JP2013004589A - Selenide furnace, manufacturing method of compound semiconductor thin film, and manufacturing method of compound thin film solar cell - Google Patents

Selenide furnace, manufacturing method of compound semiconductor thin film, and manufacturing method of compound thin film solar cell Download PDF

Info

Publication number
JP2013004589A
JP2013004589A JP2011131639A JP2011131639A JP2013004589A JP 2013004589 A JP2013004589 A JP 2013004589A JP 2011131639 A JP2011131639 A JP 2011131639A JP 2011131639 A JP2011131639 A JP 2011131639A JP 2013004589 A JP2013004589 A JP 2013004589A
Authority
JP
Japan
Prior art keywords
gas
chamber
thin film
pressure
selenization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011131639A
Other languages
Japanese (ja)
Inventor
Yoshio Inoue
喜央 井上
Eiji Konoshima
栄次 此島
Yun Rong Wu
芸栄 呉
Hironori Urata
裕功 浦田
Yasuki Kawashima
康樹 川島
Tsutomu Kanai
勉 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAKPLE CO Ltd
Original Assignee
MAKPLE CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAKPLE CO Ltd filed Critical MAKPLE CO Ltd
Priority to JP2011131639A priority Critical patent/JP2013004589A/en
Publication of JP2013004589A publication Critical patent/JP2013004589A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a selenide furnace capable of uniformly performing selenide in a short time, a manufacturing method of a compound semiconductor thin film, and a manufacturing method of a compound thin film solar cell.SOLUTION: A selenide furnace comprises: chambers 11 and 14; gas supply sources 25 and 26 which introduce a processing gas containing a selenide gas into the chamber 11 at high pressure; gas pressure adjusting means 28 which is provided between the gas supply source and the chamber and adjusts a gas to be introduced into the chamber to a prescribed pressure higher than normal pressure; heating means 12 for heating the inside of the chamber; discharging means 22 and 29 for discharging the gas into the chamber 11; and a stand 18 for placing a workpiece 2 in the chamber.

Description

本発明は、CIS系又はCIGS系太陽電池の光吸収層などとして用いることができる光電変換特性を有する化合物半導体薄膜を製造する化合物半導体薄膜の製造方法及びこれを製造するためのセレン化炉に関する。   The present invention relates to a method for producing a compound semiconductor thin film for producing a compound semiconductor thin film having photoelectric conversion characteristics that can be used as a light absorbing layer of a CIS or CIGS solar cell, and a selenization furnace for producing the same.

化合物薄膜系太陽電池の一つとして、カルコパイライト系等の太陽電池があり、CIS(Cu(In)Se)やCIGS(Cu(In,Ga)Se)などの太陽電池の量産化が検討されている。   As one of the compound thin film solar cells, there is a solar cell such as chalcopyrite, and the mass production of solar cells such as CIS (Cu (In) Se) and CIGS (Cu (In, Ga) Se) has been studied. Yes.

このようなカルコパイライト型太陽電池の光吸収層を製造する方法として、銅(Cu)、インジウム(In)及びガリウム(Ga)をスパッタリング等で成膜して合金薄膜を前駆体とし、これをHSeガスの雰囲気中でアニールすることにより、セレン化して化合物半導体薄膜からなる光吸収層とする方法が知られている(特許文献1、2など参照)。 As a method for producing such a light-absorbing layer of a chalcopyrite solar cell, copper (Cu), indium (In), and gallium (Ga) are formed by sputtering or the like, and an alloy thin film is used as a precursor. 2. Description of the Related Art There is known a method of forming a light absorption layer made of a compound semiconductor thin film by annealing in an atmosphere of 2 Se gas (see Patent Documents 1 and 2).

このような光吸収層の製造方法では、セレン化工程においては、一般的には、セレン化ガスを流しながら加熱する方法がとられ(特許文献3など参照)セレン化ガスの濃度の均一性や温度分布の均一性に問題があり、均一にセレン化するのが困難であった。また、セレン化ガスの腐食性が高く、有毒ガスの発生の可能性もあり、より安全な製造が可能な方法が要望される一方、セレン化工程にかかる時間の短縮も望まれている。   In such a light absorption layer manufacturing method, in the selenization step, generally, a method of heating while flowing a selenization gas is used (see Patent Document 3 and the like). There was a problem in the uniformity of the temperature distribution, and it was difficult to uniformly selenize. In addition, the selenization gas is highly corrosive and toxic gas may be generated, and a method capable of safer production is desired. On the other hand, reduction of the time required for the selenization process is also desired.

