JP2013005745A - Underground irrigation system - Google Patents

Underground irrigation system Download PDF

Info

Publication number
JP2013005745A
JP2013005745A JP2011139607A JP2011139607A JP2013005745A JP 2013005745 A JP2013005745 A JP 2013005745A JP 2011139607 A JP2011139607 A JP 2011139607A JP 2011139607 A JP2011139607 A JP 2011139607A JP 2013005745 A JP2013005745 A JP 2013005745A
Authority
JP
Japan
Prior art keywords
water
soil
irrigation system
underground irrigation
impervious
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011139607A
Other languages
Japanese (ja)
Other versions
JP5872195B2 (en
Inventor
Kazuhiro Hirao
和弘 平尾
Hidemi Yamaguchi
秀美 山口
Hideki Bai
秀樹 倍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota CI Co Ltd
Original Assignee
Kubota CI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota CI Co Ltd filed Critical Kubota CI Co Ltd
Priority to JP2011139607A priority Critical patent/JP5872195B2/en
Publication of JP2013005745A publication Critical patent/JP2013005745A/en
Application granted granted Critical
Publication of JP5872195B2 publication Critical patent/JP5872195B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an underground irrigation system which can properly keep a water level of gravitational water in a soil portion without needing a facility such as a water level management unit, and thus can be suitably used to a slope.SOLUTION: The underground irrigation system 10 includes a water-stopping member 12 buried in the ground, and water supply members 14, 14a, 14b, and keeps the moisture in the soil in a condition proper for growth of plants by supplying water from under the ground. The water-stopping member 12 is a halved pipe obtained by cutting a corrugated pipe into two along the axial direction, and a plurality of groove portions 20 are formed on the inner surface side of the pipe to be aligned at axial intervals. In the underground irrigation system 10, water from a water supply source 16 is supplied into the groove portions 20 of the water-stopping member 12 through the water supply members 14, 14a, 14b to form soil portions 28 in a gravitational water state within the groove portions 20, and water is supplied therefrom to the soil by capillary action.

Description

この発明は、地下灌漑システムに関し、特にたとえば、地下から水を供給して土壌の水分量を適切に保つ、地下灌漑システムに関する。   The present invention relates to an underground irrigation system, and more particularly to an underground irrigation system that supplies water from the underground to keep the moisture content of soil appropriately.

従来、畑地などの灌水には、地表に這わせた孔あきホースやスプリンクラ等を用いて、地表面から土壌に水を供給する地表灌水が一般的に用いられている。ここで、地表灌水によって土壌に供給された水は、土壌表面や植物表面も潤すことになるが、これらの水は大気中に蒸発(つまり表面蒸発)してしまうだけであるので、水の無駄遣いが生じる。また、土壌のぬかるみによって作業に支障が出たり、泥跳ねや土壌表面の凝固などの不具合を招いたりしてしまう。さらに、ハウス栽培の場合には、表面蒸発した水分によってハウス内の湿度が過剰に高くなり、植物の病気発生の原因となる場合もある。   Conventionally, surface irrigation for supplying water from the ground surface to the soil using a perforated hose or a sprinkler or the like laid on the ground surface is generally used for irrigation of fields and the like. Here, the water supplied to the soil by surface irrigation will also moisten the soil surface and the plant surface, but these waters only evaporate into the atmosphere (ie, surface evaporation), so wasting water. Occurs. In addition, the mud of the soil may hinder the work, and may cause problems such as mud splashing and solidification of the soil surface. Furthermore, in the case of house cultivation, the humidity in the house becomes excessively high due to moisture evaporated on the surface, which may cause plant diseases.

これに対して、地下から水を供給する地下灌漑では、供給した水が表面蒸発することが無いので、水の無駄遣いを低減でき、水資源を効率的に利用できる。また、土壌がぬかるんだり、ハウス内の湿度が過度に上昇したりする等の地表灌水に起因する不具合も生じない。このため、近年では、各種の地下灌漑システムが提案されている。   On the other hand, in the underground irrigation in which water is supplied from the underground, the supplied water does not evaporate, so that waste of water can be reduced and water resources can be used efficiently. Moreover, the malfunction resulting from surface irrigation, such as the soil becoming muddy or the humidity in the house rising excessively, does not occur. For this reason, various underground irrigation systems have been proposed in recent years.

たとえば、特許文献1には、本願出願人等が提案した地下灌漑システムが開示される。
この地下灌漑システムでは、上側開口の容器状に形成された遮水部材が耕作地などの地中に埋設される。そして、遮水部材の内部に水を供給して重力水状態の土壌部を形成し、その重力水状態の土壌部から毛細管現象によって植物根圏の土壌に水を供給するようにしている。一例として、上側に開口を設けた横管状(横長の容器状)の遮水部材が用いられる。
特開2010−29072号公報 [A01G 25/00]
For example, Patent Document 1 discloses an underground irrigation system proposed by the present applicant.
In this underground irrigation system, a water-impervious member formed in a container shape with an upper opening is buried in the ground such as a cultivated land. Then, water is supplied to the inside of the water-impervious member to form a gravity water-state soil portion, and water is supplied from the gravity water-state soil portion to the plant rhizosphere soil by capillary action. As an example, a horizontal tubular (horizontal container-shaped) water shielding member having an opening on the upper side is used.
JP 2010-29072 A [A01G 25/00]

特許文献1の技術では、上側開口の遮水部材内に重力水状態の土壌部を形成するので、遮水部材が傾いて設置されると、地下灌漑時に遮水部材内の重力水が開口からこぼれてしまう可能性がある。このため、特許文献1の技術では、遮水部材を水平に設置する必要があるので、遮水部材の設置作業に注意を要し、特に傾斜を有する耕作地(傾斜地)に適用する場合には、等高線に沿って遮水部材を設置する必要が生じるなど、遮水部材の配置態様に地理的な制約を受けるので、施工が煩雑になっていた。   In the technique of Patent Document 1, a soil part in a gravitational water state is formed in the water-impervious member of the upper opening, so that when the water-impervious member is installed at an angle, the gravitational water in the water-impervious member is released from the opening during underground irrigation. There is a possibility of spilling. For this reason, in the technique of patent document 1, since it is necessary to install a water-impervious member horizontally, attention is required for the installation work of the water-impervious member, especially when applied to cultivated land (inclined land) having an inclination. Since the arrangement of the water shielding member is geographically restricted, such as the necessity of installing a water shielding member along the contour line, construction is complicated.

また、特許文献1の技術では、遮水部材内の重力水の水位管理を水位管理器によって行うようにしているが、この地下灌漑システムを傾斜地に適用する場合には、土壌に対して均等に給水できるように、各遮水部材内の重力水の水位を個別に調節できることが望ましい。しかしながら、そのために遮水部材ごとに水位管理器を設けると、コストが大幅にアップしてしまう。   Moreover, in the technique of patent document 1, although the water level management of the gravity water in a water-impervious member is performed by a water level management device, when this underground irrigation system is applied to an inclined land, it is equally with respect to soil. It is desirable that the level of gravity water in each water shielding member can be adjusted individually so that water can be supplied. However, if a water level management device is provided for each water shielding member for that purpose, the cost is significantly increased.

それゆえに、この発明の主たる目的は、新規な、地下灌漑システムを提供することである。   Therefore, the main object of the present invention is to provide a novel underground irrigation system.

この発明の他の目的は、水位管理器等の設備を必要とすることなく、傾斜地にも好適に用いることができる、地下灌漑システムを提供することである。   Another object of the present invention is to provide an underground irrigation system that can be suitably used on sloped land without requiring facilities such as a water level controller.

本発明は、上記の課題を解決するために、以下の構成を採用した。なお、括弧内の参照符号および補足説明などは、本発明の理解を助けるために後述する実施の形態との対応関係を示したものであって、本発明を何ら限定するものではない。   The present invention employs the following configuration in order to solve the above problems. Note that reference numerals in parentheses, supplementary explanations, and the like indicate correspondence relationships with embodiments described later to help understanding of the present invention, and do not limit the present invention in any way.

第1の発明は、上側開口の容器状に形成され、少なくとも底部に複数の溝部が形成される遮水部材、および溝部に給水して、遮水部材の内部に重力水状態の土壌部を形成する給水手段を備える、地下灌漑システムである。   1st invention is formed in the container shape of an upper side opening, and the water-impervious member in which a plurality of grooves are formed at least at the bottom, and water is supplied to the grooves to form a gravitational water-state soil part inside the water-impervious member Underground irrigation system with water supply means.

