JP2013004238A - Optical response element - Google Patents

Optical response element Download PDF

Info

Publication number
JP2013004238A
JP2013004238A JP2011132492A JP2011132492A JP2013004238A JP 2013004238 A JP2013004238 A JP 2013004238A JP 2011132492 A JP2011132492 A JP 2011132492A JP 2011132492 A JP2011132492 A JP 2011132492A JP 2013004238 A JP2013004238 A JP 2013004238A
Authority
JP
Japan
Prior art keywords
type semiconductor
semiconductor portion
oxide
atom
photoresponsive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011132492A
Other languages
Japanese (ja)
Inventor
Yoko Shida
陽子 志田
Masao Mizuno
雅夫 水野
Norihiro Jiko
範洋 慈幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011132492A priority Critical patent/JP2013004238A/en
Publication of JP2013004238A publication Critical patent/JP2013004238A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical response element with an excellent durability and optical responsiveness.SOLUTION: An optical response element is configured by laminating a transparent substrate, a conductive film, a short circuit prevention layer, a semiconductor layer and a counter electrode in this order. The semiconductor layer has: an n-type semiconductor part having porous bodies arranged and provided on a surface of the short circuit prevention layer and dye attached to a surface of the porous bodies; and a p-type semiconductor part arranged and provided between the n-type semiconductor part and the counter electrode. The porous body of the n-type semiconductor part is formed of titanium oxide or zinc oxide. The p-type semiconductor part is formed of metal oxide. A bandgap of the metal oxide forming the p-type semiconductor part is preferably 3 eV or more and 4 eV or less.

Description

本発明は、光を電気に変換する光応答素子に関する。   The present invention relates to a photoresponsive element that converts light into electricity.

光応答素子の一つとして、色素と多孔質TiOとを用いた色素増感型太陽電池がある。この色素増感太陽電池の動作機構は以下のとおりである。すなわち、光を吸収した色素が励起され、遷移により電子がTiO側に移動し、上記色素がヨウ素を含む電解液から電子を受け取り、再生される(基底状態に戻る)。この機構により電子の授受が生じ、発電(光応答)する。なお、上記電解液には、上記の他にもCuIやCuSCNを用いたものや、固体状にゲル化して利用するものなどがある(特開2001−167808号公報参照)。 As one of the photoresponsive elements, there is a dye-sensitized solar cell using a dye and porous TiO 2 . The operation mechanism of this dye-sensitized solar cell is as follows. That is, the dye that absorbs light is excited, the electrons move to the TiO 2 side by the transition, and the dye receives electrons from the electrolyte containing iodine and is regenerated (returns to the ground state). Electrons are exchanged by this mechanism and generate electricity (light response). In addition to the above, there are electrolytes using CuI and CuSCN, and electrolytes that are gelled into a solid state (see JP 2001-167808 A).

上述のように電解液を用いた色素増感型太陽電池(セル)では、温度変化によりセル内の電解液が漏れ出すため、耐久性に課題が残る。この電解液の漏れを防ぐためには、厳重な封止が必要となり、作製プロセスが煩雑になるため、製造コストの増加を招来する。また、CuIやCuSCNは光による劣化が生じるため、安定した色素増感型太陽電池を作製することは困難である。さらに、色素増感型太陽電池において電解液を固体状にゲル化すると、電解液内でのヨウ素の自由度が低下するため、色素の再生効率が低下し、光応答性が低下する場合がある。従って、耐久性及び光応答性に優れる光応答素子の開発が望まれている。   As described above, in a dye-sensitized solar cell (cell) using an electrolytic solution, the electrolytic solution in the cell leaks due to a temperature change, so that a problem remains in durability. In order to prevent leakage of the electrolytic solution, strict sealing is required, and the manufacturing process becomes complicated, resulting in an increase in manufacturing cost. Further, since CuI and CuSCN are deteriorated by light, it is difficult to produce a stable dye-sensitized solar cell. Furthermore, when the electrolyte solution is gelated in a dye-sensitized solar cell, the degree of freedom of iodine in the electrolyte solution decreases, so the regeneration efficiency of the dye may decrease and the photoresponsiveness may decrease. . Therefore, development of a photoresponsive element excellent in durability and photoresponsiveness is desired.

特開2001−167808号公報JP 2001-167808 A

本発明は、上述のような事情に基づいてなされたものであり、耐久性及び光応答性に優れる光応答素子を提供することを目的とする。   The present invention has been made based on the above-described circumstances, and an object thereof is to provide a photoresponsive element that is excellent in durability and photoresponsiveness.

上記課題を解決するためになされた発明は、
透明基板、導電膜、短絡防止層、半導体層及び対向電極がこの順に積層される光応答素子であって、
上記半導体層が、
上記短絡防止層の表面に配設される多孔質体、及びこの多孔質体の表面に付着した色素を有するn型半導体部と、
このn型半導体部及び対向電極の間に配設されるp型半導体部と
を備え、
上記n型半導体部の多孔質体がチタン酸化物又は亜鉛酸化物から形成され、
上記p型半導体部が金属酸化物から形成されることを特徴とする。
The invention made to solve the above problems is
A transparent substrate, a conductive film, a short-circuit prevention layer, a semiconductor layer and a counter electrode are laminated in this order,
The semiconductor layer is
A porous body disposed on the surface of the short-circuit prevention layer, and an n-type semiconductor portion having a dye attached to the surface of the porous body;
A p-type semiconductor portion disposed between the n-type semiconductor portion and the counter electrode,
The porous body of the n-type semiconductor part is formed from titanium oxide or zinc oxide,
The p-type semiconductor portion is formed of a metal oxide.

当該光応答素子によれば、電解液の代わりに金属酸化物から形成されるp型半導体部を用いているため、耐久性に優れ、かつ優れた光応答性を発揮することができる。   According to the photoresponsive element, since a p-type semiconductor portion formed of a metal oxide is used instead of the electrolytic solution, the photoresponsive element is excellent in durability and can exhibit excellent photoresponsiveness.

上記p型半導体部を形成する金属酸化物のバンドギャップが3eV以上4eV以下であることが好ましい。このように上記p型半導体部として上記範囲のワイドギャップな半導体を用いることで、励起された色素の電子がn型半導体部側のみへ流れやすくなり、当該光応答素子の光応答性をさらに高めることができる。   It is preferable that the band gap of the metal oxide forming the p-type semiconductor portion is 3 eV or more and 4 eV or less. Thus, by using a semiconductor having a wide gap in the above range as the p-type semiconductor part, excited dye electrons easily flow only to the n-type semiconductor part side, and further enhances the photoresponsiveness of the photoresponsive element. be able to.

上記p型半導体部がニッケル酸化物又はビスマス酸化物から形成され、上記ニッケル酸化物が、ニッケル1原子に対して、酸素を0.8原子以上1.2原子以下含み、上記ビスマス酸化物が、ビスマス1原子に対して、酸素を1.3原子以上1.7原子以下含むことが好ましい。このような組成からなるニッケル酸化物又はビスマス酸化物は好ましいバンドギャップを有し、当該光応答素子の光応答性をより高めることができる。   The p-type semiconductor part is formed of nickel oxide or bismuth oxide, the nickel oxide contains 0.8 atom or more and 1.2 atom or less of oxygen with respect to 1 atom of nickel, and the bismuth oxide includes: It is preferable that oxygen is contained in an amount of 1.3 to 1.7 atoms with respect to 1 atom of bismuth. Nickel oxide or bismuth oxide having such a composition has a preferable band gap, and can further improve the photoresponsiveness of the photoresponsive element.