特開2000−58893号公報JP 2000-58893 A 特開2001−339081号公報JP 2001-339081 A 特開2006−005326号公報JP 2006-005326 A

そこで、本発明は、セレン化を均一に且つ短時間で行うことができるセレン化炉及び化合物半導体薄膜の製造方法並びに化合物薄膜太陽電池の製造方法を提供することを課題とする。   Then, this invention makes it a subject to provide the selenization furnace which can perform selenization uniformly and for a short time, the manufacturing method of a compound semiconductor thin film, and the manufacturing method of a compound thin film solar cell.

前記課題を解決する本発明の第1の態様は、チャンバーと、前記チャンバー内にセレン化ガスを含む処理ガスを高圧で導入するガス供給源と、前記ガス供給源と前記チャンバーとの間に設けられて当該チャンバー内に導入されるガスを常圧より高く所定の圧力に調整するガス圧調整手段と、前記チャンバー内を加熱する加熱手段と、前記チャンバー内のガスを排出する排出手段と、前記チャンバー内に被処理物を載置するための置台とを具備することを特徴とするセレン化炉にある。   According to a first aspect of the present invention for solving the above-described problem, a chamber, a gas supply source for introducing a processing gas containing a selenization gas into the chamber at a high pressure, and a gas supply source provided between the gas supply source and the chamber are provided. Gas pressure adjusting means for adjusting the gas introduced into the chamber to a predetermined pressure higher than normal pressure, heating means for heating the inside of the chamber, discharge means for discharging the gas in the chamber, A selenization furnace comprising a placing table for placing an object to be processed in a chamber.

本発明の第2の態様は、第1の態様に記載のセレン化炉において、前記チャンバーは、内チャンバーと外チャンバーとからなる二重構造であり、前記内チャンバーと前記外チャンバーとの間の空間に内チャンバー内の圧力よりも高圧のガスを導入するバリアガス導入手段を具備することを特徴とするセレン化炉にある。   According to a second aspect of the present invention, in the selenization furnace according to the first aspect, the chamber has a double structure including an inner chamber and an outer chamber, and the chamber is between the inner chamber and the outer chamber. A selenization furnace comprising barrier gas introduction means for introducing a gas having a pressure higher than the pressure in the inner chamber into the space.

本発明の第3の態様は、第2の態様に記載のセレン化炉において、前記内チャンバーが酸化ケイ素又は炭化ケイ素からなり、前記外チャンバーが金属製であることを特徴とするセレン化炉にある。   According to a third aspect of the present invention, there is provided the selenization furnace according to the second aspect, wherein the inner chamber is made of silicon oxide or silicon carbide, and the outer chamber is made of metal. is there.

本発明の第4の態様は、カルコパイライト型構造からなる化合物半導体薄膜の製造方法において、銅及びインジウム、又は銅、インジウム及びガリウムからなる反応前駆体薄膜を形成する工程と、前記反応前駆体薄膜をセレン化ガスを含む処理ガスを1kg/cm〜10kg/cmの圧力下で含む条件下で、500〜650℃で加熱してセレン化する工程とを含むことを特徴とする化合物半導体薄膜の製造方法にある。 According to a fourth aspect of the present invention, there is provided a method for producing a compound semiconductor thin film having a chalcopyrite structure, the step of forming a reaction precursor thin film made of copper and indium, or copper, indium and gallium, and the reaction precursor thin film. under conditions comprising a process gas containing selenide gas 1kg / cm 2 ~10kg / cm 2 under pressure, the compound semiconductor thin film characterized by comprising the step of selenium by heating at 500 to 650 ° C. It is in the manufacturing method.

本発明の第5の態様は、第4の態様に記載の反応前駆体薄膜を形成する工程と、セレン化する工程とを含むことを特徴とする化合物薄膜太陽電池の製造方法にある。   According to a fifth aspect of the present invention, there is provided a method for producing a compound thin-film solar cell, comprising the step of forming the reaction precursor thin film according to the fourth aspect and the step of selenization.