第1の発明では、地下灌漑システム(10)は、地下に埋設される遮水部材(12)、および給水部材(14,14a,14b)を含み、地下から水を供給して土壌中の水分を植物の生育にとって適切な状態に保つものである。遮水部材は、合成樹脂や金属などによって形成され、その底部には、間隔を隔てて並ぶ複数の溝部(20)が形成される。給水部材は、給水源(16)からの水を遮水部材の各溝部まで送る管路であって、合成樹脂や合成ゴムなどによって形成される。この地下灌漑システムでは、灌漑時には、給水源からの水を給水部材によって遮水部材の溝部内に供給して、遮水部材内に重力水状態の土壌部(28)を形成し、そこから毛細管現象によって土壌に水を供給する。   In the first invention, the underground irrigation system (10) includes a water-impervious member (12) and a water supply member (14, 14a, 14b) embedded in the underground, and supplies water from the underground to provide moisture in the soil. In a state suitable for plant growth. The water-impervious member is formed of synthetic resin, metal, or the like, and a plurality of grooves (20) arranged at intervals are formed at the bottom. The water supply member is a pipe that sends water from the water supply source (16) to each groove portion of the water shielding member, and is formed of a synthetic resin, a synthetic rubber, or the like. In this underground irrigation system, during irrigation, water from a water supply source is supplied by the water supply member into the groove portion of the water shielding member to form a soil portion (28) in the state of gravity water in the water shielding member, from which a capillary tube is formed. Water is supplied to the soil by the phenomenon.

第1の発明によれば、遮水部材の底部の内面側に複数の溝部を形成して、そこに重力水状態の土壌部を形成するようにしたため、遮水部材が傾斜して設置されても、重力水状態の土壌部の水分量をほぼ均等に保つことが可能である。よって、毛管水状態の土壌部の水分量が場所によって偏ることがなく、作土層の水分量を可及的均等に保つことができるようになる。つまり、傾斜地に対しても好適に用いることができる。   According to 1st invention, since the several groove part was formed in the inner surface side of the bottom part of a water-impervious member, and the soil part of the gravity water state was formed there, the water-impervious member was installed inclining However, it is possible to keep the water content of the soil part in the gravity water state almost uniform. Therefore, the moisture content of the soil portion in the capillary water state is not biased depending on the location, and the moisture content of the soil formation layer can be kept as uniform as possible. That is, it can be suitably used for sloping ground.

また、水位管理器等の特別な設備を用いなくても、重力水状態の土壌部の水分量をほぼ均等に保つことができるので、設備コストや維持管理コスト等を低減できる。   Moreover, since the water content of the soil portion in the gravity water state can be kept almost even without using special equipment such as a water level management device, equipment costs, maintenance costs, etc. can be reduced.

第2の発明は、第1の発明に従属し、遮水部材は、その上面に開口を設けた横管状に形成され、管底部において軸方向に複数の溝部が間隔を隔てて並ぶ。   A second invention is dependent on the first invention, and the water-impervious member is formed in a horizontal tubular shape having an opening on an upper surface thereof, and a plurality of groove portions are arranged at intervals in the axial direction at the tube bottom portion.

第2の発明では、遮水部材(12)は、その上面に開口(18)を設けた横管状に形成される。そして、遮水部材の管底部には、遮水部材の軸方向に間隔を隔てて並ぶ複数の溝部(20)が形成される。実施例では、遮水部材は、波形管を軸方向に沿って2つに切断した半割り管であり、耕作地(100)の両端付近まで延びる遮水部材が、所定の間隔を隔てて並ぶように配置される。   In the second invention, the water-impervious member (12) is formed in a horizontal tubular shape having an opening (18) on its upper surface. And the several groove part (20) arranged in the axial direction of a water shielding member at intervals in the pipe bottom part of a water shielding member is formed. In the embodiment, the water shielding member is a half pipe obtained by cutting the corrugated pipe into two along the axial direction, and the water shielding members extending to the vicinity of both ends of the cultivated land (100) are arranged at a predetermined interval. Are arranged as follows.

第3の発明は、第1または2の発明に従属し、給水手段は、遮水部材に沿って延びて、複数の溝部に管壁を介して水を導く導水管を含む。   A third invention is dependent on the first or second invention, and the water supply means includes a water conduit that extends along the water shielding member and guides water to the plurality of grooves through the pipe wall.

第3の発明では、給水部材(14,14a,14b)は、たとえば配水管(14a)を介して給水源(16)と接続される導水管(14b)を含む。導水管は、遮水部材(12)の底部に沿って延びて、遮水部材内を通る水路を形成する。また、導水管は、たとえば管壁に孔(30)や空隙などを有し、その管壁を介して給水源からの水を各溝部(20)内に導く。   In 3rd invention, a water supply member (14, 14a, 14b) contains the water conduit (14b) connected with a water supply source (16) via a water pipe (14a), for example. The water conduit extends along the bottom of the water-impervious member (12) to form a water channel that passes through the water-impervious member. Moreover, a water conduit has a hole (30), a space | gap, etc. in a tube wall, for example, and guides the water from a water supply source in each groove part (20) via the tube wall.

第3の発明によれば、遮水部材が上下方向に蛇行するように設置されても、遮水部材の各溝部には確実に水が供給される。したがって、一様な傾斜を有する耕作地だけでなく、起伏がある(上り下りがある)耕作地にも地下灌漑システムを好適に用いることができる。   According to the third invention, even if the water shielding member is installed so as to meander in the vertical direction, water is reliably supplied to each groove portion of the water shielding member. Therefore, the underground irrigation system can be suitably used not only for cultivated land having a uniform slope, but also for cultivated land with ups and downs (up and down).

第4の発明は、第3の発明に従属し、導水管は、管壁に形成される複数の貫通孔を有し、その貫通孔を通して溝部に給水する。   A fourth invention is dependent on the third invention, and the water guide pipe has a plurality of through holes formed in the pipe wall, and supplies water to the groove portion through the through holes.

第4の発明では、導水管(14b)は、管壁に複数の貫通孔(26)を有する有孔管であり、この貫通孔を通して遮水部材(12)の溝部(20)内に給水する。実施例では、導水管の管底部には、円形の貫通孔が軸方向に所定間隔で1列に並んで形成される。   In the fourth invention, the water guide pipe (14b) is a perforated pipe having a plurality of through holes (26) in the pipe wall, and supplies water into the groove (20) of the water shielding member (12) through the through holes. . In the embodiment, circular through holes are formed in a line at predetermined intervals in the axial direction at the bottom of the conduit.

第5の発明は、第4の発明に従属し、遮水部材の軸方向に複数の溝部が第1間隔を隔てて並び、導水管の軸方向に複数の貫通孔が第1間隔以下の第2間隔を隔てて並ぶ。   A fifth invention is dependent on the fourth invention, wherein a plurality of grooves are arranged at a first interval in the axial direction of the water-impervious member, and a plurality of through-holes are arranged in the axial direction of the water guide pipe at the first interval or less. Lined up at two intervals.

第5の発明では、遮水部材(12)は、その上面に開口(18)を設けた横管状に形成され、その管底部には、軸方向に第1間隔を隔てて並ぶ複数の溝部(20)が形成される。また、導水管(14b)の管壁には、第1間隔以下の第2間隔を隔てて並ぶ複数の貫通孔(26)が形成される。   In the fifth invention, the water-impervious member (12) is formed in a horizontal tubular shape having an opening (18) on its upper surface, and a plurality of grooves (lined at first intervals in the axial direction) are formed in the tube bottom. 20) is formed. In addition, a plurality of through holes (26) are formed in the pipe wall of the water conduit (14b) so as to be arranged at a second interval equal to or less than the first interval.

第5の発明によれば、遮水部材内に導水管を配置する際に、溝部と貫通孔との位置合わせを厳密に行う必要がなくなるので、導水管の軸方向の位置決めを容易に行うことができる。   According to the fifth aspect of the present invention, it is not necessary to strictly align the groove portion and the through hole when the water guide pipe is disposed in the water shielding member, so that the water guide pipe can be easily positioned in the axial direction. Can do.

第6の発明は、第1ないし5のいずれかの発明に従属し、遮水部材の下方に埋設される拡散防止部材をさらに備える。   A sixth invention is dependent on any one of the first to fifth inventions, and further includes a diffusion preventing member embedded under the water shielding member.

第6の発明では、遮水部材(12)の下方には、拡散防止部材(34)が埋設される。拡散防止部材は、合成樹脂などによって形成される遮水性を有するシートであり、遮水部材の溝部(20)内の重力水状態の土壌部(28)から毛細管現象によって土壌に浸透した水の拡散を防止する。拡散防止部材は、たとえば、遮水部材の下方において、遮水部材の全長に亘るように略水平方向に帯状に配置される。   In the sixth aspect of the invention, the diffusion preventing member (34) is buried below the water shielding member (12). The diffusion preventing member is a sheet having a water shielding property formed of a synthetic resin or the like, and diffusion of water that has permeated into the soil by capillary action from the soil portion (28) in a gravity water state in the groove portion (20) of the water shielding member. To prevent. For example, the diffusion preventing member is disposed in a strip shape in a substantially horizontal direction so as to extend over the entire length of the water shielding member below the water shielding member.

第6の発明によれば、土壌下方への水の無駄な拡散が拡散防止部材によって防止されるので、植物の根圏に対して適切に水分を供給できる。   According to the sixth aspect of the invention, wasteful diffusion of water below the soil is prevented by the diffusion preventing member, so that moisture can be appropriately supplied to the plant rhizosphere.