上記p型半導体部がスパッタ法により形成されていることが好ましい。このようにスパッタ法でp型半導体部を形成することで、この形成の際、n型半導体部における色素の付着状態を保持することができ、当該光応答素子の耐久性及び光応答性をさらに高めることができる。   The p-type semiconductor part is preferably formed by sputtering. By forming the p-type semiconductor portion by sputtering in this way, the dye adhesion state in the n-type semiconductor portion can be maintained during the formation, and the durability and photoresponsiveness of the photoresponsive element can be further increased. Can be increased.

上記p型半導体部が非多孔質状であることが好ましい。このようにp型半導体部が非多孔質状、すなわち、緻密な形状からなることで、n型半導体部と対向電極との間の短絡を抑制することができ、光応答性をより高めることができる。   The p-type semiconductor part is preferably non-porous. As described above, the p-type semiconductor portion is non-porous, that is, has a dense shape, so that a short circuit between the n-type semiconductor portion and the counter electrode can be suppressed, and photoresponsiveness can be further improved. it can.

上記p型半導体部は層状に形成することができる。このようにp型半導体部を層状にすることで、n型半導体部と対向電極との間の短絡を抑制することができ、光応答性をより高めることができる。   The p-type semiconductor part can be formed in layers. Thus, by making a p-type semiconductor part into a layer form, the short circuit between an n-type semiconductor part and a counter electrode can be suppressed, and photoresponsiveness can be improved more.

上記n型半導体部が、平均孔径が10nm以上50nm以下の多孔質状であることが好ましい。このようにn型半導体部を上記範囲の細孔を有する多孔質状とすることで、n型半導体部の表面積及びn型半導体部とp型半導体部との接触面積が拡大し、光応答性等をより高めることができる。   The n-type semiconductor portion is preferably porous with an average pore diameter of 10 nm or more and 50 nm or less. Thus, by making the n-type semiconductor part into a porous shape having pores in the above range, the surface area of the n-type semiconductor part and the contact area between the n-type semiconductor part and the p-type semiconductor part are increased, and photoresponsiveness is increased. Etc. can be further enhanced.

上記n型半導体部の多孔質体の形成に、チタン酸化物又は亜鉛酸化物からなる平均粒径50nm以上100nm以下の粒子を用いることが好ましい。このように、n型半導体部の多孔質体を上記サイズの粒子から形成することで、好ましい多孔質状とすることができ、より優れた耐久性及び光応答性を発揮することができる。   For forming the porous body of the n-type semiconductor part, it is preferable to use particles having an average particle diameter of 50 nm or more and 100 nm or less made of titanium oxide or zinc oxide. Thus, by forming the porous body of the n-type semiconductor portion from the particles having the above size, a preferable porous shape can be obtained, and more excellent durability and photoresponsiveness can be exhibited.

上記チタン酸化物が、チタン1原子に対して、酸素を1.8原子以上2.2原子以下含み、上記亜鉛酸化物が、亜鉛1原子に対して、酸素を0.8原子以上1.2原子以下含むとよい。このような組成からなるチタン酸化物又は亜鉛酸化物を用いることで、バンドギャップが好適な範囲となり、光応答性をより高めることができる。   The titanium oxide contains 1.8 to 2.2 atoms of oxygen with respect to 1 atom of titanium, and the zinc oxide has oxygen of 0.8 to 1.2 atoms with respect to 1 atom of zinc. It is good to contain atoms or less. By using titanium oxide or zinc oxide having such a composition, the band gap becomes a suitable range, and the photoresponsiveness can be further improved.

上記n型半導体部が層状に形成され、このn型半導体部の膜厚が2μm以上10μm以下であるとよい。このようにn型半導体部を上記範囲の膜厚を有する層状とすることで、光応答性をさらに高めることができる。   It is preferable that the n-type semiconductor portion is formed in layers, and the film thickness of the n-type semiconductor portion is 2 μm or more and 10 μm or less. Thus, by making the n-type semiconductor portion into a layer shape having a film thickness in the above range, the optical response can be further improved.

以上説明したように、本発明の光応答素子は耐久性及び光応答性に優れる。従って、当該光応答素子は、光センサーや太陽電池等として好適に用いることができる。   As described above, the photoresponsive element of the present invention is excellent in durability and photoresponsiveness. Therefore, the photoresponsive element can be suitably used as an optical sensor, a solar cell, or the like.

本発明の一実施形態に係る光応答素子を示す模式的断面図Schematic sectional view showing a photoresponsive element according to an embodiment of the present invention. 図1とは異なる実施形態に係る光応答素子を示す模式的断面図FIG. 1 is a schematic cross-sectional view showing a photoresponsive element according to an embodiment different from FIG. 実施例1の光応答素子における半導体層のSEM写真SEM photograph of semiconductor layer in photoresponsive element of Example 1 実施例におけるn型半導体部の膜厚と光吸収率との関係を示すグラフThe graph which shows the relationship between the film thickness of the n-type semiconductor part in an Example, and light absorption rate

以下、適宜図面を参照にしつつ、本発明の光応答素子の実施の形態を詳説する。   Hereinafter, embodiments of the photoresponsive element of the present invention will be described in detail with reference to the drawings as appropriate.

図1の光応答素子10は、透明基板1、導電膜2、短絡防止層3、半導体層4及び対向電極5がこの順に積層されてなる。また、上記半導体層4は、n型半導体部6及び金属酸化物から形成されるp型半導体部7を備える。   1 includes a transparent substrate 1, a conductive film 2, a short-circuit prevention layer 3, a semiconductor layer 4, and a counter electrode 5 stacked in this order. The semiconductor layer 4 includes an n-type semiconductor portion 6 and a p-type semiconductor portion 7 formed from a metal oxide.

当該光応答素子10は、従来の色素増感型太陽電池が有する電解液の代わりに金属酸化物から形成されるp型半導体部7を備えている。従って、当該光応答素子10は、液漏れ等の発生が無く、耐久性に優れる。また、当該光応答素子10は、上記構造を有することで、優れた光応答性を発揮することができる。   The photoresponsive element 10 includes a p-type semiconductor portion 7 formed of a metal oxide instead of the electrolyte solution of a conventional dye-sensitized solar cell. Therefore, the photoresponsive element 10 has no durability such as liquid leakage and has excellent durability. Moreover, the said photoresponsive element 10 can exhibit the outstanding photoresponsiveness by having the said structure.

透明基板1は、透明な材料から形成されている。透明基板1の材料としては、例えば、ケイ酸アルカリガラス、無アルカリガラス、石英ガラス等のガラスや、アクリル樹脂、PET等の合成樹脂などを用いることができる。これらの中でも、強度や熱安定性等の点から、ガラスが好ましい。また、このガラスは、化学的に又は熱的に強化されたものが好ましい。   The transparent substrate 1 is formed from a transparent material. As a material of the transparent substrate 1, for example, glass such as alkali silicate glass, non-alkali glass and quartz glass, synthetic resin such as acrylic resin and PET, and the like can be used. Among these, glass is preferable from the viewpoints of strength and thermal stability. The glass is preferably chemically or thermally strengthened.

