JP2013005388A - Optical node device and controlling method of optical node device - Google Patents

Optical node device and controlling method of optical node device Download PDF

Info

Publication number
JP2013005388A
JP2013005388A JP2011137550A JP2011137550A JP2013005388A JP 2013005388 A JP2013005388 A JP 2013005388A JP 2011137550 A JP2011137550 A JP 2011137550A JP 2011137550 A JP2011137550 A JP 2011137550A JP 2013005388 A JP2013005388 A JP 2013005388A
Authority
JP
Japan
Prior art keywords
optical
port
optical transceiver
standby
operation verification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011137550A
Other languages
Japanese (ja)
Inventor
Kenji Mizutani
健二 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2011137550A priority Critical patent/JP2013005388A/en
Publication of JP2013005388A publication Critical patent/JP2013005388A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively and efficiently achieve operation verification of optical components of an optical node.SOLUTION: An optical node device includes: at least one first port to which a transmitter is connected; at least one second port to which a receiver is connected; at least two third ports selectively connected only to the first port at a part, and selectively connected only to the second port at the other part; and an optical transmission path for connecting a sixth port and a seventh port which are two of the third ports. A forth port which is one of the first ports and a fifth port which is one of the second ports can be respectively connected to the sixth port and the seventh port respectively.

Description

本発明は、光ノード装置及び光ノード装置の制御方法に関し、特に、光通信で用いられる波長パス多重分離挿入機能を備えた光ノード装置及び光ノード装置の制御方法に関する。   The present invention relates to an optical node device and an optical node device control method, and more particularly to an optical node device having a wavelength path multiplexing / demultiplexing function used in optical communication and an optical node device control method.

将来の通信量の増大とサービスの多様化に伴うネットワークの高度化に向けて、光通信ネットワークにおいては、DWDM技術及びWSSを用いたOXC技術の導入が進められている。DWDM(dense wavelength division multiplexing、高密度波長多重)技術は、Point−to−Pointの大容量接続を可能とする。WSS(wavelength select switch、波長選択スイッチ)及びOXC(optical cross connect、光クロスコネクト)技術は、光ノード装置において3以上の方路の切り替え機能を実現する。WSS及びOXC技術の導入により、使用状況に応じたより好ましい形態となるように光通信ネットワークを構築することができる。   In the optical communication network, the introduction of OXC technology using DWDM technology and WSS is being promoted for the advancement of networks accompanying future increase in communication volume and diversification of services. DWDM (Density Wavelength Division Multiplexing) technology enables point-to-point high-capacity connection. WSS (wavelength select switch, wavelength selective switch) and OXC (optical cross connect, optical cross-connect) technologies realize a switching function of three or more paths in an optical node device. With the introduction of WSS and OXC technologies, an optical communication network can be constructed so as to be in a more preferable form according to the usage situation.

DWDM技術が適用された光ノード装置には、任意の光トランシーバーから所望の波長の光を所望の方路と接続できる光トランシーバー集約器を配置することが望ましい。   In an optical node device to which the DWDM technology is applied, it is desirable to arrange an optical transceiver aggregator that can connect light of a desired wavelength from a desired optical transceiver to a desired path.

図18は、非特許文献1に記載された光トランシーバー集約器の構成図である。図18に示す光トランシーバー集約器1804は、周回性光波長多重合分波器1803と、アグリゲーション/マルチキャスト機能を有するマトリクススイッチ1802とを組み合わせて構成される。マトリクススイッチ1802の入出力ポート群の一方は周回性光波長多重合分波器1803に接続され、他方は光トランシーバー群1801を構成する光トランシーバー1801a〜1801gのそれぞれの送信器に接続されている。   FIG. 18 is a configuration diagram of the optical transceiver aggregator described in Non-Patent Document 1. An optical transceiver aggregator 1804 shown in FIG. 18 is configured by combining a circular optical wavelength multi-polymerization demultiplexer 1803 and a matrix switch 1802 having an aggregation / multicast function. One of the input / output port groups of the matrix switch 1802 is connected to the circulating optical wavelength multi-multiplexing demultiplexer 1803, and the other is connected to the respective transmitters of the optical transceivers 1801a to 1801g constituting the optical transceiver group 1801.

なお、図18においては、周回性光波長多重合分波器1803には周回性AWG(cyclic arrayed waveguide grating、c−AWG)が用いられている。   In FIG. 18, a cyclic AWG (cyclic arrayed waveguide grating, c-AWG) is used for the cyclic optical wavelength multi-polymerization demultiplexer 1803.

光トランシーバー1801a〜1801gは波長可変レーザを備えており、送信波長を制御することが可能である。また、マトリクススイッチ1802の経路は外部から制御可能である。このような構成を備えることにより、光トランシーバー集約器1804は、光トランシーバー群1801が送信する光の波長及び方路を自由に設定できる。   The optical transceivers 1801a to 1801g are equipped with a wavelength tunable laser, and can control the transmission wavelength. The path of the matrix switch 1802 can be controlled from the outside. By providing such a configuration, the optical transceiver aggregator 1804 can freely set the wavelength and path of the light transmitted by the optical transceiver group 1801.

ここで、光トランシーバー集約器1804は、その設定する経路に従って所定の方路と所定の光トランシーバー1801a〜1801gとの間で光を送信(Add)あるいは受信(Drop)するように、その内部の経路を設定する。光ノード装置のこの送受信機能はAdd/Drop機能と呼ばれる。   Here, the optical transceiver aggregator 1804 is configured to transmit (Add) or receive (Drop) light between the predetermined path and the predetermined optical transceivers 1801a to 1801g according to the set path. Set. This transmission / reception function of the optical node device is called an Add / Drop function.

図18は、光トランシーバー1801a〜1801gの送信器が送信する光を方路へ追加(Add)する構成について示したものである。各方路から受信した光を光トランシーバー1801a〜1801gにおいて抽出(Drop)するためにも同様の構成の光トランシーバー集約器1804を用いることができる。光をDropする際には、方路から受信した光が所望の光トランシーバーの受信器で受信されるようにマトリクススイッチ1802が制御される。   FIG. 18 shows a configuration in which light transmitted by the transmitters of the optical transceivers 1801a to 1801g is added (added) to the path. An optical transceiver aggregator 1804 having a similar configuration can also be used to extract (drop) light received from each path in the optical transceivers 1801a to 1801g. When dropping light, the matrix switch 1802 is controlled so that the light received from the route is received by the receiver of the desired optical transceiver.

また、非特許文献2は、WSS及びトランシーバー集約器を用いた光メッシュノード装置の構成を開示している。図19は、非特許文献2に開示された光メッシュノード装置の構成を簡略化した光ノード装置の構成を示す図である。   Non-Patent Document 2 discloses a configuration of an optical mesh node device using a WSS and a transceiver aggregator. FIG. 19 is a diagram illustrating a configuration of an optical node device in which the configuration of the optical mesh node device disclosed in Non-Patent Document 2 is simplified.

図19に記載された光ノード装置800は、光スプリッタ1907、WSS1906、光トランシーバー集約装置1903及び光トランシーバー群1901を備える。光トランシーバー集約装置1903は、光トランシーバー集約器1902a及び1902bを備える。また、光トランシーバー群1901は複数の光トランシーバーで構成される。そして、光トランシーバーは、光トランシーバー集約器1902a及び1902bに接続されている。   An optical node device 800 illustrated in FIG. 19 includes an optical splitter 1907, a WSS 1906, an optical transceiver aggregation device 1903, and an optical transceiver group 1901. The optical transceiver aggregating apparatus 1903 includes optical transceiver aggregators 1902a and 1902b. The optical transceiver group 1901 includes a plurality of optical transceivers. The optical transceiver is connected to the optical transceiver aggregators 1902a and 1902b.

光ノード装置800は、方路1及び方路2のそれぞれの接続点に光スプリッタ1907及びWSS1906を備えている。光スプリッタ1907は、ある方路(例えば方路1)から受信する光を他の方路(例えば方路2)と光トランシーバー集約装置1903側とに分岐する。   The optical node device 800 includes an optical splitter 1907 and a WSS 1906 at connection points of the route 1 and the route 2, respectively. The optical splitter 1907 branches light received from a certain route (for example, route 1) to another route (for example, route 2) and the optical transceiver aggregation device 1903 side.

ここで、光トランシーバー集約装置1903を経由せずに方路1と方路2とが直接接続されるようにWSS1906を設定することにより、光ノードでAdd/Dropを行わないチャネルを光信号のまま通過させる(光カットスルー)ことが可能である。光カットスルー機能を備える光ノード装置800は、各方路から同時にAdd/dropされるパスの数だけの光トランシーバーを最低限備えればよい。すなわち、カットスルー機能によって、光ノード装置が備える光トランシーバーの数を抑制することができる。   Here, by setting the WSS 1906 so that the route 1 and the route 2 are directly connected without going through the optical transceiver aggregating apparatus 1903, the channel that does not perform Add / Drop at the optical node remains as an optical signal. It is possible to pass (light cut-through). The optical node device 800 having the optical cut-through function may include at least as many optical transceivers as the number of paths that are simultaneously added / dropped from each path. That is, the number of optical transceivers included in the optical node device can be suppressed by the cut-through function.

光トランシーバー集約器1902a及び1902bは、例えば図18に記載した光トランシーバー集約器1804を用いて構成してもよい。光トランシーバー集約器1902aは、光スプリッタ1907で分岐された方路1及び方路2からの光が光トランシーバー群1901の所定の光トランシーバーで受信(Drop)されるように内部の経路を接続する。光トランシーバー集約器1902bは、光トランシーバー群1901の光トランシーバーが送信した光が、所定の方路1または方路2のうち所定の方路に送信(Add)されるように内部の経路を接続する。   The optical transceiver aggregators 1902a and 1902b may be configured using, for example, the optical transceiver aggregator 1804 described in FIG. The optical transceiver aggregator 1902a connects internal paths so that light from the path 1 and the path 2 branched by the optical splitter 1907 is received (Drop) by a predetermined optical transceiver of the optical transceiver group 1901. The optical transceiver aggregator 1902b connects the internal paths so that the light transmitted by the optical transceivers of the optical transceiver group 1901 is transmitted (Add) to a predetermined path 1 or 2 in the predetermined path 1 or 2. .

本願に関連して、特許文献1は、光トランシーバーの内部でループバックさせる構成を備えた光トランシーバーを開示している。また、特許文献2は、光分岐挿入回路と光路切り替えスイッチを備えたノード装置の構成を開示している。   In relation to the present application, Patent Document 1 discloses an optical transceiver having a configuration in which an optical transceiver is looped back. Patent Document 2 discloses a configuration of a node device including an optical add / drop circuit and an optical path switching switch.

再公表特許WO2009−038121号Republished patent WO2009-03811 特開2000−354006号JP 2000-354006 A

Mizutani et al、“Demonstration of multi-degree color/direction-independent waveguide-based transponder-aggregator for flexible optical path networks”、 Proc. ECOC2010 P3.11、Optical Communication (ECOC)、 2010 36th European Conference and Exhibition on、2010年9月Mizutani et al, “Demonstration of multi-degree color / direction-independent waveguide-based transponder-aggregator for flexible optical path networks”, Proc. ECOC2010 P3.11, Optical Communication (ECOC), 2010 36th European Conference and Exhibition on, 2010 September B. C. Collings, ”Wavelength Selectable Switches and Future Photonic Network Applications” Photonics in Switching, 2009. PS '09. International Conference on、2009年9月B. C. Collings, “Wavelength Selectable Switches and Future Photonic Network Applications” Photonics in Switching, 2009. PS '09. International Conference on, September 2009

図19に示した光ノード装置800において、光トランシーバー群1901から待機中の光トランシーバーを選択して新規にパスを接続する際に、選択された光トランシーバーが故障している可能性がある。そして、パスを接続する際に故障した光トランシーバーが選ばれると、他の光トランシーバーを再選択してパスを再設定しなければならない。このため、接続完了までの時間が増大したり、故障した光コンポーネントの探索及びその修理のために光ノードの利用効率が悪化したりするという問題が発生する。また、新しいパスの経路となるマトリクススイッチ等の他の光コンポーネントが故障している場合にも同様の問題が発生する。   In the optical node device 800 illustrated in FIG. 19, when a standby optical transceiver is selected from the optical transceiver group 1901 and a new path is connected, the selected optical transceiver may be broken. When a failed optical transceiver is selected when connecting the paths, the other optical transceiver must be reselected to reset the path. For this reason, there arises a problem that the time until the connection is completed increases and the use efficiency of the optical node deteriorates due to the search for and repair of the failed optical component. The same problem also occurs when other optical components such as a matrix switch that becomes a path of a new path are out of order.

しかしながら、非特許文献1及び非特許文献2は、光トランシーバーやマトリクススイッチ等の光コンポーネントの動作検証を行うための構成を開示していない。   However, Non-Patent Document 1 and Non-Patent Document 2 do not disclose a configuration for performing operation verification of an optical component such as an optical transceiver or a matrix switch.

その結果、図18に示した光トランシーバー集約器1804や図19に示した光ノード装置800には、光コンポーネントに故障が発生するとパスの設定に時間を要することにより信頼性が低下したり、光ノードの利用効率が低下したりする場合があるという課題があった。   As a result, in the optical transceiver aggregator 1804 shown in FIG. 18 and the optical node device 800 shown in FIG. 19, if a failure occurs in the optical component, it takes time to set up the path, and the reliability decreases. There has been a problem that the utilization efficiency of the node may decrease.

特許文献1は、光トランシーバー内に光スイッチを配置し、ループバックによって光トランシーバー自体の故障を検出する構成を開示している。しかし、特許文献1に記載された構成は、光トランシーバー以外の光コンポーネントの故障を検出することができないという課題がある。さらに、全ての光トランシーバーに光スイッチによるループバック機構を持たせることは、システムのコスト増を招くという課題もある。   Patent Document 1 discloses a configuration in which an optical switch is arranged in an optical transceiver and a failure of the optical transceiver itself is detected by loopback. However, the configuration described in Patent Document 1 has a problem that a failure of an optical component other than the optical transceiver cannot be detected. Furthermore, providing all optical transceivers with a loopback mechanism using an optical switch has a problem of increasing the cost of the system.

また、特許文献2は光ノードに関する技術を開示しているが、光ノードを構成する光コンポーネントに対する動作検証機能を実現するための構成を記載していない。   Japanese Patent Application Laid-Open No. 2004-228561 discloses a technique related to an optical node, but does not describe a configuration for realizing an operation verification function for an optical component constituting the optical node.

[発明の目的]
本発明の目的は、光ノード装置で用いられる光コンポーネントの動作検証と故障箇所の検知とを行うことにより、光ノード装置の信頼性及び利用効率を向上させるための技術を提供することにある。
[Object of invention]
An object of the present invention is to provide a technique for improving the reliability and utilization efficiency of an optical node device by performing an operation verification of an optical component used in the optical node device and detecting a failure location.

本発明の光ノード装置は、送信器が接続される少なくとも1つの第1のポートと、受信器が接続される少なくとも1つの第2のポートと、一部が第1のポートとのみ選択的に接続され、他の一部が第2のポートとのみ選択的に接続される少なくとも2つの第3のポートと、第3のポートの2つである第6のポート及び第7のポートを接続する光伝送路と、を備え、第1のポートの1つである第4のポートが第6のポートと、第2のポートの1つである第5のポートが第7のポートと、それぞれ接続可能に構成される。   The optical node device according to the present invention is selectively connected to at least one first port to which a transmitter is connected, at least one second port to which a receiver is connected, and a part of the first port. Connect at least two third ports that are connected and the other part is selectively connected only to the second port, and the sixth and seventh ports that are two of the third ports An optical transmission line, and a fourth port, which is one of the first ports, is connected to a sixth port, and a fifth port, which is one of the second ports, is connected to a seventh port. Configured to be possible.

本発明の光ノード装置の制御方法は、一部が送信器が接続される少なくとも1つの第1のポートとのみ選択的に接続され他の一部が受信器が接続される少なくとも1つの第2のポートとのみ選択的に接続される第3のポートの2つである第6のポートと第7のポートとを光伝送路で接続し、第1のポートの1つである第4のポートと第6のポートとを接続し、第2のポートの1つである第5のポートと第7のポートとを接続する。   The method for controlling an optical node device according to the present invention is such that at least one second part is selectively connected only to at least one first port to which a transmitter is connected and the other part is connected to a receiver. The fourth port, which is one of the first ports, is connected to the sixth port, which is two of the third ports that are selectively connected only to the first port, and the seventh port through an optical transmission line. Are connected to the sixth port, and the fifth port, which is one of the second ports, is connected to the seventh port.

本発明の光ノード装置は、光コンポーネントの動作検証と故障箇所の検知とを行うことにより、光ノード装置の信頼性及び利用効率を向上させることができるという効果を奏する。   The optical node device of the present invention has an effect of improving the reliability and utilization efficiency of the optical node device by performing the operation verification of the optical component and the detection of the failure location.

