr, Ti) of the material to be treated was performed. For each of the evaluation tapes, 5 fields of 2 mm × 2 mm were arbitrarily selected and a total of 20 mm 2 was subjected to mapping analysis to obtain a total area (hereinafter also referred to as “detected total area”) of the portion where the host element was detected.

評価は、以下の式より算出される値を指標として行った。
((T−1の検出合計面積)-(T−2の検出合計面積))/(全評価面積(20mm))
指標は小さいほど良好で、A:2%以下、B:2%より大きく4%以下、C:4%より大きく7%以下、D:7%より大きく10%以下、E:10%より大きい、とした。E評価では、洗浄部品のハンドリング時に、例えば手袋への付着が認められることがある。そのような状況のためと考えているが、E評価の部材を用いると膜欠陥の発生頻度が多くなる。真空装置内で付着物の飛散によるものと考えられるので、プラズマCVD装置用の成膜炉内部品の洗浄としては不十分と判断した。
The evaluation was performed using the value calculated from the following formula as an index.
((Total detection area of T-1)-(Total detection area of T-2)) / (Total evaluation area (20 mm 2 ))
The smaller the index, the better. A: 2% or less, B: greater than 2% and 4% or less, C: greater than 4% and 7% or less, D: greater than 7% and less than 10%, E: greater than 10%. It was. In the E evaluation, for example, adhesion to a glove may be recognized when handling the cleaning component. Although it thinks because of such a situation, if the member of E evaluation is used, the occurrence frequency of a film defect will increase. Since it is thought to be due to scattering of deposits in the vacuum apparatus, it was determined that the cleaning was not sufficient for cleaning the components in the film forming furnace for the plasma CVD apparatus.

<比較例1>
被処理材として長さ127mm、幅50mm、厚さ3mmのアルミニウム合金板(5052)5枚を用い、実施例1と同様に付着膜付の被処理材を作成した。次に、表3に示す表面処理条件で、実施例1と同様にして被処理材の付着膜表面を表面処理した。研磨材の粒径および形状についても実施例1と同様とした。ただし、第1の噴射ガンの研磨材で、くるみは非球形である。
このように表面処理が成された被処理材を実施例1と同様の評価方法により評価した。評価結果を表4に示す。
<Comparative Example 1>
Using five aluminum alloy plates (5052) having a length of 127 mm, a width of 50 mm, and a thickness of 3 mm as the material to be treated, a material to be treated with an adhesion film was prepared in the same manner as in Example 1. Next, under the surface treatment conditions shown in Table 3, the surface of the adhesion film of the material to be treated was surface treated in the same manner as in Example 1. The particle size and shape of the abrasive were also the same as in Example 1. However, the walnut is non-spherical with the abrasive of the first spray gun.
The material to be treated thus subjected to the surface treatment was evaluated by the same evaluation method as in Example 1. The evaluation results are shown in Table 4.

<比較例2>
被処理材として長さ127mm、幅50mm、厚さ3mmのアルミニウム合金板(5052)1枚を用い、実施例1と同様に付着膜付の被処理材を作成した。次に、表3に示す表面処理条件で、実施例1と同様にして被処理材の付着膜表面を表面処理した。ただし、本比較例では第1の噴射ガンの吹き付けのみで表面処理を行った。研磨材の粒径および形状についても実施例1と同様とした。
このように表面処理が成された被処理材を実施例1と同様の評価方法により評価した。評価結果を表4に示す。
<Comparative example 2>
Using a single aluminum alloy plate (5052) having a length of 127 mm, a width of 50 mm, and a thickness of 3 mm as the material to be treated, a material to be treated with an adhesion film was prepared in the same manner as in Example 1. Next, under the surface treatment conditions shown in Table 3, the surface of the adhesion film of the material to be treated was surface treated in the same manner as in Example 1. However, in this comparative example, the surface treatment was performed only by spraying the first spray gun. The particle size and shape of the abrasive were also the same as in Example 1.
The material to be treated thus subjected to the surface treatment was evaluated by the same evaluation method as in Example 1. The evaluation results are shown in Table 4.

Figure 2013006258
Figure 2013006258

Figure 2013006258
Figure 2013006258

表4の評価結果より、M1>Mm>M2として、モース硬度が大きい研磨材から順に被処理部に吹き付けをして表面処理することにより、付着膜除去能の高レベルでの維持と微粉付着の効果的な抑制が両立し、清浄な表面が得られることがわかる。
実施例1−7では1回処理で表面処理するようにしたところ、第1の噴射ガンによる吹き付けに続いて第2の噴射ガンによる吹き付けを複数回に分けて行うトレース処理を施した実施例1−1よりも微粉付着が若干増加した。実施例1−8では、第1の研磨材であるアルミナが角のある形状のため微粉付着が若干増加するというという結果になった。
From the evaluation results in Table 4, M1>Mm> M2, and the surface treatment is performed by spraying the treated parts in order from the abrasive material having the largest Mohs hardness, thereby maintaining the adhesion film removing capability at a high level and adhering fine particles. It turns out that effective suppression is compatible and a clean surface is obtained.
In Example 1-7, when the surface treatment was performed once, Example 1 in which a trace process was performed in which the spraying by the second spray gun was divided into a plurality of times following the spraying by the first spray gun. There was a slight increase in fine powder adhesion over -1. In Example 1-8, the result was that the fine powder adhesion slightly increased because the alumina as the first abrasive had a corner shape.

比較例1−1、1−4、1−5、1−6,1−7,1−8,1−9では、M2>Mmとなる研磨材で処理しているため、微粉付着抑制効果がほとんど得られなかった。比較例1−2、1−3では、Mm>M1となる研磨材で処理しているため、付着膜除去能が不足して膜残りが発生した。比較例1−1、1−4では、Mm>M1とともにM2>Mmとなる研磨材で処理しているため、比較例1−2、1−3のMm>M1、Mm>M2とした場合に比べ付着膜除去能が向上したものの微粉付着の状態は悪化した。
比較例2では、第1の噴射ガンの吹き付けのみで表面処理したため、付着膜除去能は良好であったが、微粉やバリの発生が多く、微粉付着が多かった。
In Comparative Examples 1-1, 1-4, 1-5, 1-6, 1-7, 1-8, and 1-9, since the treatment is performed with an abrasive that satisfies M2> Mm, the effect of suppressing the adhesion of fine powder is obtained. It was hardly obtained. In Comparative Examples 1-2 and 1-3, since the treatment was performed with the abrasive that satisfies Mm> M1, the film removal ability was insufficient and the film residue was generated. In Comparative Examples 1-1 and 1-4, since Mm> M1 and M2> Mm are used for the treatment, Mm> M1 and Mm> M2 in Comparative Examples 1-2 and 1-3 are set. Although the ability to remove the adhered film was improved, the state of fine powder adhesion deteriorated.
In Comparative Example 2, since the surface treatment was performed only by spraying the first spray gun, the adhesion film removing ability was good, but the generation of fine powder and burrs was large, and the fine powder was adhered.

以上のことから、以下の方法によって、付着膜除去と微粉付着抑制が両立して清浄な表面が得られることがわかった。
1)1つの被処理材に対して少なくとも2つのホーニング処理のための噴射ガンを同時に用いる。
2)モース硬度が被処理材よりも大きい少なくとも1種以上の研磨材とモース硬度が被処理材よりも小さい少なくとも1種以上の研磨材を個別の噴射ガンから噴射し、モース硬度が大きい研磨材から順に被処理部に吹き付けて表面処理する。
さらに、以下のトレース処理のほうが、1回処理より、付着膜除去能と微粉付着抑制が両立して清浄な表面が得られることがわかった。
1)モース硬度が被処理材よりも大きい研磨材の吹き付けに続いて、モース硬度が大きい研磨材から順に被処理部に吹き付けるという連続した表面処理を複数回に分けて施す。
From the above, it was found that a clean surface can be obtained by both the removal of the adhered film and the suppression of fine powder adhesion by the following method.
1) At least two spray guns for honing treatment are simultaneously used for one workpiece.
2) At least one type of abrasive having a Mohs hardness greater than that of the material to be treated and at least one type of abrasive having a Mohs hardness of less than that of the material to be treated are sprayed from individual spray guns, and the abrasive having a large Mohs hardness. The surface treatment is performed by spraying the parts to be treated in order.
Furthermore, it has been found that the following trace treatment can achieve a clean surface with both adhesion film removal ability and fine powder adhesion suppression, compared to a single treatment.
1) Following the spraying of an abrasive having a Mohs hardness greater than that of the material to be treated, a continuous surface treatment of spraying the material to be treated in order from the abrasive having a large Mohs hardness is performed in a plurality of times.

<実施例2> 研磨材の再利用
被処理材として長さ127mm、幅50mm、厚さ3mmのアルミニウム合金板(5052)2枚を用い、実施例1と同様に付着膜付の被処理材を2枚作成した。次に表5に示す表面処理条件で被処理材の付着膜表面を処理した。表5に示した以外の条件は実施例1と同様とした。
<Example 2> Reuse of abrasive material As the material to be treated, two aluminum alloy plates (5052) having a length of 127 mm, a width of 50 mm, and a thickness of 3 mm were used. Two sheets were made. Next, the adhesion film surface of the material to be treated was treated under the surface treatment conditions shown in Table 5. Conditions other than those shown in Table 5 were the same as in Example 1.

また、実施例2では図6(a)に示す構成のホーニング処理装置を用いた。被処理材601を処理容器610に設置し、第1の噴射ガン602と第2の噴射ガン603を用いて表面処理を行った。吹き付けた後の2種の研磨材と水の混合液を回収タンク611に集めて研磨材の沈殿分離による回収を行った。そして、沈降した研磨材を混合液と共に回収タンク611の底部から第1の噴射ガン602の研磨材を調整タンク608に送る。次いで、所定の1cm当たりの研磨材衝突エネルギーE1となるように調整タンク608内で水や新規研磨材の補充調整をする。その後、第1の噴射ガン602の吹き付けポンプ604により第1の噴射ガン602に水と研磨材の混合液を送り、再利用するようになっている。 In Example 2, a honing apparatus having the configuration shown in FIG. The workpiece 601 was placed in the processing container 610 and surface treatment was performed using the first spray gun 602 and the second spray gun 603. A mixture of the two types of abrasives after spraying and water was collected in a recovery tank 611 and recovered by precipitation separation of the abrasives. Then, the set abrasive is sent together with the mixed solution from the bottom of the recovery tank 611 to the adjustment tank 608 from the first spray gun 602. Next, replenishment adjustment of water and a new abrasive is performed in the adjustment tank 608 so as to obtain a predetermined abrasive collision energy E1 per 1 cm 2 . Thereafter, the spray pump 604 of the first injection gun 602 sends a mixture of water and abrasives to the first injection gun 602 for reuse.

表面処理した被処理材は実施例1と同様の評価方法で評価した。評価結果を表6に示す。
分離回収能力は表面処理終了直後に第1の噴射ガンから噴射された研磨材と水の混合液を採集し、第2の噴射ガンの研磨材である氷粒あるいはドライアイス粒が混合して浮遊しているかどうかを目視で確認した。その結果、氷粒、ドライアイス粒ともに確認できなかった。氷は回収タンク611で液体の水に、ドライアイスは気体になって、回収タンク611から第1の噴射ガン602に戻した研磨材はSUS430だけとなっており、分離回収能力は良好であることが確認された。
また、表6の結果から、再利用した研磨材を用いても実施例1−1および1−3と同様に良好な表面処理ができることが解る。
The surface-treated material was evaluated by the same evaluation method as in Example 1. The evaluation results are shown in Table 6.
The separation / recovery ability collects a mixture of abrasive and water sprayed from the first spray gun immediately after the surface treatment is completed, and the ice particles or dry ice particles that are abrasives of the second spray gun are mixed and floated. It was confirmed visually whether or not. As a result, neither ice particles nor dry ice particles could be confirmed. Ice is turned into liquid water in the recovery tank 611, dry ice is turned into gas, and the only abrasive that returns from the recovery tank 611 to the first spray gun 602 is SUS430, and the separation and recovery capability is good. Was confirmed.
In addition, it can be seen from the results in Table 6 that even when a recycled abrasive is used, a good surface treatment can be performed as in Examples 1-1 and 1-3.