透明基板1の厚さとしては、特に限定されないが、通常0.1mm以上10mm以下程度である。なお、この透明基板1は、例えば合成樹脂製で、かつ厚さを薄くしたフレキシブル基板であってもよい。   Although it does not specifically limit as thickness of the transparent substrate 1, Usually, it is about 0.1 mm or more and 10 mm or less. The transparent substrate 1 may be, for example, a flexible substrate made of synthetic resin and having a reduced thickness.

導電膜2は、透明基板1の表面に積層されている。この導電膜2は、導電性を有する透明材料から形成されている。導電膜2の材料としては、例えばFTO、ITO、SnO:F(FTO)、In:Sn(ITO)、SnO:Sb、SnO:F、ZnO:Al、ZnO:F、CdSnO等の金属酸化物などを挙げることができる。これらの中でも、導電性及び透明性の観点から、FTO及びITOを含む材料が特に好ましい。 The conductive film 2 is laminated on the surface of the transparent substrate 1. The conductive film 2 is formed from a conductive transparent material. Examples of the material of the conductive film 2 include FTO, ITO, SnO: F (FTO), In 2 O 3 : Sn (ITO), SnO 2 : Sb, SnO 2 : F, ZnO: Al, ZnO: F, and CdSnO 4. And the like. Among these, materials containing FTO and ITO are particularly preferable from the viewpoints of conductivity and transparency.

導電膜2の厚さとしては、特に限定されず、例えば100nm以上10μm以下とすることができる。   The thickness of the conductive film 2 is not particularly limited and can be, for example, 100 nm or more and 10 μm or less.

短絡防止層3は、導電膜2の表面に積層されている。この短絡防止層3は、導電膜2とp型半導体部7との間の微短絡を防止する。すなわち、p型半導体部7の少なくとも一部が導電膜2まで到達することによる短絡を防止する。なお、この短絡が生じると光応答性が低下する。   The short-circuit prevention layer 3 is laminated on the surface of the conductive film 2. This short-circuit prevention layer 3 prevents a fine short circuit between the conductive film 2 and the p-type semiconductor part 7. That is, a short circuit due to at least a part of the p-type semiconductor portion 7 reaching the conductive film 2 is prevented. In addition, when this short circuit arises, photoresponsiveness will fall.

この短絡防止層3は、非多孔質状、すなわち実質的に空隙を有さない緻密な膜であることが好ましい。短絡防止層3を形成する材料としては、チタン酸化物(例えば、TiO)や亜鉛酸化物等を挙げることができる。また、短絡防止層の厚さとしては、特に限定されず、例えば10nm以上1μm以下とすることができる。 The short-circuit prevention layer 3 is preferably non-porous, that is, a dense film having substantially no voids. Examples of the material for forming the short-circuit prevention layer 3 include titanium oxide (for example, TiO 2 ) and zinc oxide. Moreover, it does not specifically limit as thickness of a short circuit prevention layer, For example, they are 10 nm or more and 1 micrometer or less.

短絡防止層3の積層方法としては、特に限定されず、公知の方法、例えばスパッタ法、スプレー法、スピンコート法、化学浴析出法等を用いることができる。   The method for laminating the short-circuit prevention layer 3 is not particularly limited, and a known method such as a sputtering method, a spray method, a spin coating method, a chemical bath deposition method, or the like can be used.

n型半導体部6は、短絡防止層3の表面に層状に配設されている。n型半導体部6は、n型の性質を示す(多数キャリアが自由電子である)半導体を備える。このn型半導体部6は、短絡防止層3の表面に配設される多孔質体8(n型半導体)、及びこの多孔質体8の表面に付着した色素9を有する。   The n-type semiconductor unit 6 is disposed in a layered manner on the surface of the short-circuit prevention layer 3. The n-type semiconductor unit 6 includes a semiconductor exhibiting n-type properties (majority carriers are free electrons). The n-type semiconductor unit 6 includes a porous body 8 (n-type semiconductor) disposed on the surface of the short-circuit prevention layer 3 and a dye 9 attached to the surface of the porous body 8.

n型半導体部6は、多孔質状である。このn型半導体部6の平均孔径としては、10nm以上50nm以下が好ましく、20nm以上40nm以下がさらに好ましい。当該光応答素子10によれば、n型半導体部6を上記範囲の空隙を有する多孔質形状とすることで、n型半導体部6の表面積及びn型半導体部6とp型半導体部7との接触面積が拡大し、光応答性等をより高めることができる。   The n-type semiconductor part 6 is porous. The average pore diameter of the n-type semiconductor portion 6 is preferably 10 nm or more and 50 nm or less, and more preferably 20 nm or more and 40 nm or less. According to the photoresponsive element 10, the n-type semiconductor portion 6 is formed into a porous shape having a void in the above range, so that the surface area of the n-type semiconductor portion 6 and the n-type semiconductor portion 6 and the p-type semiconductor portion 7 can be reduced. The contact area is enlarged, and the photoresponsiveness and the like can be further improved.

n型半導体部6の平均孔径が上記下限未満の場合は、表面積が小さくなるため、十分な光応答性を発揮できなくなる場合がある。逆に、この平均孔径が上記上限を超える場合は、n型半導体部6の強度が低下する等のおそれがある。   When the average pore diameter of the n-type semiconductor portion 6 is less than the above lower limit, the surface area becomes small, so that sufficient photoresponsiveness may not be exhibited. On the contrary, when the average pore diameter exceeds the upper limit, the strength of the n-type semiconductor portion 6 may be reduced.

なお、この平均孔径(平均細孔直径)は、JIS−K1150に記載の水銀圧入法で測定した値である。   In addition, this average pore diameter (average pore diameter) is a value measured by a mercury intrusion method described in JIS-K1150.

n型半導体部6の膜厚(平均膜厚)としては、特に限定されないが、2μm以上10μm以下が好ましく、4μm以上8μm以下がさらに好ましい。n型半導体部6の膜厚を上記範囲とすることで、光応答性をさらに高めることができる。この膜厚が上記下限未満の場合は、色素9が十分に吸着できるだけの表面積が足りず、光吸収の効率が低下し、十分な光応答性が発揮できないおそれがある。逆に、この膜厚が上記上限を超える場合は、光吸収率が頭打ちになる一方、直列抵抗が増加することで、光応答性が低下するおそれがある。   Although it does not specifically limit as a film thickness (average film thickness) of the n-type semiconductor part 6, 2 micrometers or more and 10 micrometers or less are preferable, and 4 micrometers or more and 8 micrometers or less are more preferable. By setting the film thickness of the n-type semiconductor portion 6 within the above range, the photoresponsiveness can be further improved. When this film thickness is less than the above lower limit, the surface area sufficient to sufficiently adsorb the dye 9 is insufficient, the light absorption efficiency is lowered, and sufficient photoresponsiveness may not be exhibited. On the contrary, when this film thickness exceeds the upper limit, the light absorption rate reaches a peak, while the series resistance increases, so that the photoresponsiveness may decrease.