第1の実施形態の光ノード装置の構成図である。It is a block diagram of the optical node apparatus of 1st Embodiment. 待機光トランシーバー群の動作検証スケジュールを示す図である。It is a figure which shows the operation | movement verification schedule of a standby optical transceiver group. 待機光トランシーバー1と待機光トランシーバー2とが選定された場合の動作検証のフローを示す図である。It is a figure which shows the flow of operation | movement verification when the standby optical transceiver 1 and the standby optical transceiver 2 are selected. 図3に示した動作検証における制御フローを示す図である。It is a figure which shows the control flow in the operation | movement verification shown in FIG. 第1の実施形態の手順1における待機光トランシーバーの接続関係を示す図である。It is a figure which shows the connection relation of the standby optical transceiver in the procedure 1 of 1st Embodiment. 待機光トランシーバーの送信部と受信部とが切り替わった状態を示す図である。It is a figure which shows the state which the transmission part and reception part of the waiting | standby optical transceiver switched. 故障状態管理テーブルの例である。It is an example of a failure state management table. 故障検出制御部による故障箇所検出手順を示す図である。It is a figure which shows the failure location detection procedure by a failure detection control part. 第2の実施形態の光ノード装置の構成図である。It is a block diagram of the optical node apparatus of 2nd Embodiment. 第2の実施形態における待機光トランシーバー群の動作検証スケジュールを示す図である。It is a figure which shows the operation verification schedule of the standby optical transceiver group in 2nd Embodiment. 図10の光トランシーバー群のスケジュール管理から、待機光トランシーバー1、光トランシーバー集約装置、動作検証制御部の時間ごとの状態遷移とコマンドの流れを取り出して示した図である。It is the figure which took out the state transition for every time of the standby optical transceiver 1, the optical transceiver aggregation apparatus, and the operation verification control part, and the flow of the command from the schedule management of the optical transceiver group of FIG. 図11に示した動作検証における制御手順を示す図である。It is a figure which shows the control procedure in the operation | movement verification shown in FIG. 第2の実施形態における待機光トランシーバーの接続関係を示す図である。It is a figure which shows the connection relation of the standby optical transceiver in 2nd Embodiment. 波長可変制御の検証手順を示す図である。It is a figure which shows the verification procedure of wavelength variable control. 故障検出制御部による故障箇所検出制御手順を示す図である。It is a figure which shows the failure location detection control procedure by a failure detection control part. 第3の実施形態での動作検証制御部と待機光トランシーバー群のスケジュールを示す図である。It is a figure which shows the schedule of the operation verification control part and standby optical transceiver group in 3rd Embodiment. アグリゲーション/マルチキャスト機能を用いた場合の待機光トランシーバーの接続関係を示す図である。It is a figure which shows the connection relation of the standby optical transceiver at the time of using an aggregation / multicast function. 非特許文献1に記載された光トランシーバー集約器の構成図である。It is a block diagram of the optical transceiver aggregator described in the nonpatent literature 1. 非特許文献2に開示された光メッシュノード装置の構成を簡略化した光ノード装置の構成を示す図である。It is a figure which shows the structure of the optical node apparatus which simplified the structure of the optical mesh node apparatus disclosed by the nonpatent literature 2. FIG. 第4の実施形態の光ノードの構成例である。It is a structural example of the optical node of 4th Embodiment.

[構成の説明] [Description of configuration]

[第1の実施形態]
次に、本発明の第1の実施形態について図面を参照して詳細に説明する。
[First Embodiment]
Next, a first embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本発明の第1の実施形態の光ノード装置の構成図である。図1の光ノード装置100は、光トランシーバー集約器104a及び104b、ループバック光ファイバ109並びに光トランシーバー群101を備える。さらに、光ノード装置100は、動作検証制御部105及び故障検知制御部106を備える。   FIG. 1 is a configuration diagram of an optical node device according to a first embodiment of this invention. The optical node device 100 of FIG. 1 includes optical transceiver aggregators 104a and 104b, a loopback optical fiber 109, and an optical transceiver group 101. The optical node device 100 further includes an operation verification control unit 105 and a failure detection control unit 106.

光ノード装置100は、光ネットワークの方路1〜xに接続された光ファイバからなる光ファイバ群と接続され、x本の方路と接続された光ファイバ群との間で光を送受信(Add/Drop)する。光ノード装置100は、光ファイバ群から光信号を受信するDrop側に光トランシーバー集約器104aを備え、光ファイバ群へ光信号を送信するAdd側に光トランシーバー集約器104bを備えている。   The optical node device 100 is connected to an optical fiber group composed of optical fibers connected to routes 1 to x of the optical network, and transmits / receives light to / from the optical fiber group connected to x routes (Add). / Drop). The optical node device 100 includes an optical transceiver aggregator 104a on the drop side that receives an optical signal from the optical fiber group, and an optical transceiver aggregator 104b on the add side that transmits the optical signal to the optical fiber group.

光トランシーバー集約器104aは、方路1〜x毎に備えられた波長多重合分波器103と、マトリクススイッチ102aとを備える。光トランシーバー集約器104bは、方路1〜xごとに備えられた波長多重合分波器103と、マトリクススイッチ102bとを備える。マトリクススイッチ102a、102bは、例えばMEMS(Micro Electro Mechanical Systems)ベースのスイッチを用いて実現できる。ここで、光トランシーバー集約器104a及び104bの各方路について同一の波長多重合分波器103を使用してよい。   The optical transceiver aggregator 104a includes a wavelength multiple polymerization demultiplexer 103 provided for each of the paths 1 to x and a matrix switch 102a. The optical transceiver aggregator 104b includes a wavelength multiple demultiplexer 103 provided for each of the paths 1 to x and a matrix switch 102b. The matrix switches 102a and 102b can be realized by using, for example, a MEMS (Micro Electro Mechanical Systems) based switch. Here, the same wavelength multi-polymerization demultiplexer 103 may be used for each path of the optical transceiver aggregators 104a and 104b.

マトリクススイッチ102a、102bの光ファイバ群側には「(方路数×波長多重数)+1」の数のポートが用意される。そして、波長多重合分波器103の分波側の各ポートはマトリクススイッチ102a、102bの光ファイバ群側の各ポートに接続されている。そして、それぞれのマトリクススイッチ102a、102bの光ファイバ群側の1ポートが、ループバック光ファイバ109で互いに接続されている。   On the optical fiber group side of the matrix switches 102a and 102b, the number of ports “(number of paths × number of wavelength multiplexing) +1” is prepared. Each port on the demultiplexing side of the wavelength multiplexing demultiplexer 103 is connected to each port on the optical fiber group side of the matrix switches 102a and 102b. One port on the optical fiber group side of each of the matrix switches 102 a and 102 b is connected to each other by a loopback optical fiber 109.

一方、光ノード装置でのAdd/Drop率に応じた数の光トランシーバーを備える光トランシーバー群101が、マトリクススイッチ102a、102bの光トランシーバー側のポートと接続されている。   On the other hand, an optical transceiver group 101 including optical transceivers of the number corresponding to the Add / Drop rate in the optical node device is connected to the ports on the optical transceiver side of the matrix switches 102a and 102b.

第1の実施形態において、例えば、方路数を3、各方路での波長多重数を50とし、Add/Drop率が最大20%である場合を考える。Add/Drop率とは、各方路へのパス数の総和のうち、光ノード装置において同時にAdd/Dropされるパスの比率である。そして、方路数が3、各方路の波長多重数が50の場合には各方路側(図1の光ファイバ群側)のパスの本数の総和は50×3=150である。従って、Add/Drop率が20%であれば、Add/Dropのために配置される光トランシーバーは150×0.2=30台となる。   In the first embodiment, for example, consider a case where the number of routes is 3, the number of wavelength multiplexing in each route is 50, and the Add / Drop rate is 20% at the maximum. The Add / Drop rate is the ratio of paths that are simultaneously added / dropped in the optical node device, out of the total number of paths to each path. When the number of routes is 3 and the number of multiplexed wavelengths in each route is 50, the total number of paths on each route side (optical fiber group side in FIG. 1) is 50 × 3 = 150. Therefore, if the Add / Drop rate is 20%, 150 × 0.2 = 30 optical transceivers are arranged for Add / Drop.

すなわち、マトリクススイッチ102a、102bの光ファイバ群側に必要なポート数は、150ポートにループバック光ファイバ109用の1ポートを加えて151ポートとなる。一方、マトリクススイッチの光トランシーバー側のポート数は光トランシーバーの台数分のポート、すなわち30ポートとなる。従って、第1の実施形態で用いられるマトリクススイッチの大きさは、151×30ポートとなる。   That is, the required number of ports on the optical fiber group side of the matrix switches 102a and 102b is 151 ports by adding one port for the loopback optical fiber 109 to 150 ports. On the other hand, the number of ports on the optical transceiver side of the matrix switch is as many as the number of optical transceivers, that is, 30 ports. Therefore, the size of the matrix switch used in the first embodiment is 151 × 30 ports.

さらに、光ノード装置100は、動作検証制御部105と故障検知制御部106を備え、光トランシーバー群101の各光トランシーバー及び光トランシーバー集約器104a、104bを制御する。なお、光ノード装置100は、Add/Drop動作を行うための制御部を備えている。しかし、それらの構成は公知でありまた本願の内容とは直接関連しないためここでは図面への記載及び説明を省略する。   Further, the optical node device 100 includes an operation verification control unit 105 and a failure detection control unit 106, and controls each optical transceiver and the optical transceiver aggregators 104a and 104b of the optical transceiver group 101. The optical node device 100 includes a control unit for performing an Add / Drop operation. However, since those configurations are known and are not directly related to the contents of the present application, description and explanation in the drawings are omitted here.

[動作の説明]
第1の実施形態における動作検証制御部105と故障検知制御部106の動作を以下に説明する。
[Description of operation]
The operations of the operation verification control unit 105 and the failure detection control unit 106 in the first embodiment will be described below.

まず、動作検証における、運用に供されていない待機中の光トランシーバー(以下、「待機光トランシーバー」という。)のスケジュール手段について述べる。   First, a description will be given of scheduling means for a standby optical transceiver (hereinafter referred to as a “standby optical transceiver”) that is not used for operation verification.

動作検証制御部105は、光トランシーバー集約器104a、104bに接続される光トランシーバー群から、待機光トランシーバーを2台選定する。そして、動作検証制御部105は、選定した待機光トランシーバーを所定の時期に動作させ、当該待機光トランシーバーにおける送信器および受信器の動作検証処理を開始させるスケジュール手段を備えている。   The operation verification control unit 105 selects two standby optical transceivers from the optical transceiver group connected to the optical transceiver aggregators 104a and 104b. The operation verification control unit 105 includes schedule means for operating the selected standby optical transceiver at a predetermined time and starting the operation verification processing of the transmitter and the receiver in the standby optical transceiver.

図2に、待機光トランシーバー群203の動作検証スケジュールを示す。待機光トランシーバー群203は、n台の待機光トランシーバー1〜nの集合を示す。動作検証制御部105は、定期的な検証期間201の間に待機光トランシーバー1〜nの動作検証を行う。検証期間201において、動作検証制御部105は、待機光トランシーバーを順に2台ずつ選定し、後述する手順で選定した待機光トランシーバーの動作検証を行う。そして、全ての待機光トランシーバー203の動作検証が終了すると、故障検知制御部106は、検証結果に応じて故障個所の検知を行う。   FIG. 2 shows an operation verification schedule of the standby optical transceiver group 203. The standby optical transceiver group 203 represents a set of n standby optical transceivers 1 to n. The operation verification control unit 105 performs operation verification of the standby optical transceivers 1 to n during the periodic verification period 201. In the verification period 201, the operation verification control unit 105 selects two standby optical transceivers in order, and performs the operation verification of the standby optical transceiver selected in the procedure described later. When the operation verification of all the standby optical transceivers 203 is completed, the failure detection control unit 106 detects a failure location according to the verification result.

故障検知制御部106は、動作検証において問題が発生した場合に故障箇所の検知を行う。検証期間201の終了後、所定の待機期間202が経過すると、動作検証制御部105は再度検証を開始する。   The failure detection control unit 106 detects a failure location when a problem occurs in the operation verification. When a predetermined waiting period 202 elapses after the verification period 201 ends, the operation verification control unit 105 starts verification again.

動作検証制御部105は、待機光トランシーバーの動作検証を行わない待機期間202の間は不要な機能を停止して、電力消費を抑えている。また、選定した待機光トランシーバーの動作検証を連続して実施することで、待機光トランシーバーの立ち上げや立ち下げによる待ち時間を短縮し、待機期間202を長く取ることができる。その結果、動作検証制御部105の電力消費を抑制することができる。   The operation verification control unit 105 suppresses power consumption by stopping unnecessary functions during the standby period 202 during which the operation verification of the standby optical transceiver is not performed. Further, by continuously performing the operation verification of the selected standby optical transceiver, it is possible to shorten the waiting time due to the startup and shutdown of the standby optical transceiver and to increase the standby period 202. As a result, power consumption of the operation verification control unit 105 can be suppressed.

待機期間202の長さは、光ノード装置100が接続されたネットワークに求められる信頼性に応じて決定されてもよい。例えば、1日の中でネットワークの使用量が小さい深夜を待機期間とし、その他の時間は1時間おきに動作検証するスケジュールとしてもよい。ネットワークの使用頻度が高い時期に定期的に動作検証を行うことで、使用の直前に動作検証が行われた待機光トランシーバーを、待機状態から運用状態に移行させることができる。あるいは、逆に、動作検証をネットワークの使用量が少ない時間帯に行うことで、光ノード装置のピーク消費電力を抑制するようにしてもよい。   The length of the standby period 202 may be determined according to the reliability required for the network to which the optical node device 100 is connected. For example, it is possible to set the standby period as midnight when the network usage is small during the day and schedule the operation verification every other hour. By performing the operation verification periodically at a time when the network is used frequently, the standby optical transceiver for which the operation verification was performed immediately before use can be shifted from the standby state to the operation state. Or, conversely, the peak power consumption of the optical node device may be suppressed by performing the operation verification in a time zone in which the amount of use of the network is small.

また、光トランシーバーの起動時間はその内部の機能部ごとに異なっている。このため、起動時間が長い機能部を待機期間中に停止させるためには、待機時間202を長くする必要がある。すなわち、待機期間202を適切に設定することで、各光トランシーバーの不要な機能を停止することが可能となり、光ノード装置100の電力消費をさらに抑制することが可能である。所定の機能部を停止させ、低電力消費状態にある待機光トランシーバーの起動時間は50msecから10sec程度である。そのため、上述のスケジュールでは、起動時間の比較的長い光トランシーバーであっても、待機期間中は機能を全て停止させておくことが可能である。   In addition, the start-up time of the optical transceiver is different for each functional unit inside. For this reason, in order to stop the function unit having a long activation time during the standby period, it is necessary to lengthen the standby time 202. That is, by appropriately setting the standby period 202, it is possible to stop unnecessary functions of each optical transceiver, and it is possible to further suppress power consumption of the optical node device 100. The activation time of the standby optical transceiver in which the predetermined functional unit is stopped and is in the low power consumption state is about 50 msec to 10 sec. Therefore, in the above-described schedule, even if the optical transceiver has a relatively long activation time, all the functions can be stopped during the standby period.

ただし、新しいパスの割り当てに要する時間を短くするためには、待機光トランシーバーを高速に起動できることが必要である。このため、一部の待機光トランシーバーでは起動時間の比較的長い機能部を動作させたままとしておき、高速で起動できる待機モードとして待機させてもよい。そして、高速で起動できる待機モードの待機光トランシーバーのみを動作検証し、その他の待機光トランシーバーは起動時間の比較的長い機能部をも停止させて電力の低い待機モードで待機させておいてもよい。   However, in order to shorten the time required to allocate a new path, it is necessary to be able to start the standby optical transceiver at high speed. For this reason, in some standby optical transceivers, a function unit having a relatively long startup time may be left operating, and the standby optical mode may be set as a standby mode that can be started at high speed. Then, only the standby optical transceiver in the standby mode that can be activated at high speed is verified, and the other standby optical transceivers may be stopped in the standby mode with low power by stopping the function unit having a relatively long activation time. .

次に前述のスケジュールにて動作検証制御部から選定された待機光トランシーバー2台の動作検証制御について、図3の制御フローを元に説明する。   Next, the operation verification control of two standby optical transceivers selected from the operation verification control unit by the above-described schedule will be described based on the control flow of FIG.