Figure 2013006258
Figure 2013006258

Figure 2013006258
Figure 2013006258

<実施例3> 研磨材の回収分離
被処理材として長さ127mm、幅50mm、厚さ3mmのアルミニウム合金板(5052)2枚、ステンレス板(SUS304)2枚、及びチタン合金板(SSAT−64)1枚を用いた。そして、実施例1と同様に付着膜付被処理材を5枚作成した。
次に、表7に示す表面処理条件で被処理材の付着膜表面を処理した。実施例3では、略球形で磁性の研磨材である鉄、SUS430と、非球形で非磁性の研磨材であるくるみ、SiC、ナイロン、略球形で非磁性の研磨材であるガラス、ジルコンを用いた。SUS430は120番メッシュ相当の略球形状、ガラスは150番メッシュ相当の略球形状のものを用いた。他の研磨材の大きさ、形状は実施例1と同じとした。
表7に示した以外の条件は、実施例1と同様とした。
<Example 3> Recovery and separation of abrasives As the materials to be treated, two aluminum alloy plates (5052) having a length of 127 mm, a width of 50 mm, and a thickness of 3 mm, two stainless steel plates (SUS304), and a titanium alloy plate (SSAT-64). ) One sheet was used. Then, five processed materials with an adhesion film were prepared in the same manner as in Example 1.
Next, the adhesion film surface of the material to be treated was treated under the surface treatment conditions shown in Table 7. In Example 3, iron, SUS430, which is a substantially spherical and magnetic abrasive, walnut, which is a non-spherical, non-magnetic abrasive, SiC, nylon, glass, zircon, which is a substantially spherical, non-magnetic abrasive, are used. It was. SUS430 used was a substantially spherical shape corresponding to a 120th mesh, and the glass was a substantially spherical shape corresponding to a 150th mesh. The size and shape of other abrasives were the same as in Example 1.
Conditions other than those shown in Table 7 were the same as in Example 1.

また、実施例3では図6(b)に示すような構成のホーニング処理装置を用いた。実施例3では吹き付けた後の2種の研磨材と水の混合液を回収タンク611に集めて研磨材の分離回収を行った。
図6(b)は第1の噴射ガン602に磁性の研磨材を用いる場合の構成例である。処理容器610で使用した研磨材は回収タンク611に集められる。ここで磁性の研磨材は回収タンク611内に設置した分離回収装置612により分離される。分離された磁性の研磨材は沈殿タンク613に送られ、そして調整タンク608に送られ、そこで所定のE1となるように、水や新規研磨材の補充調整を行う。その後、第1の噴射ガン602の吹き付けポンプ604により第1の噴射ガン602に水と研磨材の混合液を送り、再利用するようになっている。また、非磁性の研磨材は、回収タンク611の底部から沈殿タンク614に送られる。そして調整タンク609に送られ、そこで所定のE2となるように水や新規研磨材の補充調整を行う。その後、第2の噴射ガン603の吹き付けポンプ605により第2の噴射ガン603に水と研磨材の混合液を送り、再利用するようになっている。
In Example 3, a honing apparatus having a configuration as shown in FIG. 6B was used. In Example 3, the mixture of the two types of abrasives after spraying and water was collected in the recovery tank 611, and the abrasives were separated and recovered.
FIG. 6B shows a configuration example in the case where a magnetic abrasive is used for the first spray gun 602. The abrasive used in the processing container 610 is collected in a collection tank 611. Here, the magnetic abrasive is separated by a separation and recovery device 612 installed in the recovery tank 611. The separated magnetic abrasive is sent to the precipitation tank 613 and then sent to the adjustment tank 608, where water and a new abrasive are replenished and adjusted to a predetermined E1. Thereafter, the spray pump 604 of the first injection gun 602 sends a mixture of water and abrasives to the first injection gun 602 for reuse. The nonmagnetic abrasive is sent from the bottom of the recovery tank 611 to the precipitation tank 614. And it is sent to the adjustment tank 609, and replenishment adjustment of water and a new abrasive is performed so that it may become predetermined E2 there. After that, the spray pump 605 of the second injection gun 603 sends the mixed liquid of water and abrasives to the second injection gun 603 for reuse.

分離回収装置612は、簡単に説明すると、磁性の研磨材を磁力ローラーで回収し、磁石の攪拌棒で捕獲することで、磁性と非磁性の研磨材を分離回収するものである。例えば、図7(a)に示すような構成のものを用いることができる。図7(b)は図7(a)内の磁力ローラー702と剥ぎ取りブレード703部分を説明するための模式図である。回収タンク701内に設けられた磁力ローラー702と剥ぎ取りブレード703により磁性の研磨材と非磁性の研磨材を分離可能となっている。剥ぎ取った磁性の研磨材は再度タンク708内に沈降させて、タンクの底部から噴射ガンの研磨材として所定のE1となるように調整して再利用するようにした。また、回収タンク701内に残った非磁性の研磨材は再度別のタンク614内に導入し、磁石の攪拌棒(不図示)で攪拌して磁性の研磨材は捕獲した。また、沈降した非磁性の研磨材をタンクの底部から噴射ガンの研磨材として所定のE2となるように調整して、再利用するようにした。   Briefly described, the separation and recovery device 612 collects magnetic abrasives with a magnetic roller and captures them with a magnetic stirring rod, thereby separating and recovering magnetic and nonmagnetic abrasives. For example, a configuration as shown in FIG. 7A can be used. FIG. 7B is a schematic diagram for explaining the magnetic roller 702 and the stripping blade 703 portion in FIG. A magnetic abrasive and a non-magnetic abrasive can be separated by a magnetic roller 702 and a peeling blade 703 provided in the recovery tank 701. The stripped magnetic abrasive was again settled in the tank 708, and adjusted to be a predetermined E1 as an abrasive for the spray gun from the bottom of the tank and reused. The non-magnetic abrasive remaining in the recovery tank 701 was again introduced into another tank 614 and stirred with a magnetic stirring rod (not shown) to capture the magnetic abrasive. Further, the settled non-magnetic abrasive was adjusted from the bottom of the tank to a predetermined E2 as an abrasive for the spray gun and reused.

実施例3−2は、第2の噴射ガン603に用いる研磨材が磁性の研磨材なので、図6(b)の吹き付けポンプ604を第2の噴射ガン603に接続し、吹き付けポンプ605を第1の噴射ガン602に接続した構成に変更した。
表面処理した被処理材は実施例1と同様の評価方法で評価した。評価結果を表8に示す。
In Example 3-2, since the abrasive used for the second spray gun 603 is a magnetic abrasive, the spray pump 604 of FIG. 6B is connected to the second spray gun 603, and the spray pump 605 is connected to the first spray gun 605. It changed to the structure connected to the injection gun 602.
The surface-treated material was evaluated by the same evaluation method as in Example 1. The evaluation results are shown in Table 8.

分離回収能力は、表面処理終了直後に第1の噴射ガンから噴射された研磨材と水の混合液と、第2の噴射ガンから噴射された研磨材と水の混合液をそれぞれ採集して評価した。具体的には、研磨材の混合液をろ紙で濾して乾燥させて10gの研磨材を得る。その研磨材を磁石棒に振りかけて、磁石に付着した磁性の研磨材の質量と磁石につかなかった非磁性の研磨材の質量を求めた。   Separation and recovery capability is evaluated by collecting a mixture of abrasive and water sprayed from the first spray gun and a mixture of abrasive and water sprayed from the second spray gun immediately after completion of the surface treatment. did. Specifically, the abrasive liquid mixture is filtered through a filter paper and dried to obtain 10 g of the abrasive. The abrasive was sprinkled on a magnet rod, and the mass of the magnetic abrasive adhered to the magnet and the mass of the non-magnetic abrasive not attached to the magnet were determined.

分離回収能力の評価は、たとえば実施例3−1で説明すると、磁性の研磨材を噴射する第1の噴射ガンから採集した研磨材において、磁性の研磨材に対する非磁性の研磨材の質量比を求めた。具体的には、噴射ガンから噴射された研磨材を図9の研磨材回収容器を用いて集め、その内の10gをポリ容器に移す。次にポリ容器内の研磨材からネオジウム磁石を用いて磁性の研磨材を取り除いた。20回ほど繰り返してポリ容器の質量がほぼ減少しなくなった時点で残った研磨材の質量を求めた。(残った研磨材の質量)=(磁石につかなかった非磁性の研磨材の質量)とし、(10g−磁石につかなかった非磁性の研磨材の質量)=(磁石についた磁性の研磨材の質量)とした。質量比は(磁石につかなかった非磁性の研磨材の質量)/(磁石についた磁性の研磨材の質量)とした。
また、非磁性の研磨材を噴射する第2の噴射ガンから採集した研磨材においては、磁石につかなかった非磁性の研磨材に対する磁石についた磁性の研磨材の比として質量比を求めた。評価結果を表8に示す。質量比が小さいほど分離回収能力が良好となっている。
For example, in Example 3-1, the separation / recovery capacity is evaluated. In the abrasive collected from the first spray gun that injects the magnetic abrasive, the mass ratio of the non-magnetic abrasive to the magnetic abrasive is calculated. Asked. Specifically, the abrasives sprayed from the spray gun are collected using the abrasive recovery container shown in FIG. 9, and 10 g of them is transferred to a plastic container. Next, the magnetic abrasive was removed from the abrasive in the plastic container using a neodymium magnet. Repeated about 20 times, the mass of the abrasive remaining when the mass of the plastic container almost did not decrease was determined. (Mass of remaining abrasive) = (Mass of non-magnetic abrasive not attached to magnet) and (10 g−Mass of non-magnetic abrasive not attached to magnet) = (Mass of magnetic abrasive attached to magnet) ). The mass ratio was (mass of nonmagnetic abrasive not attached to magnet) / (mass of magnetic abrasive attached to magnet).
Further, in the abrasive collected from the second spray gun that injects the non-magnetic abrasive, the mass ratio was determined as the ratio of the magnetic abrasive attached to the magnet to the non-magnetic abrasive that was not attached to the magnet. The evaluation results are shown in Table 8. The smaller the mass ratio, the better the separation and recovery capability.

Figure 2013006258
Figure 2013006258

Figure 2013006258
Figure 2013006258

実施例3−1、3−2、3−3、3−4、3−5のいずれも付着膜除去能および微粉付着評価は良好であった。実施例3−2の微粉付着評価がBなのは、第1の噴射ガンの研磨材であるSiCが非球形で微紛の発生がやや多かったためである。また、実施例3−5の微粉付着評価がBなのは、第1の噴射ガンの研磨材であるガラスが表面処理工程で破砕するものがあり、破砕の結果、鋭利な形状を有する研磨材ができてしまう。そのため微粉の発生、研磨材の刺さり等が増加したためである。分離回収能能力については、質量比で5%未満であり、良好であった。特に磁性の研磨材に混入した非磁性の研磨材は、質量比が1%未満であり、分離回収能能力は非常に良好であった。   In all of Examples 3-1, 3-2, 3-3, 3-4, and 3-5, the adhesion film removing ability and the fine powder adhesion evaluation were good. The reason why the fine powder adhesion evaluation of Example 3-2 is B is because SiC, which is the abrasive material of the first injection gun, is non-spherical and slightly more fine particles are generated. In addition, the fine powder adhesion evaluation of Example 3-5 is B because there is a glass that is the abrasive material of the first injection gun that is crushed in the surface treatment process, and as a result of the crushing, an abrasive material having a sharp shape can be obtained. End up. For this reason, the generation of fine powder, the sticking of the abrasive, etc. increased. The separation / recovery ability was good, less than 5% by mass. In particular, the nonmagnetic abrasive mixed in the magnetic abrasive had a mass ratio of less than 1%, and the separation and recovery ability was very good.

<実施例4> 研磨材衝突エネルギーの影響
被処理材として長さ127mm、幅50mm、厚さ3mmのアルミニウム合金板(5052)を用い、実施例1と同様に付着膜付被処理材を23枚作成した。
次に表9に示す表面処理条件とし、実施例1と同様にして付着膜付被処理材の付着膜表面の処理を行った。研磨材の粒径および形状についても実施例1と同様とした。
表面処理した被処理材を実施例1と同様にして評価した。評価結果を表10に示す。
<Embodiment 4> Influence of abrasive material collision energy As an object to be treated, an aluminum alloy plate (5052) having a length of 127 mm, a width of 50 mm, and a thickness of 3 mm was used. Created.
Next, the surface treatment conditions shown in Table 9 were used, and the surface of the adhesion film of the material with the adhesion film was treated in the same manner as in Example 1. The particle size and shape of the abrasive were also the same as in Example 1.
The surface-treated material was evaluated in the same manner as in Example 1. Table 10 shows the evaluation results.