本発明の一実施形態に係るセレン化炉の概略断面図である。It is a schematic sectional drawing of the selenization furnace which concerns on one Embodiment of this invention. 本発明のセレン化炉を用いてのセレン化処理のタイミングチャートの一例である。It is an example of the timing chart of the selenization process using the selenization furnace of this invention. 比較としてのセレン化処理のタイミングチャートの一例である。It is an example of the timing chart of the selenization process as a comparison.

以下、本発明の実施形態を図面に基づいて詳細に説明する。
図1は、本発明の一実施形態に係るセレン化炉の概略断面図である。
図1に示すように、本実施形態に係るセレン化炉1は、内チャンバー11と、内チャンバー11を加熱する加熱手段であるヒーター12と、内チャンバー11との間に所定の空間13を形成するように設けられた外チャンバー14とを具備し、空間13は、内チャンバー11の下側開口に対応した開口部15を有する底板16により密閉される構造となっている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of a selenization furnace according to an embodiment of the present invention.
As shown in FIG. 1, the selenization furnace 1 according to this embodiment forms a predetermined space 13 between an inner chamber 11, a heater 12 that is a heating means for heating the inner chamber 11, and the inner chamber 11. The space 13 is sealed by a bottom plate 16 having an opening 15 corresponding to the lower opening of the inner chamber 11.

また、底板16の開口部15は、下方に移動可能に設けられた基台17により密封され、基台17上には、被処理物2を載置する置台18が設けられている。   Moreover, the opening 15 of the bottom plate 16 is sealed by a base 17 that is provided so as to be movable downward. On the base 17, a table 18 on which the workpiece 2 is placed is provided.

一方、内チャンバー11には、内チャンバー11内にガスを導入するガス導入配管21と、ガス排出配管22とが設けられ、外チャンバー14には、内チャンバー11と外チャンバー14との間の空間13にガスを導入する高圧ガス導入配管23が設けられている。   On the other hand, the inner chamber 11 is provided with a gas introduction pipe 21 for introducing gas into the inner chamber 11 and a gas discharge pipe 22, and the outer chamber 14 has a space between the inner chamber 11 and the outer chamber 14. 13 is provided with a high pressure gas introduction pipe 23 for introducing gas.

ガス導入配管21には、処理ガス供給管24が接続され、処理ガス供給管24には、高圧ガス源25と、セレン化ガス源26とがガス混合器27を介して接続されている。また、処理ガス供給管24のガス混合器27の下流側には、ガス圧調整手段である圧力制御バルブ28が介装されている。   A processing gas supply pipe 24 is connected to the gas introduction pipe 21, and a high pressure gas source 25 and a selenization gas source 26 are connected to the processing gas supply pipe 24 via a gas mixer 27. Further, a pressure control valve 28 serving as a gas pressure adjusting means is interposed on the downstream side of the gas mixer 27 of the processing gas supply pipe 24.

また、ガス排出配管22には、ガス排出管29が接続されてガス排出手段を構成し、ガス排出管29には、圧力制御バルブ30が介装されている。   Further, a gas discharge pipe 29 is connected to the gas discharge pipe 22 to constitute a gas discharge means, and a pressure control valve 30 is interposed in the gas discharge pipe 29.

さらに、高圧ガス導入配管23には、高圧ガス供給管31が接続され、高圧ガス供給管31には高圧ガス源32が接続され、高圧ガス供給管31の高圧ガス源32の下流には、ガス圧調整手段である圧力制御バルブ33が介装されている。   Further, a high pressure gas supply pipe 31 is connected to the high pressure gas introduction pipe 23, a high pressure gas source 32 is connected to the high pressure gas supply pipe 31, and a gas is provided downstream of the high pressure gas source 32 of the high pressure gas supply pipe 31. A pressure control valve 33, which is a pressure adjusting means, is interposed.

そして、圧力制御バルブ28、30および33は、圧力制御手段34によりそれぞれ制御されるようになっている。また、ヒーター12は、温度制御手段35により制御されるようになっている。   The pressure control valves 28, 30 and 33 are controlled by the pressure control means 34, respectively. The heater 12 is controlled by temperature control means 35.