この発明によれば、遮水部材の複数の溝部のそれぞれに水を溜めて、そこに重力水状態の土壌部を形成するようにしたため、遮水部材が傾斜して設置されても、重力水状態の土壌部の水分量をほぼ均等に保つことが可能である。したがって、傾斜地に対しても好適に用いることができる。また、水位管理器等の設備を用いる必要がないので、設備コストや維持管理コスト等を低減できる。   According to the present invention, since water is accumulated in each of the plurality of grooves of the water-impervious member and the soil portion in the gravitational water state is formed therein, the gravity water It is possible to keep the water content of the soil part in the state almost uniform. Therefore, it can be suitably used even on slopes. Moreover, since there is no need to use equipment such as a water level manager, equipment costs, maintenance costs, etc. can be reduced.

この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。   The above object, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.

この発明の一実施例の地下灌漑システムを示す図解図である。It is an illustration figure which shows the underground irrigation system of one Example of this invention. 図1の地下灌漑システムを傾斜地に適用した様子を示す図解図である。It is an illustration figure which shows a mode that the underground irrigation system of FIG. 1 was applied to the sloping ground. 図1の地下灌漑システムを傾斜地に適用した様子を示す図解図であり、(a)は、遮水部材の溝部の部分を軸方向から見た断面を示し、(b)は、遮水部材の溝部ではない部分を軸方向から見た断面を示す。It is an illustration figure which shows a mode that the underground irrigation system of FIG. 1 was applied to the sloping ground, (a) shows the cross section which looked at the part of the groove part of the water-impervious member from the axial direction, (b) shows the water-impervious member The cross section which looked at the part which is not a groove part from the axial direction is shown. 図1の地下灌漑システムにおける水の流れを示す図解図である。It is an illustration figure which shows the flow of the water in the underground irrigation system of FIG. この発明の他の実施例である地下灌漑システムを軸方向から見た断面を示す図解図である。It is an illustration figure which shows the cross section which looked at the underground irrigation system which is another Example of this invention from the axial direction. この発明のさらに他の実施例である地下灌漑システムを軸方向から見た断面を示す図解図である。It is an illustration figure which shows the cross section which looked at the underground irrigation system which is further another Example of this invention from the axial direction. この発明のさらに他の実施例の地下灌漑システムにおける水の流れを示す図解図である。It is an illustration figure which shows the flow of the water in the underground irrigation system of other Example of this invention. この発明のさらに他の実施例の地下灌漑システムを示す図解図である。It is an illustration figure which shows the underground irrigation system of other Example of this invention. 図7の地下灌漑システムを傾斜地に適用した様子を示す図解図である。It is an illustration figure which shows a mode that the underground irrigation system of FIG. 7 was applied to the sloping ground. 図7の地下灌漑システムにおける水の流れを示す図解図である。It is an illustration figure which shows the flow of the water in the underground irrigation system of FIG. この発明のさらに他の実施例の地下灌漑システムを示す図解図である。It is an illustration figure which shows the underground irrigation system of other Example of this invention.

図1を参照して、この発明の一実施例である地下灌漑システム10(以下、単に「システム10」という。)は、地下に埋設される遮水部材12、および給水部材14を含み、たとえば傾斜を有する耕作地(傾斜地)100に適用されて、地下から水を供給して土壌中の水分を植物の生育にとって適切な状態に保つものである。詳細は後述するが、このシステム10では、給水源16からの水を給水部材14によって遮水部材12の内部に供給して、遮水部材12の内部に重力水状態の土壌部28を形成し、そこから毛細管現象によって土壌に水を供給する。   Referring to FIG. 1, an underground irrigation system 10 (hereinafter simply referred to as “system 10”) according to an embodiment of the present invention includes a water shielding member 12 and a water supply member 14 embedded in the underground, It is applied to a cultivated land (inclined land) 100 having an inclination, and water is supplied from the basement to keep moisture in the soil in an appropriate state for plant growth. Although details will be described later, in this system 10, water from the water supply source 16 is supplied to the inside of the water shielding member 12 by the water supply member 14, and the soil portion 28 in the state of gravity water is formed inside the water shielding member 12. From there, water is supplied to the soil by capillary action.

図2および図3に示すように、遮水部材12は、ポリ塩化ビニルやポリエチレン等の合成樹脂やステンレス等の金属などの遮水性を有する材質によって、その上面に開口18を設けた横管状に形成される。遮水部材12は、たとえば植物の根圏に沿うように耕作地100に埋設され、その内部には、周囲の土壌と同様の成分によって構成される土が充填される。   As shown in FIGS. 2 and 3, the water shielding member 12 is formed in a horizontal tubular shape having an opening 18 on the upper surface thereof by a material having a water shielding property such as a synthetic resin such as polyvinyl chloride or polyethylene, or a metal such as stainless steel. It is formed. The water-impervious member 12 is embedded in the cultivated land 100 along, for example, the root zone of the plant, and the inside thereof is filled with soil composed of the same components as the surrounding soil.

この実施例では、遮水部材12は、半円状の断面形状を有する半割り管であり、耕作地100の両端付近まで延びる遮水部材12が、所定の間隔を隔てて並ぶように配置される(図1参照)。たとえば、複数の畝がある耕作地100では、畝ごとに遮水部材12を配置してもよいし、2−3本の畝に1本の割合で遮水部材12を配置してもよい。隣り合う遮水部材12どうしの間隔は、たとえば500−2000mmとされる。また、遮水部材12の管底部から地表面までの距離は、たとえば100mm−500mmとされる。   In this embodiment, the water-impervious member 12 is a half-divided pipe having a semicircular cross-sectional shape, and the water-impervious members 12 extending to the vicinity of both ends of the cultivated land 100 are arranged so as to be arranged at a predetermined interval. (See FIG. 1). For example, in the cultivated land 100 having a plurality of reeds, the water-impervious member 12 may be disposed for each reed, or the water-impervious member 12 may be disposed at a ratio of one to two persimmons. The interval between adjacent water-impervious members 12 is, for example, 500-2000 mm. Moreover, the distance from the pipe bottom part of the water-impervious member 12 to the ground surface is, for example, 100 mm to 500 mm.

遮水部材12の管内面側には、軸方向に間隔を隔てて並ぶ複数の溝部20が形成される。具体的には、遮水部材12は、環状の山部22と谷部24とを交互に繰り返す波形状(蛇腹状)の管壁を有しており、この山部22の内面側が、周方向の全周に亘って延びる環状の溝部20となる。一例として、遮水部材12には、汎用の波形管(コルゲート管)を軸方向に沿って2つに切断したものを利用することができ、その外径(山部22の外径)は、たとえば50−300mmであり、溝部20の幅および深さのそれぞれは、たとえば5−50mmである。なお、図2では、溝部20の断面形状が台形状のものを例示しているが、これに限定されず適宜の形状を適用可能であり、たとえば円形状や方形状などであってもよい。また、遮水部材12の配置個数、配置深さ、配置間隔、および大きさなどは、上述した数値に限定されず、このシステム10を適用する耕作地100の面積、土壌成分および気候条件などに応じて、適宜設定される。このことは、後述する他の各実施例においても同様である。   A plurality of groove portions 20 are formed on the inner surface of the water shielding member 12 at intervals in the axial direction. Specifically, the water-impervious member 12 has a corrugated (bellows-like) tube wall that alternately repeats the annular ridges 22 and the valleys 24, and the inner surface side of the ridges 22 is circumferential. It becomes the annular groove part 20 extended over the perimeter. As an example, the water shielding member 12 can be obtained by cutting a general-purpose corrugated tube (corrugated tube) into two along the axial direction, and its outer diameter (outer diameter of the peak portion 22) is: For example, it is 50-300 mm, and each of the width | variety and the depth of the groove part 20 is 5-50 mm, for example. In addition, in FIG. 2, although the cross-sectional shape of the groove part 20 illustrated the thing of trapezoid shape, it is not limited to this, A suitable shape is applicable, for example, circular shape, square shape, etc. may be sufficient. In addition, the number, the arrangement depth, the arrangement interval, the size, and the like of the water shielding members 12 are not limited to the above-described numerical values, and may depend on the area of the cultivated land 100 to which the system 10 is applied, the soil components, the climatic conditions, and the like. It is set accordingly. This is the same in other embodiments described later.

図1に戻って、給水部材14は、給水源16内の水を遮水部材12の内部まで送る管路であって、複数の直管、可撓管および継手などを適宜連結して形成され、給水源16と接続される配水管14a、および配水管14aから分岐する導水管14bを含む。   Returning to FIG. 1, the water supply member 14 is a pipe that sends the water in the water supply source 16 to the inside of the water shielding member 12, and is formed by appropriately connecting a plurality of straight pipes, flexible pipes, joints, and the like. , A water distribution pipe 14a connected to the water supply source 16, and a water conduit 14b branched from the water distribution pipe 14a.