Figure 2013006258
Figure 2013006258

Figure 2013006258
Figure 2013006258

表10より、いずれの実施例においても付着膜除去能評価、微粉付着評価ともにC以上の評価結果であり、本発明の効果が得られている事が解る。更に詳細には以下が解る。
実施例4−1から4−23は、第1の噴射ガンから噴射される研磨材の噴流速度V1を変えてE1を変えている。さらに、第2の噴射ガンから噴射される研磨材の噴流速度V2を変えることでE1とE2の大小関係を変えている。E1を小さくしていくと付着膜除去能が低下していくことがわかる。
From Table 10, it can be seen that, in any of the examples, the evaluation of adhesion film removal ability and the evaluation of fine powder adhesion are evaluation results of C or more, and the effect of the present invention is obtained. In more detail, the following can be understood.
In Examples 4-1 to 4-23, E1 is changed by changing the jet velocity V1 of the abrasive injected from the first injection gun. Further, the magnitude relationship between E1 and E2 is changed by changing the jet velocity V2 of the abrasive injected from the second injection gun. It can be seen that as E1 is reduced, the ability to remove the adhered film decreases.

実施例4−1から4−5はE1が小さいため、同じトレース処理では付着膜除去能が実施例4−6以降に比べてやや低い結果となっている。実施例4−5はE1が同じ実施例4−1〜4−4に比べて付着膜除去能の評価が高い。これはE2が大きいために、やや付着膜除去能が改善しているためと考えられる。
また、E1が同じ条件での比較から、E2をE1>E2とすることにより微粉付着抑制の効果が向上していることがわかる。
In Examples 4-1 to 4-5, since E1 is small, the same trace processing results in a slightly lower adhesion film removing ability than in Examples 4-6 and later. In Example 4-5, the evaluation of the adhesion film removing ability is higher than in Examples 4-1 to 4-4 in which E1 is the same. This is probably because E2 is large and the attached film removing ability is slightly improved.
Moreover, from the comparison under the same condition of E1, it can be seen that the effect of suppressing fine powder adhesion is improved by setting E2 to E1> E2.

実施例4−6から4−23ではE1が十分大きいため付着膜除去能の評価が高い。
実施例4−2、4−9、4−15、4−22のように、E1=E2では微粉付着抑制の効果がやや低下している。
以上より付着膜除去能の高レベルでの維持と微粉付着の効果的な抑制が両立した清浄な表面を得るためには、E1>E2とすることが好ましいことがわかる。
In Examples 4-6 to 4-23, since E1 is sufficiently large, the adhesion film removing ability is highly evaluated.
As in Examples 4-2, 4-9, 4-15, and 4-22, when E1 = E2, the effect of suppressing the adhesion of fine powder is slightly reduced.
From the above, it can be seen that it is preferable to satisfy E1> E2 in order to obtain a clean surface in which the maintenance of the adhesion film removing ability at a high level and the effective suppression of the adhesion of fine powder are compatible.

<実施例5> 噴射ガンの噴射角の影響。E1>E2の場合。
被処理材として長さ127mm、幅50mm、厚さ3mmのアルミニウム合金板(5052)を用い、実施例1と同様に付着膜付被処理材を26枚作成した。
次に、表11に示す表面処理条件とする以外は実施例1と同様にして被処理材の付着膜表面の処理を行った。本実施例では噴射角が表面処理に及ぼす影響を確認している。第1の噴射ガンの噴射角(θ1)とは図1で示すZ軸と第1の噴射ガンの中心軸で成す角106をさす。第2の噴射ガンの噴射角(θ2)とは図1で示すZ軸と第2の噴射ガンの中心軸で成す角107をさす。
このように表面処理した被処理材を実施例1と同様に評価した。評価結果を表12に示す。
<Example 5> Influence of injection angle of injection gun. When E1> E2.
Using the aluminum alloy plate (5052) having a length of 127 mm, a width of 50 mm, and a thickness of 3 mm as the material to be treated, 26 materials to be treated with an adhesion film were prepared in the same manner as in Example 1.
Next, the surface of the adhesion film of the material to be treated was treated in the same manner as in Example 1 except that the surface treatment conditions shown in Table 11 were used. In this embodiment, the influence of the injection angle on the surface treatment is confirmed. The injection angle (θ1) of the first injection gun refers to an angle 106 formed by the Z axis shown in FIG. 1 and the central axis of the first injection gun. The injection angle (θ2) of the second injection gun refers to an angle 107 formed by the Z axis shown in FIG. 1 and the central axis of the second injection gun.
The treated material thus surface-treated was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 12.

Figure 2013006258
Figure 2013006258

Figure 2013006258
Figure 2013006258

表12より、いずれの実施例においても付着膜除去能評価、微粉付着評価ともにC以上の評価結果であり、本発明の効果が得られている事が解る。更に詳細には以下が解る。
実施例5では、第1の噴射ガンの噴射角(θ1)及び第2の噴射ガンの噴射角(θ2)を変化させて比較した。E1、E2はそれぞれ一定になるように調整した。実施例5−11と5−19ではθ2を本装置構成上の上限83度にしたため噴流速度の被処理材垂直方向成分が小さくなり、研磨材衝突エネルギーが小さくなってしまったが、十分な付着膜除去能と微粉付着の効果的な抑制が両立できた。
From Table 12, it can be seen that in any of the examples, the evaluation of the adhesion film removing ability and the evaluation of fine powder adhesion are evaluation results of C or more, and the effect of the present invention is obtained. In more detail, the following can be understood.
In Example 5, a comparison was made by changing the injection angle (θ1) of the first injection gun and the injection angle (θ2) of the second injection gun. E1 and E2 were adjusted to be constant. In Examples 5-11 and 5-19, θ2 was set to the upper limit of 83 degrees on the configuration of the apparatus, so that the vertical component of the jet velocity was reduced and the abrasive collision energy was reduced. The film removal ability and effective suppression of fine powder adhesion were compatible.

実施例5−25、5−26は第1の噴射ガンの噴射角(θ1)が45度超となり、噴流速度の被処理材垂直方向成分が小さくなり、5−24までと同じ研磨材衝突エネルギーであっても僅かに研磨材が表面を滑る傾向になる。そのために付着膜除去能がやや低下した。
実施例5−1、5−2、5−3は第1の噴射ガンの噴射角(θ1)が0度のため、被処理材表面に研磨材が残留したり、微紛、バリの埋め込み、摺り込みが多くなったりし、そのために、微粉付着抑制効果が小さくなっている。
In Examples 5-25 and 5-26, the injection angle (θ1) of the first injection gun is over 45 degrees, the vertical component of the jet velocity is reduced, and the same abrasive collision energy as in 5-24 Even so, the abrasive tends to slide slightly on the surface. As a result, the ability to remove the adhered film was slightly reduced.
In Examples 5-1, 5-2, and 5-3, since the injection angle (θ1) of the first injection gun is 0 degree, the polishing material remains on the surface of the material to be processed, fine powder, burrs are embedded, The amount of rubbing increases, and therefore, the effect of suppressing fine powder adhesion is reduced.

実施例5−5と5−13は第1の噴射ガンの噴射角(θ1)よりも、第2の噴射ガンの噴射角(θ2)が小さいので、微粉付着抑制効果が低下している。
以上より、E1>E2の条件において、0°<θ1≦45°かつθ1≦θ2<90°、とすることで、付着膜除去能の高レベルでの維持と微粉付着のより効果的な抑制が両立した清浄な表面が得られることが分かる。
In Examples 5-5 and 5-13, since the injection angle (θ2) of the second injection gun is smaller than the injection angle (θ1) of the first injection gun, the fine powder adhesion suppressing effect is reduced.
From the above, in the condition of E1> E2, by setting 0 ° <θ1 ≦ 45 ° and θ1 ≦ θ2 <90 °, it is possible to maintain a high level of adhesion film removing ability and more effectively suppress fine particle adhesion. It can be seen that a clean and compatible surface can be obtained.

<実施例6> 噴射ガンの噴射角の影響。E1<E2の場合。
被処理材として長さ127mm、幅50mm、厚さ3mmのアルミニウム合金板(5052)を用い、実施例1と同様に付着膜付の被処理材を23枚作成した。
次に、表13に示すようにE1とE2の関係をE1<E2とし、第1の噴射ガンの噴射角(θ1)と第2の噴射ガンの噴射角(θ2)を変えた表面処理条件とする以外は、実施例1と同様にして被処理材の付着膜表面の処理を行った。
このように表面処理した被処理材を実施例1と同様に評価した。評価結果を表14に示す。
<Example 6> Effect of injection angle of injection gun. When E1 <E2.
Using the aluminum alloy plate (5052) having a length of 127 mm, a width of 50 mm, and a thickness of 3 mm as the material to be treated, 23 materials to be treated with an adhesion film were prepared in the same manner as in Example 1.
Next, as shown in Table 13, the surface treatment conditions are such that the relationship between E1 and E2 is E1 <E2, and the injection angle (θ1) of the first injection gun and the injection angle (θ2) of the second injection gun are changed. Except that, the surface of the adhesion film of the material to be treated was treated in the same manner as in Example 1.
The treated material thus surface-treated was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 14.

Figure 2013006258
Figure 2013006258

Figure 2013006258
Figure 2013006258

表14より、いずれの実施例においても付着膜除去能評価、微粉付着評価ともにD以上の評価結果であり、本発明の効果が得られている事が解る。更に詳細には以下が解る。
実施例6−1、6−2、6−3では、第1の噴射ガンの噴射角(θ1)が0度のため、被処理材表面に研磨材が残留したり、微紛、バリの埋め込み、摺り込みが多くなったりし、そのために、微粉付着抑制効果が小さくなっている。実施例6−5と6−13では、第1の噴射ガンの噴射角(θ1)よりも、第2の噴射ガンの噴射角(θ2)が小さいので微粉付着抑制効果が低下している。実施例6−22、6−23ではθ1が45°を超えているため、やや付着膜除去能が低下していることが分かる。
E1>E2である実施例5と比較すると微粉付着抑制効果は小さいものの、いずれの条件においても付着膜除去能の高レベルでの維持と微粉付着の効果的な抑制が両立した清浄な表面が得られることが分かる。そして、E1<E2の条件においても、0°<θ1≦45°、かつ、θ1≦θ2<90°とすることがより好ましいことが分かる。
From Table 14, it can be seen that, in any of the examples, the evaluation of adhesion film removal ability and the evaluation of fine powder adhesion are evaluation results of D or more, and the effect of the present invention is obtained. In more detail, the following can be understood.
In Examples 6-1, 6-2, and 6-3, since the injection angle (θ1) of the first injection gun is 0 degree, the abrasive remains on the surface of the material to be processed, or fine particles and burrs are embedded. As a result, the amount of rubbing increases, and as a result, the effect of suppressing fine powder adhesion is reduced. In Examples 6-5 and 6-13, since the injection angle (θ2) of the second injection gun is smaller than the injection angle (θ1) of the first injection gun, the fine powder adhesion suppressing effect is reduced. In Examples 6-22 and 6-23, since θ1 exceeds 45 °, it can be seen that the ability to remove the attached film is slightly lowered.
Compared with Example 5 where E1> E2, the effect of suppressing the adhesion of fine powder is small, but a clean surface that achieves both a high level of adhesion film removal ability and effective suppression of adhesion of fine powder is obtained under any conditions. You can see that It can be seen that, even under the condition of E1 <E2, it is more preferable that 0 ° <θ1 ≦ 45 ° and θ1 ≦ θ2 <90 °.

<実施例7> 噴射ガンの噴射角の影響。E1=E2の場合。
被処理材として長さ127mm、幅50mm、厚さ3mmのアルミニウム合金板(5052)を用い、実施例1と同様に付着膜付の被処理材を16枚作成した。
次に、表15に示す表面処理条件とする以外は、実施例1と同様にして被処理材の付着膜表面の処理を行った。本実施例ではE1=E2となる条件として被処理材の付着膜表面の処理を行った。研磨材の粒径および形状についても実施例1と同様とした。
このように表面処理した被処理材を実施例1と同様に評価した。評価結果を表16に示す。
<Example 7> Influence of injection angle of injection gun. When E1 = E2.
Sixteen processed materials with an adhesion film were prepared in the same manner as in Example 1 using an aluminum alloy plate (5052) having a length of 127 mm, a width of 50 mm, and a thickness of 3 mm as the processed material.
Next, the surface of the adhesion film of the material to be treated was treated in the same manner as in Example 1 except that the surface treatment conditions shown in Table 15 were used. In this example, the surface of the adhesion film of the material to be processed was processed under the condition of E1 = E2. The particle size and shape of the abrasive were also the same as in Example 1.
The treated material thus surface-treated was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 16.