多孔質体8は、多孔質状であり、チタン酸化物又は亜鉛酸化物から形成されている。上記チタン酸化物は、チタン1原子に対して、酸素(酸素原子)を1.8原子以上2.2原子以下含むことが好ましい。上記組成を有するチタン酸化物としては、TiO等を挙げることができる。また、上記亜鉛酸化物は、亜鉛1原子に対して、酸素(酸素原子)を0.8原子以上1.2原子以下含むことが好ましい。上記組成を有する亜鉛酸化物としては、ZnO等を挙げることができる。当該光応答素子10によれば、n型半導体部6の多孔質体8において、上記組成からなるチタン酸化物又は亜鉛酸化物を用いることで、バンドギャップが好適な範囲となり、光応答性をより高めることができる。 The porous body 8 is porous and is formed from titanium oxide or zinc oxide. The titanium oxide preferably contains 1.8 atoms or more and 2.2 atoms or less of oxygen (oxygen atoms) with respect to 1 atom of titanium. Examples of the titanium oxide having the above composition include TiO 2 . Moreover, it is preferable that the said zinc oxide contains 0.8 atom or more and 1.2 atom or less of oxygen (oxygen atom) with respect to 1 atom of zinc. Examples of the zinc oxide having the above composition include ZnO. According to the photoresponsive element 10, by using the titanium oxide or zinc oxide having the above composition in the porous body 8 of the n-type semiconductor portion 6, the band gap becomes a suitable range, and the photoresponsiveness is further improved. Can be increased.

また、適当な範囲のバンドギャップを有し、光応答性をより高めることができる点や、経済性等を考慮すると、多孔質体8としては、チタン酸化物を用いることが好ましい。   In view of the fact that it has a band gap in an appropriate range and can further improve the photoresponsiveness, and the economic efficiency, it is preferable to use titanium oxide as the porous body 8.

多孔質体8の形成方法としては、特に限定されず、公知の方法を用いることができるが、チタン酸化物又は亜鉛酸化物からなる粒子のペーストを短絡防止層3の表面に塗布し、焼結させることが好ましい。上記塗布の方法としては、例えばスクリーン印刷法等を用いることができる。   The method for forming the porous body 8 is not particularly limited, and a known method can be used. A paste of particles made of titanium oxide or zinc oxide is applied to the surface of the short-circuit prevention layer 3 and sintered. It is preferable to make it. As the coating method, for example, a screen printing method or the like can be used.

多孔質体8の形成にチタン酸化物又は亜鉛酸化物からなる粒子を用いることで、容易に多孔質状の多孔質体8(n型半導体部6)を形成することができる。この粒子の平均粒径としては、50nm以上100nm以下が好ましく、60nm以上90nm以下がさらに好ましい。上記粒子の平均粒径を上記範囲とすることで、多孔質体8及び、結果としてn型半導体部6を好ましい多孔質状とすることができ、より優れた耐久性及び光応答性を発揮することができる。   By using particles made of titanium oxide or zinc oxide to form the porous body 8, the porous porous body 8 (n-type semiconductor portion 6) can be easily formed. The average particle size of these particles is preferably 50 nm or more and 100 nm or less, and more preferably 60 nm or more and 90 nm or less. By setting the average particle size of the particles in the above range, the porous body 8 and, as a result, the n-type semiconductor portion 6 can be made into a preferable porous shape, and more excellent durability and photoresponsiveness are exhibited. be able to.

なお、この平均粒径は、X線回折測定から得られた回折ピークの半値幅を用いて、下記のSherrerの式:
d=0.9λ/(Bcosθ)
(d:平均粒径、λ:X線波長、B:回折ピークの半値幅、θ:回折角)
から算出した値である。
In addition, this average particle diameter uses the half width of the diffraction peak obtained from the X-ray diffraction measurement, and the following Serrer equation:
d = 0.9λ / (Bcos θ)
(D: average particle diameter, λ: X-ray wavelength, B: half width of diffraction peak, θ: diffraction angle)
It is a value calculated from

なお、チタン酸化物又は亜鉛酸化物からなる上記粒子として、粒径が50nm以上100nm以下のものを用いることで、焼結温度を500℃程度まで下げることが可能となる。このような温度で焼結することで、透明基板1として、ガラス基板や合成樹脂基板等を用いることができ、その結果、材料の選択性が高まり、また、製造コストを下げることができる。   In addition, by using particles having a particle size of 50 nm or more and 100 nm or less as the particles made of titanium oxide or zinc oxide, the sintering temperature can be lowered to about 500 ° C. By sintering at such a temperature, a glass substrate, a synthetic resin substrate, or the like can be used as the transparent substrate 1, and as a result, the selectivity of the material can be increased and the manufacturing cost can be reduced.

色素9は、色素増感型太陽電池に使用される公知のものを用いることができる。この色素9としては、例えばRu金属錯体、Os金属錯体、Cu金属錯体等の金属錯体色素や、その他、メチン色素、フタロシアニン色素等の有機色素を挙げることができる。これらの中でも、当該光応答素子10が高い光応答性等を発揮できる点から、金属錯体色素が好ましく、Ru金属錯体がさらに好ましい。   As the dye 9, a known dye used for a dye-sensitized solar cell can be used. Examples of the dye 9 include metal complex dyes such as Ru metal complex, Os metal complex, and Cu metal complex, and organic dyes such as methine dye and phthalocyanine dye. Among these, a metal complex dye is preferable and a Ru metal complex is more preferable because the photoresponsive element 10 can exhibit high photoresponsiveness and the like.

色素9は、多孔質体8(チタン酸化物又は亜鉛酸化物)の表面への吸着性の点から、COOH基、OH基、SOH基、NCS基、−P(O)(OH)基、−OP(O)(OH)基等の極性基を有していることが好ましい。これらの基の中でも、COOH基又はNCS基を有していることがさらに好ましい。これらの基は、アルカリ金属等と塩を形成していてもよく、分子内で塩を形成していてもよい。 The dye 9 has a COOH group, an OH group, a SO 3 H group, an NCS group, and —P (O) (OH) 2 in view of the adsorptivity to the surface of the porous body 8 (titanium oxide or zinc oxide). It preferably has a polar group such as a group, -OP (O) (OH) 2 group. Among these groups, it is more preferable to have a COOH group or an NCS group. These groups may form a salt with an alkali metal or the like, or may form a salt in the molecule.

また、色素9の最大吸収波長としては、450nm以上650nm以下が好ましく、500nm以上600nm以下がさらに好ましい。この範囲の最大吸収波長を有する色素9を用いることで、当該光応答素子の光応答性をより高めることができる。   Further, the maximum absorption wavelength of the dye 9 is preferably 450 nm or more and 650 nm or less, and more preferably 500 nm or more and 600 nm or less. By using the dye 9 having the maximum absorption wavelength in this range, the photoresponsiveness of the photoresponsive element can be further increased.

色素9としての好ましいRu金属錯体の市販品としては、SOLARONIX社製のRuthenizer 535−bisTBA(cis−diisothiocyanato−bis(2,2’−bipyridyl−4,4’−dicarboxylato)rutheniumu(II)bis(tetrabutylammoniumu)、Ruthenizer 535、Ruthenizer 620−1H3TBA、Ruthenizer 520−DN等を挙げることができる。   As a commercially available product of a preferable Ru metal complex as the dye 9, Ruthenizer 535-bisTBA (cis-diisothiocyanato-bis (2,2'-bipyridineyl-4,4'-dicarboxylato) ruthenium (et) bisbutiumuum (et) buraniumium (et)) ), Ruthenizer 535, Ruthenizer 620-1H3TBA, Ruthenizer 520-DN, and the like.