図2および図3に示すように、導水管14bは、塩化ビニル等の合成樹脂や合成ゴムなどによって形成される有孔管であり、遮水部材12の底部に沿って軸方向に延びて、遮水部材12内を通る水路を形成し、給水源16からの水を遮水部材12の各溝部20まで導くものである。導水管14bの上流側端部は、配水管14aを介して、給水源16と接続される。また、導水管14bの下流側端部は、管端キャップ(図示せず)等によって適宜封止される。   As shown in FIGS. 2 and 3, the water conduit 14 b is a perforated tube formed of a synthetic resin such as vinyl chloride or a synthetic rubber, and extends in the axial direction along the bottom of the water shielding member 12. A water passage that passes through the water shielding member 12 is formed, and water from the water supply source 16 is guided to each groove 20 of the water shielding member 12. The upstream end of the water conduit 14b is connected to the water supply source 16 through the water distribution pipe 14a. Further, the downstream end of the water conduit 14b is appropriately sealed with a pipe end cap (not shown) or the like.

この実施例では、導水管14bは、遮水部材12の管内面側における谷部24(の内面)上に載置され、その管底部に軸方向に一定間隔で並んで形成された貫通孔26を通して溝部20内に給水する。導水管14bの外径は、たとえば5−30mmであり、導水管14bの管壁に形成される貫通孔26の大きさは、たとえば直径1−5mmである。ただし、貫通孔26の大きさ、形状、形成位置および数などは、適用する耕作地100の土壌成分などに応じて適宜設定されるものであり、これらを調整変更することによって、導水管14bから溝部20への水の供給量を制御することができる。たとえば、この実施例では、導水管14bから溝部20への水の供給量が、重力水状態の土壌部28から上側の土壌に毛細管現象によって吸い上げられていく水の量と同程度になるようにしている。   In this embodiment, the water guide pipe 14b is placed on the valley portion 24 (the inner surface thereof) on the pipe inner surface side of the water-impervious member 12, and through holes 26 are formed in the pipe bottom portion so as to be arranged in the axial direction at regular intervals. Water is supplied into the groove 20 through the through hole. The outer diameter of the water conduit 14b is, for example, 5-30 mm, and the size of the through hole 26 formed in the tube wall of the water conduit 14b is, for example, 1-5 mm in diameter. However, the size, shape, formation position, number, and the like of the through-holes 26 are appropriately set according to the soil components of the cultivated land 100 to be applied, and by adjusting and changing these, from the water conduit 14b The amount of water supplied to the groove 20 can be controlled. For example, in this embodiment, the amount of water supplied from the water conduit 14b to the groove portion 20 is set to be approximately the same as the amount of water sucked up by the capillary phenomenon from the soil portion 28 in the gravity water state to the upper soil. ing.

図1に戻って、給水源16は、地上に設置されて、耕作地100に供給するための水を貯留する水タンクであり、たとえば、農業用水配管(図示せず)などと接続されて、農業用水配管から送られてくる水をその内部に貯留する。給水源16に貯留される水量は、耕作地100の面積などによって適宜設定され、給水源16内には、常に一定量以上の水が貯留される。たとえば、給水源16内の水位が一定水位を下回ると、農業用水配管から自動的に水が補給されるようにしてもよいし、手動で栓を開け閉めすること等によって水を適宜補給するようにしてもよい。   Returning to FIG. 1, the water supply source 16 is a water tank that is installed on the ground and stores water to be supplied to the cultivated land 100, and is connected to, for example, an agricultural water pipe (not shown), The water sent from the agricultural water pipe is stored inside. The amount of water stored in the water supply source 16 is appropriately set depending on the area of the cultivated land 100 and the like, and a constant amount or more of water is always stored in the water supply source 16. For example, when the water level in the water supply source 16 falls below a certain water level, water may be automatically supplied from the agricultural water pipe, or water may be appropriately supplied by manually opening and closing the plug. It may be.

図1−図4を参照して、このようなシステム10では、灌漑時には、たとえば給水源16に設けられているバルブ(図示せず)を手動で開け閉めすること等によって、給水源16から給水部材14に対して水が供給される。ただし、電磁弁やタイマ等を利用して、所定の時間帯に自動的に給水源16から水が供給されるようにしてもよいし、給水源16からの取水量を適宜調整して、水が常時供給されるようにしてもよい。   1 to 4, in such a system 10, during irrigation, water is supplied from the water supply source 16 by, for example, manually opening and closing a valve (not shown) provided in the water supply source 16. Water is supplied to the member 14. However, water may be automatically supplied from the water supply source 16 in a predetermined time period using a solenoid valve, a timer, or the like, or the water intake from the water supply source 16 may be adjusted appropriately to May be constantly supplied.

給水源16から給水部材14に供給された水は、配水管14aを介して導水管14bに流れ込み、導水管14b内を通って遮水部材12の全長に亘るように搬送されるとともに、図4に示すように、各貫通孔26から導水管14b外に出て、遮水部材12の各溝部20内に振り分けられる(給水される)。そして、上述のように、溝部20の内部に供給された水は、その内部の土中に徐々に浸透していき、重力水となって溝部20の内部に留まり、これによって、遮水部材12(の溝部20)の内部には、重力水状態の土壌部28が形成される。このとき、土壌部28の重力水の水位30は、溝部20が重力水により満水になる程度の高さ(つまり、谷部24の内面とほぼ等しい高さ)に設定される。   The water supplied from the water supply source 16 to the water supply member 14 flows into the water guide pipe 14b through the water distribution pipe 14a, is transported through the water guide pipe 14b over the entire length of the water shielding member 12, and FIG. As shown in FIG. 4, the water is discharged from each through hole 26 to the outside of the water guide pipe 14b and distributed into each groove 20 of the water shielding member 12 (water is supplied). As described above, the water supplied to the inside of the groove portion 20 gradually permeates into the soil inside the groove portion 20 and becomes gravity water and stays inside the groove portion 20. In the (groove portion 20), a soil portion 28 in a gravity water state is formed. At this time, the water level 30 of the gravitational water in the soil portion 28 is set to such a height that the groove portion 20 is filled with gravity water (that is, a height substantially equal to the inner surface of the valley portion 24).

それから、遮水部材12(の溝部20)内の重力水、つまり土壌部28の水分は、その上側の土壌に毛細管現象によって吸い上げられて浸透していき、これによって、重力水状態の土壌部28よりも上側の土壌に、毛管水状態の土壌部32が形成される。ここで、毛管水状態の土壌部32の水分量は、土壌部28の水分量、つまり重力水の水位30の高低によって変動するが、このシステム10では、遮水部材12の溝部20のそれぞれに水を溜めて、そこに重力水状態の土壌部28を形成するようにしているので、遮水部材12が傾斜して設置されても、各溝部20内の土壌部28の重力水の水位30はほぼ均等に保たれる。すなわち、たとえば耕作地100で栽培する植物に合わせて、土壌部28の重力水の水位30を適切な位置に保つことにより、その植物にとって最適な水分量を有する土壌部32が耕作地100に実現される。   Then, the gravitational water in the impermeable member 12 (the groove portion 20), that is, the water in the soil portion 28 is sucked up and permeated into the soil on the upper side by a capillary phenomenon, and thereby the soil portion 28 in the gravitational water state. A soil portion 32 in a capillary water state is formed in the soil on the upper side. Here, although the moisture content of the soil portion 32 in the capillary water state varies depending on the moisture content of the soil portion 28, that is, the level of the gravity water level 30, in this system 10, Since the water is accumulated and the soil portion 28 in the gravitational water state is formed there, even if the water shielding member 12 is inclined and installed, the water level 30 of the gravitational water in the soil portion 28 in each groove portion 20. Are kept almost even. That is, for example, by keeping the gravity water level 30 of the soil portion 28 at an appropriate position in accordance with the plant cultivated on the cultivated land 100, the soil portion 32 having the optimum amount of water for the plant is realized on the cultivated land 100. Is done.

以上のように、この実施例によれば、遮水部材12の内面側に形成された複数の溝部20のそれぞれに水を溜めて、そこに重力水状態の土壌部28を形成するようにしたため、遮水部材12が傾斜して設置されても、重力水状態の土壌部28の水分量をほぼ均等に保つことが可能である。したがって、場所によって毛管水状態の土壌部32の水分量が偏ることがなくなり、同一システム10の耕作地100において、作土層の水分量を可及的均等に保つことができるようになる。つまり、遮水部材12を地下に埋設する際に、遮水部材12の正確な水平出しを行う必要がないので、傾斜地に対しても好適に用いることができる。   As described above, according to this embodiment, water is accumulated in each of the plurality of groove portions 20 formed on the inner surface side of the water-impervious member 12, and the soil portion 28 in a gravity water state is formed therein. Even if the water-impervious member 12 is installed at an inclination, it is possible to keep the water content of the soil portion 28 in the gravity water state substantially uniform. Therefore, the water content of the soil portion 32 in the capillary water state is not biased depending on the location, and the water content of the soil layer can be kept as uniform as possible in the cultivated land 100 of the same system 10. That is, when embedding the water shielding member 12 underground, it is not necessary to accurately level the water shielding member 12, so that the water shielding member 12 can be suitably used even on an inclined land.