Figure 2013006258
Figure 2013006258

Figure 2013006258
Figure 2013006258

表16より、いずれの実施例においても付着膜除去能評価、微粉付着評価ともにD以上の評価結果であり、本発明の効果が得られている事が解る。更に詳細には以下が解る。
実施例7−1、7−2では、第1の噴射ガンの噴射角(θ1)が0度のため、被処理材表面に研磨材が残留したり、微紛、バリの埋め込み、摺り込みが多くなったりし、そのために、微粉付着抑制効果が小さくなっている。実施例7−3と7−8では、第1の噴射ガンの噴射角(θ1)よりも、第2の噴射ガンの噴射角(θ2)が小さいので、微粉付着抑制効果が低下している。実施例7−15、7−16ではθ1が45°を超えているため、やや付着膜除去能が低下していることが分かる。
E1>E2である実施例5と比較すると微粉付着抑制効果は小さいものの、いずれの条件においても付着膜除去能の高レベルでの維持と微粉付着の効果的な抑制が両立した清浄な表面が得られることが解る。そして、E1=E2の条件においても、0°<θ1≦45°、かつ、θ1≦θ2<90°とすることがより好ましいことが解る。
From Table 16, it can be seen that in any of the examples, the evaluation of the attached film removal ability and the evaluation of fine powder adhesion are evaluation results of D or more, and the effect of the present invention is obtained. In more detail, the following can be understood.
In Examples 7-1 and 7-2, since the injection angle (θ1) of the first injection gun is 0 degree, the polishing material remains on the surface of the material to be processed, fine particles, burrs are embedded, or rubbed in. As a result, the effect of suppressing the adhesion of fine powder is reduced. In Examples 7-3 and 7-8, since the injection angle (θ2) of the second injection gun is smaller than the injection angle (θ1) of the first injection gun, the fine powder adhesion suppressing effect is reduced. In Examples 7-15 and 7-16, since θ1 exceeds 45 °, it can be seen that the attached film removing ability is slightly lowered.
Compared with Example 5 where E1> E2, the effect of suppressing the adhesion of fine powder is small, but a clean surface that achieves both a high level of adhesion film removal ability and effective suppression of adhesion of fine powder is obtained under any conditions. I understand that Further, it is understood that it is more preferable that 0 ° <θ1 ≦ 45 ° and θ1 ≦ θ2 <90 ° even under the condition of E1 = E2.

<実施例8> 研磨材−1:鉄球、研磨材−2:氷粒、E1に対してE2を変化。
被処理材として長さ127mm、幅50mm、厚さ3mmのアルミニウム合金板(5052)を用い、実施例1と同様に付着膜付の被処理材を16枚作成した。
次に、表17に示す表面処理条件とする以外は、実施例1と同様にして被処理材の付着膜表面の処理を行った。本実施例では研磨材−1を鉄球に、研磨材−2を氷粒に変更して、かつE1に対してE2を変化させて、実施例1と同様にして被処理材の付着膜表面の処理を行った。このように表面処理した被処理材を実施例1と同様に評価した。評価結果を表18に示す。
<Example 8> Abrasive material-1: iron ball, abrasive material-2: ice particles, E2 is changed with respect to E1.
Sixteen processed materials with an adhesion film were prepared in the same manner as in Example 1 using an aluminum alloy plate (5052) having a length of 127 mm, a width of 50 mm, and a thickness of 3 mm as the processed material.
Next, the surface of the adhesion film of the material to be treated was treated in the same manner as in Example 1 except that the surface treatment conditions shown in Table 17 were used. In this example, the abrasive material-1 was changed to an iron ball, the abrasive material-2 was changed to an ice particle, and E2 was changed with respect to E1, and the adhesion film surface of the material to be treated was obtained in the same manner as in Example 1. Was processed. The treated material thus surface-treated was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 18.

Figure 2013006258
Figure 2013006258

Figure 2013006258
Figure 2013006258

表18より、いずれの実施例においても付着膜除去能評価、微粉付着評価ともにC以上の評価結果であり、本発明の効果が得られている事がわかる。更に詳細には以下がわかる。
実施例8−1から8−6では噴射ガン1の全条件を一定としてE2を変化させた。E1>E2の条件の実施例8−1、8−2、8−3と比べ、E1=E2の条件である実施例8−4では微粉付着抑制効果がやや低下している。E1<E2の条件である実施例8−5、8−6では、さらに微粉付着抑制効果が低下していることが分かる。
From Table 18, it can be seen that in any of the examples, both the evaluation of the attached film removal ability and the evaluation of fine powder adhesion are evaluation results of C or more, and the effect of the present invention is obtained. Further details are as follows.
In Examples 8-1 to 8-6, E2 was changed while keeping all the conditions of the injection gun 1 constant. Compared with Examples 8-1, 8-2, and 8-3 under the condition of E1> E2, Example 8-4 under the condition of E1 = E2 has a slightly reduced fine powder adhesion suppressing effect. In Examples 8-5 and 8-6 where E1 <E2 is satisfied, it can be seen that the effect of suppressing fine powder adhesion is further reduced.

実施例8−7から8−11は噴射ガン1の全条件を一定としてE2を変化させた。E1=E2の条件の実施例8−10では微粉付着抑制効果がやや低下し、さらにE1<E2となる実施例8−11では、さらに微粉付着抑制効果が低下していることが解る。
また実施例8−12から8−16は噴射ガン1の全条件を一定としてE2を変化させた。E1=E2の条件の実施例8−16では微粉付着抑制効果がやや低下していることが解る。
以上より、研磨材−1を鉄球に、研磨材−2を氷粒にした場合も、E1>E2とすることが付着膜除去能の高レベルでの維持と微粉付着抑制効果の両立に関してより効果的であることがわかった。
In Examples 8-7 to 8-11, E2 was changed while keeping all the conditions of the injection gun 1 constant. It can be seen that in Example 8-10 under the condition of E1 = E2, the fine powder adhesion suppressing effect is slightly reduced, and in Example 8-11 where E1 <E2, the fine powder adhesion suppressing effect is further reduced.
In Examples 8-12 to 8-16, E2 was changed with all the conditions of the injection gun 1 being constant. It can be seen that in Example 8-16 under the condition of E1 = E2, the effect of suppressing the adhesion of fine powder is slightly lowered.
From the above, even when the abrasive 1 is an iron ball and the abrasive 2 is an ice particle, it is more possible to maintain E1> E2 at a high level of adhesion film removal ability and to prevent fine powder adhesion. It turns out to be effective.

<実施例9> 研磨材−1:鉄球、研磨材−2:氷粒、θ1に対してθ2を変化。
被処理材として長さ127mm、幅50mm、厚さ3mmのアルミニウム合金板(5052)を用い、実施例1と同様に付着膜付の被処理材を14枚作成した。
次に、表19に示す表面処理条件とする以外は、実施例1と同様にして被処理材の付着膜表面の処理を行った。本実施例では研磨材−1を鉄球に、研磨材−2を氷粒として、θ1に対してθ2を変化させて、実施例1と同様にして被処理材の付着膜表面の処理を行った。評価結果を表20に示す。
<Example 9> Abrasive material-1: iron ball, abrasive material-2: ice particles, θ2 is changed with respect to θ1.
Using the aluminum alloy plate (5052) having a length of 127 mm, a width of 50 mm, and a thickness of 3 mm as the material to be treated, 14 materials to be treated with an adhesion film were prepared in the same manner as in Example 1.
Next, the surface of the adhesion film of the material to be treated was treated in the same manner as in Example 1 except that the surface treatment conditions shown in Table 19 were used. In this example, the surface of the adhesion film of the material to be treated is processed in the same manner as in Example 1 by changing the θ2 to θ1 with the abrasive 1 as an iron ball and the abrasive 2 as an ice particle. It was. Table 20 shows the evaluation results.

Figure 2013006258
Figure 2013006258

Figure 2013006258
Figure 2013006258

表20よりいずれの実施例においても付着膜除去能評価、微粉付着評価ともにC以上の評価結果であり、本発明の効果が得られている事が解る。更に詳細には以下が解る。
実施例9−1では第1の噴射ガンの噴射角(θ1)が0°のため、被処理材表面に研磨材が残留したり、微紛、バリの埋め込み、摺り込みが多くなったりし、そのために、微粉付着抑制効果が小さくなっている。実施例9−5では第1の噴射ガンの噴射角(θ1)よりも第2の噴射ガンの噴射角(θ2)が小さいので、微粉付着抑制効果が低下している。実施例9−14では、第1の噴射ガンの噴射角(θ1)が45°を超えているため、噴流速度の被処理材垂直方向成分が小さくなり、付着膜除去能がやや低下している。
以上より、研磨材−1を鉄球に研磨材−2を氷粒にした場合も、0°<θ1≦45°、かつ、θ1≦θ2<90°、とすることで、付着膜除去能の高レベルでの維持と微粉付着のより効果的な抑制が両立した清浄な表面が得られることが解る。
From Table 20, it can be seen that in any of the examples, the evaluation of the adhering film removal ability and the evaluation of fine powder adhesion are evaluation results of C or more, and the effect of the present invention is obtained. In more detail, the following can be understood.
In Example 9-1, since the injection angle (θ1) of the first injection gun is 0 °, the polishing material remains on the surface of the material to be processed, or fine particles, burrs are embedded, and the slid in increases. Therefore, the fine powder adhesion inhibitory effect is small. In Example 9-5, since the injection angle (θ2) of the second injection gun is smaller than the injection angle (θ1) of the first injection gun, the effect of suppressing fine powder adhesion is reduced. In Example 9-14, since the injection angle (θ1) of the first injection gun exceeds 45 °, the component in the vertical direction of the material to be processed of the jet velocity becomes small, and the adhesion film removing ability is slightly reduced. .
From the above, even when the abrasive 1 is an iron ball and the abrasive 2 is an ice grain, the adhesion film removing ability can be improved by satisfying 0 ° <θ1 ≦ 45 ° and θ1 ≦ θ2 <90 °. It can be seen that a clean surface that achieves both high level maintenance and more effective suppression of fine powder adhesion can be obtained.

<実施例10> 研磨材−1:鉄球、研磨材−2:氷粒、E1<E2の条件で、θ1に対してθ2を変化。
被処理材として長さ127mm、幅50mm、厚さ3mmのアルミニウム合金板(5052)を用い、実施例1と同様に付着膜付の被処理材を18枚作成した。
次に、表21に示す表面処理条件とする以外は、実施例1と同様にして被処理材の付着膜表面の処理を行った。本実施例では研磨材−1を鉄球に、研磨材−2を氷粒とし、E1<E2の条件で、θ1に対してθ2を変化させて、実施例1と同様にして被処理材の付着膜表面の処理を行った。評価結果を表22に示す。
<Example 10> Abrasive material-1: iron ball, abrasive material-2: ice particles, E2 <θ2 was changed with respect to θ1 under the condition of E2.
An aluminum alloy plate (5052) having a length of 127 mm, a width of 50 mm, and a thickness of 3 mm was used as the material to be treated, and 18 materials to be treated with an adhesion film were prepared in the same manner as in Example 1.
Next, the surface of the adhesion film of the material to be treated was treated in the same manner as in Example 1 except that the surface treatment conditions shown in Table 21 were used. In this example, the abrasive material-1 is an iron ball, the abrasive material-2 is an ice particle, and θ2 is changed with respect to θ1 under the condition of E1 <E2. The surface of the adhesion film was processed. The evaluation results are shown in Table 22.

Figure 2013006258
Figure 2013006258

Figure 2013006258
Figure 2013006258

表22より、いずれの実施例においても付着膜除去能評価、微粉付着評価ともにD以上の評価結果であり、本発明の効果が得られている事が解る。更に詳細には以下が解る。
実施例10−1では第1の噴射ガンの噴射角(θ1)が0°のために、被処理材表面に研磨材が残留したり、微紛、バリの埋め込み、摺り込みが多くなったりし、そのために、微粉付着抑制効果が小さくなっている。実施例10−3、10−10では、第1の噴射ガンの噴射角(θ1)よりも、第2の噴射ガンの噴射角(θ2)が小さいので、微粉付着抑制効果が低下している。実施例10−18ではθ1が45°を超えているため、やや付着膜除去能が低下していることが分かる。
From Table 22, it can be understood that in any of the examples, the evaluation of the attached film removal ability and the evaluation of fine powder adhesion are evaluation results of D or more, and the effect of the present invention is obtained. In more detail, the following can be understood.
In Example 10-1, since the injection angle (θ1) of the first injection gun is 0 °, the abrasive remains on the surface of the material to be processed, and fine powder, burrs are embedded and slid. Therefore, the effect of suppressing the adhesion of fine powder is small. In Examples 10-3 and 10-10, since the injection angle (θ2) of the second injection gun is smaller than the injection angle (θ1) of the first injection gun, the fine powder adhesion suppressing effect is reduced. In Example 10-18, since θ1 exceeds 45 °, it can be seen that the ability to remove the attached film is slightly lowered.