色素9の付着方法としては、色素9を含む溶液に多孔質体8(焼結後のチタン酸化物等)を浸漬し、その後乾燥させること等により行うことができる。   The dye 9 can be attached by immersing the porous body 8 (sintered titanium oxide or the like) in a solution containing the dye 9 and then drying it.

p型半導体部7は、上記n型半導体部6の表面に層状に配設されている。p型半導体部7は、p型の性質を示す(多数キャリアが正孔である)半導体である。   The p-type semiconductor part 7 is arranged in layers on the surface of the n-type semiconductor part 6. The p-type semiconductor portion 7 is a semiconductor having p-type properties (majority carriers are holes).

このp型半導体部7を形成する金属酸化物(p型半導体)としては、p型半導体として機能するものであれば特に限定されず、銅酸化物、パラジウム酸化物、クロム酸化物、モリブデン酸化物、ニッケル酸化物、ビスマス酸化物等を挙げることができる。これらの金属酸化物の中でも、バンドギャップが3eV以上4eV以下であるものが好ましく、3.5eV以上であるものがより好ましく、3.7eV以上であるものがさらに好ましい。上記p型半導体部7として上記範囲のワイドギャップな半導体を用いることで、励起された色素9の電子がn型半導体部6側のみへ流れやすくなり、当該光応答素子の光応答性をさらに高めることができる。このバンドギャップが3eV未満の場合は、色素9からp型半導体部7への逆電子移動が生じ、光応答性が低下する場合がある。逆に、このバンドギャップが4eVを超える場合も、光応答性等の性能が低下する場合がある。なお、n型半導体部6として、バンドギャップが1.4〜1.7eVである色素(例えばRu金属錯体等)が付着したチタン酸化物等(バンドギャップ3〜4eV)を用い、上記範囲のバンドギャップを有するp型半導体部7を用いた場合、上記効果がより顕著になる。   The metal oxide (p-type semiconductor) forming the p-type semiconductor portion 7 is not particularly limited as long as it functions as a p-type semiconductor. Copper oxide, palladium oxide, chromium oxide, molybdenum oxide , Nickel oxide, bismuth oxide, and the like. Among these metal oxides, those having a band gap of 3 eV or more and 4 eV or less are preferred, those having a band gap of 3.5 eV or more are more preferred, and those having a band gap of 3.7 eV or more are more preferred. By using a semiconductor having a wide gap in the above range as the p-type semiconductor portion 7, the excited electrons of the dye 9 can easily flow only to the n-type semiconductor portion 6 side, thereby further improving the photoresponsiveness of the photoresponsive element. be able to. When this band gap is less than 3 eV, reverse electron transfer from the dye 9 to the p-type semiconductor portion 7 may occur, and the photoresponsiveness may decrease. Conversely, even when the band gap exceeds 4 eV, performance such as photoresponsiveness may deteriorate. In addition, as the n-type semiconductor portion 6, a titanium oxide or the like (band gap 3 to 4 eV) to which a dye having a band gap of 1.4 to 1.7 eV (for example, a Ru metal complex) is attached is used. When the p-type semiconductor part 7 having a gap is used, the above effect becomes more remarkable.

このような好ましいバンドギャップを有する金属酸化物としては、具体的には、ニッケル酸化物(NiO等)や、ビスマス酸化物(Bi等)を挙げることができ、ニッケル酸化物がより好ましい。 Specific examples of the metal oxide having such a preferable band gap include nickel oxide (NiO and the like) and bismuth oxide (Bi 2 O 3 and the like), and nickel oxide is more preferable. .

上記ニッケル酸化物は、ニッケル1原子に対して、酸素(酸素原子)を0.8原子以上1.2原子以下含むことが好ましい。このようなニッケル酸化物としては、NiOを挙げることができる。また、上記ビスマス酸化物は、ビスマス1原子に対して、酸素(酸素原子)を1.3原子以上1.7原子以下含むことが好ましい。このようなビスマス酸化物としては、Biを挙げることができる。上記組成からなるニッケル酸化物又はビスマス酸化物は、上記範囲の好ましいバンドギャップを有し、当該光応答素子10の光応答性をより高めることができる。 The nickel oxide preferably contains 0.8 atom or more and 1.2 atom or less of oxygen (oxygen atom) with respect to 1 atom of nickel. An example of such nickel oxide is NiO. Moreover, it is preferable that the said bismuth oxide contains 1.3 atoms or more and 1.7 atoms or less of oxygen (oxygen atom) with respect to 1 atom of bismuth. Examples of such bismuth oxide include Bi 2 O 3 . Nickel oxide or bismuth oxide having the above composition has a preferable band gap in the above range, and can further improve the photoresponsiveness of the photoresponsive element 10.

上記p型半導体部7が非多孔質状であることが好ましい。当該光応答素子10によれば、p型半導体部7が非多孔質状、すなわち緻密な形状からなることで、n型半導体部6と対向電極5との間の短絡を抑制することができ、光応答性をより高めることができる。   The p-type semiconductor part 7 is preferably non-porous. According to the photoresponsive element 10, the p-type semiconductor portion 7 is made of a non-porous shape, that is, a dense shape, so that a short circuit between the n-type semiconductor portion 6 and the counter electrode 5 can be suppressed. Photoresponsiveness can be further increased.

上記p型半導体部7の膜厚(平均膜厚)としては、特に限定されないが、例えば10nm以上1μm以下が好ましく、30nm以上300nm以下がより好ましい。このp型半導体部7の膜厚が上記下限未満の場合は、この膜に孔が生じ、短絡が発生するおそれなどがある。逆に、このp型半導体部7の膜厚が上記上限を超える場合は、直列抵抗が高くなり、光応答性が低下するおそれがある。   Although it does not specifically limit as a film thickness (average film thickness) of the said p-type semiconductor part 7, For example, 10 nm or more and 1 micrometer or less are preferable, and 30 nm or more and 300 nm or less are more preferable. When the film thickness of the p-type semiconductor portion 7 is less than the lower limit, a hole is formed in the film, and a short circuit may occur. On the contrary, when the film thickness of this p-type semiconductor part 7 exceeds the said upper limit, there exists a possibility that series resistance may become high and photoresponsiveness may fall.

上記p型半導体部7の形成方法(n型半導体部6表面への積層方法)としては、特に限定されず、例えばスパッタ法、化学浴析出法、電解析出法、めっき法により金属膜を形成し、この金属膜を酸化又は硫化する方法等を挙げることができる。   A method for forming the p-type semiconductor portion 7 (a method for laminating on the surface of the n-type semiconductor portion 6) is not particularly limited. For example, a metal film is formed by sputtering, chemical bath deposition, electrolytic deposition, or plating. In addition, a method of oxidizing or sulfurating the metal film can be used.

これらの中でも、スパッタ法が好ましい。n型半導体部6における多孔質体8と色素9との結合は、中性条件下で安定である。また、この結合は、熱に弱く、熱分解されやすい。しかしながら、スパッタ法を用いる場合は、pH変化や加熱がないため、色素9が吸着された状態を維持しつつ、p型半導体部7を形成することができる。このスパッタ法としては、金属ターゲットを用いた酸素との反応性スパッタや、金属酸化物ターゲットを用いたスパッタで行うことができる。   Among these, the sputtering method is preferable. Bonding between the porous body 8 and the dye 9 in the n-type semiconductor portion 6 is stable under neutral conditions. In addition, this bond is weak to heat and easily decomposed. However, when the sputtering method is used, since there is no pH change or heating, the p-type semiconductor portion 7 can be formed while maintaining the state in which the dye 9 is adsorbed. As this sputtering method, reactive sputtering with oxygen using a metal target or sputtering using a metal oxide target can be performed.