図3は、図2の待機光トランシーバー群203から、待機光トランシーバー1と待機光トランシーバー2とが選定された場合の動作検証のフローを示す図である。図3には、待機光トランシーバー1、2及び光トランシーバー集約器104、動作検証制御部105の状態遷移とコマンドの流れを示している。なお、ここでは光トランシーバー集約器104aと104bとを合わせて光トランシーバー集約器104と記載する。また、図4は、図3に示した動作検証における制御フローを示す図である。以下の手順1〜手順7に動作検証のフローを説明する。なお、以下の説明において、a1〜a21は図3の各フロー及び図4のそれぞれの手順に対応する。   FIG. 3 is a diagram showing a flow of operation verification when the standby optical transceiver 1 and the standby optical transceiver 2 are selected from the standby optical transceiver group 203 of FIG. FIG. 3 shows state transitions and command flows of the standby optical transceivers 1 and 2, the optical transceiver aggregator 104, and the operation verification control unit 105. Here, the optical transceiver aggregators 104a and 104b are collectively referred to as an optical transceiver aggregator 104. FIG. 4 is a diagram showing a control flow in the operation verification shown in FIG. The flow of operation verification will be described in the following procedure 1 to procedure 7. In the following description, a1 to a21 correspond to the respective flows in FIG. 3 and the respective procedures in FIG.

(手順1)動作検証を行う待機光トランシーバーの選定
動作検証制御部105は、待機光トランシーバー群203の中から動作検証を行う2台の待機光トランシーバー1、2を選定する。そして、動作検証制御部105は、選定した待機光トランシーバー1、2に起動指示を行う(a1)。2台の待機光トランシーバーは動作検証制御部105からの起動指示に従って導通評価モードに移行する(a2、a3)。導通評価モードは、待機光トランシーバー1、2の間で導通時間評価を行うためのモードである。それぞれの待機光トランシーバーの送信側は、導通評価モードにおいてフレーム長の短いOTN(optical transport network)フレームを送出する手段を備える。待機光トランシーバーの受信側は、導通評価モードにおいてOTNフレームを受信し、受信したOTNフレームが正しく受信できたか判断する手段を備える。
(Procedure 1) Selection of Standby Optical Transceiver to Perform Operation Verification The operation verification control unit 105 selects two standby optical transceivers 1 and 2 to perform operation verification from the standby optical transceiver group 203. Then, the operation verification control unit 105 issues a start instruction to the selected standby optical transceivers 1 and 2 (a1). The two standby optical transceivers shift to the continuity evaluation mode in accordance with an activation instruction from the operation verification control unit 105 (a2, a3). The continuity evaluation mode is a mode for performing a continuity time evaluation between the standby optical transceivers 1 and 2. The transmission side of each standby optical transceiver includes means for transmitting an OTN (Optical Transport Network) frame having a short frame length in the continuity evaluation mode. The reception side of the standby optical transceiver includes means for receiving the OTN frame in the continuity evaluation mode and determining whether the received OTN frame has been correctly received.

図5は、第1の実施形態の手順1における待機光トランシーバー1、2の接続関係を示す図である。動作検証制御部105は、図5に示すように待機光トランシーバー1と待機光トランシーバー2とがループバック光ファイバ109で接続されるように、光トランシーバー集約器104に対してパス設定指示を出す(a4)。この指示に基づいて、マトリクススイッチ102bは待機光トランシーバー1とループバック光ファイバ109とを接続する。また、この指示に基づいて、マトリクススイッチ102aはループバック光ファイバ109と待機光トランシーバー2とを接続する。   FIG. 5 is a diagram illustrating a connection relationship between the standby optical transceivers 1 and 2 in the procedure 1 of the first embodiment. The operation verification control unit 105 issues a path setting instruction to the optical transceiver aggregator 104 so that the standby optical transceiver 1 and the standby optical transceiver 2 are connected by the loopback optical fiber 109 as shown in FIG. a4). Based on this instruction, the matrix switch 102 b connects the standby optical transceiver 1 and the loopback optical fiber 109. Further, based on this instruction, the matrix switch 102a connects the loopback optical fiber 109 and the standby optical transceiver 2.

(手順2)起動時間確認(待機光トランシーバー1→2)
起動時間301は、光トランシーバー集約器のパス設定時間と、待機光トランシーバーの起動時間から決まる全体の起動時間である。待機光トランシーバー2は、光信号を検知すると、その旨を動作検証制御部105に返信する。動作検証制御部105は、その返信を受信した時間と起動指示を出した時間との差分を求め、起動時間301を確認する(a5)。
(Procedure 2) Start-up time confirmation (standby optical transceiver 1 → 2)
The startup time 301 is the total startup time determined from the path setup time of the optical transceiver aggregator and the startup time of the standby optical transceiver. When the standby optical transceiver 2 detects the optical signal, it returns that fact to the operation verification control unit 105. The operation verification control unit 105 obtains a difference between the time when the reply is received and the time when the activation instruction is issued, and confirms the activation time 301 (a5).

起動時間301が所定の時間内であれば、その旨をメモリに記録する。そして、次の手順3(a6)に進み導通時間の確認を実施する。   If the activation time 301 is within a predetermined time, that fact is recorded in the memory. And it progresses to the following procedure 3 (a6) and the conduction time is confirmed.

起動時間301が所定の時間を越えている等の問題があった場合には、待機光トランシーバー1の送信器、待機光トランシーバー2の受信器または光トランシーバー集約器104の光路に問題がある可能性がある。この場合には、起動時間301の確認結果に問題があった旨をメモリに記録し、待機光トランシーバー1、2の動作検証を終了する。そして、次の待機光トランシーバーの動作検証へと移る(a21)。故障個所の検知は、動作検証終了後、故障検知制御部106により行われる。   If there is a problem such as the start-up time 301 exceeding a predetermined time, there may be a problem in the optical path of the transmitter of the standby optical transceiver 1, the receiver of the standby optical transceiver 2, or the optical transceiver aggregator 104. There is. In this case, the fact that there is a problem with the confirmation result of the activation time 301 is recorded in the memory, and the operation verification of the standby optical transceivers 1 and 2 is finished. Then, the operation proceeds to the operation verification of the next standby optical transceiver (a21). The failure location is detected by the failure detection control unit 106 after the operation verification is completed.

ここで、メモリとして例えば半導体メモリやハードディスク等の記憶装置が利用できるが、これらには限定されない。また、メモリが備えられる場所は特に制限はなく、例えば動作検証制御部105がメモリを備えていてもよい。   Here, a storage device such as a semiconductor memory or a hard disk can be used as the memory, but is not limited thereto. The place where the memory is provided is not particularly limited, and for example, the operation verification control unit 105 may include the memory.

(手順3)導通時間確認(待機光トランシーバー1→2)
手順3では、対向する待機光トランシーバー間が同期され導通が開始するまでの時間である導通時間302を確認する。手順1において、2台の待機光トランシーバー1、2は導通評価モードに設定されている。そして、受信側の待機光トランシーバー2ではOTNフレームが正常に受信されるかどうかを検査している。待機光トランシーバー2は、OTNフレームが一定回数連続して受信された場合には、導通確認信号を待機光トランシーバー2から動作検証制御部105へ送る。動作検証制御部105は、導通確認信号を受け取った時間と起動指示を出した時間との差分を求め、導通時間302を確認する(a6)。
(Procedure 3) Conduction time confirmation (standby optical transceiver 1 → 2)
In procedure 3, the conduction time 302, which is the time until the standby optical transceivers facing each other are synchronized and conduction starts, is confirmed. In procedure 1, the two standby optical transceivers 1 and 2 are set to the conduction evaluation mode. The standby optical transceiver 2 on the receiving side checks whether the OTN frame is normally received. The standby optical transceiver 2 sends a continuity confirmation signal from the standby optical transceiver 2 to the operation verification control unit 105 when the OTN frame is continuously received a predetermined number of times. The operation verification control unit 105 obtains a difference between the time when the continuity confirmation signal is received and the time when the activation instruction is issued, and confirms the continuity time 302 (a6).

導通時間302が所定の時間内であれば、その旨をメモリに記録する。そして、手順4に進む。   If the conduction time 302 is within a predetermined time, that effect is recorded in the memory. Then, the process proceeds to procedure 4.

導通時間302が所定の時間を越える等の問題があった場合には、待機光トランシーバー1、2の少なくとも一方の同期回路に問題がある可能性がある。この場合、導通時間の確認結果に問題があった旨をメモリに記録し、待機光トランシーバー1、2の動作検証を終了する。そして、次の待機光トランシーバーの動作検証へと移る(a21)。故障個所の特定は、動作検証終了後、故障検知制御部106により行われる。   If there is a problem such that the conduction time 302 exceeds a predetermined time, there is a possibility that there is a problem in at least one of the synchronization circuits of the standby optical transceivers 1 and 2. In this case, the fact that there is a problem in the confirmation result of the conduction time is recorded in the memory, and the operation verification of the standby optical transceivers 1 and 2 is finished. Then, the operation proceeds to the operation verification of the next standby optical transceiver (a21). The failure location is specified by the failure detection control unit 106 after the operation verification is completed.

(手順4)機能検証(待機光トランシーバ1→2)
動作検証制御部105は、2台の待機光トランシーバー1、2に対し、機能検証モードへの変更を通知する。その通知に基づいて、待機光トランシーバー1、2は機能検証モードへ移行し(a7、a8)、機能検証が実施される(a9)。第1の実施形態における機能検証は、以下の2種類である。第1の機能検証では、特定の“0”、“1”信号のテストパターンを用意し、その信号がエラーフリーで伝送できるかを検証する。第2の機能検証は、誤り訂正に関する機能検証である。第2の機能検証では、誤りを含むフレームをテストパターンとして用いて導通の確認を行い、受信側の光トランシーバー2においてエラー訂正機能が正しく動作しているかを検証する。
(Procedure 4) Functional verification (standby optical transceiver 1 → 2)
The operation verification control unit 105 notifies the two standby optical transceivers 1 and 2 of the change to the function verification mode. Based on the notification, the standby optical transceivers 1 and 2 shift to the function verification mode (a7, a8), and the function verification is performed (a9). The function verification in the first embodiment is the following two types. In the first function verification, a test pattern of specific “0” and “1” signals is prepared, and it is verified whether the signal can be transmitted error-free. The second functional verification is functional verification related to error correction. In the second function verification, continuity is confirmed using a frame including an error as a test pattern to verify whether the error correction function is operating correctly in the optical transceiver 2 on the receiving side.

手順4における機能検証に問題がなければ、その旨をメモリに記録する。そして、次の手順5に進み送信器と受信器とを切り替えて起動時間確認を実施する。   If there is no problem in the function verification in the procedure 4, the fact is recorded in the memory. Then, the process proceeds to the next procedure 5 to switch between the transmitter and the receiver to check the activation time.

手順4の機能検証で問題があった場合には、少なくとも一方の光トランシーバーの電気回路部に問題がある可能性がある。この場合は、機能検証結果に問題があった旨をメモリに記録し、待機光トランシーバー1、2の動作検証を終了する。そして、次の待機光トランシーバーの動作検証へと移る(a21)。故障個所の特定は、動作検証終了後、故障検知制御部106により行われる。   If there is a problem in the function verification in the procedure 4, there is a possibility that there is a problem in the electric circuit portion of at least one of the optical transceivers. In this case, the fact that there is a problem in the function verification result is recorded in the memory, and the operation verification of the standby optical transceivers 1 and 2 is finished. Then, the operation proceeds to the operation verification of the next standby optical transceiver (a21). The failure location is specified by the failure detection control unit 106 after the operation verification is completed.

(手順5)起動時間確認(待機光トランシーバー2→1)
手順5では、待機光トランシーバー2から待機光トランシーバー1への方向の新しいパスに対し、手順1と同様の手順を実施する。動作検証制御部105は、待機光トランシーバー1、2に対し、送信器と受信器とを切り替え、それぞれを導通評価モードとする指示を出す。そして、その指示に基づいて、待機光トランシーバー1、2は機能検証モードへ移行する(a10、a11)。このとき、待機光トランシーバー1の送信光はオフ状態に変更され、ネットワークに不要な光が漏れないようにされる。また、光トランシーバー集約器104に対し、待機光トランシーバー2から待機光トランシーバー1に向かうパスを設定する指示を出す。光トランシーバー集約器104はその指示に基づいて待機光トランシーバー2から待機光トランシーバー1に向かうパスを設定する(a12)。
(Procedure 5) Start-up time confirmation (standby optical transceiver 2 → 1)
In the procedure 5, the same procedure as the procedure 1 is performed on the new path in the direction from the standby optical transceiver 2 to the standby optical transceiver 1. The operation verification control unit 105 instructs the standby optical transceivers 1 and 2 to switch between the transmitter and the receiver and set each to the conduction evaluation mode. Based on the instruction, the standby optical transceivers 1 and 2 enter the function verification mode (a10, a11). At this time, the transmission light of the standby optical transceiver 1 is changed to an off state so that unnecessary light does not leak to the network. Also, the optical transceiver aggregator 104 is instructed to set a path from the standby optical transceiver 2 to the standby optical transceiver 1. Based on the instruction, the optical transceiver aggregator 104 sets a path from the standby optical transceiver 2 to the standby optical transceiver 1 (a12).

図6は、手順5において、待機光トランシーバー1、2の送信部と受信部とが切り替わった状態を示す図である。図6においては、待機光トランシーバー2の送信器が出力した光はマトリクススイッチ102b、ループバック光ファイバ109、マトリクススイッチ102aを経由して待機光トランシーバー1の受信器で受信される。   FIG. 6 is a diagram illustrating a state in which the transmitting unit and the receiving unit of the standby optical transceivers 1 and 2 are switched in the procedure 5. In FIG. 6, the light output from the transmitter of the standby optical transceiver 2 is received by the receiver of the standby optical transceiver 1 via the matrix switch 102b, the loopback optical fiber 109, and the matrix switch 102a.

その後、光トランシーバー集約器104のパス設定時間と、手順5と同様に測定された待機光トランシーバー1、2の起動時間とから決まる起動時間303が評価される。すなわち、受信側の光トランシーバー1は、光信号を検知すると、その旨を動作検証制御部105に返信する。動作検証制御部105は、その返信を受信した時間と起動指示を出した時間との差分を求め、起動時間303を確認する(a13)。   Thereafter, the activation time 303 determined from the path setting time of the optical transceiver aggregator 104 and the activation time of the standby optical transceivers 1 and 2 measured in the same manner as in the procedure 5 is evaluated. That is, when the optical transceiver 1 on the receiving side detects an optical signal, it returns a message to that effect to the operation verification control unit 105. The operation verification control unit 105 obtains a difference between the time when the reply is received and the time when the activation instruction is issued, and confirms the activation time 303 (a13).

起動時間303が所定の時間内であれば、その旨をメモリに記録する。そして、次の手順6(a14)に進み導通時間を確認する。起動時間303が所定の時間を越える等の問題があった場合には、待機光トランシーバー2の送信器、待機光トランシーバー1の受信器または光トランシーバー集約器104の光学部品に問題がある可能性がある。この場合、起動時間303の確認結果に問題があった旨をメモリに記録し、待機光トランシーバー1、2の動作検証を終了する。そして、次の待機光トランシーバーの動作検証へと移る(a21)。故障個所の特定は、動作検証終了後、故障検知制御部106により行われる。   If the activation time 303 is within a predetermined time, that fact is recorded in the memory. And it progresses to the following procedure 6 (a14) and confirms conduction | electrical_connection time. If there is a problem such as the start-up time 303 exceeds a predetermined time, there may be a problem with the transmitter of the standby optical transceiver 2, the receiver of the standby optical transceiver 1, or the optical components of the optical transceiver aggregator 104. is there. In this case, the fact that there is a problem with the confirmation result of the activation time 303 is recorded in the memory, and the operation verification of the standby optical transceivers 1 and 2 is finished. Then, the operation proceeds to the operation verification of the next standby optical transceiver (a21). The failure location is specified by the failure detection control unit 106 after the operation verification is completed.

(手順6)導通時間確認(待機光トランシーバー2→1)
手順6では、待機光トランシーバー2から待機光トランシーバー1の方向に対して手順3と同様の検証を実施する。
(Procedure 6) Conduction time confirmation (standby optical transceiver 2 → 1)
In procedure 6, the same verification as in procedure 3 is performed in the direction from standby optical transceiver 2 to standby optical transceiver 1.

手順6では、待機光トランシーバー1、2への起動指示から、待機光トランシーバー2から待機光トランシーバー1への通信が同期され導通するまでの時間304を確認する。手順5において、2つの待機光トランシーバーは導通評価モードに設定されている。そして、受信側の待機光トランシーバー1ではOTNフレームが正常に受信できているかどうかをモニタしている。待機光トランシーバー1は、OTNフレームが一定回数連続して受信されたことを検知すると、導通確認信号を待機光トランシーバー1から動作検証制御部105へ送る。動作検証制御部105では、その導通確認信号を受け取った時間と起動指示を出した時間の差分を求め、導通時間304を確認する(a14)。   In the procedure 6, the time 304 from the start instruction to the standby optical transceivers 1 and 2 until the communication from the standby optical transceiver 2 to the standby optical transceiver 1 is synchronized and conducted is confirmed. In procedure 5, the two standby optical transceivers are set to the continuity evaluation mode. Then, the standby optical transceiver 1 on the receiving side monitors whether or not the OTN frame is normally received. When the standby optical transceiver 1 detects that the OTN frame has been continuously received a predetermined number of times, the standby optical transceiver 1 sends a continuity confirmation signal from the standby optical transceiver 1 to the operation verification control unit 105. The operation verification control unit 105 obtains a difference between the time when the continuity confirmation signal is received and the time when the activation instruction is issued, and confirms the continuity time 304 (a14).