E1>E2である実施例9と比較すると埋め込み摺り込み抑制効果は小さいものの、いずれの条件においても付着膜除去能の高レベルでの維持と微粉付着の効果的な抑制が両立した清浄な表面が得られることが解る。そして、E1<E2の条件においても、0°<θ1≦45°、かつ、θ1≦θ2<90°とすることがより好ましいことが解る。
以上より、研磨材−1を鉄球に研磨材−2を氷粒とし、E1<E2の条件においても、0°<θ1≦45°、かつ、θ1≦θ2<90°、とすることで、付着膜除去能の高レベルでの維持と微粉付着のより効果的な抑制が両立した清浄な表面が得られることが分かる。
Compared with Example 9 where E1> E2, the embedding squeezing suppression effect is small, but a clean surface that achieves both a high level of adhesion film removal ability and an effective suppression of fine powder adhesion under any conditions. You can see that Further, it is understood that it is more preferable that 0 ° <θ1 ≦ 45 ° and θ1 ≦ θ2 <90 ° even under the condition of E1 <E2.
From the above, by setting the abrasive material-1 as an iron ball and the abrasive material-2 as an ice particle, and even under the condition of E1 <E2, by setting 0 ° <θ1 ≦ 45 ° and θ1 ≦ θ2 <90 °, It can be seen that a clean surface can be obtained in which both the maintenance of the adhesion film removing ability at a high level and the more effective suppression of the adhesion of fine powder are achieved.

<実施例11> 研磨材−1:鉄球、研磨材−2:氷粒、E1=E2の条件で、θ1に対してθ2を変化。
被処理材として長さ127mm、幅50mm、厚さ3mmのアルミニウム合金板(5052)を用い、実施例1と同様に付着膜付の被処理材を14枚作成した。
次に、表23に示す表面処理条件とする以外は、実施例1と同様にして被処理材の付着膜表面の処理を行った。本実施例では研磨材−1を鉄球に、研磨材−2を氷粒とし、E1=E2の条件でθ1に対してθ2を変化させて、実施例1と同様にして被処理材の付着膜表面の処理を行った。評価結果を表24に示す。
<Example 11> Abrasive material-1: Iron ball, Abrasive material-2: Ice particles, E2 = θ2 was changed with respect to θ1 under the condition of E2.
Using the aluminum alloy plate (5052) having a length of 127 mm, a width of 50 mm, and a thickness of 3 mm as the material to be treated, 14 materials to be treated with an adhesion film were prepared in the same manner as in Example 1.
Next, the surface of the adhesion film of the material to be treated was treated in the same manner as in Example 1 except that the surface treatment conditions shown in Table 23 were used. In this embodiment, the abrasive 1 is an iron ball, the abrasive 2 is an ice particle, and θ2 is changed with respect to θ1 under the condition of E1 = E2. The membrane surface was treated. The evaluation results are shown in Table 24.

Figure 2013006258
Figure 2013006258

Figure 2013006258
Figure 2013006258

表24より、いずれの実施例においても付着膜除去能評価、微粉付着評価ともにD以上の評価結果であり、本発明の効果が得られている事が解る。更に詳細には以下が解る。
実施例11−1では、第1の噴射ガンの噴射角(θ1)が0°のために、被処理材表面に研磨材が残留したり、微紛、バリの埋め込み、摺り込みが多くなったりし、そのために、微粉付着抑制効果が小さくなっている。実施例11−2と11−8では、第1の噴射ガンの噴射角(θ1)よりも、第2の噴射ガンの噴射角(θ2)が小さいので、微粉付着抑制効果が低下している。実施例11−14ではθ1が45°を超えているため、やや付着膜除去能が低下していることが分かる。
From Table 24, it can be seen that in any of the examples, the evaluation of the adhesion film removing ability and the evaluation of fine powder adhesion are evaluation results of D or more, and the effect of the present invention is obtained. In more detail, the following can be understood.
In Example 11-1, since the injection angle (θ1) of the first injection gun is 0 °, the polishing material remains on the surface of the material to be processed, or fine powder, burrs are embedded and rubbed in. For this reason, the effect of suppressing the adhesion of fine powder is small. In Examples 11-2 and 11-8, since the injection angle (θ2) of the second injection gun is smaller than the injection angle (θ1) of the first injection gun, the fine powder adhesion suppressing effect is reduced. In Examples 11-14, since θ1 exceeds 45 °, it can be seen that the ability to remove the attached film is slightly lowered.

E1>E2である実施例9と比較すると埋め込み摺り込み抑制効果は小さいものの、いずれの条件においても付着膜除去能の高レベルでの維持と微粉付着の効果的な抑制が両立した清浄な表面が得られることが解る。そして、E1<E2の条件においても、0°<θ1≦45°、かつ、θ1≦θ2<90°とすることがより好ましいことが分かる。   Compared with Example 9 where E1> E2, the embedding squeezing suppression effect is small, but a clean surface that achieves both a high level of adhesion film removal ability and an effective suppression of fine powder adhesion under any conditions. You can see that It can be seen that, even under the condition of E1 <E2, it is more preferable that 0 ° <θ1 ≦ 45 ° and θ1 ≦ θ2 <90 °.

<実施例12> 研磨材−1:鉄球、研磨材−2:氷粒、E1とE2の関係。
被処理材として長さ127mm、幅50mm、厚さ3mmのチタン合金板(SSAT−64)を用い、実施例1と同様に付着膜付の被処理材を16枚作成した。
次に、表25に示す表面処理条件とする以外は、実施例1と同様にして被処理材の付着膜表面の処理を行った。このように表面処理が成された被処理材を実施例1と同様の評価方法により評価した。評価結果を表26に示す。
<Example 12> Abrasive material-1: iron ball, abrasive material-2: ice particles, relationship between E1 and E2.
Using a titanium alloy plate (SSAT-64) having a length of 127 mm, a width of 50 mm, and a thickness of 3 mm as the material to be treated, 16 materials to be treated with an adhesion film were prepared in the same manner as in Example 1.
Next, the surface of the adhesion film of the material to be treated was treated in the same manner as in Example 1 except that the surface treatment conditions shown in Table 25 were used. The material to be treated thus subjected to the surface treatment was evaluated by the same evaluation method as in Example 1. The evaluation results are shown in Table 26.

Figure 2013006258
Figure 2013006258

Figure 2013006258
Figure 2013006258

表26より、いずれの実施例においても付着膜除去能評価、微粉付着評価ともにD以上の評価結果であり、本発明の効果が得られている事が解る。更に詳細には以下が解る。
実施例12−1から12−5では、噴射ガン1の全条件を一定としてE2を変化させた。E1>E2の条件の実施例12−1、12−2と比べ、E1=E2の条件の実施例12−3では微粉付着抑制効果がやや低下し、さらにE1<E2の条件である実施例12−4、12−5では、さらに微粉付着抑制効果が低下していることが解る。
From Table 26, it can be seen that in any of the examples, the evaluation of the adhesion film removing ability and the evaluation of fine powder adhesion are evaluation results of D or more, and the effect of the present invention is obtained. In more detail, the following can be understood.
In Examples 12-1 to 12-5, E2 was changed while keeping all the conditions of the injection gun 1 constant. Compared to Examples 12-1 and 12-2 under the condition of E1> E2, Example 12-3 under the condition of E1 = E2 has a slightly reduced fine powder adhesion suppressing effect, and further, Example 12 under the condition of E1 <E2. In -4 and 12-5, it turns out that the fine powder adhesion inhibitory effect is falling further.

実施例12−6から12−10は、噴射ガン1の全条件を一定としE2を変化させた。E1=E2の条件の実施例12−9では微粉付着抑制効果がやや低下し、さらにE1<E2となる実施例12−10では、さらに微粉付着抑制効果が低下していることが分かる。
また実施例12−11から12−16は、噴射ガン1の全条件を一定としてE2を変化させた。E1=E2の条件の実施例8−15では微粉付着抑制効果がやや低下していることが分かる。さらにE1<E2となる実施例12−16では、さらに微粉付着抑制効果が低下していることが解る。
以上より、研磨材−1を鉄球に、研磨材−2を氷粒にした場合も、E1>E2とすることが付着膜除去能の高レベルでの維持と微粉付着抑制効果の両立に関してより効果的であることがわかった。
In Examples 12-6 to 12-10, all the conditions of the injection gun 1 were made constant and E2 was changed. It can be seen that in Example 12-9 under the condition of E1 = E2, the fine powder adhesion suppressing effect is slightly reduced, and in Example 12-10 where E1 <E2, the fine powder adhesion suppressing effect is further reduced.
In Examples 12-11 to 12-16, E2 was changed with all the conditions of the injection gun 1 being constant. It can be seen that in Examples 8-15 under the condition of E1 = E2, the effect of suppressing the adhesion of fine powder is slightly lowered. Furthermore, in Examples 12-16 in which E1 <E2, it can be seen that the fine powder adhesion suppressing effect is further reduced.
From the above, even when the abrasive 1 is an iron ball and the abrasive 2 is an ice particle, it is more possible to maintain E1> E2 at a high level of adhesion film removal ability and to prevent fine powder adhesion. It turns out to be effective.

<実施例13> 被処理材:チタン合金板(SSAT−64)、E1>E2の場合におけるθ1とθ2の関係。
被処理材として長さ127mm、幅50mm、厚さ3mmのチタン合金板(SSAT−64)を用い、実施例1と同様に付着膜付の被処理材を24枚作成した。
次に、表27に示す表面処理条件とする以外は、実施例1と同様にして被処理材の付着膜表面の処理を行った。このように表面処理が成された被処理材を実施例1と同様の評価方法により評価した。評価結果を表28に示す。
<Example 13> Material to be treated: Titanium alloy plate (SSAT-64), relationship between θ1 and θ2 in the case of E1> E2.
Titanium alloy plate (SSAT-64) having a length of 127 mm, a width of 50 mm, and a thickness of 3 mm was used as the material to be treated, and 24 materials to be treated with an adhesion film were prepared in the same manner as in Example 1.
Next, the surface of the adhesion film of the material to be treated was treated in the same manner as in Example 1 except that the surface treatment conditions shown in Table 27 were used. The material to be treated thus subjected to the surface treatment was evaluated by the same evaluation method as in Example 1. The evaluation results are shown in Table 28.

Figure 2013006258
Figure 2013006258

Figure 2013006258
Figure 2013006258

表28より、いずれの実施例においても付着膜除去能評価、微粉付着評価ともにC以上の評価結果であり、本発明の効果が得られている事が解る。更に詳細には以下が解る。
実施例13−1、13−2では、第1の噴射ガンの噴射角(θ1)が0°のために、被処理材表面に研磨材が残留したり、微紛、バリの埋め込み、摺り込みが多くなったりし、そのために、微粉付着抑制効果が小さくなっている。実施例13−14,13−15,13−16、13−23では、第1の噴射ガンの噴射角(θ1)よりも、第2の噴射ガンの噴射角(θ2)が小さいので、微粉付着抑制効果が低下している。また、実施例13−23と13−24では、第1の噴射ガンの噴射角(θ1)が45度超となり、噴流速度の被処理材垂直方向成分が小さくなり、僅かに研磨材が表面を滑る傾向になる。そのために付着膜除去能がやや低下した。
以上より、被処理材にチタン合金板(SSAT−64)を用いた場合も、0°<θ1≦45°、かつ、θ1≦θ2<90°、とすることで、付着膜除去能の高レベルでの維持と微粉付着のより効果的な抑制が両立した清浄な表面が得られることが解る。
From Table 28, it can be seen that in any of the examples, the evaluation of the adhesion film removing ability and the evaluation of fine powder adhesion are evaluation results of C or more, and the effect of the present invention is obtained. In more detail, the following can be understood.
In Examples 13-1 and 13-2, since the injection angle (θ1) of the first injection gun is 0 °, the abrasive remains on the surface of the material to be processed, or fine particles and burrs are embedded and rubbed in. As a result, the effect of suppressing the adhesion of fine powder is reduced. In Examples 13-14, 13-15, 13-16, and 13-23, since the injection angle (θ2) of the second injection gun is smaller than the injection angle (θ1) of the first injection gun, fine powder adhesion The inhibitory effect is reduced. Further, in Examples 13-23 and 13-24, the injection angle (θ1) of the first injection gun is over 45 degrees, the component of the jet velocity in the vertical direction is small, and the abrasive slightly covers the surface. It tends to slip. As a result, the ability to remove the adhered film was slightly reduced.
From the above, even when a titanium alloy plate (SSAT-64) is used as the material to be treated, a high level of adhesion film removing ability can be obtained by satisfying 0 ° <θ1 ≦ 45 ° and θ1 ≦ θ2 <90 °. It can be seen that a clean surface can be obtained in which both maintenance at low temperatures and more effective suppression of fine powder adhesion are achieved.