さらに、たとえば、地下灌漑のシステムを傾斜地に適用する場合には、上述した特許文献1のように、各遮水部材内の重力水の水位を水位管理器によって個別に調節する必要があったが、この実施例によれば、水位管理器等の特別な設備を用いなくても、土壌部28の重力水の水位30をほぼ均等に保つことができるので、設備コストや維持管理コスト等が低減できる。   Furthermore, for example, when an underground irrigation system is applied to an inclined land, it is necessary to individually adjust the water level of gravity water in each water-impervious member by a water level controller as in Patent Document 1 described above. According to this embodiment, the water level 30 of the gravitational water in the soil portion 28 can be maintained almost even without using special equipment such as a water level management device, so that equipment costs, maintenance costs, etc. are reduced. it can.

また、遮水部材12の底部に沿うように導水管14bを延ばし、この導水管14bによって遮水部材12の各溝部20まで水を導くようにしたので、導水管14bが上下方向に蛇行するように設置されても、遮水部材12の各溝部20には確実に水が供給される。このため、システム10は、一様な傾斜を有する耕作地だけでなく、起伏がある(上り下りがある)耕作地にも好適に用いられる。特に、畑などの耕作地は、一見すると水平地に見えても起伏がある場合が多いので、システム10を利用する効果は大きい。もちろん、システム10は、水平地にも好適に用いることができる。   Moreover, since the water guide pipe 14b is extended along the bottom part of the water-impervious member 12, and the water guide pipe 14b guides water to each groove part 20 of the water-impervious member 12, the water guide pipe 14b meanders in the vertical direction. Even if it is installed, water is reliably supplied to each groove portion 20 of the water shielding member 12. For this reason, the system 10 is suitably used not only for cultivated land having a uniform slope, but also for cultivated land with ups and downs (up and down). In particular, cultivated lands such as fields often have undulations even if they appear to be horizontal at first glance, so the effect of using the system 10 is great. Of course, the system 10 can also be suitably used on horizontal ground.

さらに、導水管14bの管底部付近に貫通孔26を所定の間隔を開けて軸方向に1列に並んで形成するようにしたため、導水管14bは給水源16から供給された水を主として下方に供給することとなる。したがって、たとえば、水の供給源に向けて延びる植物の根が導水管14bの貫通孔26に侵入することによって、貫通孔26が閉塞されてしまうことがなくなる或いは低減されるので、導水管14bは遮水部材12の溝部20内に適切に給水することができる。   Further, since the through holes 26 are formed in a row in the axial direction in the vicinity of the pipe bottom of the water conduit 14b, the water conduit 14b mainly lowers the water supplied from the water supply source 16 downward. Will be supplied. Therefore, for example, the root of the plant extending toward the water supply source enters the through hole 26 of the water conduit 14b so that the through hole 26 is not blocked or reduced. Water can be appropriately supplied into the groove portion 20 of the water shielding member 12.

さらにまた、耕作地100の面積などに応じて、給水管12の大きさや配置態様などを適宜変更することによって、システム10は、個人用から大規模なものまで幅広く適用できる。たとえば、庭の花壇に用いることもできるし、大規模な畑作や稲作などに用いることもできる。   Furthermore, the system 10 can be widely applied from personal use to large-scale ones by appropriately changing the size and arrangement of the water supply pipe 12 according to the area of the cultivated land 100 and the like. For example, it can be used for a flower bed in a garden, and can be used for large-scale field farming or rice farming.

なお、システム10の他の実施例として、図5に示すように、給水管12の下方に埋設される拡散防止部材34をさらに備えるようにしてもよい。拡散防止部材34は、ポリエチレンおよびポリ塩化ビニル等の合成樹脂などによって形成される遮水性を有するシートであり、遮水部材12から土壌に供給された水の移動を規制するものである。一例として、拡散防止部材34は、遮水部材12の底部からたとえば10−50mm離れた下方において、遮水部材12の全長に亘るように略水平方向に帯状に配置され、その両側部は、遮水部材12に沿うように立ち上げられる。   As another embodiment of the system 10, as shown in FIG. 5, a diffusion preventing member 34 embedded under the water supply pipe 12 may be further provided. The diffusion preventing member 34 is a sheet having a water shielding property formed of a synthetic resin such as polyethylene and polyvinyl chloride, and regulates the movement of water supplied from the water shielding member 12 to the soil. As an example, the diffusion preventing member 34 is disposed in a strip shape in a substantially horizontal direction so as to cover the entire length of the water shielding member 12, for example, at a distance of 10-50 mm away from the bottom of the water shielding member 12. It starts up along the water member 12.

このように拡散防止部材34を遮水部材12の下方に設けることによって、遮水部材12から土壌に供給された水は、下方および側方への移動が抑制され、毛管水として上方に移動し易くなる。したがって、植物の根圏に対してより効率よく水を供給できるようになる。ただし、拡散防止部材34は、遮水部材12の下方において略水平方向のみに配置されるだけでもよい。また、拡散防止部材34を容器状に形成したり、耕作地100の広範囲に亘って配置したりすると、降雨があったときに水が溜まってしまい、根腐れ等が発生する恐れがあるので、過度の水は下に抜けるように孔などを拡散防止部材34に形成しておくことが望ましい。   By providing the diffusion preventing member 34 below the impermeable member 12, the water supplied to the soil from the impermeable member 12 is restrained from moving downward and laterally, and moves upward as capillary water. It becomes easy. Accordingly, water can be supplied more efficiently to the plant rhizosphere. However, the diffusion preventing member 34 may be disposed only in the substantially horizontal direction below the water shielding member 12. In addition, if the diffusion preventing member 34 is formed in a container shape or arranged over a wide area of the cultivated land 100, water may accumulate when there is rain, and root rot may occur. It is desirable to form a hole or the like in the diffusion preventing member 34 so that excessive water can be discharged downward.

また、上述の実施例では、溝部20を遮水部材12の周方向全周に亘って延びる円弧状に形成したが、これに限定される必要はない。溝部20は少なくとも遮水部材12の底部(管底部)に形成されていればよく、遮水部材12の周方向の一部に亘って延びる円弧状に形成することもできる。さらに、たとえば、遮水部材12の底部の内面側に円弧状の凹みを軸方向に並べて配置したものを溝部20としてもよいし、遮水部材12の底部の内面側に軸方向に所定間隔で仕切る複数の堰部(たとえば半円状の突出部)を形成し、その堰部によって区画された各部分を溝部20としてもよい。   Moreover, in the above-mentioned Example, although the groove part 20 was formed in the circular arc shape extended over the circumferential direction perimeter of the water-impervious member 12, it is not necessary to be limited to this. The groove part 20 should just be formed in the bottom part (pipe bottom part) of the water-impervious member 12 at least, and can also be formed in the circular arc shape extended over a part of the circumferential direction of the water-impervious member 12. Further, for example, a groove portion 20 may be formed by arranging arc-shaped recesses arranged in the axial direction on the inner surface side of the bottom portion of the water-impervious member 12, or at a predetermined interval in the axial direction on the inner surface side of the bottom portion of the water-impervious member 12. A plurality of weir portions (for example, semicircular protrusions) to be partitioned may be formed, and each portion partitioned by the weir portions may be the groove portion 20.

また、遮水部材12の軸方向全長に亘って凹凸を繰り返すように溝部20を形成する必要はなく、遮水部材12の軸方向一部に複数の溝部20を形成することもできる。つまり、遮水部材12の溝部20は、灌漑を行いたい必要な場所に設けてあればよく、遮水部材12の底部は、溝部20が形成される波形状の部分の他に、溝部20が形成されない平面状の部分を有していてもよい。また、溝部20は、必ずしも軸方向に一定の間隔で設けられる必要もない。   Moreover, it is not necessary to form the groove part 20 so that unevenness is repeated over the entire axial length of the water shielding member 12, and a plurality of groove parts 20 can be formed in a part of the water shielding member 12 in the axial direction. That is, the groove portion 20 of the water-impervious member 12 may be provided at a necessary place where irrigation is desired, and the bottom portion of the water-impervious member 12 includes the groove portion 20 in addition to the wave-shaped portion where the groove portion 20 is formed. You may have the planar part which is not formed. Further, the grooves 20 are not necessarily provided at regular intervals in the axial direction.

さらに、溝部20は、上述のように、少なくとも遮水部材12の管内面側に形成されていればよいので、遮水部材12の管外面側は平滑に形成されていてもよい。   Furthermore, since the groove part 20 should just be formed in the pipe inner surface side of the water-impervious member 12 at least as mentioned above, the pipe outer surface side of the water-impervious member 12 may be formed smoothly.

また、上述の実施例では、給水源16から給水部材14に供給された水が、導水管14b内を通って遮水部材12の全長に亘るように搬送されると共に、各貫通孔26から導水管14b外に出て、遮水部材12の各溝部20内に振り分けられたが、これに限定される必要はない。   Further, in the above-described embodiment, the water supplied from the water supply source 16 to the water supply member 14 is transported through the water guide pipe 14 b so as to cover the entire length of the water shielding member 12, and is introduced from each through hole 26. Although it went out of the water pipe 14b and distributed in each groove part 20 of the water-impervious member 12, it is not necessary to be limited to this.