ここで、内チャンバー11は、例えば、石英(SiO)や炭化ケイ素(SiC)などの材料で形成され、外チャンバー14は、例えば、鉄系材料、ステンレス鋼などで形成されるが、これらに限定されるものではない。 Here, the inner chamber 11 is formed of a material such as quartz (SiO 2 ) or silicon carbide (SiC), and the outer chamber 14 is formed of an iron-based material, stainless steel, or the like. It is not limited.

処理ガス供給管24に接続される高圧ガス源25は、例えば、アルゴン、ヘリウム、窒素などの不活性ガスの高圧源であり、1kg/cm以上、10kg/cm未満、好ましくは4〜6kg/cm程度の圧力を有するものである。セレン化ガス源26は、セレン化水素(HSe)のガス源であり、不活性ガスに混合して用いられるので、高圧ガス源である必要はない。これら高圧ガス源25およびセレン化ガス源26からのガスは、ガス混合器27および圧力制御バルブ28を介してガス導入配管21から内チャンバー11内に導入されるが、セレン化ガスの濃度は、例えば、10〜60モル%程度とする。また、高圧ガス源25およびセレン化ガス源26からのガスの導入は、混合状態で行っても、別プロセスで行ってもよいが、結果的に内チャンバー11内に、所定の混合比で、所定の圧力で供給されればよい。勿論、これら高圧ガス源25およびセレン化ガス源26からのガスは、別々のガス供給配管から導入するようにしてもよい。何れにしても、圧力制御バルブ28および30を圧力制御手段34で制御することにより、内チャンバー11内を、例えば、1kg/cm以上、10kg/cm未満、好ましくは4〜6kg/cmの所定の圧力になるように保持する。 The high-pressure gas source 25 connected to the processing gas supply pipe 24 is, for example, a high-pressure source of an inert gas such as argon, helium, or nitrogen, and is 1 kg / cm 2 or more and less than 10 kg / cm 2 , preferably 4 to 6 kg. It has a pressure of about / cm 2 . The selenide gas source 26 is a gas source of hydrogen selenide (H 2 Se), and is used by being mixed with an inert gas, and therefore does not need to be a high-pressure gas source. The gas from the high pressure gas source 25 and the selenization gas source 26 is introduced into the inner chamber 11 from the gas introduction pipe 21 through the gas mixer 27 and the pressure control valve 28. The concentration of the selenization gas is as follows. For example, it is about 10 to 60 mol%. The introduction of the gas from the high-pressure gas source 25 and the selenization gas source 26 may be performed in a mixed state or in a separate process. As a result, in the inner chamber 11 at a predetermined mixing ratio, It may be supplied at a predetermined pressure. Of course, the gas from the high pressure gas source 25 and the selenization gas source 26 may be introduced from separate gas supply pipes. In any case, by controlling the pressure control valves 28 and 30 with the pressure control means 34, the inside of the inner chamber 11 is, for example, 1 kg / cm 2 or more and less than 10 kg / cm 2 , preferably 4 to 6 kg / cm 2. The pressure is kept at a predetermined pressure.

また、高圧ガス導入配管23に接続される高圧ガス源32は、高圧ガス源25と同様の不活性ガス源であり、圧力も同程度の高圧ガス源であるが、圧力制御バルブ33を介して、内チャンバー11内の圧力よりも、例えば、0.2〜1kg/cm程度、好ましくは、0.4〜0.6kg/cm程度だけ高圧に設定して空間13内に導入される。 The high-pressure gas source 32 connected to the high-pressure gas introduction pipe 23 is an inert gas source similar to the high-pressure gas source 25 and is a high-pressure gas source having the same pressure, but via a pressure control valve 33. For example, the pressure is set to about 0.2 to 1 kg / cm 2 , preferably about 0.4 to 0.6 kg / cm 2 higher than the pressure in the inner chamber 11 and introduced into the space 13.