<実施例14> 被処理材:チタン合金板(SSAT−64)、E1<E2の場合におけるθ1とθ2の関係。
被処理材として長さ127mm、幅50mm、厚さ3mmのチタン合金板(SSAT−64)を用い、実施例1と同様に付着膜付の被処理材を23枚作成した。
次に、表29に示す表面処理条件とする以外は、実施例1と同様にして被処理材の付着膜表面の処理を行った。このように表面処理が成された被処理材を実施例1と同様の評価方法により評価した。評価結果を表30に示す。
<Example 14> Material to be treated: Titanium alloy plate (SSAT-64), relationship between θ1 and θ2 when E1 <E2.
Titanium alloy plate (SSAT-64) having a length of 127 mm, a width of 50 mm, and a thickness of 3 mm was used as the material to be treated, and 23 materials to be treated with an adhesion film were prepared in the same manner as in Example 1.
Next, the surface of the adhesion film of the material to be treated was treated in the same manner as in Example 1 except that the surface treatment conditions shown in Table 29 were used. The material to be treated thus subjected to the surface treatment was evaluated by the same evaluation method as in Example 1. The evaluation results are shown in Table 30.

Figure 2013006258
Figure 2013006258

Figure 2013006258
Figure 2013006258

表30より、いずれの実施例においても付着膜除去能評価、微粉付着評価ともにD以上の評価結果であり、本発明の効果が得られている事が解る。更に詳細には以下が解る。
実施例14−1、14−2、14−3では、第1の噴射ガンの噴射角(θ1)が0度のために、被処理材表面に研磨材が残留したり、微紛、バリの埋め込み、摺り込みが多くなったりし、そのために、微粉付着抑制効果が小さくなっている。実施例14−5、14−13では、第1の噴射ガンの噴射角(θ1)よりも、第2の噴射ガンの噴射角(θ2)が小さいので、微粉付着抑制効果が低下している。また実施例14−22、14−23でθ1が50°では、やや付着膜除去能が低下していることが解る。
From Table 30, it can be seen that in any of the examples, the evaluation of the attached film removal ability and the evaluation of fine powder adhesion are evaluation results of D or more, and the effect of the present invention is obtained. In more detail, the following can be understood.
In Examples 14-1, 14-2, and 14-3, since the injection angle (θ1) of the first injection gun is 0 degree, the polishing material remains on the surface of the material to be processed, or fine particles and burrs are not generated. The embedding and rubbing increase, and for that reason, the effect of suppressing the adhesion of fine powder is reduced. In Examples 14-5 and 14-13, since the injection angle (θ2) of the second injection gun is smaller than the injection angle (θ1) of the first injection gun, the effect of suppressing fine powder adhesion is reduced. It can also be seen that in Examples 14-22 and 14-23, when θ1 is 50 °, the ability to remove the attached film is slightly lowered.

E1>E2である実施例13と比較すると微粉付着抑制効果は小さいものの、いずれの条件においても付着膜除去能の高レベルでの維持と微粉付着の効果的な抑制が両立した清浄な表面が得られることが解る。そして、E1<E2の条件においても、0°<θ1≦45°、かつ、θ1≦θ2<90°とすることがより好ましいことが解る。
以上より、被処理材にチタン合金板(SSAT−64)を用い、E1<E2の条件としても、0°<θ1≦45°かつθ1≦θ2<90°、とすることで、付着膜除去能の高レベルでの維持と微粉付着のより効果的な抑制が両立した清浄な表面が得られることが解る。
Compared with Example 13 where E1> E2, the effect of suppressing the adhesion of fine powder is small, but a clean surface that achieves both a high level of adhesion film removal ability and effective suppression of adhesion of fine powder is obtained under any conditions. I understand that Further, it is understood that it is more preferable that 0 ° <θ1 ≦ 45 ° and θ1 ≦ θ2 <90 ° even under the condition of E1 <E2.
As described above, a titanium alloy plate (SSAT-64) is used as the material to be treated, and even if the conditions of E1 <E2 are satisfied, 0 ° <θ1 ≦ 45 ° and θ1 ≦ θ2 <90 ° are satisfied. It can be seen that a clean surface that achieves both a high level of maintenance and more effective suppression of fine powder adhesion can be obtained.

<実施例15> 被処理材:チタン合金板(SSAT−64)、E1=E2の場合におけるθ1とθ2の関係。
被処理材として長さ127mm、幅50mm、厚さ3mmのチタン合金板(SSAT−64)を用い、実施例1と同様に付着膜付の被処理材を16枚作成した。
次に、表31に示す表面処理条件とする以外は、実施例1と同様にして被処理材の付着膜表面の処理を行った。このように表面処理が成された被処理材を実施例1と同様の評価方法により評価した。評価結果を表32に示す。
<Example 15> Material to be treated: Titanium alloy plate (SSAT-64), relationship between θ1 and θ2 when E1 = E2.
Using a titanium alloy plate (SSAT-64) having a length of 127 mm, a width of 50 mm, and a thickness of 3 mm as the material to be treated, 16 materials to be treated with an adhesion film were prepared in the same manner as in Example 1.
Next, the surface of the adhesion film of the material to be treated was treated in the same manner as in Example 1 except that the surface treatment conditions shown in Table 31 were used. The material to be treated thus subjected to the surface treatment was evaluated by the same evaluation method as in Example 1. The evaluation results are shown in Table 32.

Figure 2013006258
Figure 2013006258

Figure 2013006258
Figure 2013006258

表32より、いずれの実施例においても付着膜除去能評価、微粉付着評価ともにD以上の評価結果であり、本発明の効果が得られている事が解る。更に詳細には以下が解る。
実施例15−1、15−2では、第1の噴射ガンの噴射角(θ1)が0°のために、被処理材表面に研磨材が残留したり、微紛、バリの埋め込み、摺り込みが多くなったりし、そのために、微粉付着抑制効果が小さくなっている。実施例15−3、15−4、15−8では、第1の噴射ガンの噴射角(θ1)よりも、第2の噴射ガンの噴射角(θ2)が小さいので、微粉付着抑制効果が低下している。実施例15−15、15−16ではθ1が45°を超えているため、やや付着膜除去能が低下していることが解る。
From Table 32, it can be seen that in any of the Examples, both the evaluation of adhesion film removal ability and the evaluation of fine powder adhesion are evaluation results of D or more, and the effect of the present invention is obtained. In more detail, the following can be understood.
In Examples 15-1 and 15-2, since the injection angle (θ1) of the first injection gun is 0 °, the polishing material remains on the surface of the material to be processed, or fine particles and burrs are embedded and rubbed in. As a result, the effect of suppressing the adhesion of fine powder is reduced. In Examples 15-3, 15-4, and 15-8, since the injection angle (θ2) of the second injection gun is smaller than the injection angle (θ1) of the first injection gun, the effect of suppressing the adhesion of fine powder is reduced. is doing. In Examples 15-15 and 15-16, since θ1 exceeds 45 °, it can be seen that the ability to remove the attached film is slightly lowered.

E1>E2である実施例13と比較すると微粉付着抑制効果は小さいものの、いずれの条件においても付着膜除去能の高レベルでの維持と微粉付着の効果的な抑制が両立した清浄な表面が得られることが解る。
以上より、被処理材にチタン合金板(SSAT−64)を用い、E1=E2の条件においても、0°<θ1≦45°、かつ、θ1≦θ2<90°とすることがより好ましいことが解る。
Compared with Example 13 where E1> E2, the effect of suppressing the adhesion of fine powder is small, but a clean surface that achieves both a high level of adhesion film removal ability and effective suppression of adhesion of fine powder is obtained under any conditions. I understand that
From the above, it is more preferable that a titanium alloy plate (SSAT-64) is used as the material to be treated, and that 0 ° <θ1 ≦ 45 ° and θ1 ≦ θ2 <90 ° even under the condition of E1 = E2. I understand.

<実施例16> 被処理材:ステンレス板(SUS304)の場合におけるE1とE2の関係。
被処理材として長さ127mm、幅50mm、厚さ3mmのステンレス板(SUS304)を用い、実施例1と同様に付着膜付の被処理材を19枚作成した。
次に、表33に示す表面処理条件とする以外は、実施例1と同様にして被処理材の付着膜表面の処理を行った。このように表面処理が成された被処理材を実施例1と同様の評価方法により評価した。評価結果を表34に示す。
<Example 16> Material to be treated: Relationship between E1 and E2 in the case of stainless steel plate (SUS304).
Using a stainless steel plate (SUS304) having a length of 127 mm, a width of 50 mm, and a thickness of 3 mm as a material to be treated, 19 materials to be treated with an adhesion film were prepared in the same manner as in Example 1.
Next, the surface of the adhesion film of the material to be treated was treated in the same manner as in Example 1 except that the surface treatment conditions shown in Table 33 were used. The material to be treated thus subjected to the surface treatment was evaluated by the same evaluation method as in Example 1. The evaluation results are shown in Table 34.

Figure 2013006258
Figure 2013006258

Figure 2013006258
Figure 2013006258

表34より、いずれの実施例においても付着膜除去能評価、微粉付着評価ともにC以上の評価結果であり、本発明の効果が得られている事が解る。また、被処理材にステンレス板(SUS304)を用いた場合もE1>E2とすることで、清浄な表面が得られ、付着膜除去能の高レベルでの維持と微粉付着抑制効果の両立がより効果的となることがわかる。   From Table 34, it can be seen that in any of the examples, the evaluation of the attached film removal ability and the evaluation of fine powder adhesion are evaluation results of C or more, and the effect of the present invention is obtained. In addition, when a stainless steel plate (SUS304) is used as the material to be treated, a clean surface can be obtained by satisfying E1> E2, and both the maintenance of the adhesion film removing ability at a high level and the fine powder adhesion suppressing effect can be achieved. It turns out that it becomes effective.

<実施例17> 3個以上の噴射ガンを使用。
被処理材として長さ127mm、幅50mm、厚さ3mmのアルミニウム合金板(5052)を用い、実施例1と同様に付着膜付の被処理材を3枚作成した。
次に、表35に示す表面処理条件とする以外は、実施例1と同様にして被処理材の付着膜表面の処理を行った。本実施例では3つ以上のガンを配置して表面処理を行った。第1の噴射ガンの研磨材のモース硬度をM1とし、第2の噴射ガンの研磨材のモース硬度をM2とし、同様に、噴射する順に、研磨材のモース硬度をM1、M2、M3、M4とした。被処理材のモース硬度をMmとした。
<Example 17> Three or more spray guns are used.
An aluminum alloy plate (5052) having a length of 127 mm, a width of 50 mm, and a thickness of 3 mm was used as the material to be treated, and three materials to be treated with an adhesion film were prepared in the same manner as in Example 1.
Next, the surface of the adhesion film of the material to be treated was treated in the same manner as in Example 1 except that the surface treatment conditions shown in Table 35 were used. In this embodiment, the surface treatment was performed by arranging three or more guns. The Mohs hardness of the abrasive of the first spray gun is M1, the Mohs hardness of the abrasive of the second spray gun is M2, and similarly, the Mohs hardness of the abrasive is M1, M2, M3, M4 in the order of spraying. It was. The Mohs hardness of the material to be treated was Mm.

実施例17−1では3個の噴射ガンを用いて研磨材のモース硬度がM1=M2>Mm>M3となるようにした。実施例17−2では3個の噴射ガンを用いて研磨材のモース硬度がM1>Mm>M2>M3となるようにした。実施例17−3では4個の噴射ガンを用いて研磨材のモース硬度がM1=M2>Mm>M3>M4となるようにした。
また、いずれもモース硬度が小さい研磨材を吹き付ける噴射ガンほど、噴射角が大きくなるように配置した。
このように表面処理した被処理材を実施例1と同様に評価した。評価結果を表36に示す。
In Example 17-1, the Mohs hardness of the abrasive was M1 = M2>Mm> M3 using three spray guns. In Example 17-2, three injection guns were used so that the Mohs hardness of the abrasive became M1>Mm>M2> M3. In Example 17-3, the Mohs hardness of the abrasive was set to satisfy M1 = M2>Mm>M3> M4 using four spray guns.
In addition, in each case, the spray gun that sprays the abrasive having a small Mohs hardness is arranged so that the spray angle becomes large.
The treated material thus surface-treated was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 36.