たとえば、図6に示すように、導水管14b内の全長に亘って給水ホース36を挿通させて、この給水ホース36から導水管14b内に放出された水を、導水管14bの各貫通孔26を介して遮水部材12の各溝部20内に振り分けるようにしてもよい。一例を挙げると、給水ホース36としては、たとえば水圧をかけることによって内部の水が壁面の外部に染み出す、所謂染み出しチューブなどを利用し得る。この場合には、導水管14bは土壌と接触しないので、貫通孔26が土や砂などによって詰まってしまうことがない。すなわち、導水管14の目詰まりによる導水機能の低下が発生せず、導水管14b内を洗浄したり、交換したりする必要が生じないので、システム10の維持管理が容易になる。   For example, as shown in FIG. 6, a water supply hose 36 is inserted over the entire length of the water conduit 14b, and water discharged from the water supply hose 36 into the water conduit 14b is passed through each through hole 26 of the water conduit 14b. You may make it distribute in each groove part 20 of the water-impervious member 12 via. For example, as the water supply hose 36, for example, a so-called ooze tube in which water inside oozes out of the wall surface by applying water pressure can be used. In this case, since the water conduit 14b does not contact the soil, the through hole 26 is not clogged with soil or sand. That is, the deterioration of the water guiding function due to clogging of the water conduit 14 does not occur, and there is no need to clean or replace the interior of the water conduit 14b, so that the maintenance management of the system 10 is facilitated.

さらに、上述の実施例では、導水管14bの管底部において軸方向に所定間隔で並んで形成された円形の貫通孔26を通して各溝部20内に給水したが、これに限定される必要はなく、貫通孔26は、周方向に2列以上に並べて配置したり、導水管14bの管壁全体にランダムに分散させて配置したりすることもできる。たとえば、貫通孔26を導水管14bの周方向に2列以上に並べて配置するようにすれば、遮水部材12内に導水管14bを配置する際に、導水管14bの管底部と溝部20との位置合わせを厳密に行う必要がなくなるので、導水管14bの周方向の位置決めを容易に行うことができるようになる。   Furthermore, in the above-described embodiment, water is supplied into each groove portion 20 through the circular through holes 26 formed in the axial direction at a predetermined interval in the tube bottom portion of the water conduit 14b. However, the present invention is not limited to this. The through holes 26 can be arranged in two or more rows in the circumferential direction, or can be arranged randomly distributed over the entire pipe wall of the water guide pipe 14b. For example, if the through holes 26 are arranged in two or more rows in the circumferential direction of the water guide pipe 14b, when the water guide pipe 14b is arranged in the water shielding member 12, the pipe bottom portion and the groove portion 20 of the water guide pipe 14b are arranged. Therefore, the positioning of the water guide pipe 14b in the circumferential direction can be easily performed.

また、導水管14bの周方向全周に亘って貫通孔26を形成するようにしてもよいし、貫通孔26をスリット状に形成するようにしてもよい。   Moreover, you may make it form the through-hole 26 over the circumferential direction perimeter of the water conduit 14b, and may make the through-hole 26 in slit shape.

ただし、少なくとも遮水部材12の全ての溝部20に適切に給水できるように、貫通孔26どうしの間隔は、遮水部材12の溝部20どうしの間隔と同等かそれ以下になるように設定することが好ましい。すなわち、図7に示すように、遮水部材12の軸方向の溝部20どうしの間隔を、導水管14bの軸方向の貫通孔26どうしの間隔と同等かそれ以下になるように設定することにより、遮水部材12内に導水管14bを配置する際に、溝部20と貫通孔26との位置合わせを厳密に行わなくても溝部20内に適切に給水することができるようになり、延いては、導水管14bの軸方向の位置決めを容易に行うことができる。   However, the interval between the through holes 26 should be set to be equal to or less than the interval between the groove portions 20 of the water shielding member 12 so that at least all the groove portions 20 of the water shielding member 12 can be appropriately supplied with water. Is preferred. That is, as shown in FIG. 7, by setting the interval between the axial groove portions 20 of the water shielding member 12 to be equal to or less than the interval between the axial through holes 26 of the water conduit 14b. When the water guide pipe 14b is disposed in the water-impervious member 12, water can be appropriately supplied into the groove 20 without strict alignment between the groove 20 and the through hole 26, and the Can easily position the water guide pipe 14b in the axial direction.

また、図示は省略するが、上述した染み出しチューブを導水管14bとして用いるようにしてもよい。   In addition, although not shown, the above-described bleed tube may be used as the water conduit 14b.

さらにまた、上述の実施例では、複数の遮水部材12を規則正しく並べて配置したが、これに限定される必要はなく、遮水部材12は、不規則的な配置位置となっていてもよい。また、耕作地100全体に万遍なく遮水部材12を配置することによって、耕作地100の作土層全体を毛管水状態の土壌部32とすることもできるし、耕作地100の一部の範囲に遮水部材12を配置することによって、耕作地100の作土層の一部の範囲のみ、つまり耕作者が望む範囲のみを毛管水状態の土壌部32とすることもできる。   Furthermore, in the above-described embodiment, the plurality of water-impervious members 12 are regularly arranged, but the present invention is not limited to this, and the water-impervious members 12 may be irregularly arranged. Moreover, by arranging the water shielding members 12 throughout the cultivated land 100, the entire soil layer of the cultivated land 100 can be used as the soil portion 32 in the capillary water state. By disposing the water-impervious member 12 in the range, only a partial range of the soil layer of the cultivated land 100, that is, only a range desired by the farmer can be used as the soil water portion 32 in the capillary water state.

また、遮水部材12は、基本的には直線状に配置されるが、蛇行するように配置してもよい。図示は省略するが、たとえば1本の長尺の遮水部材12を耕作地100の全面に給水できるようにジグザグ状に複数回折り返して配置するようにしてもよい。さらに、そのような1本の長尺の遮水部材12を、灌漑を行いたい複数の耕作地100に亘って配置する場合には、予め、遮水部材12に、溝部20を形成している部分と、溝部20を形成していない部分とを設けておき、耕作地100の地中には、遮水部材12における溝部20を形成している部分を複数回折り返して配置するようにし、耕作地100どうしの間の区間の地中には、遮水部材12における溝部20を形成していない部分を配置するとよい。   Moreover, although the water-impervious member 12 is basically arranged linearly, it may be arranged to meander. Although illustration is omitted, for example, a single long water-impervious member 12 may be arranged in a zigzag manner so that water can be supplied to the entire surface of the cultivated land 100. Furthermore, when arrange | positioning such one elongate water-impervious member 12 over the several cultivation land 100 which wants to perform irrigation, the groove part 20 is formed in the water-impermeable member 12 previously. A portion and a portion where the groove portion 20 is not formed are provided, and in the ground of the cultivated land 100, a plurality of portions where the groove portion 20 is formed in the water shielding member 12 are folded back and arranged. A portion of the water-impervious member 12 where the groove portion 20 is not formed may be disposed in the section between the ground 100.

さらに、上述の実施例では、遮水部材12として、上面に開口18を設けた横管状に形成されたものを例示しているが、これに限定される必要はなく、上側開口の容器状に形成されて貯水機能を有するものであれば、適宜の形状を適用可能である。   Furthermore, in the above-described embodiment, the water-impervious member 12 is illustrated as being formed in a horizontal tubular shape having an opening 18 on the upper surface, but is not limited to this, and is formed in a container shape with an upper opening. Any shape can be applied as long as it is formed and has a water storage function.

たとえば、図8に示すこの発明の他の一実施例であるシステム10は、図1の実施例におけるシステム10と遮水部材12の形状が異なる。以下、図1の実施例と共通する部分については同じ番号を付し、重複する説明は省略または簡略化する。   For example, a system 10 that is another embodiment of the present invention shown in FIG. 8 is different from the system 10 in the embodiment of FIG. In the following, the same reference numerals are given to the portions common to the embodiment of FIG. 1, and the overlapping description is omitted or simplified.

図8および図9に示すように、このシステム10では、傾斜を有する耕作地(傾斜地)100の全面に広がるように、シート状の遮水部材12が耕作地100の地下に敷かれる。シート状の遮水部材12の端部は立ち上げられ、これによって遮水部材12は上側開口の容器状に形成される。   As shown in FIGS. 8 and 9, in this system 10, the sheet-shaped water shielding member 12 is laid under the cultivated land 100 so as to spread over the entire surface of the cultivated land (inclined land) 100 having an inclination. The end portion of the sheet-shaped water-impervious member 12 is raised, whereby the water-impervious member 12 is formed in a container shape with an upper opening.

遮水部材12は、ポリ塩化ビニルやポリエチレン等の合成樹脂やステンレス等の金属などの遮水性を有する材質からなり、その底面には、平面視で円形かつ断面形状が半円形状の溝部20が相互の間隔を隔てて規則正しく並ぶ。   The water-impervious member 12 is made of a water-impervious material such as a synthetic resin such as polyvinyl chloride or polyethylene, or a metal such as stainless steel. Line up regularly with a gap between each other.