導通時間304が所定の時間内であれば、その旨をメモリに記録する。そして、次の手順7へ進み機能検証を実施する。導通時間304の遅延が大きく、所定の時間を越える等の問題があった場合には、少なくとも一方の待機光トランシーバーの同期回路に問題がある可能性がある旨をメモリに記録し、待機光トランシーバー1、2の動作検証を終了する。そして、次の待機光トランシーバーの動作検証へと移る(a21)。故障個所の特定は、動作検証終了後、故障検知制御部106により行われる。   If the conduction time 304 is within a predetermined time, that fact is recorded in the memory. Then, the process proceeds to the next step 7 to perform function verification. If there is a problem such as the delay of the conduction time 304 being large and exceeding a predetermined time, the fact that there is a possibility that there is a problem in the synchronization circuit of at least one standby optical transceiver is recorded in the memory. The operation verifications 1 and 2 are completed. Then, the operation proceeds to the operation verification of the next standby optical transceiver (a21). The failure location is specified by the failure detection control unit 106 after the operation verification is completed.

(手順7)機能検証(待機光トランシーバー2→1)
新しい光パス(待機光トランシーバー2→1)に対し、手順4と同様の機能検証を実施する。
(Procedure 7) Functional verification (standby optical transceiver 2 → 1)
For the new optical path (standby optical transceiver 2 → 1), functional verification similar to that in the procedure 4 is performed.

動作検証制御部105は、待機光トランシーバー1、2に対して機能検証モードへの変更を通知する。その通知に基づいて待機光トランシーバー1、2は機能検証モードへ移行し(a15、a16)、機能検証が実施される(a17)。   The operation verification control unit 105 notifies the standby optical transceivers 1 and 2 of the change to the function verification mode. Based on the notification, the standby optical transceivers 1 and 2 shift to the function verification mode (a15, a16), and the function verification is performed (a17).

機能検証に問題がなければ、その旨をメモリに記録し、待機光トランシーバー1、2の機能検証を終了する。そして、次の待機光トランシーバーの動作検証に移る。   If there is no problem in the function verification, the fact is recorded in the memory, and the function verification of the standby optical transceivers 1 and 2 is finished. Then, the operation of the next standby optical transceiver is verified.

一連の動作検証が終了すると、待機光トランシーバー1、2は、共に光出力が停止された待機モードで待機する(a18、a19)。光トランシーバー集約器104は、次に動作検証を行う待機光トランシーバー3、4のパスを設定する(a20)。   When a series of operation verifications are completed, the standby optical transceivers 1 and 2 wait in a standby mode in which the optical output is stopped (a18, a19). The optical transceiver aggregator 104 sets the paths of the standby optical transceivers 3 and 4 that perform the next operation verification (a20).

機能検証で問題が発見された場合は、少なくとも一方の待機光トランシーバーの電気回路に問題がある可能性がある。この場合は、機能検証結果に問題があった旨をメモリに記録し、待機光トランシーバー1、2の動作検証を終了する。そして、動作検証終了後、故障検知制御部106により故障箇所が検出される。   If a problem is found during functional verification, there may be a problem with the electrical circuit of at least one standby optical transceiver. In this case, the fact that there is a problem in the function verification result is recorded in the memory, and the operation verification of the standby optical transceivers 1 and 2 is finished. Then, after the operation verification is completed, the failure detection control unit 106 detects the failure location.

上記の手順1〜手順7の動作検証手順を待機光トランシーバー群203の全ての待機光トランシーバー1〜nに実施することで、待機光トランシーバー群203と光トランシーバー集約器104a、104bの動作検証が行われる。そして、動作検証結果に基づいて、新しいパスの立上げの際に故障が発見されていない光トランシーバーを選択することができる。   By performing the operation verification procedure of the above procedure 1 to procedure 7 on all the standby optical transceivers 1 to n of the standby optical transceiver group 203, the operation verification of the standby optical transceiver group 203 and the optical transceiver aggregators 104a and 104b is performed. Is called. Based on the operation verification result, it is possible to select an optical transceiver in which no failure has been found when a new path is set up.

次に故障検出制御について説明する。図7は、故障状態管理テーブルの例である。故障状態管理テーブルは、手順1〜7の過程でメモリに記録された動作検証結果に基づいて作成される。故障状態管理テーブルには、動作検証を行った待機光トランシーバーの番号と、送信側及び受信側について問題が発生した手順と問題の内容とを記録している。   Next, failure detection control will be described. FIG. 7 is an example of a failure state management table. The failure state management table is created based on the operation verification result recorded in the memory in the steps 1-7. In the failure state management table, the number of the standby optical transceiver for which the operation has been verified, the procedure in which the problem occurred on the transmission side and the reception side, and the content of the problem are recorded.

送信器と受信器とを対向させて行う動作検証では、送信器と受信器とのどちらで故障が起きているかを知ることが困難な場合がある。このため、たとえ一方の光トランシーバーのみが故障している場合でも、一旦は両方の光トランシーバーを故障として扱う必要があった。しかしながら、第1の実施の形態の光ノード装置100では、以下に示す故障検出手順により、いずれの光トランシーバーが故障しているか判断できる。また、マトリクススイッチ102aまたは102bが故障していることを検出することも可能である。その結果、光ノード装置100が備える光コンポーネントの故障個所の特定を効率的に行うことが可能となる。   In the operation verification performed with the transmitter and the receiver facing each other, it may be difficult to know whether the transmitter or the receiver has a failure. For this reason, even if only one of the optical transceivers has failed, both of the optical transceivers have to be treated as a failure once. However, in the optical node device 100 according to the first embodiment, it is possible to determine which optical transceiver has failed by the following failure detection procedure. It is also possible to detect that the matrix switch 102a or 102b has failed. As a result, it becomes possible to efficiently identify the failure location of the optical component included in the optical node device 100.

図8は、故障検出制御部106による故障箇所検出手順を示す図である。以下の説明において、s1〜s8は図8の各手順に対応する。   FIG. 8 is a diagram showing a failure location detection procedure by the failure detection control unit 106. In the following description, s1 to s8 correspond to the respective procedures in FIG.

図8において、まず初めに、故障状態管理テーブルから「異常」とされた光トランシーバーの有無を確認する(s1)。異常とされた光トランシーバーが存在する場合(s1:有)、異常とされた待機光トランシーバーの中から1台と、待機光トランシーバーの中から正常状態であることが判明している1台を選ぶ(s2、s3)。この2台の光トランシーバーにおいて手順1〜手順7で示した動作検証手順を再度実施する(s4)。   In FIG. 8, first, the presence / absence of an optical transceiver determined as “abnormal” from the failure state management table is confirmed (s1). If there is an abnormal optical transceiver (s1: Yes), select one of the standby optical transceivers that are abnormal and one of the standby optical transceivers that is known to be in a normal state. (S2, s3). In these two optical transceivers, the operation verification procedure shown in steps 1 to 7 is performed again (s4).

この検証により問題が生じた場合(s5:有)は、異常状態の光トランシーバーが故障しているものとして、その光トランシーバーをパス設定の際の選択対象から削除する(s6)。一方、s4における動作検証において問題が生じなかった場合(s5:無)は、故障状態管理テーブルの記載を修正する(s7)。すなわち、s7では故障状態管理テーブル上で故障状態と記録されていた待機光トランシーバーの状態を、正常状態に修正する。   If a problem occurs due to this verification (s5: present), it is determined that the abnormal optical transceiver has failed, and the optical transceiver is deleted from the selection target at the time of path setting (s6). On the other hand, when no problem occurs in the operation verification in s4 (s5: None), the description in the failure state management table is corrected (s7). That is, in s7, the state of the standby optical transceiver that is recorded as a failure state on the failure state management table is corrected to a normal state.

その後、故障状態管理テーブル上に異常ありとされた待機光トランシーバーの有無の確認を繰り返す。そして、パス設定の際の選択対象から削除されていない待機光トランシーバーに「異常」状態が無くなった時(s1:無)、故障箇所検出制御を終了する(s8)。   Thereafter, the confirmation of the presence / absence of the standby optical transceiver that is abnormal on the failure state management table is repeated. When the “abnormal” state disappears in the standby optical transceiver that has not been deleted from the selection targets at the time of path setting (s1: none), the failure location detection control is terminated (s8).

ここで、最初の動作検証において故障状態と判断された2台の待機光トランシーバーが、故障検出手順においていずれも正常と判断された場合(s7)について考える。このような場合には、動作検証の際の待機光トランシーバーには異常がなく、光トランシーバー集約器104a、104bの少なくとも一方が故障している可能性がある。例えば、マトリクススイッチ102aまたは102bの一部が故障しており、動作検証の際に形成されたパスにのみ影響が現れたような場合が相当する。   Here, consider a case where two standby optical transceivers determined to be in a failure state in the first operation verification are determined to be normal in the failure detection procedure (s7). In such a case, there is no abnormality in the standby optical transceiver at the time of operation verification, and at least one of the optical transceiver aggregators 104a and 104b may be broken. For example, there is a case where a part of the matrix switch 102a or 102b has failed and an influence appears only on the path formed at the time of operation verification.

このような場合、正常な待機光トランシーバーを用いてマトリクススイッチ102a、102bに設定されるパスを変えながら動作試験を行い、異常が発生する条件を調査することで、故障している光コンポーネント(待機光トランシーバーまたは光トランシーバー集約器102a、102b)あるいはその故障個所を絞り込むことが可能である。   In such a case, an operation test is performed while changing the paths set in the matrix switches 102a and 102b using a normal standby optical transceiver, and a faulty optical component (standby It is possible to narrow down the optical transceivers or optical transceiver aggregators 102a, 102b) or their fault locations.

故障検出手順において故障と判断された光コンポーネントの情報は別途管理者に通知される。管理者は、故障検出制御の実行結果及び故障状態管理テーブルの異常個所の記載に基づいて、必要に応じて光コンポーネントを交換または修理する。光トランシーバーの交換または修理においても、故障検出手順の実行結果から送信器、受信器のどちらに故障が生じているか、あるいは光トランシーバー集約器102a、102bが故障しているかを知ることができる。このため、光トランシーバー及び光ノード装置で用いられる光コンポーネントの故障原因の調査、交換及び修理に要するコストが低減される。   Information on the optical component determined to be a failure in the failure detection procedure is separately notified to the administrator. The administrator replaces or repairs the optical component as necessary based on the execution result of the failure detection control and the description of the abnormal part of the failure state management table. Also in replacement or repair of the optical transceiver, it is possible to know from the execution result of the failure detection procedure whether a failure has occurred in either the transmitter or the receiver, or whether the optical transceiver aggregator 102a, 102b has failed. For this reason, the cost required for investigating, replacing and repairing the cause of failure of the optical component used in the optical transceiver and the optical node device is reduced.

このように、第1の実施形態の光ノード装置は、待機中の光コンポーネントの動作検証と故障箇所の検知とを行うことができる。その結果、第1の実施形態の光ノード装置は、光ノード装置の信頼性及び利用効率を向上させることができるという効果を奏する。   As described above, the optical node device according to the first embodiment can perform the operation verification of the standby optical component and the detection of the failure location. As a result, the optical node device according to the first embodiment has an effect that the reliability and utilization efficiency of the optical node device can be improved.

また、第1の実施形態の光ノード装置は、故障している光コンポーネントあるいはその故障個所を検知することが可能であるので、光ノードの故障調査に伴う運用費用を削減できるという効果も奏する。   In addition, since the optical node device according to the first embodiment can detect a failed optical component or a failure location thereof, there is an effect that it is possible to reduce an operation cost associated with an optical node failure investigation.

なお、第1の実施形態の光ノード装置100は、光トランシーバー群101を含まない構成としてもよい。   The optical node device 100 according to the first embodiment may be configured not to include the optical transceiver group 101.

さらに、第1の実施形態の光ノード装置は、以下のような最小構成でも実現される。すなわち、光ノード装置は、送信器が接続される少なくとも1つの第1のポートと、受信器が接続される少なくとも1つの第2のポートとを備える。そして、光ノード装置は、一部が第1のポートとのみ選択的に接続され、他の一部が第2のポートとのみ選択的に接続される少なくとも2つの第3のポートとを備える。さらに、光ノード装置は、第3のポートの2つである第6のポート及び第7のポートを接続する光伝送路と、を備える。そして、第1のポートの1つである第4のポートが第6のポートと、第2のポートの1つである第5のポートが第7のポートと、それぞれ接続可能に構成される。   Furthermore, the optical node device according to the first embodiment is also realized with the following minimum configuration. In other words, the optical node device includes at least one first port to which the transmitter is connected and at least one second port to which the receiver is connected. The optical node device includes at least two third ports, some of which are selectively connected only to the first port and the other portions are selectively connected only to the second port. Further, the optical node device includes an optical transmission path that connects the sixth port and the seventh port, which are two of the third ports. The fourth port, which is one of the first ports, is configured to be connectable to the sixth port, and the fifth port, which is one of the second ports, is connectable to the seventh port.

このような最小構成を備える光ノード装置は、第1のポートの1つである第4のポートに待機中の光トランシーバーの送信器を接続する。そして、第2のポートの1つである第5のポートに待機中の光トランシーバーの受信器を接続する。   The optical node device having such a minimum configuration connects the transmitter of the waiting optical transceiver to the fourth port which is one of the first ports. Then, the receiver of the waiting optical transceiver is connected to the fifth port which is one of the second ports.

送信器、受信器及び光ノード装置をこのように接続することで、送信器が送信した光を光ノード装置を経由して受信器で受信することができる。   By connecting the transmitter, the receiver and the optical node device in this way, the light transmitted by the transmitter can be received by the receiver via the optical node device.

すなわち、上記の最小構成を備える光ノード装置も、図1で説明した光ノード装置100と同様に、第1の実施形態の光ノード装置は、待機中の光コンポーネントの動作検証と故障箇所の検知とを行うことができる。その結果、最小構成を備える光ノード装置も、光ノード装置100と同様の効果を奏する。   That is, as with the optical node device 100 described with reference to FIG. 1, the optical node device having the above-described minimum configuration is the same as the optical node device according to the first embodiment. And can be done. As a result, the optical node device having the minimum configuration also has the same effect as the optical node device 100.

[第2の実施形態]
[構成の説明]
次に、本発明の第2の実施形態について図面を参照して詳細に説明する。
[Second Embodiment]
[Description of configuration]
Next, a second embodiment of the present invention will be described in detail with reference to the drawings.

図9は、本発明の第2の実施形態の光ノード装置の構成図である。図9を参照すると、第2の実施形態の光ノード装置200は、光トランシーバー集約器907a及び907b、ループバック光ファイバ904並びに光トランシーバー群901を備える。さらに、光ノード装置200は、動作検証制御部905及び故障検知制御部906を備える。   FIG. 9 is a configuration diagram of an optical node device according to the second embodiment of this invention. Referring to FIG. 9, the optical node device 200 according to the second embodiment includes optical transceiver aggregators 907a and 907b, a loopback optical fiber 904, and an optical transceiver group 901. Furthermore, the optical node device 200 includes an operation verification control unit 905 and a failure detection control unit 906.

光トランシーバー集約器907aは、合分波波長に周回性を有する周回性光波長多重合分波器903と、アグリゲーション/マルチキャスト機能を有するマトリクススイッチ902aと、波長可変選択フィルタ908とを備える。光トランシーバー集約器907bは、周回性光波長多重合分波器903と、アグリゲーション/マルチキャスト機能を有するマトリクススイッチ902bとを備える。   The optical transceiver aggregator 907a includes a recursive optical wavelength multi-polymerization demultiplexer 903 having a recursive property for multiplexing / demultiplexing wavelengths, a matrix switch 902a having an aggregation / multicast function, and a wavelength variable selection filter 908. The optical transceiver aggregator 907b includes a recursive optical wavelength multiple polymerization demultiplexer 903 and a matrix switch 902b having an aggregation / multicast function.

アグリゲーション/マルチキャスト機能は、マトリクススイッチ902a、902bを光スプリッタあるいは光カップラーとして使用するための機能である。アグリゲーション/マルチキャスト機能により、マトリクススイッチに入力された光を複数の光路に分配したり、複数の光路の光を合流させたりすることが可能となる。   The aggregation / multicast function is a function for using the matrix switches 902a and 902b as an optical splitter or an optical coupler. With the aggregation / multicast function, it is possible to distribute the light input to the matrix switch to a plurality of optical paths and to merge the lights on the plurality of optical paths.