温度制御手段35は、ヒーター12により内チャンバー11内の温度が、所定のタイミングで、所定の温度、例えば、500〜650℃程度になるように制御するものである。   The temperature control unit 35 controls the heater 12 so that the temperature in the inner chamber 11 becomes a predetermined temperature, for example, about 500 to 650 ° C. at a predetermined timing.

このようなセレン化炉1を用い、内チャンバー11内に被処理物2を載置した状態で、セレン化ガスおよび不活性ガスを導入して内チャンバー11内を高圧、例えば、5kg/cm程度とし、また、空間13には、例えば、5.5kg/cm程度の高圧不活性ガスを満たした状態でガスの供給を停止し、内チャンバー11内の温度を、例えば、500〜650℃程度になるように制御することにより、セレン化処理を行うことができる。 Using such a selenization furnace 1, with the workpiece 2 placed in the inner chamber 11, a selenization gas and an inert gas are introduced to increase the pressure in the inner chamber 11, for example, 5 kg / cm 2. In addition, the supply of gas is stopped in the space 13 while being filled with a high-pressure inert gas of, for example, about 5.5 kg / cm 2 , and the temperature in the inner chamber 11 is set to, for example, 500 to 650 ° C. The selenization process can be performed by controlling so as to be approximately.

この場合、内チャンバー11内は所定の濃度のセレン化ガスが均一状態で存在するので、均一なセレン化処理を行うことができる。すなわち、セレン化ガスを所定の流量で供給しながら行う処理と比較して、均一なセレン化処理を行うことができる。   In this case, since the selenization gas having a predetermined concentration exists in the inner chamber 11 in a uniform state, a uniform selenization process can be performed. That is, a uniform selenization process can be performed as compared with a process performed while supplying the selenization gas at a predetermined flow rate.

また、セレン化処理を高圧状態で行うことができるので、処理時間を短縮することができる。さらに、内チャンバー11を外チャンバー14で覆い、その間の空間13を内チャンバー11内の圧力より高圧に保持するようにしたので、仮に、内チャンバー11が破損するなどの事故が起きても、外チャンバー14の内側の高圧の空間13の存在により、安全が確保できる。   Further, since the selenization process can be performed in a high pressure state, the processing time can be shortened. Furthermore, since the inner chamber 11 is covered with the outer chamber 14 and the space 13 between them is held at a pressure higher than the pressure in the inner chamber 11, even if an accident such as damage to the inner chamber 11 occurs, The presence of the high-pressure space 13 inside the chamber 14 can ensure safety.

以上説明したセレン化炉は、種々のセレン化処理に用いることができるが、例えば、CIS(Cu(In)Se)やCIGS(Cu(In,Ga)Se)などのカルコパイライト系化合物半導体薄膜を製造する処理に用いることができる。この場合、金属やポリイミドなどの耐熱性フィルムからなる基板上に、Cu、Inの合金薄膜、又はCu、In、Gaの合金薄膜を前駆体薄膜としてスパッタリングなどにより形成したものを被処理物として、上述したセレン化処理をする。これにより、カルコパイライト系の化合物半導体薄膜を製造することができる。   The selenization furnace described above can be used for various selenization processes. For example, chalcopyrite compound semiconductor thin films such as CIS (Cu (In) Se) and CIGS (Cu (In, Ga) Se) are used. It can be used for manufacturing processes. In this case, on a substrate made of a heat-resistant film such as metal or polyimide, a Cu, In alloy thin film, or a Cu, In, Ga alloy thin film formed as a precursor thin film by sputtering or the like as an object to be processed, The selenization process mentioned above is performed. Thereby, a chalcopyrite based compound semiconductor thin film can be manufactured.

また、本発明のセレン化炉は、化合物薄膜太陽電池の製造方法に用いることができる。すなわち、上述したカルコパイライト系の化合物薄膜の製造プロセスを太陽電池の光吸収層の製造プロセスに適用すれば、化合物薄膜太陽電池を製造することができる。すなわち、この太陽電池の製造方法は、公知の化合物薄膜太陽電池の製造プロセスにおいて、光吸収層を製造する際のセレン化を上述したセレン化炉を用いたセレン化プロセスで行うものである。   Moreover, the selenization furnace of this invention can be used for the manufacturing method of a compound thin film solar cell. That is, a compound thin film solar cell can be manufactured by applying the above-described chalcopyrite compound thin film manufacturing process to the solar cell light absorption layer manufacturing process. That is, this solar cell manufacturing method is a selenization process using the above-described selenization furnace in the manufacturing process of a known compound thin film solar cell.