なお、化学浴析出法や、めっき法により金属膜を形成し、この金属膜を酸化又は硫化する方法も、容易にp型半導体部7を形成することができる点では好ましい。電解析出法も、容易に形成でき、成膜レートが速い点で好ましい。さらに、これらの化学浴析出法、めっき法を用いる方法及び電解析出法は、n型半導体部6の多孔質内部にまでp型半導体部を形成することができる点で好ましい。一方、これらの方法は、pH変化や加熱が伴うため、色素9の脱離が生じやすくなる。このため、所望する性能等に応じて、p型半導体部7の形成方法を適宜選択するとよい。   A method of forming a metal film by chemical bath deposition or plating and oxidizing or sulfiding the metal film is also preferable in that the p-type semiconductor portion 7 can be easily formed. The electrolytic deposition method is also preferable because it can be easily formed and the film formation rate is high. Furthermore, the chemical bath deposition method, the plating method, and the electrolytic deposition method are preferable in that the p-type semiconductor portion can be formed even inside the porous portion of the n-type semiconductor portion 6. On the other hand, since these methods involve a change in pH and heating, the dye 9 tends to be detached. For this reason, the formation method of the p-type semiconductor part 7 is suitably selected according to the desired performance or the like.

対向電極5は、p型半導体部7(半導体層4)の表面に層状に積層されている。この対向電極5を形成する材料としては導電性を有する限り特に限定されないが、Pt、Al、Au、Cu、Ti、Ni等の金属、金属酸化物、炭素等を用いることができる。この対向電極5は、スパッタ法や、蒸着法等の公知の方法で形成することができる。また、この対向電極5の膜厚(平均膜厚)としては、例えば10nm以上1μm以下とすることができる。   The counter electrode 5 is layered on the surface of the p-type semiconductor portion 7 (semiconductor layer 4). The material for forming the counter electrode 5 is not particularly limited as long as it has conductivity, but metals such as Pt, Al, Au, Cu, Ti, Ni, metal oxide, carbon, and the like can be used. The counter electrode 5 can be formed by a known method such as sputtering or vapor deposition. Further, the film thickness (average film thickness) of the counter electrode 5 can be set to, for example, 10 nm or more and 1 μm or less.

当該光応答素子10は、太陽光等の光が照射されることで、両電極(導電膜2及び対向電極5)間で電位差が生じ、光を電力に変換することができる。具体的には、光の照射により、色素9が光を吸収し、電子と正孔とが発生する。電子は色素9から多孔質体8(チタン酸化物又は亜鉛酸化物)及び短絡防止層3を経由して導電膜2へ移動する。一方、正孔は色素9からp型半導体部7を経由して対向電極5へ移動する。この両電極間を導線で接続することにより、電流が流れることとなる。当該光応答素子10は、上述のとおり、耐久性及び光応答性に優れる。従って、当該光応答素子10は、光センサーや太陽電池等として好適に用いることができる。   The light response element 10 is irradiated with light such as sunlight, whereby a potential difference is generated between both electrodes (the conductive film 2 and the counter electrode 5), and light can be converted into electric power. Specifically, the dye 9 absorbs light by light irradiation, and electrons and holes are generated. Electrons move from the dye 9 to the conductive film 2 through the porous body 8 (titanium oxide or zinc oxide) and the short-circuit prevention layer 3. On the other hand, the holes move from the dye 9 to the counter electrode 5 via the p-type semiconductor portion 7. By connecting the two electrodes with a conductive wire, a current flows. The photoresponsive element 10 is excellent in durability and photoresponsiveness as described above. Therefore, the photoresponsive element 10 can be suitably used as an optical sensor, a solar cell, or the like.

当該光応答素子10の製造方法としては、特に限定されず、例えば、各層を順に公知の方法で積層させることで得ることができる。なお、各層の具体的な積層方法としては上述したとおりである。   The manufacturing method of the photoresponsive element 10 is not particularly limited, and can be obtained, for example, by laminating each layer in order by a known method. The specific method for laminating each layer is as described above.

図2の光応答素子20は、透明基板1、導電膜2、短絡防止層3、半導体層14及び対向電極5を備える。透明基板1、導電膜2、短絡防止層3及び対向電極5は、図1の光応答素子10と同様なので、同一番号を付して説明を省略する。   2 includes a transparent substrate 1, a conductive film 2, a short-circuit prevention layer 3, a semiconductor layer 14, and a counter electrode 5. Since the transparent substrate 1, the conductive film 2, the short-circuit prevention layer 3, and the counter electrode 5 are the same as those of the photoresponsive element 10 in FIG.

上記半導体層14は、n型半導体部6及び金属酸化物から形成されるp型半導体部17を有する。このn型半導体部6は、図1の光応答素子10と同様なので、同一番号を付して説明を省略する。上記n型半導体部17は、図1の光応答素子10のn型半導体部7と異なり、多孔質状のn型半導体部6の孔内部にまで浸透した構造を有している。当該光応答素子20によれば、このように、p型半導体部17がn型半導体部6の孔内部にまで浸透しているため、p型半導体部17とn型半導体部6との接触面積が広く、より高い光応答性を発揮することができる。このような半導体層14は、n型半導体部6の平均孔径の調整やp型半導体部の形成方法の選択等により形成することができる。   The semiconductor layer 14 has an n-type semiconductor portion 6 and a p-type semiconductor portion 17 formed from a metal oxide. The n-type semiconductor portion 6 is the same as the photoresponsive element 10 in FIG. Unlike the n-type semiconductor portion 7 of the photoresponsive element 10 in FIG. 1, the n-type semiconductor portion 17 has a structure that penetrates into the hole of the porous n-type semiconductor portion 6. According to the photoresponsive element 20, since the p-type semiconductor portion 17 penetrates into the hole of the n-type semiconductor portion 6 in this way, the contact area between the p-type semiconductor portion 17 and the n-type semiconductor portion 6 is increased. Is wide and can exhibit higher photoresponsiveness. Such a semiconductor layer 14 can be formed by adjusting the average pore diameter of the n-type semiconductor portion 6 or selecting a method for forming the p-type semiconductor portion.

なお、本発明の光応答素子は、上記実施形態に限定されるものではない。例えば、対向電極として透明導電性材料を用い、両面側からの光を感受する構造を有していてもよい。   The photoresponsive element of the present invention is not limited to the above embodiment. For example, a transparent conductive material may be used as the counter electrode to have a structure that senses light from both sides.

以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

[実施例1]
透明な導電膜としてのFTOが300nm積層されたガラス基板(透明基板)を用意した。この導電膜の表面に、短絡防止層として100nmのTiO緻密層をスパッタ法により積層した。さらに、この短絡防止層の表面に、平均粒径75nmのTiO粒子を用い、膜厚2μmの多孔質体を形成した。具体的には、上記TiO粒子のペーストを短絡防止層表面に塗布し、500℃で焼結させることにより、多孔質体を形成した。得られた多孔質体を含む部分を色素含有溶液に3時間浸漬し、色素をTiO表面に吸着させ、n型半導体部(膜厚2μm)を形成した。上記色素含有溶液としては、Solaronix社製Ruthenizer 535−bisTBAの0.05mM溶液を用いた。その後、n型半導体部表面に、酸化物ターゲットを用いたスパッタ法にてNiO(バンドギャップ3.88eV)を100nm積層し、p型半導体部を形成した。さらに、このp型半導体部表面に対向電極としてスパッタ法によりAuを50nm積層させ、実施例1の光応答素子を得た。図3に実施例1の半導体層(n型半導体部及びp型半導体部)のSEM写真を示す。
[Example 1]
A glass substrate (transparent substrate) on which 300 nm of FTO as a transparent conductive film was laminated was prepared. On the surface of this conductive film, a 100 nm TiO 2 dense layer was laminated as a short-circuit prevention layer by sputtering. Further, a TiO 2 particle having an average particle diameter of 75 nm was used on the surface of the short-circuit prevention layer to form a porous body having a thickness of 2 μm. Specifically, the porous body was formed by applying the paste of TiO 2 particles to the surface of the short-circuit prevention layer and sintering at 500 ° C. The part containing the obtained porous body was immersed in a dye-containing solution for 3 hours, and the dye was adsorbed on the TiO 2 surface to form an n-type semiconductor part (film thickness: 2 μm). As the dye-containing solution, a 0.05 mM solution of Ruthenizer 535-bisTBA manufactured by Solaronix was used. Then, 100 nm of NiO (band gap 3.88 eV) was laminated on the surface of the n-type semiconductor portion by a sputtering method using an oxide target to form a p-type semiconductor portion. Further, 50 nm of Au was laminated as a counter electrode on the surface of the p-type semiconductor portion by a sputtering method to obtain the photoresponsive element of Example 1. FIG. 3 shows an SEM photograph of the semiconductor layer (n-type semiconductor portion and p-type semiconductor portion) of Example 1.

[実施例2〜4]
p型半導体部の形成材料として、NiOの代わりに、それぞれBi(バンドギャップ3.81eV:実施例2)、PdO(バンドギャップ1.6eV:実施例3)及びCuO(バンドギャップ1.7eV:実施例4)を用いたこと以外は、実施例1と同様の操作をして、実施例2〜4の光応答素子を得た。
[Examples 2 to 4]
As a material for forming the p-type semiconductor portion, Bi 2 O 3 (band gap 3.81 eV: Example 2), PdO (band gap 1.6 eV: Example 3), and CuO (band gap 1. 7eV: The photoresponsive elements of Examples 2 to 4 were obtained in the same manner as in Example 1 except that Example 4) was used.

[実施例5及び6]
n型半導体部(多孔質層)の膜厚を6μm(実施例5)及び10μm(実施例6)としたこと以外は、実施例1と同様の操作をして、実施例5及び6の光応答素子を得た。
[Examples 5 and 6]
Except that the film thickness of the n-type semiconductor portion (porous layer) was 6 μm (Example 5) and 10 μm (Example 6), the same operations as in Example 1 were performed, and the light of Examples 5 and 6 A response element was obtained.

なお、実施例1、5及び6の光応答素子において、n型半導体部を形成した後、530nmの波長(Ruthenizer 535−bisTBAの吸収極大波長)に対する光吸収率を測定した。測定結果を図4に示す。n型半導体部の膜厚が、2μmから6μmまででは膜厚と共に吸収率が増加したが、6μmで吸収率の増加は頭打ちし、6μmから10μmではほとんど変化しないことがわかる。   In the photoresponsive elements of Examples 1, 5, and 6, after the n-type semiconductor portion was formed, the optical absorptance with respect to a wavelength of 530 nm (the absorption maximum wavelength of Ruthenizer 535-bisTBA) was measured. The measurement results are shown in FIG. It can be seen that when the film thickness of the n-type semiconductor portion is 2 μm to 6 μm, the absorptance increases with the film thickness, but the increase in the absorption rate reaches a peak at 6 μm and hardly changes from 6 μm to 10 μm.

[評価1]
得られた実施例1〜4の各光応答素子について、東芝社製クールビームランプ120Wを用い、光照射前及び光照射時の電流値変化を測定した。測定結果を表1に示す。
[Evaluation 1]
About each photoresponsive element of obtained Examples 1-4, the current value change before light irradiation at the time of light irradiation was measured using the cool beam lamp 120W by Toshiba Corporation. The measurement results are shown in Table 1.

[評価2]
得られた実施例1、5及び6の各光応答素子について、東芝社製クールビームランプ120Wを用い、光照射前及び光照射時の電流値変化を測定した。測定結果を表2に示す。
[Evaluation 2]
About each photoresponsive element of the obtained Examples 1, 5, and 6, the change in electric current value before and during light irradiation was measured using a cool beam lamp 120W manufactured by Toshiba Corporation. The measurement results are shown in Table 2.

表1及び表2に示されるように、いずれの光応答素子も、光応答性を有することがわかる。特に、表1に示されるように、実施例1〜4を比較すると、p型半導体材料としてバンドギャップが広いNiO及びBiを用いた場合は、0.1mA以上の電流値が得られている。一方、バンドギャップの狭いPdO及びCuOを用いた場合は、Biを用いた場合の1/3程度しか電流値が得られない。 As shown in Tables 1 and 2, it can be seen that any of the photoresponsive elements has photoresponsiveness. In particular, as shown in Table 1, when Examples 1 to 4 are compared, when NiO and Bi 2 O 3 having a wide band gap are used as the p-type semiconductor material, a current value of 0.1 mA or more is obtained. ing. On the other hand, when PdO and CuO having a narrow band gap are used, a current value can be obtained only about 1/3 of that when Bi 2 O 3 is used.

また、表2に示されるように、実施例1、5及び6を比較すると、電流値は膜厚6μmで最大になることがわかる。これは、色素の光吸収量と抵抗とのバランスが適当となるためであると考えられる。   Further, as shown in Table 2, when Examples 1, 5, and 6 are compared, it can be seen that the current value becomes maximum when the film thickness is 6 μm. This is considered to be because the balance between the light absorption amount of the dye and the resistance becomes appropriate.

本発明の光応答素子は、耐久性及び光応答性に優れ、光センサーや太陽電池等として好適に用いることができる。   The photoresponsive element of the present invention is excellent in durability and photoresponsiveness, and can be suitably used as an optical sensor, a solar cell, or the like.

1 透明基板
2 導電膜
3 短絡防止層
4、14 半導体層
5 対向電極
6 n型半導体部
7、17 p型半導体部
8 多孔質体
9 色素
10、20 光応答素子
DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 Conductive film 3 Short-circuit prevention layer 4, 14 Semiconductor layer 5 Counter electrode 6 N-type semiconductor part 7, 17 p-type semiconductor part 8 Porous body 9 Dye 10, 20 Photoresponsive element

Claims (10)

透明基板、導電膜、短絡防止層、半導体層及び対向電極がこの順に積層される光応答素子であって、
上記半導体層が、
上記短絡防止層の表面に配設される多孔質体、及びこの多孔質体の表面に付着した色素を有するn型半導体部と、
このn型半導体部及び対向電極の間に配設されるp型半導体部と
を備え、
上記n型半導体部の多孔質体がチタン酸化物又は亜鉛酸化物から形成され、
上記p型半導体部が金属酸化物から形成されることを特徴とする光応答素子。
A transparent substrate, a conductive film, a short-circuit prevention layer, a semiconductor layer and a counter electrode are laminated in this order,
The semiconductor layer is
A porous body disposed on the surface of the short-circuit prevention layer, and an n-type semiconductor portion having a dye attached to the surface of the porous body;
A p-type semiconductor portion disposed between the n-type semiconductor portion and the counter electrode,
The porous body of the n-type semiconductor part is formed from titanium oxide or zinc oxide,
The p-type semiconductor portion is formed of a metal oxide.
上記p型半導体部を形成する金属酸化物のバンドギャップが3eV以上4eV以下である請求項1に記載の光応答素子。   2. The photoresponsive element according to claim 1, wherein a band gap of the metal oxide forming the p-type semiconductor portion is 3 eV or more and 4 eV or less. 上記p型半導体部がニッケル酸化物又はビスマス酸化物から形成され、
上記ニッケル酸化物が、ニッケル1原子に対して、酸素を0.8原子以上1.2原子以下含み、上記ビスマス酸化物が、ビスマス1原子に対して、酸素を1.3原子以上1.7原子以下含む請求項1又は請求項2に記載の光応答素子。
The p-type semiconductor portion is formed of nickel oxide or bismuth oxide;
The nickel oxide contains 0.8 atom or more and 1.2 atom or less of oxygen with respect to 1 atom of nickel, and the bismuth oxide contains 1.3 atom or more and 1.7 atom or more of oxygen with respect to 1 atom of bismuth. The photoresponsive element according to claim 1 or 2 containing atoms or less.
上記p型半導体部がスパッタ法により形成されている請求項1、請求項2又は請求項3に記載の光応答素子。   The photoresponsive element according to claim 1, wherein the p-type semiconductor portion is formed by a sputtering method. 上記p型半導体部が非多孔質状である請求項1から請求項4のいずれか1項に記載の光応答素子。   The photoresponsive element according to any one of claims 1 to 4, wherein the p-type semiconductor part is non-porous. 上記p型半導体部が層状に形成されている請求項1から請求項5のいずれか1項に記載の光応答素子。   The photoresponsive element according to any one of claims 1 to 5, wherein the p-type semiconductor portion is formed in a layer shape. 上記n型半導体部が、平均孔径が10nm以上50nm以下の多孔質状である請求項1から請求項6のいずれか1項に記載の光応答素子。   The photoresponsive element according to any one of claims 1 to 6, wherein the n-type semiconductor portion has a porous shape with an average pore diameter of 10 nm to 50 nm. 上記n型半導体部の多孔質体の形成に、チタン酸化物又は亜鉛酸化物からなる平均粒径50nm以上100nm以下の粒子を用いる請求項1から請求項7のいずれか1項に記載の光応答素子。   The optical response according to any one of claims 1 to 7, wherein particles having an average particle diameter of 50 nm or more and 100 nm or less made of titanium oxide or zinc oxide are used for forming the porous body of the n-type semiconductor portion. element. 上記チタン酸化物が、チタン1原子に対して、酸素を1.8原子以上2.2原子以下含み、上記亜鉛酸化物が、亜鉛1原子に対して、酸素を0.8原子以上1.2原子以下含む請求項1から請求項8のいずれか1項に記載の光応答素子。   The titanium oxide contains 1.8 to 2.2 atoms of oxygen with respect to 1 atom of titanium, and the zinc oxide has oxygen of 0.8 to 1.2 atoms with respect to 1 atom of zinc. The photoresponsive element according to claim 1, comprising not more than atoms. 上記n型半導体部が層状に形成され、このn型半導体部の膜厚が2μm以上10μm以下である請求項1から請求項9のいずれか1項に記載の光応答素子。   The photoresponsive element according to any one of claims 1 to 9, wherein the n-type semiconductor part is formed in layers, and the film thickness of the n-type semiconductor part is 2 µm or more and 10 µm or less.
JP2011132492A 2011-06-14 2011-06-14 Optical response element Pending JP2013004238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011132492A JP2013004238A (en) 2011-06-14 2011-06-14 Optical response element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011132492A JP2013004238A (en) 2011-06-14 2011-06-14 Optical response element

Publications (1)

Publication Number Publication Date
JP2013004238A true JP2013004238A (en) 2013-01-07

Family

ID=47672632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011132492A Pending JP2013004238A (en) 2011-06-14 2011-06-14 Optical response element

Country Status (1)

Country Link
JP (1) JP2013004238A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015132753A (en) * 2014-01-15 2015-07-23 株式会社リコー Electrochromic display device and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319873A (en) * 2003-04-18 2004-11-11 Tdk Corp Oxide semiconductor electrode for photoelectric conversion and dye-sensitized photoelectric conversion device
JP2008059851A (en) * 2006-08-30 2008-03-13 Sanyo Electric Co Ltd Dye-sensitized solar cell
JP2011076791A (en) * 2009-09-29 2011-04-14 Yaegaki Hakko Giken Kk Photoelectric conversion element, and optical power generating device using the photoelectric conversion element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319873A (en) * 2003-04-18 2004-11-11 Tdk Corp Oxide semiconductor electrode for photoelectric conversion and dye-sensitized photoelectric conversion device
JP2008059851A (en) * 2006-08-30 2008-03-13 Sanyo Electric Co Ltd Dye-sensitized solar cell
JP2011076791A (en) * 2009-09-29 2011-04-14 Yaegaki Hakko Giken Kk Photoelectric conversion element, and optical power generating device using the photoelectric conversion element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015132753A (en) * 2014-01-15 2015-07-23 株式会社リコー Electrochromic display device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
Balasingam et al. Metal substrate based electrodes for flexible dye-sensitized solar cells: fabrication methods, progress and challenges
AU777191B2 (en) Solar cell and solar cell unit
JP5406570B2 (en) Dye-sensitized solar cell and method for producing the same
Ganapathy et al. Cauliflower-like SnO 2 hollow microspheres as anode and carbon fiber as cathode for high performance quantum dot and dye-sensitized solar cells
JP4876450B2 (en) Porous electrode, composite element having the porous electrode, and manufacturing method thereof
WO2008004553A1 (en) Dye-sensitized solar cell module and method for fabricating same
TW200306014A (en) Electroconductive glass and photovoltaic cell using the same
JP2008288209A (en) Manufacturing method for photoelectrode of dye-sensitized solar cell, photoelectrode for dye-sensitized solar cell, and dye-sensitized solar cell
KR102318356B1 (en) Solid Thin Film Solar Cell Based on Perovskite Sensitizer and Manufacturing Method Thereof
Cruz et al. Transparent graphene-based counter-electrodes for iodide/triiodide mediated dye-sensitized solar cells
NL2001815C2 (en) Reversed dye-sensitized photovoltaic cell.
JP4951853B2 (en) Electrode substrate for dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell
JP2005142088A (en) Electrode board for dye-sensitized solar cell, and the dye-sensitized solar cell
JP2004319872A (en) Dye-sensitized photoelectric conversion device
TWI568006B (en) Photoelectrode for dye-sensitised solar cell, and dye-sensitised solar cell
JP4071428B2 (en) Dye-sensitized solar cell and method for producing the same
JP4601285B2 (en) Electrode substrate for dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell
JP4759984B2 (en) Electrode substrate for dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell
Behrouznejad et al. Monolithic dye sensitized solar cell with metal foil counter electrode
JP5580356B2 (en) Battery electrode material, battery electrode material paste, solar cell using the same, storage battery, and method for manufacturing solar cell
JP4954855B2 (en) Manufacturing method of dye-sensitized solar cell
JP5096755B2 (en) Dye-sensitized solar cell
JP2013004238A (en) Optical response element
JP2006164697A (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2013122874A (en) Photoelectric conversion element, method for manufacturing the same, electronic device, counter electrode for photoelectric conversion element, and building

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151104

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151207

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160219