また、給水部材14は、1本の長尺管である導水管14bを含み、この導水管14bをジグザグ状に複数回折り返して配置することによって、導水管14bに遮水部材12の全ての溝部20上を通過させる。導水管14bのたとえば管底部には、各溝部20に対応させた位置に、貫通孔26が形成される。   Further, the water supply member 14 includes a water guide pipe 14b which is a single long pipe, and by arranging the water guide pipe 14b in a zigzag manner by being folded back multiple times, all the groove portions of the water shielding member 12 are provided in the water guide pipe 14b. 20 is passed. For example, a through hole 26 is formed at a position corresponding to each groove 20 on the bottom of the conduit 14b.

このようなシステム10では、地下灌漑時には、給水源16から給水部材14に供給された水が、導水管14b内を通って遮水部材12の全体に亘るように搬送されると共に、図10に示すように、各貫通孔26から導水管14b外に出て、遮水部材12の各溝部20内に振り分けられる(給水される)。そして、溝部20の内部に供給された水は、その内部の土中に徐々に浸透していき、重力水となって溝部20の内部に留まり、これによって、溝部20の内部には、重力水状態の土壌部28が形成される。そして、遮水部材12内の重力水がその上側の土壌に毛細管現象によって吸い上げられて浸透していき、これによって、重力水状態の土壌部28よりも上側の土壌に、毛管水状態の土壌部32が形成される。   In such a system 10, during underground irrigation, water supplied from the water supply source 16 to the water supply member 14 is transported through the water conduit 14 b so as to cover the entire water shielding member 12. As shown in the figure, the water passes from the through holes 26 to the outside of the water guide pipes 14 b and is distributed (watered) into the grooves 20 of the water shielding member 12. The water supplied to the inside of the groove portion 20 gradually permeates into the soil inside the groove portion 20 and remains as gravity water in the groove portion 20. A soil portion 28 in a state is formed. And the gravity water in the water-impervious member 12 is sucked up and penetrated into the upper soil by the capillary phenomenon, whereby the soil portion in the capillary water state is introduced into the soil above the soil portion 28 in the gravity water state. 32 is formed.

この実施例においても、図1の実施例と同様に、遮水部材12の溝部20のそれぞれに水を溜めることができるので、遮水部材12が軸方向に傾斜して設置されても、重力水状態の土壌部28の水分量を均等に保つことが可能である。したがって、遮水部材12を地下に埋設する際に、遮水部材12の正確な水平出しを行う必要がないので、傾斜地に対しても好適に用いることができる。   In this embodiment as well, as in the embodiment of FIG. 1, water can be stored in each of the groove portions 20 of the water shielding member 12, so that even if the water shielding member 12 is installed inclined in the axial direction, It is possible to keep the water content of the soil portion 28 in the water state uniform. Therefore, when embedding the water-impervious member 12 in the basement, it is not necessary to accurately level the water-impervious member 12, so that the impermeable member 12 can be suitably used even on an inclined land.

さらに、水位管理器等の特別な設備を用いなくても、耕作地100の土壌に対して均等に給水することができるので、設備コストや維持管理コスト等が低減できる。   Furthermore, since it is possible to supply water evenly to the soil of the cultivated land 100 without using special equipment such as a water level manager, equipment costs, maintenance costs, and the like can be reduced.

なお、シート状の遮水部材12は、必ずしも耕作地100の全面に設ける必要はなく、耕作地100の一部の範囲に形成することもできるし、耕作地100の地中に分散配置することもできる。たとえば、シート状の遮水部材12を耕作地100の全面に設ける場合には、降雨があったときに水が遮水部材12内に溜まってしまい、根腐れ等が発生する恐れがあるので、過度の水は下に抜けるように孔などを遮水部材12の底面の、溝部20の形成位置以外の部分に形成しておくことが望ましい。   In addition, the sheet-shaped water-impervious member 12 is not necessarily provided on the entire surface of the cultivated land 100, and can be formed in a part of the cultivated land 100, or distributed in the ground of the cultivated land 100. You can also. For example, when the sheet-shaped water-impervious member 12 is provided on the entire surface of the cultivated land 100, water may accumulate in the water-impervious member 12 when there is rain, and root rot may occur. It is desirable to form a hole or the like in a portion other than the formation position of the groove portion 20 on the bottom surface of the water shielding member 12 so that excessive water can escape downward.

たとえば、シート状の遮水部材12を耕作地100の地中に分散配置する一例を挙げると、図11に示すように、灌漑を行いたい複数(この実施例では、2つ)の耕作地100のそれぞれにシート状の遮水部材12を埋設する。給水部材14は、たとえば1本の長尺管である導水管14bを含み、導水管14bには、管壁に貫通孔26や空隙などを有する有孔管部分38の他に、貫通孔26や空隙などが形成されない無孔管部分40を設けておく。そして、遮水部材12の内側(上側)では、導水管14bの有孔管部分38を複数回折り返して配置して、導水管14bに遮水部材12の全ての溝部20上を通過させるようにするとともに、遮水部材12どうしの間の区間には無孔管部分40を配置するようにする。   For example, when an example in which the sheet-shaped water-impervious members 12 are distributed and arranged in the ground of the cultivated land 100, a plurality of (two in this embodiment) cultivated land 100 to be irrigated as shown in FIG. A sheet-shaped water-impervious member 12 is embedded in each of these. The water supply member 14 includes, for example, a water guide pipe 14b which is a single long pipe. The water guide pipe 14b includes, in addition to the perforated pipe portion 38 having a through hole 26 and a gap in the pipe wall, A non-porous tube portion 40 in which no gap is formed is provided. Then, on the inner side (upper side) of the water shielding member 12, a plurality of perforated pipe portions 38 of the water guide pipe 14b are arranged by being folded back so that the water guide pipe 14b passes over all the groove portions 20 of the water shielding member 12. At the same time, the non-porous pipe portion 40 is arranged in the section between the water shielding members 12.

なお、上述の各実施例では、導水管14bから溝部20への水の供給量を、土壌部28から上側の土壌に毛細管現象によって吸い上げられていく水の量と同程度になるように管理するとともに、土壌部28の重力水の水位30を、溝部20が重力水により満水になる程度の高さに設定したが、これに限定される必要はない。   In each of the above-described embodiments, the amount of water supplied from the water conduit 14b to the groove portion 20 is managed so as to be approximately the same as the amount of water sucked up by the capillary phenomenon from the soil portion 28 to the upper soil. At the same time, the water level 30 of the gravitational water in the soil portion 28 is set to such a height that the groove 20 is filled with the gravitational water, but it is not necessary to be limited to this.

たとえば、導水管14bから溝部20への水の供給量が土壌部28から上側の土壌に毛細管現象によって吸い上げられていく水の量よりも多くても、上流側の溝部20内に供給された水のうちの一部が越流して、順に下流側の溝部20内に供給されるので、導水管14bの下流側端部を封止する管端キャップ等を取り外しておけば、余剰水分が導水管14bの下流側端部から地下深くに排水されることとなる。この場合には、遮水部材12の傾きにより、溝部20内の土壌部28の重力水の水位30が、自然と溝部20が重力水により満水になる高さに設定される。   For example, even if the amount of water supplied from the water conduit 14b to the groove 20 is larger than the amount of water sucked up by the capillary phenomenon from the soil 28 to the upper soil, the water supplied into the upstream groove 20 Since a part of the water overflows and is supplied into the downstream groove portion 20 in order, if the tube end cap or the like for sealing the downstream end of the water conduit 14b is removed, excess water is removed from the water conduit. It will be drained deep underground from the downstream end of 14b. In this case, due to the inclination of the water-impervious member 12, the water level 30 of the gravitational water in the soil portion 28 in the groove 20 is set to a height at which the groove 20 is naturally filled with gravity water.

また、必ずしも土壌部28の重力水の水位30を、溝部20が重力水により満水になる程度の高さに設定する必要はなく、システム10を適用する耕作地100の面積、土壌成分および気候条件などに応じて、溝部20の深さ範囲内の適宜の高さに設定するようにしてもよいし、溝部20よりも高い位置であってかつ遮水部材12の高さ範囲内の適宜の高さに設定するようにしてもよい。   Moreover, it is not always necessary to set the gravitational water level 30 of the soil part 28 to such a height that the groove part 20 is filled with gravity water, and the area, soil components, and climatic conditions of the cultivated land 100 to which the system 10 is applied. Depending on the above, it may be set to an appropriate height within the depth range of the groove portion 20, or an appropriate height within the height range of the water shielding member 12 that is higher than the groove portion 20. You may make it set to.

さらにまた、遮水部材12内の土の成分を周囲(外部)の土壌成分と同じにしたが、遮水部材12内の土壌成分は、特に限定されない。たとえば、遮水部材12内の土壌成分として、周囲の土壌成分より粒子径の大きい土粒子、或いは小さい土粒子を用いてもよい。また、たとえば、下層から順に、礫層、砂層、およびシルト層を形成するというように、遮水部材12内の土壌を複層状態にすることもできる。   Furthermore, although the soil component in the water shielding member 12 is the same as the surrounding (external) soil component, the soil component in the water shielding member 12 is not particularly limited. For example, as the soil component in the water-impervious member 12, soil particles having a particle diameter larger or smaller than the surrounding soil components may be used. Moreover, the soil in the water-impervious member 12 can also be made into a multi-layered state, for example, forming a gravel layer, a sand layer, and a silt layer in order from the lower layer.