光ノード装置200においては、周回性光波長多重合分波器903として非特許文献1に記載されているものと同様の周回性AWGを用いている。また、アグリゲーション/マルチキャスト機能を備えるマトリクススイッチ902a、902bとして、PLCで作成されたマッハツェンダー干渉計型スイッチによるマトリクススイッチを用いている。そして、マトリクススイッチ902a、902bは、マッハツェンダー干渉計型スイッチの中間状態を精密に制御することでアグリゲーション/マルチキャスト機能を実現することができる。   In the optical node device 200, a recurring AWG similar to that described in Non-Patent Document 1 is used as the recurring optical wavelength multiple polymerization demultiplexer 903. Further, as the matrix switches 902a and 902b having an aggregation / multicast function, matrix switches using Mach-Zehnder interferometer type switches created by PLC are used. The matrix switches 902a and 902b can realize the aggregation / multicast function by precisely controlling the intermediate state of the Mach-Zehnder interferometer type switch.

周回性光波長多重合分波器903は、光ファイバ群側(合波側)に、接続される方路数分のポートを備えている。光ファイバ群側の各ポートは対応する方路によって光ネットワークに接続されている。そして、周回性光波長多重合分波器903の光トランシーバー群側(分波側)に各方路の波長多重数分のポートを備えており、光トランシーバー群側の各ポートはマトリクススイッチ902のネットワーク側のポートと接続されている。   The circulating optical wavelength multiple polymerization demultiplexer 903 includes ports for the number of connected paths on the optical fiber group side (multiplexing side). Each port on the optical fiber group side is connected to the optical network by a corresponding route. In addition, the optical transceiver group side (demultiplexing side) of the recursive optical wavelength multiplexing / demultiplexing demultiplexer 903 is provided with ports corresponding to the number of multiplexed wavelengths in each path. Connected to the network port.

マトリクススイッチ902a、902bの光トランシーバー群側には、光ノード200における最大Add/Drop数のポートが備えられる。そして、マトリクススイッチ902a、902bの光トランシーバー群側には、光トランシーバー群901が接続される。ここで、Drop側にはマトリクススイッチ902aがマルチキャストした波長多重信号から任意の所望の波長を取り出すために、マトリクススイッチ902aと光トランシーバー群901との間に波長可変選択フィルタ908が配置される。   On the optical transceiver group side of the matrix switches 902a and 902b, ports of the maximum number of Add / Drop in the optical node 200 are provided. An optical transceiver group 901 is connected to the matrix transceivers 902a and 902b on the optical transceiver group side. Here, on the drop side, a variable wavelength selection filter 908 is arranged between the matrix switch 902a and the optical transceiver group 901 in order to extract an arbitrary desired wavelength from the wavelength multiplexed signal multicast by the matrix switch 902a.

マトリクススイッチ902a、902bの光ファイバ群側には、方路数に対して1ポート多いポートが備えられる。マトリクススイッチ902bとマトリクススイッチ902aとはループバック光ファイバ904によって互いに接続される。   On the optical fiber group side of the matrix switches 902a and 902b, a port having one port more than the number of routes is provided. The matrix switch 902b and the matrix switch 902a are connected to each other by a loopback optical fiber 904.

光ノード装置200は、使用されていない待機光トランシーバーの動作検証のための制御を行う動作検証制御部905及び故障検知制御部906を備える。動作検証制御部905は、光トランシーバー群及び光トランシーバー集約器907a、907bを制御する。故障検知制御部906は、動作検証の結果に基づいて故障個所の検知を行う。   The optical node device 200 includes an operation verification control unit 905 and a failure detection control unit 906 that perform control for operation verification of a standby optical transceiver that is not used. The operation verification control unit 905 controls the optical transceiver group and the optical transceiver aggregators 907a and 907b. The failure detection control unit 906 detects a failure part based on the result of the operation verification.

なお、光ノード装置200は、通常のAdd/Drop動作などを制御する既存の制御部を備えているが、Add/Drop動作を行うための構成は周知であり本願とは直接関連しないので図面への記載及び詳細な説明は省略する。   The optical node device 200 includes an existing control unit that controls a normal Add / Drop operation. However, the configuration for performing the Add / Drop operation is well known and is not directly related to the present application. The description and the detailed description are omitted.

第2の実施形態では、第1の実施形態と比較してさらにマトリクススイッチ902a、902bのサイズを小さく抑えることが可能である。たとえば、第1の実施形態と同様に方路数を3、各方路での波長多重数を50とし、Add/Drop率を最大20%とした光ノード装置を考える。第2の実施形態の光ノード装置200においては、周回性光波長多重合分波器903の光トランシーバー側の各ポートには、3本の方路に対応する3個の波長の光が多重されている。このため、周回性光波長多重合分波器903の光トランシーバー側のポート数は波長数150の3分の1である50でよい。その結果、マトリクススイッチ902a、902bのポート数は第1の実施形態では151×30であったのに対し、第2の実施形態では51×30と小さくできる。これは、周回性光波長多重合分波器903の光トランシーバー側のポートにも光信号が波長多重されるからである。従って、第2の実施形態では、第1の実施形態と比較して、さらに装置サイズの小型化とコストの低減とを実現することができる。   In the second embodiment, the sizes of the matrix switches 902a and 902b can be further reduced as compared with the first embodiment. For example, as in the first embodiment, consider an optical node device in which the number of paths is 3, the number of wavelength multiplexing in each path is 50, and the Add / Drop rate is 20% at maximum. In the optical node device 200 according to the second embodiment, light of three wavelengths corresponding to the three paths is multiplexed at each port on the optical transceiver side of the circulating optical wavelength multi-multiplexing demultiplexer 903. ing. For this reason, the number of ports on the optical transceiver side of the circulating optical wavelength multiple demultiplexer 903 may be 50, which is one third of the number of wavelengths 150. As a result, the number of ports of the matrix switches 902a and 902b is 151 × 30 in the first embodiment, but can be reduced to 51 × 30 in the second embodiment. This is because the optical signal is also wavelength-multiplexed at the port on the optical transceiver side of the circulating optical wavelength multiple demultiplexer 903. Therefore, in the second embodiment, it is possible to further reduce the size of the apparatus and reduce the cost as compared with the first embodiment.

[動作の説明]
第2の実施形態における待機光トランシーバー群に対する動作検証制御部905と故障検知制御部906の動作を以下に説明する。
[Description of operation]
The operations of the operation verification control unit 905 and the failure detection control unit 906 for the standby optical transceiver group in the second embodiment will be described below.

まず、動作検証制御でのスケジュール手段について述べる。図10に、第2の実施形態における待機光トランシーバー群の動作検証スケジュールを示す。図9に示した動作検証制御部905は、光トランシーバー集約器907a、907bに接続される待機光トランシーバー群(図10の1001)に対し、1台ずつ所定の時期に動作させ、光トランシーバーにおける光送受信器における送信器および受信器の動作検証処理を開始させるスケジューリング手段を備えている。   First, the scheduling means in the operation verification control will be described. FIG. 10 shows an operation verification schedule of the standby optical transceiver group in the second embodiment. The operation verification control unit 905 shown in FIG. 9 operates the standby optical transceiver group (1001 in FIG. 10) connected to the optical transceiver aggregators 907a and 907b one by one at a predetermined time, Scheduling means for starting operation verification processing of the transmitter and the receiver in the transceiver is provided.

動作検証制御部905は定期的に動作し、検証期間1002では1台の光トランシーバーの動作検証を行う。動作検証において問題が発見された場合、続いて故障検知制御部906により故障箇所の検知を行う。この動作を全ての待機光トランシーバーにおいて繰り返し実施する。なお、第2の実施形態において検証間隔1003は5分とした。第2の実施の形態のスケジュールでは、検証時には少なくとも1台の待機光トランシーバーの動作検証が実施される。   The operation verification control unit 905 operates periodically, and performs operation verification of one optical transceiver in the verification period 1002. When a problem is found in the operation verification, the failure detection control unit 906 detects a failure location. This operation is repeated in all standby optical transceivers. In the second embodiment, the verification interval 1003 is 5 minutes. In the schedule of the second embodiment, at the time of verification, operation verification of at least one standby optical transceiver is performed.

新規に1本のパスを設定する必要が生じた場合には、少なくとも1台の光トランシーバーの動作が検証されていればよい。従って、第2の実施の形態においては、マトリクススイッチ902a、902bの設定により、1台のみの光トランシーバーを用いて動作検証用の光を送受信している。   When it becomes necessary to newly set one path, it is only necessary to verify the operation of at least one optical transceiver. Therefore, in the second embodiment, light for operation verification is transmitted / received using only one optical transceiver according to the settings of the matrix switches 902a and 902b.

次に、図10に示したスケジュールにて待機光トランシーバーの動作検証を行う手順を図11及び図12を参照して説明する。   Next, a procedure for verifying the operation of the standby optical transceiver according to the schedule shown in FIG. 10 will be described with reference to FIGS.

図11は、図10に示した待機トランシーバー群1001の動作検証スケジュールから、待機光トランシーバー1と光トランシーバー集約器907a、907bそして、動作検証制御部905の時間ごとの状態遷移とコマンドの流れを取り出して示したものである。以下、光トランシーバー集約器907aと907bとを総称して光トランシーバー集約器907と記載する。また、図12は、図11に示した動作検証における制御手順を示す図である。以下に手順1〜手順7の手順を順に説明する。なお、以下の説明において、b1〜b10は図12のそれぞれの手順に対応する。   FIG. 11 shows the state transition and command flow of the standby optical transceiver 1, the optical transceiver aggregators 907a and 907b, and the operation verification control unit 905 from the operation verification schedule of the standby transceiver group 1001 shown in FIG. It is shown. Hereinafter, the optical transceiver aggregators 907a and 907b are collectively referred to as an optical transceiver aggregator 907. FIG. 12 is a diagram showing a control procedure in the operation verification shown in FIG. Hereinafter, the procedures 1 to 7 will be described in order. In the following description, b1 to b10 correspond to the respective procedures in FIG.

(手順1)待機光トランシーバーの選定
動作検証制御部905は、待機光トランシーバー群1001の中から動作検証を行う1台の待機光トランシーバーを選定する。そして、動作検証制御部905は、手順1で選定した待機光トランシーバー1に起動指示を出す(b1)。待機光トランシーバー1は、動作検証制御部905からの起動指示に基づいて導通評価モードに移行する(b2)。導通評価モードは、第1の実施の形態と同様である。
(Procedure 1) Selection of Standby Optical Transceiver The operation verification control unit 905 selects one standby optical transceiver that performs operation verification from the standby optical transceiver group 1001. Then, the operation verification control unit 905 issues an activation instruction to the standby optical transceiver 1 selected in procedure 1 (b1). The standby optical transceiver 1 shifts to the continuity evaluation mode based on the activation instruction from the operation verification control unit 905 (b2). The continuity evaluation mode is the same as that in the first embodiment.

図13は、第2の実施形態における待機光トランシーバーの接続関係を示す図である。動作検証制御部905からは光トランシーバー集約器907に対し、図13に示す経路で待機光トランシーバー1の送信器の出力が待機光トランシーバー1の受信器で受信されるようにパスの設定指示を出す。マトリクススイッチ902a、902bは待機光トランシーバー1が送信した光がマトリクススイッチ902a、ループバック光ファイバ904、マトリクススイッチ902bを経由して待機光トランシーバー1で受信されるように経路を接続する(b3)。   FIG. 13 is a diagram illustrating a connection relationship of standby optical transceivers according to the second embodiment. The operation verification control unit 905 issues a path setting instruction to the optical transceiver aggregator 907 so that the output of the transmitter of the standby optical transceiver 1 is received by the receiver of the standby optical transceiver 1 through the path illustrated in FIG. . The matrix switches 902a and 902b connect paths so that the light transmitted by the standby optical transceiver 1 is received by the standby optical transceiver 1 via the matrix switch 902a, the loopback optical fiber 904, and the matrix switch 902b (b3).

(手順2)起動時間確認
待機光トランシーバー1は、送信器が出力した光信号を受信器で検知した後、光信号を検知したことを動作検証制御部905に返信する。動作検証制御部905は、その返信を受信した時間と起動指示を出した時間の差分を求め、起動時間1101を確認する(b4)。
(Procedure 2) Confirmation of Start-up Time The standby optical transceiver 1 detects the optical signal output from the transmitter by the receiver, and then returns to the operation verification control unit 905 that the optical signal has been detected. The operation verification control unit 905 obtains a difference between the time when the reply is received and the time when the activation instruction is issued, and confirms the activation time 1101 (b4).

起動時間1101が所定の時間内であれば、その旨をメモリに記録し、次の手順3の導通時間確認を実施する。起動時間1101が所定の時間を越える場合は、待機光トランシーバー1の送信器、受信器または光トランシーバー集約器の光学部品に問題があるとして起動時間の確認結果をメモリに記録し、動作検証終了後故障検知制御部906による故障箇所の検知を行う(b10)。   If the startup time 1101 is within a predetermined time, that fact is recorded in the memory, and the conduction time confirmation in the next procedure 3 is performed. If the start time 1101 exceeds a predetermined time, the check result of the start time is recorded in the memory because there is a problem with the optical component of the transmitter, receiver or optical transceiver aggregator of the standby optical transceiver 1, and after the operation verification is completed A failure location is detected by the failure detection control unit 906 (b10).

(手順3)導通時間確認
第1の実施形態における手順3と同様に、導通時間1102を確認する。待機光トランシーバー1の受信器でOTNフレーム受信が一定回数連続して受信されたことを検知した後、待機光トランシーバー1は、導通確認信号を動作検証制御部905へ送る。動作検証制御部905では、その導通確認信号を受け取った時間と起動指示を出した時間との差分を求め、導通時間1102を確認する(b5)。
(Procedure 3) Confirmation of conduction time Similar to the procedure 3 in the first embodiment, the conduction time 1102 is confirmed. After detecting that the reception of the OTN frame has been continuously received a predetermined number of times at the receiver of the standby optical transceiver 1, the standby optical transceiver 1 sends a conduction confirmation signal to the operation verification control unit 905. The operation verification control unit 905 obtains a difference between the time when the continuity confirmation signal is received and the time when the activation instruction is issued, and confirms the continuity time 1102 (b5).

導通時間1102が所定の時間内であれば、その旨をメモリに記録し、手順4の動作検証を実施する。導通時間1102が所定の時間を越える場合は、待機光トランシーバー1の同期回路に問題がある可能性があるとして導通時間の確認結果をメモリに記録し、故障検知制御部906により故障箇所の検知を行う(b10)。   If the conduction time 1102 is within a predetermined time, that fact is recorded in the memory, and the operation verification of the procedure 4 is performed. When the conduction time 1102 exceeds a predetermined time, the confirmation result of the conduction time is recorded in the memory because there is a possibility that there is a problem with the synchronization circuit of the standby optical transceiver 1, and the failure detection control unit 906 detects the failure location. (B10).

(手順4)機能検証
動作検証制御部905は、待機光トランシーバー1に対し、機能検証モードへの変更を通知する(b6)。その通知に基づいて、待機光トランシーバー1は機能検証モードへ移行し、動作検証制御部905によって機能検証が実施される(b7)。第2の実施形態における機能検証では、第1の実施形態の手順4で示した2種類の機能検証に加えて、待機光トランシーバー1及び波長可変選択フィルタ908の波長可変制御検証が実施される。第1の実施形態の手順4で示した2種類の機能検証については、送受信する待機光トランシーバーが同一であること以外は第2の実施形態でも同様であるので説明を省略する。
(Procedure 4) Function Verification The operation verification control unit 905 notifies the standby optical transceiver 1 of the change to the function verification mode (b6). Based on the notification, the standby optical transceiver 1 shifts to the function verification mode, and the function verification is performed by the operation verification control unit 905 (b7). In the function verification in the second embodiment, wavelength variable control verification of the standby optical transceiver 1 and the wavelength variable selection filter 908 is performed in addition to the two types of function verification shown in the procedure 4 of the first embodiment. The two types of function verification shown in the procedure 4 of the first embodiment are the same in the second embodiment except that the standby optical transceivers to be transmitted and received are the same, and the description thereof will be omitted.

波長可変制御検証は、待機光トランシーバー1とそれに接続されている波長可変選択フィルタ908の波長可変特性を検証するものである。図14に波長可変制御の検証手順を示す。波長可変選択フィルタ908と待機光トランシーバー1の送信器の待機時の設定波長は光ノード装置200の既定値として決められている。第2の実施形態においては、待機時の設定波長は、使用する波長帯域の中心波長λcにて設定されている。手順2及び手順3で実施する起動時間及び導通時間の検証並びに機能検証は、この初期波長λcにて実施されてもよい。   The wavelength variable control verification is to verify the wavelength variable characteristics of the standby optical transceiver 1 and the wavelength variable selection filter 908 connected thereto. FIG. 14 shows a verification procedure of wavelength variable control. The set wavelength at the time of standby of the variable wavelength selection filter 908 and the transmitter of the standby optical transceiver 1 is determined as a default value of the optical node device 200. In the second embodiment, the standby set wavelength is set at the center wavelength λc of the wavelength band to be used. The verification of the start-up time and the conduction time and the function verification performed in the procedure 2 and the procedure 3 may be performed at the initial wavelength λc.