図2に本発明のセレン化炉を用いてカルコパイライト系化合物半導体薄膜を製造した際のタイミングチャートの一例を示す。   FIG. 2 shows an example of a timing chart when a chalcopyrite compound semiconductor thin film is manufactured using the selenization furnace of the present invention.

図2に示すように、内チャンバー11内に被処理物2を載置した後、セレン化ガスおよび不活性ガスを導入して(圧力プロセスA)、内チャンバー11内のセレン化ガス濃度を所定濃度とすると共に圧力制御バルブ28および必要に応じて圧力制御バルブ30を制御して内チャンバー11内の圧力を5kg/cmに保持し、この時点でガス供給を停止する(圧力プロセスB)。次に、内チャンバー11内の温度を600℃まで上昇させる(温度プロセスa)。この際、圧力制御バルブ30を制御し、内チャンバー11内の圧力を5kg/cmに保持する(圧力プロセスC)。温度は600℃になった時点から所定時間600℃で保持し、(温度プロセスb)、ヒーター12をオフとして降温し(温度プロセスc)、所定の温度、例えば、100℃程度に冷却した時点で取り出す。なお、降温プロセスでは、圧力は徐々に低下する(圧力プロセスD)。 As shown in FIG. 2, after the workpiece 2 is placed in the inner chamber 11, a selenization gas and an inert gas are introduced (pressure process A), and the selenization gas concentration in the inner chamber 11 is set to a predetermined value. At the same time, the pressure control valve 28 and, if necessary, the pressure control valve 30 are controlled to maintain the pressure in the inner chamber 11 at 5 kg / cm 2 , and the gas supply is stopped at this point (pressure process B). Next, the temperature in the inner chamber 11 is raised to 600 ° C. (temperature process a). At this time, the pressure control valve 30 is controlled to maintain the pressure in the inner chamber 11 at 5 kg / cm 2 (pressure process C). The temperature is maintained at 600 ° C. for a predetermined time from the time when the temperature reaches 600 ° C. (temperature process b), the temperature is lowered with the heater 12 turned off (temperature process c), and the temperature is cooled to a predetermined temperature, for example, about 100 ° C. Take out. In the temperature lowering process, the pressure gradually decreases (pressure process D).

なお、このタイミングチャートは、一例であり、この処理プロセスに制限されるものではない。例えば、圧力を上昇しながら昇温してもよいし、昇温、一定温度保持プロセスにおいて、圧力が所定の範囲で変動してもよい。また、降温のプロセスにおいて圧力を一定に保持するようにしてもよい。   Note that this timing chart is an example and is not limited to this processing process. For example, the temperature may be raised while increasing the pressure, or the pressure may vary within a predetermined range in the temperature raising and constant temperature holding process. Further, the pressure may be kept constant in the temperature lowering process.

何れにしても、所定の温度プロファイルおよび圧力プロファイルでセレン化処理を行えば、均一処理が達成できる。   In any case, uniform processing can be achieved by performing selenization processing with a predetermined temperature profile and pressure profile.

図3には、比較のため、常圧で同様なセレン化処理を行ったタイミングチャートを示す。セレン化ガスは所定の濃度で供給し続けた。この場合、図2のタイミングチャートと比較して、600℃に保持する時間を若干長くする必要があり、また、降温プロセスが長くなる。   For comparison, FIG. 3 shows a timing chart in which the same selenization treatment is performed at normal pressure. The selenide gas was continuously supplied at a predetermined concentration. In this case, as compared with the timing chart of FIG. 2, it is necessary to slightly increase the time for holding at 600 ° C., and the temperature lowering process becomes longer.

この結果、図3の場合、図2の処理と比較して、処理時間が20%程度長くかかった。   As a result, in the case of FIG. 3, the processing time is about 20% longer than that of the processing of FIG.

1 セレン化炉
2 被処理物
11 内チャンバー
12 ヒーター
13 空間
14 外チャンバー
25、32 高圧ガス源
26 セレン化ガス源
27 ガス混合器
28、30、33 圧力制御バルブ
DESCRIPTION OF SYMBOLS 1 Selenization furnace 2 To-be-processed object 11 Inner chamber 12 Heater 13 Space 14 Outer chamber 25, 32 High pressure gas source 26 Selenization gas source 27 Gas mixer 28, 30, 33 Pressure control valve

Claims (5)

チャンバーと、前記チャンバー内にセレン化ガスを含む処理ガスを高圧で導入するガス供給源と、前記ガス供給源と前記チャンバーとの間に設けられて当該チャンバー内に導入されるガスを常圧より高く所定の圧力に調整するガス圧調整手段と、前記チャンバー内を加熱する加熱手段と、前記チャンバー内のガスを排出する排出手段と、前記チャンバー内に被処理物を載置するための置台とを具備することを特徴とするセレン化炉。   A chamber, a gas supply source that introduces a processing gas containing a selenization gas into the chamber at a high pressure, and a gas that is provided between the gas supply source and the chamber and is introduced into the chamber from a normal pressure. A gas pressure adjusting means for adjusting the pressure to a high predetermined pressure, a heating means for heating the inside of the chamber, a discharging means for discharging the gas in the chamber, and a table for placing an object to be processed in the chamber; A selenization furnace comprising: 請求項1に記載のセレン化炉において、前記チャンバーは、内チャンバーと外チャンバーとからなる二重構造であり、前記内チャンバーと前記外チャンバーとの間の空間に内チャンバー内の圧力よりも高圧のガスを導入するバリアガス導入手段を具備することを特徴とするセレン化炉。   2. The selenization furnace according to claim 1, wherein the chamber has a double structure including an inner chamber and an outer chamber, and the space between the inner chamber and the outer chamber is higher than the pressure in the inner chamber. A selenization furnace comprising barrier gas introduction means for introducing the gas. 請求項2に記載のセレン化炉において、前記内チャンバーが酸化ケイ素又は炭化ケイ素からなり、前記外チャンバーが金属製であることを特徴とするセレン化炉。   3. The selenization furnace according to claim 2, wherein the inner chamber is made of silicon oxide or silicon carbide, and the outer chamber is made of metal. カルコパイライト型構造からなる化合物半導体薄膜の製造方法において、銅及びインジウム、又は銅、インジウム及びガリウムからなる反応前駆体薄膜を形成する工程と、前記反応前駆体薄膜をセレン化ガスを含む処理ガスを1kg/cm〜10kg/cmの圧力下で含む条件下で、500〜650℃で加熱してセレン化する工程とを含むことを特徴とする化合物半導体薄膜の製造方法。 In a method for producing a compound semiconductor thin film having a chalcopyrite structure, a step of forming a reaction precursor thin film made of copper and indium, or copper, indium and gallium, and a process gas containing a selenization gas for the reaction precursor thin film under conditions including a pressure of 1kg / cm 2 ~10kg / cm 2 , compound manufacturing method of a semiconductor thin film characterized by comprising the step of selenium by heating at 500 to 650 ° C.. 請求項4に記載の反応前駆体薄膜を形成する工程と、セレン化する工程とを含むことを特徴とする化合物薄膜太陽電池の製造方法。
The manufacturing method of the compound thin film solar cell characterized by including the process of forming the reaction precursor thin film of Claim 4, and the process of selenizing.
JP2011131639A 2011-06-13 2011-06-13 Selenide furnace, manufacturing method of compound semiconductor thin film, and manufacturing method of compound thin film solar cell Pending JP2013004589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011131639A JP2013004589A (en) 2011-06-13 2011-06-13 Selenide furnace, manufacturing method of compound semiconductor thin film, and manufacturing method of compound thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011131639A JP2013004589A (en) 2011-06-13 2011-06-13 Selenide furnace, manufacturing method of compound semiconductor thin film, and manufacturing method of compound thin film solar cell

Publications (1)

Publication Number Publication Date
JP2013004589A true JP2013004589A (en) 2013-01-07

Family

ID=47672890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011131639A Pending JP2013004589A (en) 2011-06-13 2011-06-13 Selenide furnace, manufacturing method of compound semiconductor thin film, and manufacturing method of compound thin film solar cell

Country Status (1)

Country Link
JP (1) JP2013004589A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101978110B1 (en) * 2019-02-01 2019-05-13 재단법인대구경북과학기술원 Manufacturing method of compound light absorbing layer and manufacturing method of solar cellcomprising the same
KR20200061447A (en) * 2018-11-23 2020-06-03 재단법인대구경북과학기술원 MANUFACTURING METHOD OF CZTSSe LIGHT ABSORBING LAYER AND MANUFACTURING METHOD OF SOLAR CELLCOMPRISING THE SAME

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235505A (en) * 1993-12-28 1995-09-05 Matsushita Electric Ind Co Ltd Crystal growth method of semiconductor layer
JP2009539231A (en) * 2006-02-10 2009-11-12 プンサン マイクロテック カンパニー リミティッド High pressure gas annealing apparatus and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235505A (en) * 1993-12-28 1995-09-05 Matsushita Electric Ind Co Ltd Crystal growth method of semiconductor layer
JP2009539231A (en) * 2006-02-10 2009-11-12 プンサン マイクロテック カンパニー リミティッド High pressure gas annealing apparatus and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200061447A (en) * 2018-11-23 2020-06-03 재단법인대구경북과학기술원 MANUFACTURING METHOD OF CZTSSe LIGHT ABSORBING LAYER AND MANUFACTURING METHOD OF SOLAR CELLCOMPRISING THE SAME
KR102284740B1 (en) 2018-11-23 2021-08-03 재단법인대구경북과학기술원 MANUFACTURING METHOD OF CZTSSe LIGHT ABSORBING LAYER AND MANUFACTURING METHOD OF SOLAR CELLCOMPRISING THE SAME
KR101978110B1 (en) * 2019-02-01 2019-05-13 재단법인대구경북과학기술원 Manufacturing method of compound light absorbing layer and manufacturing method of solar cellcomprising the same

Similar Documents

Publication Publication Date Title
US10714333B2 (en) Apparatus and method for selective oxidation at lower temperature using remote plasma source
JP2009513020A (en) Method and apparatus for converting a precursor layer into a photovoltaic absorber
WO2019153668A1 (en) Copper indium gallium selenium absorption layer and preparation method therefor, solar cell and preparation method therefor
TW200832726A (en) Reel-to-reel reaction of precursor film to form solar cell absorber
EP2594882B1 (en) Vertical Heat Treating Furnace
CN102569039B (en) Rapid annealing method for ohmic contact of metal and silicon carbide
TWI479671B (en) Method and apparatus for performing reactive thermal treatment of thin film pv material
Lelievre et al. Dissolution and gettering of iron during contact co-firing
WO2011141516A3 (en) Method and apparatus to control surface texture modification of silicon wafers for photovoltaic cell devices
JP2014502424A (en) Semiconductor layer conversion method
US9905723B2 (en) Methods for plasma activation of evaporated precursors in a process chamber
JP2013004589A (en) Selenide furnace, manufacturing method of compound semiconductor thin film, and manufacturing method of compound thin film solar cell
TW201315958A (en) Furnace structure
WO2014064823A1 (en) Method for producing semiconductor film, solar cell, and chalcopyrite compound
KR101237466B1 (en) Device for forming light absorbing layer by selenization
US20150295124A1 (en) Manufacturing equipment for photovoltaic devices and methods
JP2014123739A (en) Method of manufacturing solar cell absorption layer and heat processing device of the same
JP5881987B2 (en) Manufacturing method of solar cell
JP2013105910A (en) Treatment furnace
TW200625473A (en) Method of forming ultra thin oxide layer by ozonated water
KR20130007188A (en) Production method of cigs thin film
CN105206704B (en) Na dosage control methods
RU2354006C1 (en) METHOD FOR PRODUCTION OF THIN FILM OF COPPER AND INDIUM DISELENIDE CuInSe2
Uchikoshi et al. Control of grain in Cu (In, Ga) Se2 thin films prepared by selenization method using diethylselenide
Bellanger et al. Crystalline silicon growth on aluminum substrate for photovoltaic application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120920

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120920

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20121009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130319