また、上述の各実施例では、給水源16は、農業用水配管などと接続されて、そこから送られてくる水を貯留するようにしたが、これに限定されない。たとえば、給水源16は必ずしも設ける必要は無く、農業用配水管などから直接給水部材14に水が供給されるようにすることもできる。   Moreover, in each above-mentioned Example, although the water supply source 16 was connected with the agricultural water piping etc. and stored the water sent from there, it is not limited to this. For example, the water supply source 16 is not necessarily provided, and water may be directly supplied to the water supply member 14 from an agricultural water distribution pipe or the like.

さらに、上述した径や高さ等の具体的数値は、いずれも単なる一例であり、必要に応じて適宜変更可能である。   Furthermore, the specific numerical values such as the diameter and height described above are merely examples, and can be appropriately changed as necessary.

10 …地下灌漑システム
12 …遮水部材
14 …給水管
14b …導水管
20 …溝部
26 …貫通孔
28 …重力水状態の土壌部
32 …毛管水状態の土壌部
34 …拡散防止部材
100 …耕作地
DESCRIPTION OF SYMBOLS 10 ... Underground irrigation system 12 ... Water shielding member 14 ... Water supply pipe 14b ... Water guide pipe 20 ... Groove part 26 ... Through-hole 28 ... Gravity water state soil part 32 ... Capillary water state soil part 34 ... Diffusion prevention member 100 ... Cultivated land

Claims (6)

上側開口の容器状に形成され、少なくとも底部に複数の溝部が形成される遮水部材、および
前記溝部に給水して、前記遮水部材の内部に重力水状態の土壌部を形成する給水手段を備える、地下灌漑システム。
A water-impervious member formed in a container shape with an upper opening and having at least a plurality of grooves formed at the bottom, and water supply means for supplying water to the grooves and forming a gravitational water-state soil portion inside the water-impervious member Equipped with an underground irrigation system.
前記遮水部材は、その上面に開口を設けた横管状に形成され、管底部において軸方向に前記複数の溝部が間隔を隔てて並ぶ、請求項1記載の地下灌漑システム。   2. The underground irrigation system according to claim 1, wherein the water-impervious member is formed in a horizontal tubular shape having an opening on an upper surface thereof, and the plurality of groove portions are arranged in the axial direction at a tube bottom portion at intervals. 前記給水手段は、前記遮水部材に沿って延びて、前記複数の溝部に管壁を介して水を導く導水管を含む、請求項1または2記載の地下灌漑システム。   The underground irrigation system according to claim 1, wherein the water supply means includes a water conduit that extends along the water-impervious member and guides water to the plurality of grooves through a pipe wall. 前記導水管は、前記管壁に形成される複数の貫通孔を有し、その貫通孔を通して前記溝部に給水する、請求項3記載の地下灌漑システム。   The underground irrigation system according to claim 3, wherein the water conduit has a plurality of through holes formed in the pipe wall, and supplies water to the grooves through the through holes. 前記遮水部材の軸方向に前記複数の溝部が第1間隔を隔てて並び、前記導水管の軸方向に前記複数の貫通孔が前記第1間隔以下の第2間隔を隔てて並ぶ、請求項4記載の地下灌漑システム。   The plurality of grooves are arranged at a first interval in the axial direction of the water shielding member, and the plurality of through holes are arranged at a second interval equal to or less than the first interval in the axial direction of the water conduit. 4. Underground irrigation system. 前記遮水部材の下方に埋設される拡散防止部材をさらに備える、請求項1ないし4のいずれかに記載の地中灌水システム。   The underground irrigation system according to any one of claims 1 to 4, further comprising a diffusion preventing member embedded under the water shielding member.
JP2011139607A 2011-06-23 2011-06-23 Underground irrigation system Active JP5872195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011139607A JP5872195B2 (en) 2011-06-23 2011-06-23 Underground irrigation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011139607A JP5872195B2 (en) 2011-06-23 2011-06-23 Underground irrigation system

Publications (2)

Publication Number Publication Date
JP2013005745A true JP2013005745A (en) 2013-01-10
JP5872195B2 JP5872195B2 (en) 2016-03-01

Family

ID=47673690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011139607A Active JP5872195B2 (en) 2011-06-23 2011-06-23 Underground irrigation system

Country Status (1)

Country Link
JP (1) JP5872195B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104221702A (en) * 2014-10-21 2014-12-24 宏大国源(芜湖)资源环境治理有限公司 Spray-seeding moisturizing and topdressing device for slope greening
JP2018166407A (en) * 2017-03-29 2018-11-01 株式会社クボタケミックス Plowland conversion method and irrigation drainage system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3309875A (en) * 1963-07-05 1967-03-21 Niederwemmer Paul Irrigation installation and mobile vehicle for producing the same
JPS62100220A (en) * 1985-10-24 1987-05-09 株式会社クレアテラ Vegetation on artificial ground foundation
JPH1175531A (en) * 1997-09-10 1999-03-23 Yasuyo Kashiwagi Method for growing lawn grass using plant raising mat
JP2001161161A (en) * 1999-09-27 2001-06-19 Toei Shoko Kk Vegetation device
JP2005052025A (en) * 2003-08-08 2005-03-03 Land Keikaku:Kk Rooftop greening system and plant cultivation pipe
JP2006241936A (en) * 2005-03-07 2006-09-14 Tajima Roofing Co Ltd External heat insulating structure of folded plate roof
WO2007073366A1 (en) * 2005-12-20 2007-06-28 Bradley Cochran Planting receptacle assembly and planting method
JP2009072178A (en) * 2007-08-27 2009-04-09 Kubota Ci Kk Subirrigation system
US20100092240A1 (en) * 2008-10-09 2010-04-15 Joseph Glasser Agricultural water retention and replenishment system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3309875A (en) * 1963-07-05 1967-03-21 Niederwemmer Paul Irrigation installation and mobile vehicle for producing the same
JPS62100220A (en) * 1985-10-24 1987-05-09 株式会社クレアテラ Vegetation on artificial ground foundation
JPH1175531A (en) * 1997-09-10 1999-03-23 Yasuyo Kashiwagi Method for growing lawn grass using plant raising mat
JP2001161161A (en) * 1999-09-27 2001-06-19 Toei Shoko Kk Vegetation device
JP2005052025A (en) * 2003-08-08 2005-03-03 Land Keikaku:Kk Rooftop greening system and plant cultivation pipe
JP2006241936A (en) * 2005-03-07 2006-09-14 Tajima Roofing Co Ltd External heat insulating structure of folded plate roof
WO2007073366A1 (en) * 2005-12-20 2007-06-28 Bradley Cochran Planting receptacle assembly and planting method
JP2009072178A (en) * 2007-08-27 2009-04-09 Kubota Ci Kk Subirrigation system
US20100092240A1 (en) * 2008-10-09 2010-04-15 Joseph Glasser Agricultural water retention and replenishment system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104221702A (en) * 2014-10-21 2014-12-24 宏大国源(芜湖)资源环境治理有限公司 Spray-seeding moisturizing and topdressing device for slope greening
JP2018166407A (en) * 2017-03-29 2018-11-01 株式会社クボタケミックス Plowland conversion method and irrigation drainage system

Also Published As

Publication number Publication date
JP5872195B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
US5938372A (en) Subsurface irrigation apparatus and method
US11406067B2 (en) Cultivation floor system for providing supply and discharge irrigation
US4188154A (en) Apparatus for watering and draining soil
JP6041190B2 (en) Underground irrigation system
US10531615B2 (en) Modular container and modular irrigation system
US20110219684A1 (en) Irrigation Device and Method of Promoting Deep Root Growth of a Plant
US20220142065A1 (en) Liquid Containment and Focus for Subterranean Capillary Irrigation
RU2346427C1 (en) Irrigation system
JP5872195B2 (en) Underground irrigation system
KR20140135441A (en) A Watering System using Air Conditioner Discharge Water
JP5970675B2 (en) Underground irrigation system
JP2006129846A (en) Tray for receiving plantation block in wall-greening installation
WO2009028702A1 (en) Subirrigation system
JP5916302B2 (en) Underground irrigation system and water pipe used therefor
US3256693A (en) Lawn watering device
WO2008132749A1 (en) Improved underground irrigation system
JP2009219496A (en) Plant cultivating device
JP6094787B2 (en) Underground irrigation member and underground irrigation system using the same
WO2017035410A1 (en) Liquid containment and focus for subterranean capillary irrigation
JP2006296230A (en) Wall surface greening system
JP5459159B2 (en) Planting unit
KR100766298B1 (en) Distribution system and suppling method of river water for the removal of organic matter and nitrogen using flood plain
JP4604148B2 (en) Watering equipment for wall greening equipment
JP5907462B2 (en) Planting base
JP6179239B2 (en) Water supply system and underground irrigation system provided with the same

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20140320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160113

R150 Certificate of patent or registration of utility model

Ref document number: 5872195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350