Figure 2013006258
Figure 2013006258

Figure 2013006258
Figure 2013006258

表36に示した評価結果より、実施例17−1では、実施例17−2、実施例17−3と比べて微粉付着がやや多い結果となっている。これはモース硬度がMmよりも大きい研磨材を吹き付ける噴射ガンを2つ用いているのに対し、モース硬度がMmよりも小さい研磨材を吹き付ける噴射ガンは1つのため、微紛やバリの除去効果が実施例17−2、実施例17−3と比べて小さいためと考えられる。実施例17−2では、Mmよりも大きい研磨材を吹き付ける噴射ガンを1つにし、Mmよりも小さい研磨材を吹き付ける噴射ガンを2つにすることで、微粉付着抑制効果が顕著に得られている。   From the evaluation results shown in Table 36, Example 17-1 has a slightly larger amount of fine powder adhesion than Examples 17-2 and 17-3. This uses two spray guns that spray abrasives with a Mohs hardness greater than Mm, whereas there is one spray gun that sprays abrasives with a Mohs hardness less than Mm, so it can remove fines and burrs. Is considered to be smaller than Example 17-2 and Example 17-3. In Example 17-2, by using one spray gun for spraying an abrasive larger than Mm and two spray guns for spraying an abrasive smaller than Mm, the fine powder adhesion suppressing effect is remarkably obtained. Yes.

さらに、実施例17―3で、Mmよりも大きい研磨材を吹き付ける噴射ガンを2つにしても、Mmよりも小さい研磨材を吹き付ける噴射ガンも2つにすることで、微粉付着抑制効果が顕著に得られている。
以上から、モース硬度がMmより小さい研磨材を噴射する噴射ガンの数を、モース硬度がMmより大きい研磨材を噴射する噴射ガンの数と同じか多くすることが付着膜除去能の高レベルでの維持と微粉付着抑制の両立に関して特に効果的であることが確認された。
Furthermore, in Example 17-3, even if there are two spray guns that spray an abrasive larger than Mm, the number of spray guns that spray an abrasive smaller than Mm is also two, so that the effect of suppressing the adhesion of fine powder is remarkable. Has been obtained.
From the above, it is possible to increase the number of spray guns for injecting abrasives with a Mohs hardness less than Mm to be the same as or greater than the number of spray guns for injecting abrasives with a Mohs hardness greater than Mm. It has been confirmed that it is particularly effective for maintaining both the maintenance of the powder and the suppression of fine powder adhesion.

<実施例18> 被処理材:アルミニウム合金
被処理材として長さ127mm、幅50mm、厚さ3mmの表37に示す3種類のアルミニウム合金板を用い、実施例1と同様に付着膜付の被処理材を3枚作成した。
次に、表37に示す表面処理条件とする以外は、実施例1と同様にして被処理材の付着膜表面の処理を行った。このように表面処理が成された被処理材を実施例1と同様の評価方法により評価した。評価結果を表38に示す。
<Example 18> Material to be treated: Aluminum alloy As the material to be treated, three types of aluminum alloy plates shown in Table 37 having a length of 127 mm, a width of 50 mm, and a thickness of 3 mm were used. Three treatment materials were prepared.
Next, the surface of the adhesion film of the material to be treated was treated in the same manner as in Example 1 except that the surface treatment conditions shown in Table 37 were used. The material to be treated thus subjected to the surface treatment was evaluated by the same evaluation method as in Example 1. The evaluation results are shown in Table 38.

Figure 2013006258
Figure 2013006258

Figure 2013006258
Figure 2013006258

表38に示す評価結果より、本発明の表面処理を行うことで、いずれのアルミニウム合金系の被処理材においても清浄な表面が得られ、付着膜除去能の高レベルでの維持と微粉付着抑制効果の両立に関して効果的であることがわかった。   From the evaluation results shown in Table 38, by performing the surface treatment of the present invention, a clean surface can be obtained in any aluminum alloy-based material, and the adhesion film removal ability can be maintained at a high level and fine powder adhesion can be suppressed It turned out to be effective in terms of coexistence of effects.

<実施例19>
本実施例では、被処理材として図8で示すアルミニウム合金板(5052)で作成されたアモルファスシリコン電子写真感光体製造用の基体ホルダー801を2本用い、本発明の表面処理を行った。具体的にはプラズマCVD法により表39に示す条件で外径84mm、長さ381mmの電子写真感光体を2回作成し、作成に使用した2本の基体ホルダー801を実施例1-1と同様にして表面処理を行った。
<Example 19>
In this embodiment, two substrate holders 801 for producing an amorphous silicon electrophotographic photosensitive member made of an aluminum alloy plate (5052) shown in FIG. Specifically, an electrophotographic photosensitive member having an outer diameter of 84 mm and a length of 381 mm was prepared twice by the plasma CVD method under the conditions shown in Table 39, and the two substrate holders 801 used for the preparation were the same as in Example 1-1. The surface treatment was performed.

基体ホルダー801は、円筒形状の胴体803と胴体803より外径の大きな円筒形状のスカート部802からなるホルダー本体806、及びキャップ部804からなる。胴体803に導電性基体805を設置し、スカート部802とキャップ部804で導電性基体805を挟むようにキャップ部804を胴体803に設置する。スカート部802とキャップ部804は、導電性基体と同じ外径とし、本例では外径84mmとした。胴体803の外径は76mm、基体ホルダー801の長さは1000mmである。   The substrate holder 801 includes a cylindrical body 803, a holder body 806 including a cylindrical skirt portion 802 having a larger outer diameter than the body 803, and a cap portion 804. A conductive base 805 is installed on the body 803, and the cap 804 is installed on the body 803 so that the conductive base 805 is sandwiched between the skirt 802 and the cap 804. The skirt portion 802 and the cap portion 804 have the same outer diameter as that of the conductive base, and in this example, the outer diameter is 84 mm. The outer diameter of the body 803 is 76 mm, and the length of the base holder 801 is 1000 mm.

電子写真感光体を作成した後の基体ホルダー表面には、スカート部802、キャップ部804にアモルファスシリコン膜が付着している。図4に被処理材である基体ホルダーと噴射ガンの配置を示す。基体ホルダーの胴体部803表面でその母線方向接線にY軸をとり、胴体部803表面でY軸と直交するようにX軸をとり、胴体部803の中心軸を通りXY平面に垂直となるようにZ軸をとる。第1の噴射ガン402は、噴射ガン402から吹き付けられる噴流の中心軸がYZ平面にあり、その中心軸はZ軸に対して所定の角度406で設置されている。第2の噴射ガン403は、噴射ガン103から吹き付けられる噴流の中心軸がYZ平面にあり、その中心軸はZ軸に対して所定の角度407で設置されている。   An amorphous silicon film is adhered to the skirt portion 802 and the cap portion 804 on the surface of the substrate holder after the electrophotographic photosensitive member is formed. FIG. 4 shows the arrangement of the base holder and the spray gun, which are materials to be processed. The body holder 803 surface of the base holder has a Y axis in the tangent line in the generatrix direction, the body part 803 surface has an X axis perpendicular to the Y axis, passes through the central axis of the body part 803, and is perpendicular to the XY plane. Take the Z axis. In the first injection gun 402, the central axis of the jet blown from the injection gun 402 is on the YZ plane, and the central axis is set at a predetermined angle 406 with respect to the Z axis. In the second injection gun 403, the central axis of the jet sprayed from the injection gun 103 is on the YZ plane, and the central axis is installed at a predetermined angle 407 with respect to the Z axis.

表面処理中は基体ホルダー401をY軸方向に移動させると共に、基体ホルダーの中心軸を回転軸として周方向に回転させた。また、基体ホルダー上でアモルファスシリコン膜が付着した部分はスカート部とキャップ部であるが、他の部分も清浄化のため表面処理を施した。なお、噴射ガンの噴射口から基体ホルダーの胴体部までの距離が100mmとなるようにした。   During the surface treatment, the substrate holder 401 was moved in the Y-axis direction and rotated in the circumferential direction with the central axis of the substrate holder as the rotation axis. Further, the portions where the amorphous silicon film adhered on the substrate holder are the skirt portion and the cap portion, but the other portions were also subjected to surface treatment for cleaning. The distance from the injection port of the injection gun to the body part of the base holder was set to 100 mm.

このようにして表面処理がなされた基体ホルダーの清浄度を評価するために、表面処理を施した2本の基体ホルダーのうちの1本から評価用サンプルを切り出した。切り出し部分はスカート部とし、軸方向100mm、周方向20mmの大きさで切り出した。このようにして切り出された評価用サンプルを実施例1と同様に評価を行ったところ、実施例1−1と同じく付着膜除去能、埋込み摺込み評価ともに評価Aであった。   In order to evaluate the cleanliness of the substrate holder subjected to the surface treatment in this way, an evaluation sample was cut out from one of the two substrate holders subjected to the surface treatment. The cut-out portion was a skirt portion and cut out with a size of 100 mm in the axial direction and 20 mm in the circumferential direction. The evaluation sample cut out in this manner was evaluated in the same manner as in Example 1. As a result, both the ability to remove the attached film and the evaluation of embedded slidability were evaluated as A.

次に、切断していない表面処理後の基体ホルダーを再利用して、アモルファスシリコン電子写真感光体を表39に示す条件で再度作成した。作成された電子写真感光体表面を幅360mmのラッピングテープ(レフライト(株)製 型番:GC4000)で研磨した。ラッピングテープはJISゴム硬度30の加圧ローラーでドラム表面に約0.8kgf/cmの圧力で押し付けられている。加圧ローラーの軸と電子写真感光体の軸は、平行になるようにして当圧させた。その状態でラッピングテープを50mm/分のスピードで電子写真感光体の接線方向に移動させながら電子写真感光体を回転速度40rpmで回転させることで表面を研磨した。 Next, the surface-treated substrate holder that was not cut was reused, and an amorphous silicon electrophotographic photosensitive member was formed again under the conditions shown in Table 39. The surface of the electrophotographic photosensitive member thus prepared was polished with a wrapping tape having a width of 360 mm (manufactured by Reflight Co., Ltd., model number: GC4000). The wrapping tape is pressed against the drum surface with a pressure roller having a JIS rubber hardness of 30 at a pressure of about 0.8 kgf / cm 2 . The pressure roller axis and the electrophotographic photosensitive member axis were pressed so as to be parallel. In this state, the surface was polished by rotating the electrophotographic photosensitive member at a rotational speed of 40 rpm while moving the wrapping tape at a speed of 50 mm / min in the tangential direction of the electrophotographic photosensitive member.

次に、キヤノン株式会社製の電子写真装置Color imageRUNNER iR C6880Nに作成した電子写真感光体を設置し、A3の画像出力を行った。出力画像は、256階調の最大濃度を256と、白を0としたとき、64階調のハーフトーン濃度で、シアン単色画像と黒単色画像を各2枚出力した。出力した画像中に高濃度の点画像として現れる画像欠陥の有無を、ルーペを用いて評価した。その結果、0.05mm以上の画像欠陥は検出できなかった。
以上より、本発明の表面処理を行った清浄な基体ホルダーを用いることで、画像欠陥が抑制された良好な画像が得られるアモルファスシリコン電子写真感光体が得られた。
Next, the produced electrophotographic photosensitive member was installed in the color imageRUNNER iR C6880N electrophotographic apparatus manufactured by Canon Inc., and A3 image output was performed. The output image was a cyan single-color image and a black single-color image each having a halftone density of 64 gradations, assuming that the maximum density of 256 gradations was 256 and white was 0. The presence or absence of image defects appearing as high-density point images in the output image was evaluated using a loupe. As a result, an image defect of 0.05 mm or more could not be detected.
As described above, an amorphous silicon electrophotographic photoreceptor capable of obtaining a good image in which image defects were suppressed was obtained by using the clean substrate holder subjected to the surface treatment of the present invention.