波長可変検証においては、図14に示すように、まず波長可変選択フィルタ908の透過波長をλcから評価用の波長λxに変更する(s21)。波長可変選択フィルタ908の透過波長が変更されたことにより受信器で受信される光が遮断されたことを確認する(s22、s23)。s23で光が遮断されていない場合は波長可変選択フィルタ908が故障しているものと判断する(s30)。   In the variable wavelength verification, as shown in FIG. 14, first, the transmission wavelength of the variable wavelength selection filter 908 is changed from λc to the evaluation wavelength λx (s21). It is confirmed that the light received by the receiver is blocked by changing the transmission wavelength of the variable wavelength selection filter 908 (s22, s23). If the light is not blocked in s23, it is determined that the wavelength variable selection filter 908 has failed (s30).

その後、待機光トランシーバー1の波長をλcから評価用のλxに変更する(s24)。s23で光が遮断されていた場合は、受信器で光が再び検知されることを確認する(s25、s26)。光が検知されれば異常はないと判断し(s27)、波長可変選択フィルタ908及び待機光トランシーバー1の設定波長をλxからλcに変更する(s28)。s26で光が検知されない場合は待機光トランシーバー1が故障していると判断する(s29)。これにより、待機光トランシーバー1と波長可変フィルタ908との波長可変機能の機能検証及び故障個所の検知を行うことができる。   Thereafter, the wavelength of the standby optical transceiver 1 is changed from λc to λx for evaluation (s24). If the light is blocked in s23, it is confirmed that the light is detected again by the receiver (s25, s26). If light is detected, it is determined that there is no abnormality (s27), and the set wavelengths of the variable wavelength selection filter 908 and the standby optical transceiver 1 are changed from λx to λc (s28). If no light is detected in s26, it is determined that the standby optical transceiver 1 has failed (s29). Thereby, the function verification of the wavelength variable function of the standby optical transceiver 1 and the wavelength variable filter 908 and the detection of the failure part can be performed.

1台の待機光トランシーバーの動作検証を実施して問題がなければ、光トランシーバー1と波長可変選択フィルタ908の波長はλxからλcへ戻され、送信器は光出力を停止した待機モードで待機する(b8)。光トランシーバー集約器907は、次に動作検証を行う待機光トランシーバー2の光パスを設定する(b9)。なお、待機光トランシーバーの動作検証を実施して問題がなければ、故障検知制御部906を起動することなく、待機光トランシーバー2への動作検証に移ってもよい。   If there is no problem after verifying the operation of one standby optical transceiver, the wavelengths of the optical transceiver 1 and the wavelength variable selection filter 908 are returned from λx to λc, and the transmitter waits in a standby mode in which the optical output is stopped. (B8). The optical transceiver aggregator 907 sets the optical path of the standby optical transceiver 2 that performs the next operation verification (b9). If there is no problem in performing the operation verification of the standby optical transceiver, the operation detection to the standby optical transceiver 2 may be started without activating the failure detection control unit 906.

手順4の機能検証で問題が生じた場合は、待機光トランシーバー1の電気回路が故障している可能性がある旨をメモリに記録し、故障検知制御部906により故障箇所の検知を行う(b10)。   If a problem occurs in the function verification in the procedure 4, it is recorded in the memory that the electrical circuit of the standby optical transceiver 1 may be broken, and the failure detection control unit 906 detects the failure point (b10). ).

このように、第2の実施形態では、光トランシーバー集約器907aが本来備える波長可変選択フィルタ908を動作検証のために活用することで、光ノード装置のコストを上昇させることなく光トランシーバー902a、902b及び波長可変選択フィルタ908の動作検証を行うことができる。   As described above, in the second embodiment, the optical transceivers 902a and 902b are used without increasing the cost of the optical node device by using the wavelength variable selection filter 908 that is originally provided in the optical transceiver aggregator 907a for operation verification. In addition, the operation of the wavelength variable selection filter 908 can be verified.

なお、第1の実施形態においても、波長可変選択フィルタ908を別途用意することで第2の実施形態と同様な波長可変制御の検証が可能である。   Also in the first embodiment, it is possible to verify the same wavelength variable control as in the second embodiment by separately preparing the wavelength variable selection filter 908.

次に、故障検知制御部906が行う故障検出制御について説明する。図15に故障検出制御部による故障箇所検出制御手順を示す。   Next, failure detection control performed by the failure detection control unit 906 will be described. FIG. 15 shows a failure location detection control procedure by the failure detection control unit.

図15において、動作検証において異常が確認された場合(s31:異常有)、正常な光トランシーバーを1台選定する(s32)。ここでは、故障が検出された待機光トランシーバー1よりも以前に評価して問題のなかった待機光トランシーバーを選ぶ。そして、故障が検出された待機光トランシーバー1と正常な待機光トランシーバーとの2台の光トランシーバーを対向させて、第1の実施形態の手順1〜手順7の動作検証及び故障検出手順を実施する(s33)。この検証により光ノード装置内の故障した光コンポーネントの故障箇所を検知する。   In FIG. 15, when an abnormality is confirmed in the operation verification (s31: abnormal), one normal optical transceiver is selected (s32). Here, the standby optical transceiver that has been evaluated before the standby optical transceiver 1 in which the failure is detected is selected. Then, the two optical transceivers of the standby optical transceiver 1 in which the failure is detected and the normal standby optical transceiver are made to face each other, and the operation verification and the failure detection procedure of the procedure 1 to the procedure 7 of the first embodiment are performed. (S33). By this verification, the failure location of the failed optical component in the optical node device is detected.

待機光トランシーバー1に再度異常が確認された場合は、待機光トランシーバー1がノードで使われないように、待機光トランシーバー1をパス設定の際の選択対象から削除する(s34)。そして、別の待機中の光トランシーバーの動作検証を図10のスケジュール及び図12の動作検証フローに従って引き続き実施する(s35)。なお、動作検証において問題が生じなかった場合は、故障箇所検出手順を行わず、別の待機中の光トランシーバーの動作検証を行う(s35)。   If an abnormality is confirmed again in the standby optical transceiver 1, the standby optical transceiver 1 is deleted from the selection target at the time of path setting so that the standby optical transceiver 1 is not used in the node (s34). Then, the operation verification of another waiting optical transceiver is continued according to the schedule of FIG. 10 and the operation verification flow of FIG. 12 (s35). If no problem occurs in the operation verification, the failure location detection procedure is not performed, and the operation verification of another waiting optical transceiver is performed (s35).

ここで、動作検証において故障状態と判断された待機光トランシーバー1が、故障検出手順において正常と判断された場合について考える。このような場合には、待機光トランシーバー1には異常がなく、光トランシーバー集約器907a、907bの少なくとも一方が故障している可能性がある。例えば、マトリクススイッチ902a、902bを構成するMEMSの一部が故障しており、動作検証の際に形成されたパスにのみ故障の影響が現れたような場合が相当する。   Here, consider a case where the standby optical transceiver 1 determined to be in the failure state in the operation verification is determined to be normal in the failure detection procedure. In such a case, there is no abnormality in the standby optical transceiver 1, and there is a possibility that at least one of the optical transceiver aggregators 907a and 907b has failed. For example, there is a case where a part of the MEMS constituting the matrix switches 902a and 902b has failed, and the influence of the failure appears only on the path formed at the time of operation verification.

このような場合、待機光トランシーバーを用いてマトリクススイッチ902a、902bに設定されるパスを変えながら動作試験を行い、異常が発生する条件を調査することで、故障している光コンポーネントあるいはその故障個所を絞り込むことが可能である。故障と判断された光コンポーネントの情報は別途管理者に通知され、必要に応じて交換あるいは修理される。   In such a case, by performing an operation test while changing the paths set in the matrix switches 902a and 902b using a standby optical transceiver and investigating the conditions under which an abnormality occurs, the failed optical component or its failure location It is possible to narrow down. Information on the optical component determined to be faulty is separately notified to the administrator, and replaced or repaired as necessary.

第2の実施形態では、1台ずつ待機光トランシーバーの動作検証及び故障個所の検知を実施する。このため、動作検証による故障個所がより容易に調査できるので、故障した光コンポーネントの交換または修理に必要なコストが低減される。また、第2の実施形態では、他の全ての待機光トランシーバーの動作検証結果を故障状態管理テーブルに記録しておく必要がない。従って、故障状態管理テーブルのためのメモリの使用量を削減できる。   In the second embodiment, the operation verification of the standby optical transceiver and the detection of the failure part are performed one by one. For this reason, since the failure part by operation verification can be investigated more easily, the cost required for replacement or repair of the failed optical component is reduced. In the second embodiment, it is not necessary to record the operation verification results of all other standby optical transceivers in the failure state management table. Therefore, it is possible to reduce the amount of memory used for the failure state management table.

また、第2の実施形態の光ノード装置は、このように1台の光トランシーバーのみを用いて動作検証を実施することで、動作検証制御部905及び故障検知制御部906の構成をより簡単にできるという効果がある。第1の実施形態では動作検証制御部105において2台の光トランシーバーの管理を行う必要があった。これに対して、第2の実施形態では、動作検証中に動作検証制御部905が管理する光トランシーバーは1台のみでよい。その結果、第2の実施形態では、第1の実施形態と比較して、動作検証制御部905が行う制御が単純化され、動作検証制御部905のコスト減、消費電力低減が可能となる。なお、故障箇所を管理者に示すために管理テーブルを用意して故障内容を記録してもよい。   Further, the optical node device according to the second embodiment performs the operation verification using only one optical transceiver in this way, thereby simplifying the configuration of the operation verification control unit 905 and the failure detection control unit 906. There is an effect that can be done. In the first embodiment, the operation verification control unit 105 needs to manage two optical transceivers. In contrast, in the second embodiment, only one optical transceiver is required to be managed by the operation verification control unit 905 during the operation verification. As a result, in the second embodiment, compared with the first embodiment, the control performed by the operation verification control unit 905 is simplified, and the cost and power consumption of the operation verification control unit 905 can be reduced. In addition, in order to show the failure location to the administrator, a management table may be prepared and the failure content may be recorded.

以上説明したように、第2の実施形態の光ノード装置は、周回性光波長多重合分波器を用いることで、第1の実施形態の効果に加えて、更なる小型化・低コスト化が可能なであるという効果を奏する。   As described above, the optical node device according to the second embodiment uses the recursive optical wavelength multi-polymerization demultiplexer, so that the size and cost can be further reduced in addition to the effects of the first embodiment. There is an effect that is possible.

[第3の実施形態]
次に、本発明の第3の実施形態について説明する。第3の実施形態の光ノード装置の構成は図9に示した第2の実施形態の光ノード装置200と同じであるが、待機光トランシーバーに対するスケジュール管理が異なる。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. The configuration of the optical node device of the third embodiment is the same as that of the optical node device 200 of the second embodiment shown in FIG. 9, but the schedule management for the standby optical transceiver is different.

図16に、第3の実施形態での動作検証制御部と待機光トランシーバー群のスケジュールを示す。待機光トランシーバー群1601は、待機光トランシーバー1〜16からなる。待機光トランシーバー1〜16に対するスケジュール管理は第2の実施形態とは異なっているが、第3の実施形態の光ノードの構成は第2の実施形態と同様であるので、以下においては図9を参照して構成を説明する。   FIG. 16 shows a schedule of the operation verification control unit and the standby optical transceiver group in the third embodiment. The standby optical transceiver group 1601 includes standby optical transceivers 1-16. Although the schedule management for the standby optical transceivers 1 to 16 is different from that of the second embodiment, the configuration of the optical node of the third embodiment is the same as that of the second embodiment. The configuration will be described with reference to FIG.

図17は、光ノード装置200の、第3の実施形態における動作を説明するための図である。光ノード装置200は、同時に複数の待機光トランシーバーの動作検証を行う際に、図17に示すように、マトリクススイッチ902a、902bのアグリゲーション/マルチキャスト機能を用いている。アグリゲーション/マルチキャスト機能により、複数の波長の光をマトリクススイッチ902bで合流させ、マトリクススイッチ902aで分岐させることが可能である。波長可変選択フィルタ908は、マトリクススイッチ902aで分岐された光のうち、それぞれの待機光トランシーバーの受信器が受信しようとする波長のみを透過する。   FIG. 17 is a diagram for explaining the operation of the optical node device 200 in the third embodiment. The optical node device 200 uses the aggregation / multicast functions of the matrix switches 902a and 902b as shown in FIG. 17 when performing operation verification of a plurality of standby optical transceivers simultaneously. With the aggregation / multicast function, light of a plurality of wavelengths can be merged by the matrix switch 902b and branched by the matrix switch 902a. The wavelength tunable selection filter 908 transmits only the wavelength that is to be received by the receiver of each standby optical transceiver out of the light branched by the matrix switch 902a.

このため、動作検証を行う際には、図17にλa、λbとして示されているように、待機光トランシーバーの設定波長は互いに重ならないように設定される。すなわち、動作検証制御部905は、同時に動作検証を行う待機光トランシーバーの送受信波長をそれぞれ異なるように設定する。   For this reason, when performing the operation verification, the set wavelengths of the standby optical transceivers are set so as not to overlap each other, as indicated by λa and λb in FIG. That is, the operation verification control unit 905 sets the transmission / reception wavelengths of the standby optical transceivers that perform the operation verification at the same time to be different from each other.

動作検証制御部905は定期的に待機光トランシーバーの動作検証を行う。そして、動作検証制御部905は、動作検証を行う動作期間1602では同時に8台の待機光トランシーバーの動作検証を行う。第3の実施形態における動作検証は、第2の実施形態と同様に1台ずつ、それぞれの待機光トランシーバーの送信器と受信器との間で実施される。動作検証において問題が生じた場合、第2の実施形態と同様に故障検知制御部906により故障箇所の検知を行う。この動作を全ての待機光トランシーバーにおいて繰り返し実施する。なお、第3の実施形態では、動作検証間隔を20分とし、検証を行わない待機期間1603を40分とすることで、1時間毎に8台の待機光トランシーバーの動作検証が行われるとした。   The operation verification control unit 905 periodically performs operation verification of the standby optical transceiver. Then, the operation verification control unit 905 performs the operation verification of the eight standby optical transceivers simultaneously in the operation period 1602 in which the operation verification is performed. The operation verification in the third embodiment is performed one by one between the transmitter and the receiver of each standby optical transceiver, as in the second embodiment. When a problem occurs in the operation verification, the failure detection control unit 906 detects a failure location as in the second embodiment. This operation is repeated in all standby optical transceivers. In the third embodiment, the operation verification interval is set to 20 minutes, and the standby period 1603 during which no verification is performed is set to 40 minutes, so that the operation verification of eight standby optical transceivers is performed every hour. .

このようにそれぞれの待機光トランシーバーの送信器と受信器との間を接続し、さらに、複数台の待機光トランシーバーの動作検証を一括して実施することで、評価時間を短縮できる。その結果、第3の実施形態は、第1の実施形態と比較して、さらに待機時間を長く取ることが可能となる。そして、待機期間中の動作検証制御部は、使用しない機能の動作を停止することで、電力消費を抑えることができる。さらに、待機期間をさらに長く取ることが可能となることにより、待機光トランシーバーにおいても起動時間がより長い機能部を停止しておくことが可能となり、さらに高い省電力効果を得ることができる。   In this way, by connecting the transmitters and receivers of the respective standby optical transceivers, and further performing the operation verification of a plurality of standby optical transceivers at once, the evaluation time can be shortened. As a result, the third embodiment can further increase the standby time as compared with the first embodiment. Then, the operation verification control unit during the standby period can suppress power consumption by stopping the operation of the function that is not used. Further, since the standby period can be further extended, the function unit having a longer startup time can be stopped even in the standby optical transceiver, and a higher power saving effect can be obtained.

なお、同時に動作検証する待機光トランシーバーの数は8台以下が望ましい。光ノード装置200は、同時に複数の待機光トランシーバーの動作検証を行う際に、図17に示すように、マトリクススイッチ902a、902bのアグリゲーション/マルチキャスト機能を用いている。このアグリゲーション/マルチキャスト数Nを増やしていくと、マトリクススイッチ902の分岐損失はマトリクススイッチ1台あたり−10log(1/N)dBとなる。光トランシーバー間での動作検証を行うためには、待機光トランシーバー間の損失は20dB以下であることが望ましい。この場合、2台のマトリクススイッチや波長可変選択フィルタの過剰損失を含めた損失が、20dB以下である必要があり、そのためにはNは8以下であることが好ましい。ただし、第3の実施形態の効果は、マトリクススイッチ902の損失が大きい場合でも失われるものではない。   It is desirable that the number of standby optical transceivers whose operation is verified simultaneously is 8 or less. The optical node device 200 uses the aggregation / multicast functions of the matrix switches 902a and 902b as shown in FIG. 17 when performing operation verification of a plurality of standby optical transceivers simultaneously. When the number of aggregation / multicast N is increased, the branch loss of the matrix switch 902 becomes −10 log (1 / N) dB per matrix switch. In order to verify the operation between the optical transceivers, it is desirable that the loss between the standby optical transceivers is 20 dB or less. In this case, the loss including the excessive loss of the two matrix switches and the wavelength tunable selection filter needs to be 20 dB or less, and for that purpose, N is preferably 8 or less. However, the effect of the third embodiment is not lost even when the loss of the matrix switch 902 is large.

[第4の実施形態]
図20は、本発明の第4の実施形態の光ノード装置の構成例を示す図である。光ノード装置900は、光スプリッタ2004、2007及び2008、WSS2006、波長ブロッカー2005、光トランシーバー集約装置2003を備える。光トランシーバー集約装置2003は、光トランシーバー集約器2002a及び2002bを備える。また、光トランシーバー集約器2002a、2002bには、複数の光トランシーバーからなる光トランシーバー群2001が接続されている。
[Fourth Embodiment]
FIG. 20 is a diagram illustrating a configuration example of the optical node device according to the fourth embodiment of the present invention. The optical node device 900 includes optical splitters 2004, 2007 and 2008, WSS 2006, a wavelength blocker 2005, and an optical transceiver aggregation device 2003. The optical transceiver aggregating apparatus 2003 includes optical transceiver aggregators 2002a and 2002b. Further, an optical transceiver group 2001 composed of a plurality of optical transceivers is connected to the optical transceiver aggregators 2002a and 2002b.

光ノード装置900は、方路1及び方路2のそれぞれの接続点に光スプリッタ2007及びWSS2006を備えている。光スプリッタ2007は、ある方路(例えば方路1)から受信する光を他の方路(例えば方路2)と光トランシーバー集約装置2003側とに分岐する。   The optical node device 900 includes an optical splitter 2007 and a WSS 2006 at connection points of the route 1 and the route 2, respectively. The optical splitter 2007 branches light received from a certain route (for example, route 1) to another route (for example, route 2) and the optical transceiver aggregating apparatus 2003 side.

ここで、各方路が直接接続されるようにWSS2006を設定することにより、光ノード装置900は、光ノードでAdd/Dropを行わないチャネルを光信号のままある方路から他の方路へ通過させる(光カットスルー)。光カットスルー機能により、光ノード装置が備える光トランシーバーの数を抑制することができる。   Here, by setting the WSS 2006 so that each route is directly connected, the optical node device 900 allows the channel that does not perform Add / Drop in the optical node from a route that remains an optical signal to another route. Pass through (light cut-through). The number of optical transceivers included in the optical node device can be suppressed by the optical cut-through function.

光トランシーバー集約器2002a及び2002bは例えばマトリクススイッチである。光トランシーバー集約器2002aは、光スプリッタ2007で分岐された方路1及び方路2からの光が所定の光トランシーバーで受信(Drop)されるように内部の経路を接続する。   The optical transceiver aggregators 2002a and 2002b are, for example, matrix switches. The optical transceiver aggregator 2002a connects internal paths so that light from the path 1 and the path 2 branched by the optical splitter 2007 is received (dropped) by a predetermined optical transceiver.

ここで、光スプリッタ2004及び2008は、図20に示すように、ループバック光ファイバ2009によって同一の方路の分岐側で互いに接続されている。このように接続することで、光トランシーバーが送信した光をループバックさせる経路を方路毎に構成することが可能である。ループバックの経路は、光トランシーバーの送信器、光トランシーバー集約器2002b、光スプリッタ2004、ループバック光ファイバ2009、光スプリッタ2008、光トランシーバー集約器2002a、光トランシーバーの受信器、の順となる。ここで波長ブロッカーは、また、検証用の光のエネルギーがネットワーク側に漏れないようにするために設けられている。また、光スプリッタ2004に代えて、光スイッチを用いてもよい。   Here, as shown in FIG. 20, the optical splitters 2004 and 2008 are connected to each other on the branch side of the same path by a loopback optical fiber 2009. By connecting in this way, it is possible to configure a path for looping back the light transmitted by the optical transceiver for each path. The loopback path is in the order of an optical transceiver transmitter, an optical transceiver aggregator 2002b, an optical splitter 2004, a loopback optical fiber 2009, an optical splitter 2008, an optical transceiver aggregator 2002a, and an optical transceiver receiver. Here, the wavelength blocker is also provided to prevent the energy of the verification light from leaking to the network side. Further, instead of the optical splitter 2004, an optical switch may be used.

このような構成を備える光ノード装置900は、光トランシーバーで送受信される光が光トランシーバー集約器2002a及び2002b、光スプリッタ2004及び2008を通過するように動作検証のための経路が設定される。   In the optical node device 900 having such a configuration, a path for operation verification is set so that light transmitted and received by the optical transceiver passes through the optical transceiver aggregators 2002a and 2002b and the optical splitters 2004 and 2008.

そして、光トランシーバー群2001から2台の待機光トランシーバーを選択し、上述の動作検証のための経路を用いて第1の実施形態で説明した手順と同様の動作検証を行うことができる。光トランシーバーの送受信に異常があった場合には、待機光トランシーバーまたは動作検証の経路上に異常があることを発見できる。また、第1の実施形態で説明したように、異常が発見された待機光トランシーバーと正常な待機光トランシーバーとを対向させて動作試験を行うことにより、故障個所が光トランシーバーであるかあるいはそれ以外の光コンポーネントであるかを検知することが可能である。   Then, two standby optical transceivers can be selected from the optical transceiver group 2001, and operation verification similar to the procedure described in the first embodiment can be performed using the above-described path for operation verification. If there is an abnormality in the transmission / reception of the optical transceiver, it can be found that there is an abnormality in the standby optical transceiver or the operation verification path. Further, as described in the first embodiment, an operation test is performed with a standby optical transceiver in which an abnormality is found facing a normal standby optical transceiver, so that the failure location is the optical transceiver or otherwise. It is possible to detect whether it is an optical component.

すなわち、第4の実施形態の光ノード装置も、第1の実施形態の光ノード装置と同様の、以下の効果を奏する。   That is, the optical node device according to the fourth embodiment has the following effects similar to those of the optical node device according to the first embodiment.

すなわち、第4の実施形態の光ノード装置は、信頼性の高い光ノード装置を実現できるという効果を奏する。   That is, the optical node device according to the fourth embodiment has an effect of realizing a highly reliable optical node device.

さらに、第4の実施形態の光ノード装置は、故障している光コンポーネントあるいはその故障個所を検知することが可能であるので、光ノードの故障調査に伴う運用費用を削減できるとともに、光コンポーネントの交換及び修理時間の短縮により光ノードの利用効率が向上するという効果を奏する。   Furthermore, since the optical node device according to the fourth embodiment can detect a faulty optical component or its fault location, it can reduce the operation cost associated with the optical node fault investigation and The use efficiency of the optical node is improved by shortening the replacement and repair time.

なお、第1から第3の実施形態で説明した光ノード装置100及び200も、第4の実施形態で説明した光カットスルー機能を備えていてもよい。すなわち、光ノード装置100及び200も、図20に記載した各方路の入口または出口に配置された光スプリッタ2007及びWSS2006を配置した構成を備えていてもよい。この構成を備えることにより、光ノード装置100及び200においても、光カットスルー機能が実現される。   Note that the optical node devices 100 and 200 described in the first to third embodiments may also have the optical cut-through function described in the fourth embodiment. That is, the optical node devices 100 and 200 may also have a configuration in which the optical splitter 2007 and the WSS 2006 arranged at the entrance or the exit of each route illustrated in FIG. 20 are arranged. With this configuration, the optical node devices 100 and 200 also realize the optical cut-through function.

以上、第1〜第4の実施形態について説明したが、これらは本発明の代表的な実施形態に過ぎず、各実施の形態で示した要素の組み合わせや、紹介した要素に類似の構成を用いて課題を解決してもよい。   The first to fourth embodiments have been described above. However, these are merely representative embodiments of the present invention, and combinations of elements shown in each embodiment or configurations similar to the introduced elements are used. To solve the problem.

例えば、各実施形態で示した光トランシーバーは、中継器である光トランスポンダーでも良い。また、ループバック用光ファイバは2本あるいは以上あっても良い。さらに、各実施形態で示した動作検証スケジュールは一例であり、その他のスケジュールでも可能である。例えば、検証結果に高い信頼性が必要なネットワークを構築している場合、より高い頻度で検証を実施してもよい。あるいは、常時いずれかの待機光トランシーバーの動作検証が実施されるスケジュールとすることもできる。   For example, the optical transceiver shown in each embodiment may be an optical transponder that is a repeater. There may be two or more loopback optical fibers. Furthermore, the operation verification schedule shown in each embodiment is an example, and other schedules are possible. For example, when a network that requires high reliability in the verification result is constructed, verification may be performed at a higher frequency. Alternatively, it may be a schedule in which operation verification of any one of the standby optical transceivers is always performed.

また、第2及び第3の実施形態においては、故障している可能性のある光トランシーバーが動作検証の時点で特定できる。このため、動作検証で異常が認められた場合には動作試験中の光トランシーバーの故障であると判断してもよい。この場合、故障箇所検知手段を省略することが可能であるので、第2及び第3の実施形態の光ノード装置において、さらに制御が単純化されコストが低減されるという効果を奏する。   In the second and third embodiments, an optical transceiver that may have failed can be identified at the time of operation verification. For this reason, when an abnormality is recognized in the operation verification, it may be determined that the optical transceiver is malfunctioning during the operation test. In this case, since the failure location detecting means can be omitted, the optical node devices of the second and third embodiments have the effect that the control is further simplified and the cost is reduced.

なお、本願の実施形態は以下の付記のようにも記載されうるが、以下には限定されない。
[付記1]
送信器が接続される少なくとも1つの第1のポートと、
受信器が接続される少なくとも1つの第2のポートと、
一部が前記第1のポートとのみ選択的に接続され、他の一部が前記第2のポートとのみ選択的に接続される少なくとも2つの第3のポートと、
前記第3のポートの2つである第6のポート及び第7のポートを接続する光伝送路と、
を備え、
前記第1のポートの1つである第4のポートが前記第6のポートと、前記第2のポートの1つである第5のポートが前記第7のポートと、それぞれ接続可能に構成される、光ノード装置。
In addition, although embodiment of this application can also be described like the following additional remarks, it is not limited to the following.
[Appendix 1]
At least one first port to which the transmitter is connected;
At least one second port to which the receiver is connected;
At least two third ports, some of which are selectively connected only to the first port and other parts are selectively connected only to the second port;
An optical transmission line connecting the sixth port and the seventh port which are two of the third ports;
With
The fourth port, which is one of the first ports, can be connected to the sixth port, and the fifth port, which is one of the second ports, can be connected to the seventh port. An optical node device.

[付記2]
前記第1のポートと、前記第1のポートとのみ選択的に接続される前記第3のポートと、を備える第1の光トランシーバー集約器、及び、
前記第2のポートと、前記第2のポートとのみ選択的に接続される前記第3のポートと、を備える第2の光トランシーバー集約器と、
を備える、付記1に記載された光ノード装置。
[Appendix 2]
A first optical transceiver aggregator comprising: the first port; and the third port selectively connected only to the first port; and
A second optical transceiver aggregator comprising: the second port; and the third port selectively connected only to the second port;
An optical node device according to appendix 1, comprising:

[付記3]
前記第1の光トランシーバー集約器は前記第3のポートに合波側ポートが接続される第1の光波長多重合分波器を備え、
前記第2の光トランシーバー集約器は前記第3のポートに合波側ポートが接続される第2の光波長多重合分波器を備える、
付記2に記載された光ノード装置。
[Appendix 3]
The first optical transceiver aggregator includes a first optical wavelength multiple demultiplexer having a multiplexing side port connected to the third port,
The second optical transceiver aggregator includes a second optical wavelength multiple demultiplexer having a multiplexing side port connected to the third port.
The optical node device according to appendix 2.

[付記4]
前記送信器及び前記受信器を選択し、選択された前記送信器及び前記受信器を前記第4のポート及び前記第5のポートにそれぞれ接続し、前記送信器、前記受信器、前記第1の光トランシーバー集約器及び前記第2の光トランシーバー集約器の動作検証を行う動作検証制御部をさらに備える、付記2又は3に記載された光ノード装置。
[Appendix 4]
Selecting the transmitter and the receiver, and connecting the selected transmitter and the receiver to the fourth port and the fifth port, respectively, the transmitter, the receiver, the first The optical node device according to appendix 2 or 3, further comprising an operation verification control unit that performs operation verification of the optical transceiver aggregator and the second optical transceiver aggregator.

[付記5]
前記第5のポートと前記受信器との間に透過波長を設定可能な可変波長選択器をさらに備え、
前記第1の光トランシーバー集約器は前記第1のポートに入力された複数の光を合流させて前記第6のポートに出力するアグリゲーション機能を備え、
前記第2の光トランシーバー集約器は前記第7のポートに入力された光を分岐させて前記第2のポートに出力するマルチキャスト機能を備え、
前記第1及び第2の光波長多重合分波器は波長周回性を備える、付記3に記載された光ノード装置。
[Appendix 5]
A variable wavelength selector capable of setting a transmission wavelength between the fifth port and the receiver;
The first optical transceiver aggregator includes an aggregation function that combines a plurality of lights input to the first port and outputs the combined light to the sixth port;
The second optical transceiver aggregator includes a multicast function for branching light input to the seventh port and outputting the branched light to the second port;
The optical node device according to appendix 3, wherein the first and second optical wavelength multiple polymerization demultiplexers are provided with wavelength recursion.

[付記6]
前記送信器及び前記受信器を選択し、選択された前記送信器及び前記受信器を前記第4のポート及び前記第5のポートにそれぞれ接続し、前記送信器、前記受信器、前記第1の光トランシーバー集約器及び前記第2の光トランシーバー集約器の動作検証を行い、前記可変波長選択器の透過波長と前記光送信機の送信波長とを変化させて、前記可変波長選択器の波長可変特性及び前記送信機の波長可変特性を検証する動作検証制御部を備える、付記5に記載された光ノード装置。
[Appendix 6]
Selecting the transmitter and the receiver, and connecting the selected transmitter and the receiver to the fourth port and the fifth port, respectively, the transmitter, the receiver, the first Operation verification of the optical transceiver aggregator and the second optical transceiver aggregator is performed, and the transmission wavelength of the variable wavelength selector and the transmission wavelength of the optical transmitter are changed to change the wavelength variable characteristic of the variable wavelength selector. The optical node device according to appendix 5, further comprising an operation verification control unit that verifies the wavelength variable characteristics of the transmitter.

[付記7]
前記第1の光トランシーバー集約器が備える前記第3のポートから出力される光を2以上に分岐し、前記分岐した一の光を前記光伝送路に出力し、前記分岐した他の光をネットワークに出力する光分岐器と、
前記ネットワークから自光ノード宛に伝送された光と前記光伝送路を伝送された光とを結合して前記第2の光トランシーバー集約器が備える前記第3ポートのいずれかのポートに入力する光結合器と、
をさらに備える付記2に記載された光ノード装置。
[Appendix 7]
The light output from the third port included in the first optical transceiver aggregator is branched into two or more, the branched light is output to the optical transmission line, and the branched other light is networked An optical splitter that outputs to
Light input from one of the third ports of the second optical transceiver aggregator by combining light transmitted from the network to the optical node and light transmitted through the optical transmission path A coupler;
The optical node device according to appendix 2, further comprising:

[付記8]
前記送信器及び前記受信器の少なくとも一方は送信機能及び受信機能を備える光トランシーバーである、付記1乃至7のいずれかに記載された光ノード装置。
[Appendix 8]
The optical node device according to any one of appendices 1 to 7, wherein at least one of the transmitter and the receiver is an optical transceiver having a transmission function and a reception function.

[付記9]
前記動作検証制御部は所定の動作検証期間中に複数の前記送信機及び前記受信器に対し逐次動作検証を実施する、付記4又は6に記載された光ノード装置。
[Appendix 9]
The optical node device according to appendix 4 or 6, wherein the operation verification control unit sequentially performs operation verification on a plurality of the transmitter and the receiver during a predetermined operation verification period.

[付記10]
前記動作検証制御部は所定の動作検証期間中に各1台の前記送信器及び前記受信器に対し動作検証を実施する、付記4又は6に記載された光ノード装置。
[Appendix 10]
The optical node device according to appendix 4 or 6, wherein the operation verification control unit performs operation verification on each of the one transmitter and the receiver during a predetermined operation verification period.

[付記11]
前記送信器及び前記受信器の少なくとも一方は待機時に一部の機能を停止する複数の待機モードを備え、
前記動作検証制御部は前記待機モードのうちより高速に起動が可能な待機モードで待機している前記送信器又は前記受信器に対してのみ動作検証を実施する、付記4、6、9及び10のいずれかに記載された光ノード装置。
[Appendix 11]
At least one of the transmitter and the receiver includes a plurality of standby modes for stopping some functions during standby,
The operation verification control unit performs the operation verification only for the transmitter or the receiver that is waiting in a standby mode that can be activated at a higher speed among the standby modes. An optical node device according to any one of the above.

[付記12]
前記動作検証制御部はネットワークの使用状況に応じて所定の時間に前記動作検証を実施する、付記4、6、9乃至11のいずれかに記載された光ノード装置。
[Appendix 12]
The optical node device according to any one of appendices 4, 6, 9 to 11, wherein the operation verification control unit performs the operation verification at a predetermined time according to a use situation of a network.

[付記13]
前記動作検証制御部は前記光トランシーバーの起動時間を検証する機能を備える、付記4、6、9乃至12のいずれかに記載された光ノード装置。
[Appendix 13]
The optical node device according to any one of appendices 4, 6, 9 to 12, wherein the operation verification control unit has a function of verifying a startup time of the optical transceiver.

[付記14]
前記動作検証で故障が検知された前記送信器又は前記受信器と前記動作検証で故障が検知されなかった前記送信器又は前記受信器との間でさらに動作検証を実施する故障検知制御部を備える、付記4、6、9乃至13のいずれかに記載された光ノード装置。
[Appendix 14]
A failure detection control unit that further performs operation verification between the transmitter or the receiver in which a failure is detected in the operation verification and the transmitter or the receiver in which no failure is detected in the operation verification; An optical node device described in any one of Appendix 4, 6, 9 to 13.

[付記15]
前記動作検証制御部は、所定の動作検証期間中に前記送信器及び前記受信器を備える光トランシーバーを選択し前記動作検証を実施する、付記4、6、9乃至14に記載された光ノード装置。
[Appendix 15]
The optical node device according to appendix 4, 6, 9 to 14, wherein the operation verification control unit selects an optical transceiver including the transmitter and the receiver during a predetermined operation verification period and performs the operation verification. .

[付記16]
一部が送信器が接続される少なくとも1つの第1のポートとのみ選択的に接続され他の一部が受信器が接続される少なくとも1つの第2のポートとのみ選択的に接続される第3のポートの2つである第6のポートと第7のポートとを光伝送路で接続し、
前記第1のポートの1つである第4のポートと前記第6のポートとを接続し、
前記第2のポートの1つである第5のポートと前記第7のポートとを接続する、光ノード装置の制御方法。
[Appendix 16]
The first part is selectively connected only to at least one first port to which the transmitter is connected and the other part is selectively connected only to at least one second port to which the receiver is connected. The sixth port and the seventh port, which are two of the three ports, are connected by an optical transmission line;
Connecting the fourth port, which is one of the first ports, and the sixth port;
An optical node device control method for connecting a fifth port, which is one of the second ports, and the seventh port.

本発明の活用例として、以下の2つが考えられる。1つは、光通信ネットワークのコアやメトロ領域での光ノードへの適用である。もう1つは、データセンターやスーパーコンピュータなどの光トランシーバーを用いる大規模装置への適用である。   The following two can be considered as examples of utilization of the present invention. One is application to optical nodes in the core and metro area of optical communication networks. The other is application to a large-scale apparatus using an optical transceiver such as a data center or a supercomputer.

100、200、800、900 光ノード装置
101、901、1801、1901、2001 光トランシーバー群
102a、102b マトリクススイッチ
1801a〜1801g 光トランシーバー
104a、104b、907a、907b、1804、1902a、1902b、2002a、2002b 光トランシーバー集約器
103 波長多重合分波器
109、904、2009 ループバック光ファイバ
105、905 動作検証制御部
106、906 故障検知制御部
201、1002、1602 検証期間
202、1003、1603 待機期間
203、1001、1601 待機光トランシーバー群
301、303 起動時間
302、304 導通時間
902a、902b、1802 マトリクススイッチ
903、1803 周回性光波長多重合分波器
908 波長可変選択フィルタ
1805 光ファイバ群
1903、2003 光トランシーバー集約装置
1906、2006 WSS
1907、2004、2007、2008 光スプリッタ
2005 波長ブロッカー
100, 200, 800, 900 Optical node device 101, 901, 1801, 1901, 2001 Optical transceiver group 102a, 102b Matrix switch 1801a to 1801g Optical transceiver 104a, 104b, 907a, 907b, 1804, 1902a, 1902b, 2002a, 2002b Optical Transceiver aggregator 103 Wavelength multiple polymerization demultiplexer 109, 904, 2009 Loopback optical fiber 105, 905 Operation verification control unit 106, 906 Failure detection control unit 201, 1002, 1602 Verification period 202, 1003, 1603 Standby period 203, 1001 , 1601 Standby optical transceiver group 301, 303 Start-up time 302, 304 Conduction time 902a, 902b, 1802 Matrix switch 903, 1803 Optical wavelength multiple polymerization demultiplexer 908 Variable wavelength selection filter 1805 Optical fiber group 1903, 2003 Optical transceiver aggregator 1906, 2006 WSS
1907, 2004, 2007, 2008 Optical splitter 2005 Wavelength blocker

Claims (10)

送信器が接続される少なくとも1つの第1のポートと、
受信器が接続される少なくとも1つの第2のポートと、
一部が前記第1のポートとのみ選択的に接続され、他の一部が前記第2のポートとのみ選択的に接続される少なくとも2つの第3のポートと、
前記第3のポートの2つである第6のポート及び第7のポートを接続する光伝送路と、
を備え、
前記第1のポートの1つである第4のポートが前記第6のポートと、前記第2のポートの1つである第5のポートが前記第7のポートと、それぞれ接続可能に構成される、光ノード装置。
At least one first port to which the transmitter is connected;
At least one second port to which the receiver is connected;
At least two third ports, some of which are selectively connected only to the first port and other parts are selectively connected only to the second port;
An optical transmission line connecting the sixth port and the seventh port which are two of the third ports;
With
The fourth port, which is one of the first ports, can be connected to the sixth port, and the fifth port, which is one of the second ports, can be connected to the seventh port. An optical node device.
前記第1のポートと、前記第1のポートとのみ選択的に接続される前記第3のポートと、を備える第1の光トランシーバー集約器、及び、
前記第2のポートと、前記第2のポートとのみ選択的に接続される前記第3のポートと、を備える第2の光トランシーバー集約器と、
を備える、請求項1に記載された光ノード装置。
A first optical transceiver aggregator comprising: the first port; and the third port selectively connected only to the first port; and
A second optical transceiver aggregator comprising: the second port; and the third port selectively connected only to the second port;
The optical node device according to claim 1, comprising:
前記第1の光トランシーバー集約器は前記第3のポートに合波側ポートが接続される第1の光波長多重合分波器を備え、
前記第2の光トランシーバー集約器は前記第3のポートに合波側ポートが接続される第2の光波長多重合分波器を備える、
請求項2に記載された光ノード装置。
The first optical transceiver aggregator includes a first optical wavelength multiple demultiplexer having a multiplexing side port connected to the third port,
The second optical transceiver aggregator includes a second optical wavelength multiple demultiplexer having a multiplexing side port connected to the third port.
The optical node device according to claim 2.
前記送信器及び前記受信器を選択し、選択された前記送信器及び前記受信器を前記第4のポート及び前記第5のポートにそれぞれ接続し、前記送信器、前記受信器、前記第1の光トランシーバー集約器及び前記第2の光トランシーバー集約器の動作検証を行う動作検証制御部をさらに備える、請求項2又は3に記載された光ノード装置。 Selecting the transmitter and the receiver, and connecting the selected transmitter and the receiver to the fourth port and the fifth port, respectively, the transmitter, the receiver, the first The optical node device according to claim 2, further comprising an operation verification control unit configured to perform an operation verification of the optical transceiver aggregator and the second optical transceiver aggregator. 前記第5のポートと前記受信器との間に透過波長を設定可能な可変波長選択器をさらに備え、
前記第1の光トランシーバー集約器は前記第1のポートに入力された複数の光を合流させて前記第6のポートに出力するアグリゲーション機能を備え、
前記第2の光トランシーバー集約器は前記第7のポートに入力された光を分岐させて前記第2のポートに出力するマルチキャスト機能を備え、
前記第1及び第2の光波長多重合分波器は波長周回性を備える、請求項3に記載された光ノード装置。
A variable wavelength selector capable of setting a transmission wavelength between the fifth port and the receiver;
The first optical transceiver aggregator includes an aggregation function that combines a plurality of lights input to the first port and outputs the combined light to the sixth port;
The second optical transceiver aggregator includes a multicast function for branching light input to the seventh port and outputting the branched light to the second port;
4. The optical node device according to claim 3, wherein the first and second optical wavelength multiple polymerization demultiplexers have wavelength recursion.
前記送信器及び前記受信器を選択し、選択された前記送信器及び前記受信器を前記第4のポート及び前記第5のポートにそれぞれ接続し、前記送信器、前記受信器、前記第1の光トランシーバー集約器及び前記第2の光トランシーバー集約器の動作検証を行い、前記可変波長選択器の透過波長と前記光送信機の送信波長とを変化させて、前記可変波長選択器の波長可変特性及び前記送信機の波長可変特性を検証する動作検証制御部を備える、請求項5に記載された光ノード装置。 Selecting the transmitter and the receiver, and connecting the selected transmitter and the receiver to the fourth port and the fifth port, respectively, the transmitter, the receiver, the first Operation verification of the optical transceiver aggregator and the second optical transceiver aggregator is performed, and the transmission wavelength of the variable wavelength selector and the transmission wavelength of the optical transmitter are changed to change the wavelength variable characteristic of the variable wavelength selector. The optical node device according to claim 5, further comprising an operation verification control unit that verifies a wavelength variable characteristic of the transmitter. 前記第1の光トランシーバー集約器が備える前記第3のポートから出力される光を2以上に分岐し、前記分岐した一の光を前記光伝送路に出力し、前記分岐した他の光をネットワークに出力する光分岐器と、
前記ネットワークから自光ノード宛に伝送された光と前記光伝送路を伝送された光とを結合して前記第2の光トランシーバー集約器が備える前記第3ポートのいずれかのポートに入力する光結合器と、
をさらに備える請求項2に記載された光ノード装置。
The light output from the third port included in the first optical transceiver aggregator is branched into two or more, the branched light is output to the optical transmission line, and the branched other light is networked An optical splitter that outputs to
Light input from one of the third ports of the second optical transceiver aggregator by combining light transmitted from the network to the optical node and light transmitted through the optical transmission path A coupler;
The optical node device according to claim 2, further comprising:
前記送信器及び前記受信器の少なくとも一方は待機時に一部の機能を停止する複数の待機モードを備え、
前記動作検証制御部は前記待機モードのうちより高速に起動が可能な待機モードで待機している前記送信器又は前記受信器に対してのみ動作検証を実施する、請求項4又は6に記載された光ノード装置。
At least one of the transmitter and the receiver includes a plurality of standby modes for stopping some functions during standby,
7. The operation verification control unit according to claim 4, wherein the operation verification control unit performs the operation verification only on the transmitter or the receiver that is waiting in a standby mode that can be activated at a higher speed among the standby modes. Optical node equipment.
前記動作検証で故障が検知された前記送信器又は前記受信器と前記動作検証で故障が検知されなかった前記送信器又は前記受信器との間でさらに動作検証を実施する故障検知制御部を備える、請求項4、6及び8のいずれかに記載された光ノード装置。 A failure detection control unit that further performs operation verification between the transmitter or the receiver in which a failure is detected in the operation verification and the transmitter or the receiver in which no failure is detected in the operation verification; An optical node device according to any one of claims 4, 6, and 8. 一部が送信器が接続される少なくとも1つの第1のポートとのみ選択的に接続され他の一部が受信器が接続される少なくとも1つの第2のポートとのみ選択的に接続される第3のポートの2つである第6のポートと第7のポートとを光伝送路で接続し、
前記第1のポートの1つである第4のポートと前記第6のポートとを接続し、
前記第2のポートの1つである第5のポートと前記第7のポートとを接続する、光ノード装置の制御方法。
The first part is selectively connected only to at least one first port to which the transmitter is connected and the other part is selectively connected only to at least one second port to which the receiver is connected. The sixth port and the seventh port, which are two of the three ports, are connected by an optical transmission line;
Connecting the fourth port, which is one of the first ports, and the sixth port;
An optical node device control method for connecting a fifth port, which is one of the second ports, and the seventh port.
JP2011137550A 2011-06-21 2011-06-21 Optical node device and controlling method of optical node device Pending JP2013005388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011137550A JP2013005388A (en) 2011-06-21 2011-06-21 Optical node device and controlling method of optical node device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011137550A JP2013005388A (en) 2011-06-21 2011-06-21 Optical node device and controlling method of optical node device

Publications (1)

Publication Number Publication Date
JP2013005388A true JP2013005388A (en) 2013-01-07

Family

ID=47673430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011137550A Pending JP2013005388A (en) 2011-06-21 2011-06-21 Optical node device and controlling method of optical node device

Country Status (1)

Country Link
JP (1) JP2013005388A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04207528A (en) * 1990-11-30 1992-07-29 Nippon Telegr & Teleph Corp <Ntt> Optical loopback test equipment
JPH10107744A (en) * 1996-09-25 1998-04-24 Matsushita Electric Works Ltd Self-dignostic method for radio communication equipment and device therefor
JP2002033703A (en) * 2000-07-17 2002-01-31 Nec Miyagi Ltd Optical reception fault diagnostic method, and optical transmission system provided with optical reception fault diagnostic function
WO2007094041A1 (en) * 2006-02-14 2007-08-23 Fujitsu Limited Server managing device and server managing program
JP2010081374A (en) * 2008-09-26 2010-04-08 Nippon Telegr & Teleph Corp <Ntt> Optical cross connect device, and optical network
WO2011043122A1 (en) * 2009-10-07 2011-04-14 日本電気株式会社 Optical signal transmitter apparatus, optical signal receiver apparatus, wavelength de-multiplex optical communication apparatus and wavelength path system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04207528A (en) * 1990-11-30 1992-07-29 Nippon Telegr & Teleph Corp <Ntt> Optical loopback test equipment
JPH10107744A (en) * 1996-09-25 1998-04-24 Matsushita Electric Works Ltd Self-dignostic method for radio communication equipment and device therefor
JP2002033703A (en) * 2000-07-17 2002-01-31 Nec Miyagi Ltd Optical reception fault diagnostic method, and optical transmission system provided with optical reception fault diagnostic function
WO2007094041A1 (en) * 2006-02-14 2007-08-23 Fujitsu Limited Server managing device and server managing program
JP2010081374A (en) * 2008-09-26 2010-04-08 Nippon Telegr & Teleph Corp <Ntt> Optical cross connect device, and optical network
WO2011043122A1 (en) * 2009-10-07 2011-04-14 日本電気株式会社 Optical signal transmitter apparatus, optical signal receiver apparatus, wavelength de-multiplex optical communication apparatus and wavelength path system

Similar Documents

Publication Publication Date Title
JP6493534B2 (en) Optical add / drop apparatus and optical add / drop method
US9680569B2 (en) Method and system for optical connection validation in a reconfigurable optical add-drop multiplexer (ROADM) node
US8139476B2 (en) Optical ring networks using circulating optical probe in protection switching with automatic reversion
US8260133B2 (en) Standby restoration signaling for optical networks
US6842562B2 (en) Optical add/drop node and method
JP4893700B2 (en) Method and system for communicating control signals over a ring optical network
JP4500136B2 (en) WDM optical transmitter
CN107408981B (en) Optical multiplexing and demultiplexing apparatus and method of controlling the same
US20120195588A1 (en) Optical ring networks having node-to-node optical communication channels for carrying data traffic
US8401386B2 (en) Optical transmission apparatus
JP6115364B2 (en) Optical transmission apparatus, optical transmission system, and optical transmission method
US7805075B2 (en) Methods of restoration in an ultra-long haul optical network
US9647789B2 (en) Optical transmission device, optical transmission system, and test method for alarm function
JP2010041602A (en) Wavelength division multiplexer, and regenerative repeating method in wavelength division multiplexing network
US20130294770A1 (en) Monitoring system, monitoring method and monitoring program
US20150086192A1 (en) Determining method, determining optical module, and optical communication apparatus
JP2006191643A (en) Optical network, hub node, and access node
RU2607724C2 (en) Wave multiplexer and method and program of faulty section identification
US20050175346A1 (en) Upgraded flexible open ring optical network and method
US6768831B2 (en) Optical add-drop multiplexing apparatus
JP4905076B2 (en) Station side equipment
JP2013005388A (en) Optical node device and controlling method of optical node device
EP2482480B1 (en) Optical network element for WDM
JP2006186538A (en) Optical transmission apparatus and method of changing optical transmission line
US20230353912A1 (en) Optical branching/coupling device and method for controlling same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151006