Figure 2013006258
Figure 2013006258

101 被処理材
102 第1の噴射ガン
103 第2の噴射ガン
104 付着膜
105 間隔
106 第1の噴射ガンの噴射角(θ1)
107 第2の噴射ガンの噴射角(θ2)
108 第1の噴射ガンによる衝突領域
109 第2の噴射ガンによる衝突領域
201 被処理材
202 第1の噴射ガン
203 第2の噴射ガン
401 基体ホルダー
402 第1の噴射ガン
403 第2の噴射ガン
601 被処理材
602 第1の噴射ガン
603 第2の噴射ガン
604、605 噴射ガンの吹き付けポンプ
606、607 研磨材補給管
608、609 調整タンク
610 処理容器
611 回収タンク
701 回収タンク
702 磁力ローラー
703 剥ぎ取りブレード
704 搬送ローラー
705 攪拌羽根
706 処理後の混合液導入管
707 排出管
708 タンク
709 排出管調整タンク
801 基体ホルダー
802 スカート部
803 胴体
804 キャップ部
805 導電性基体
806 ホルダー本体
901 回収容器
902 開口
1001 噴射ガン
1002 中心軸
1003 羽根車
1004 噴射ガンから被処理材までの中心軸の長さ
1005 噴きつけ点
1006,1009 歯車
1007 磁電式回転検出器
101 Material 102 First injection gun 103 Second injection gun 104 Adhering film 105 Distance 106 Injection angle (θ1) of first injection gun
107 Injection angle (θ2) of second injection gun
108 Collision area 109 by first injection gun 109 Collision area 201 by second injection gun 201 Material 202 First injection gun 203 Second injection gun 401 Base holder 402 First injection gun 403 Second injection gun 601 Material 602 First injection gun 603 Second injection gun 604, 605 Spray gun spray pumps 606, 607 Abrasive supply pipes 608, 609 Adjustment tank 610 Processing container 611 Recovery tank 701 Recovery tank 702 Magnetic roller 703 Stripping Blade 704 Conveying roller 705 Stirring blade 706 Processed liquid mixture introduction pipe 707 Discharge pipe 708 Tank 709 Discharge pipe adjustment tank 801 Base holder 802 Skirt part 803 Body 804 Cap part 805 Conductive base body 806 Holder body 901 Recovery container 902 Opening 1001 Injection Ga 1002 Central shaft 1003 Impeller 1004 Length of central shaft from spray gun to workpiece 1005 Spray point 1006, 1009 Gear 1007 Magnetoelectric rotation detector

Claims (12)

研磨材を用いたホーニング処理により、被処理材に対して表面剥離又は付着物除去をおこなう表面処理方法において、1つの処理容器内で1つの被処理材に対して少なくとも2つのホーニング処理のための噴射ガンを同時に用い、モース硬度が被処理材よりも大きい少なくとも1種以上の研磨材とモース硬度が被処理材よりも小さい少なくとも1種以上の研磨材を個別の噴射ガンから噴射し、モース硬度が大きい研磨材から順に被処理部に吹き付けることを特徴とする表面処理方法。   In a surface treatment method for performing surface peeling or deposit removal on a material to be treated by a honing treatment using an abrasive, at least two honing treatments for one material to be treated in one treatment container Using a spray gun at the same time, at least one type of abrasive having a Mohs hardness greater than that of the material to be treated and at least one type of abrasive having a Mohs hardness of less than that of the material to be treated are sprayed from individual guns, and the Mohs hardness The surface treatment method is characterized by spraying the object to be treated in order from an abrasive having a large diameter. 前記モース硬度が被処理材よりも大きい研磨材が固体の研磨材であり、前記モース硬度が被処理材よりも小さい研磨材が、常温で液体となる材料または常温で気体となる材料を冷却固化した研磨材であることを特徴とする請求項1に記載の表面処理方法。   The abrasive having a larger Mohs hardness than the material to be treated is a solid abrasive, and the abrasive having a smaller Mohs hardness than the material to be treated cools and solidifies a material that becomes liquid at room temperature or a gas that becomes gas at room temperature. The surface treatment method according to claim 1, wherein the surface treatment method is performed. 磁性の研磨材と非磁性の研磨材をそれぞれ個別の噴射ガンから噴射することを特徴とする請求項1に記載の表面処理方法。   The surface treatment method according to claim 1, wherein the magnetic abrasive and the nonmagnetic abrasive are each sprayed from individual spray guns. 前記磁性の研磨材は、鉄およびSUS430からなる群から選ばれる少なくとも1つであり、前記非磁性の研磨材は、ジルコン、くるみ、ナイロンおよびガラスからなる群から選ばれる少なくとも1つであることを特徴とする請求項3に記載の表面処理方法。   The magnetic abrasive is at least one selected from the group consisting of iron and SUS430, and the nonmagnetic abrasive is at least one selected from the group consisting of zircon, walnut, nylon and glass. The surface treatment method according to claim 3. 前記噴射ガンから被処理材に吹き付けられる単位時間における単位面積当たりの研磨材衝突エネルギーが、大きいほうから順に被処理部に吹き付けることを特徴とする請求項1乃至4のいずれか一項に記載の表面処理方法。   The abrasive collision energy per unit area per unit time sprayed from the spray gun to the material to be processed is sprayed to the processing portion in order from the largest. Surface treatment method. 前記被処理部の法線と前記噴射ガンの中心軸で成す角を噴射角として、前記モース硬度が被処理材よりも大きい研磨材を噴射する噴射ガンの噴射角をθ1としたとき0°<θ1≦45°であり、モース硬度が被処理材よりも小さい研磨材を噴射する噴射ガンの噴射角をθ2としたときθ1≦θ2<90°であることを特徴とする請求項1乃至5のいずれか一項に記載の表面処理方法。   When an angle formed between the normal line of the processing target part and the central axis of the injection gun is an injection angle, and an injection angle of an injection gun for injecting an abrasive whose Mohs hardness is larger than the processing object is θ1, 0 ° < The angle θ1 ≦ 45 °, and θ1 ≦ θ2 <90 °, where θ2 is an injection angle of an injection gun for injecting an abrasive having a Mohs hardness smaller than that of the material to be processed. The surface treatment method according to any one of the above. 前記モース硬度が小さい研磨材を吹き付ける噴射ガンほど、噴射角が大きいことを特徴とする請求項1乃至6のいずれか一項に記載の表面処理方法。   The surface treatment method according to any one of claims 1 to 6, wherein a spray gun that sprays an abrasive having a small Mohs hardness has a large spray angle. 前記モース硬度が被処理材よりも大きい研磨材は、鉄またはステンレスで略球形の研磨材であることを特徴とする請求項1乃至6のいずれか一項に記載の表面処理方法。   The surface treatment method according to any one of claims 1 to 6, wherein the abrasive having a Mohs hardness greater than that of the material to be treated is an iron or stainless steel substantially spherical abrasive. 前記常温で液体となる材料または常温で気体となる材料を冷却固化した研磨材は、氷またはドライアイスであることを特徴とする請求項2、5乃至8のいずれか一項に記載の表面処理方法。   The surface treatment according to claim 2, wherein the polishing material obtained by cooling and solidifying the material that becomes liquid at normal temperature or the material that becomes gas at normal temperature is ice or dry ice. Method. 前記被処理材がアルミニウム及び又はアルミニウム合金で形成されていることを特徴とする請求項1乃至9のいずれか一項に記載の表面処理方法。   The surface treatment method according to any one of claims 1 to 9, wherein the material to be treated is formed of aluminum and / or an aluminum alloy. 前記被処理材がプラズマCVD装置用の成膜炉内部品であることを特徴とする請求項1乃至10のいずれか一項に記載の表面処理方法。   The surface treatment method according to claim 1, wherein the material to be treated is a film-forming furnace part for a plasma CVD apparatus. 請求項11の表面処理方法で表面処理した基体ホルダーを用いて、プラズマCVD装置で電子写真感光体を製造することを特徴とする電子写真感光体の製造方法。

A method for producing an electrophotographic photosensitive member, wherein the electrophotographic photosensitive member is produced by a plasma CVD apparatus using the substrate holder surface-treated by the surface treatment method according to claim 11.

JP2011142178A 2011-06-27 2011-06-27 Surface treatment method and method for producing electrophotographic photosensitive member Expired - Fee Related JP5800601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011142178A JP5800601B2 (en) 2011-06-27 2011-06-27 Surface treatment method and method for producing electrophotographic photosensitive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011142178A JP5800601B2 (en) 2011-06-27 2011-06-27 Surface treatment method and method for producing electrophotographic photosensitive member

Publications (3)

Publication Number Publication Date
JP2013006258A true JP2013006258A (en) 2013-01-10
JP2013006258A5 JP2013006258A5 (en) 2014-08-07
JP5800601B2 JP5800601B2 (en) 2015-10-28

Family

ID=47674073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011142178A Expired - Fee Related JP5800601B2 (en) 2011-06-27 2011-06-27 Surface treatment method and method for producing electrophotographic photosensitive member

Country Status (1)

Country Link
JP (1) JP5800601B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016093870A (en) * 2014-11-14 2016-05-26 株式会社東芝 Processing device
JP2016093871A (en) * 2014-11-14 2016-05-26 株式会社東芝 Processing device and nozzle
JP2017518944A (en) * 2014-04-11 2017-07-13 サフラン セラミクス Method for producing a porous composite member
US9947571B2 (en) 2014-11-14 2018-04-17 Kabushiki Kaisha Toshiba Processing apparatus, nozzle, and dicing apparatus
CN109514436A (en) * 2018-12-12 2019-03-26 常州大学 A method of improving coating binding force in the way of sandblasting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667441A (en) * 1992-08-13 1994-03-11 Fuji Xerox Co Ltd Electrophotographic sensitive body and treatment of non-cut aluminum pipe for use as conductive base body for the body
US20060257771A1 (en) * 2005-05-10 2006-11-16 Xerox Corporation Photoreceptors
JP2007108395A (en) * 2005-10-13 2007-04-26 Canon Inc Method and apparatus for regenerating base holder
JP2009202307A (en) * 2008-02-28 2009-09-10 Nsk Ltd Grinding method for rolling and sliding device member and rolling and sliding device member
JP2009255277A (en) * 2008-03-19 2009-11-05 Tokyo Electron Ltd Surface treatment method, showerhead, treatment container, and treatment apparatus using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667441A (en) * 1992-08-13 1994-03-11 Fuji Xerox Co Ltd Electrophotographic sensitive body and treatment of non-cut aluminum pipe for use as conductive base body for the body
US20060257771A1 (en) * 2005-05-10 2006-11-16 Xerox Corporation Photoreceptors
JP2007108395A (en) * 2005-10-13 2007-04-26 Canon Inc Method and apparatus for regenerating base holder
JP2009202307A (en) * 2008-02-28 2009-09-10 Nsk Ltd Grinding method for rolling and sliding device member and rolling and sliding device member
JP2009255277A (en) * 2008-03-19 2009-11-05 Tokyo Electron Ltd Surface treatment method, showerhead, treatment container, and treatment apparatus using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017518944A (en) * 2014-04-11 2017-07-13 サフラン セラミクス Method for producing a porous composite member
JP2016093870A (en) * 2014-11-14 2016-05-26 株式会社東芝 Processing device
JP2016093871A (en) * 2014-11-14 2016-05-26 株式会社東芝 Processing device and nozzle
US9947571B2 (en) 2014-11-14 2018-04-17 Kabushiki Kaisha Toshiba Processing apparatus, nozzle, and dicing apparatus
CN109514436A (en) * 2018-12-12 2019-03-26 常州大学 A method of improving coating binding force in the way of sandblasting

Also Published As

Publication number Publication date
JP5800601B2 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
JP5800601B2 (en) Surface treatment method and method for producing electrophotographic photosensitive member
US10272468B2 (en) Integrated fluidjet system for stripping, prepping and coating a part
WO2015019661A1 (en) Polishing device and polishing method
TWI438304B (en) A ceramic spray member and a method for manufacturing the same, and a polishing medium for a ceramic spray member
KR101194277B1 (en) Abrasive material made of atomized slag, manufacturing facility and method for the same
US6416389B1 (en) Process for roughening a surface
CN105274465B (en) The renovation process of vacuum coating intracavitary part cleaning rough surface
US11859108B2 (en) Finishing mediums and finishing suspensions
CN110819933A (en) Slurry for suspension plasma spraying and method for forming sprayed coating
CN111702661A (en) Novel double-layer jet hydraulic derusting spray gun and use method thereof
JP3740523B2 (en) Ultrafine particle material flattening method
JP2013006258A5 (en)
US20080044563A1 (en) Method of Treating Aluminum-Wheel Surface
CN109048699A (en) A kind of method of preparation and use of aircraft coating removal amino film plastics abrasive material
TWI768329B (en) Physical dry surface treatment method of semiconductor wafer and composition for surface treatment thereof
CN111715489B (en) Method for spraying abradable coating on large-size cylindrical part
CN109468567A (en) A kind of tungsten carbide spraying method of drawing block
JP2018153748A (en) Sticking material removing method
JP2016517354A (en) Apparatus for dispensing a cryogenic fluid jet having a flexible protective housing
JP2002114968A (en) Abrasive and abrasion method using the abrasive
JP3793261B2 (en) Sharpening material manufacturing method and apparatus
TW201808480A (en) Method for removing deposit
JPS6377658A (en) Cleaning method for metal surface by slug powder
JP2004167609A (en) Screening method of abrasive and screening device
JP2007108395A (en) Method and apparatus for regenerating base holder

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140619

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150825

R151 Written notification of patent or utility model registration

Ref document number: 5800601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees