JP2013003319A - Light control material and light control film - Google Patents

Light control material and light control film Download PDF

Info

Publication number
JP2013003319A
JP2013003319A JP2011133669A JP2011133669A JP2013003319A JP 2013003319 A JP2013003319 A JP 2013003319A JP 2011133669 A JP2011133669 A JP 2011133669A JP 2011133669 A JP2011133669 A JP 2011133669A JP 2013003319 A JP2013003319 A JP 2013003319A
Authority
JP
Japan
Prior art keywords
light control
light
meth
acrylate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011133669A
Other languages
Japanese (ja)
Other versions
JP5842396B2 (en
Inventor
Toru Tanaka
徹 田中
Hitoshi Yamazaki
仁 山崎
Munemaru Sakayori
宗丸 酒寄
Michiyuki Nomura
理行 野村
Yoshii Morishita
芳伊 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2011133669A priority Critical patent/JP5842396B2/en
Publication of JP2013003319A publication Critical patent/JP2013003319A/en
Application granted granted Critical
Publication of JP5842396B2 publication Critical patent/JP5842396B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light control material having high heat resistance, and a light control film configured using the same.SOLUTION: The light control material includes: polymeric medium 2 being curable by irradiation of an energy line; and light control suspension 9 dispersed in the polymeric medium and including a resin dispersing agent that is a copolymer including a structural unit derived from a (meta)acrylate having a hydroxy group and a structural unit derived from an alkyl (meth)acrylate with the carbon number of 4-20, at a fixed mole ratio, and light control particles 10. The light control film is configured using the light control material.

Description

本発明は調光材料および調光フィルムに関する。   The present invention relates to a light control material and a light control film.

電界を印加していない状態では、懸濁液中に分散されている光調整粒子のブラウン運動により、入射光の大部分が光調整粒子により反射、散乱又は吸収され、ごく一部分だけが透過し、一方、電界を印加した状態では、光調整粒子が分極を起こし、電場に対して平行に配列され、光調整粒子と光調整粒子の間を光が透過するライトバルブすなわち調光装置が知られている(例えば、特許文献1参照)。ロバート・エル・サックス(Robert.L.Saxe)らは、光調整粒子を安定して媒体に分散させる方法として、粒子と親和性の高いヒドロキシ基やその他の官能基をもつモノマーを用いて合成した分散高分子を用いる方法を提案している(例えば、特許文献2、3参照)。また、媒体としてトリメリット酸エステルが有効であることを提案している(例えば、特許文献4参照)。   In the state where no electric field is applied, the Brownian motion of the light control particles dispersed in the suspension causes most of the incident light to be reflected, scattered or absorbed by the light control particles, and only a small part is transmitted. On the other hand, in a state where an electric field is applied, a light valve, that is, a light control device, is known in which light adjusting particles are polarized and arranged parallel to the electric field, and light is transmitted between the light adjusting particles and the light adjusting particles. (For example, refer to Patent Document 1). Robert L. Sax et al. Synthesized light-controlling particles using a monomer having a hydroxyl group or other functional group that has high affinity with the particles as a method for stably dispersing the light-controlling particles in the medium. A method using a dispersed polymer has been proposed (see, for example, Patent Documents 2 and 3). In addition, it has been proposed that trimellitic acid ester is effective as a medium (see, for example, Patent Document 4).

米国特許第1,955,923号明細書US Pat. No. 1,955,923 米国特許第4,164,365号明細書U.S. Pat. No. 4,164,365 米国特許第4,273,422号明細書U.S. Pat. No. 4,273,422 米国特許第5,461,506号明細書US Pat. No. 5,461,506

しかしながら、特許文献2〜4に記載された光調整粒子を懸濁させる方法では、構成された調光フィルムを高温環境下においた場合に、その前後で光透過率が変動してしまい、十分な耐熱性が得られない場合があった。
本発明は、耐熱性に優れる調光材料、およびこれを用いて構成される調光フィルムを提供することを課題とする。
However, in the method of suspending the light control particles described in Patent Documents 2 to 4, when the configured light control film is placed in a high temperature environment, the light transmittance fluctuates before and after the light control film. In some cases, heat resistance could not be obtained.
This invention makes it a subject to provide the light control material excellent in heat resistance, and the light control film comprised using this.

前記課題を解決するための具体的手段は以下の通りである。
<1> エネルギー線照射により硬化可能な高分子媒体と、
ヒドロキシ基を有する(メタ)アクリレートに由来する第一の構造単位及び炭素数4〜20のアルキル(メタ)アクリレートに由来する第二の構造単位を含む共重合体であり、且つ前記第一の構造単位と前記第二の構造単位のモル比が5/95〜20/80である樹脂分散剤並びに光調整粒子を含有し、前記高分子媒体中に分散された光調整懸濁液と
を含む調光材料である。
Specific means for solving the above problems are as follows.
<1> a polymer medium curable by energy ray irradiation;
A copolymer comprising a first structural unit derived from a (meth) acrylate having a hydroxy group and a second structural unit derived from an alkyl (meth) acrylate having 4 to 20 carbon atoms, and the first structure A preparation comprising: a resin dispersant having a molar ratio of the unit to the second structural unit of 5/95 to 20/80; and a light control suspension containing the light control particles and dispersed in the polymer medium. It is a light material.

<2> 2つの透明導電性樹脂基材と、前記2つの透明導電性樹脂基材に挟持された調光層とを有し、前記調光層が、
樹脂マトリックスと、
前記樹脂マトリックス中に分散され、ヒドロキシ基を有する(メタ)アクリレートに由来する第一の構造単位及び炭素数4〜20のアルキル(メタ)アクリレートに由来する第二の構造単位を含む共重合体であり、且つ前記第一の構造単位と第二の構造単位のモル比が5/95〜20/80である樹脂分散剤と光調整粒子とを含有する、光調整懸濁液と
を有する調光フィルムである。
<2> having two transparent conductive resin base materials and a light control layer sandwiched between the two transparent conductive resin base materials, the light control layer,
A resin matrix;
A copolymer containing a first structural unit derived from a (meth) acrylate having a hydroxy group and a second structural unit derived from an alkyl (meth) acrylate having 4 to 20 carbon atoms, dispersed in the resin matrix. And a light control suspension comprising a resin dispersant having a molar ratio of the first structural unit to the second structural unit of 5/95 to 20/80 and light control particles. It is a film.

本発明によれば、耐熱性に優れる調光材料、およびこれを用いて構成される調光フィルムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the light control material excellent in heat resistance and the light control film comprised using this can be provided.

本発明にかかる調光フィルムの一態様を示す概略断面図である。It is a schematic sectional drawing which shows the one aspect | mode of the light control film concerning this invention. 図2(a)は、図1の調光フィルムの電界が印加されていない場合の作動を説明するための概略断面図であり、図2(b)は、電界が印加されていないときの光調整懸濁液の液滴3の様子を示す図である。2A is a schematic cross-sectional view for explaining the operation when the electric field of the light control film of FIG. 1 is not applied, and FIG. 2B is the light when the electric field is not applied. It is a figure which shows the mode of the droplet 3 of adjustment suspension. 図3(a)は、図1の調光フィルムの電界が印加されている場合の作動を説明するための概略断面図であり、図3(b)は、電界が印加されているときの光調整懸濁液の液滴3の様子を示す図である。FIG. 3A is a schematic cross-sectional view for explaining the operation when the electric field of the light control film of FIG. 1 is applied, and FIG. 3B is the light when the electric field is applied. It is a figure which shows the mode of the droplet 3 of adjustment suspension. 本発明にかかる調光フィルムの端部の状態の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the state of the edge part of the light control film concerning this invention. 本発明にかかる調光フィルムにおける光透過率保持率と、100℃での保管時間との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the light transmittance retention in the light control film concerning this invention, and the storage time at 100 degreeC.

本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。また本明細書において「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。
また、本明細書において、「(メタ)アクリレート」とは、「アクリレート」及びそれに対応する「メタクリレート」の少なくとも一方を意味する。同様に「(メタ)アクリル」とは、「アクリル」及びそれに対応する「メタクリル」の少なくとも一方を意味する。
In this specification, the term “process” is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes. . In the present specification, numerical ranges indicated using “to” indicate ranges including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
In the present specification, “(meth) acrylate” means at least one of “acrylate” and “methacrylate” corresponding thereto. Similarly, “(meth) acryl” means at least one of “acryl” and “methacryl” corresponding thereto.

<調光材料>
本発明の調光材料は、エネルギー線照射により硬化可能な高分子媒体と、
ヒドロキシ基を有する(メタ)アクリレートに由来する第一の構造単位及び炭素数4〜20のアルキル(メタ)アクリレートに由来する第二の構造単位を含む共重合体であり、且つ前記第一の構造単位と前記第二の構造単位のモル比が5/95〜20/80である樹脂分散剤並びに光調整粒子を含有し、前記高分子媒体中に分散された光調整懸濁液と
を含み、必要に応じてその他の成分を含んで構成される。
即ち、本発明の調光材料においては、樹脂分散剤及び光調整粒子を含有する光調整懸濁液がエネルギー線照射により硬化可能な高分子媒体中に分散されており、該光調整懸濁液に含まれる樹脂分散剤がヒドロキシ基を有する(メタ)アクリレートに由来する第一の構造単位と炭素数4〜20のアルキル(メタ)アクリレートに由来する第二の構造単位とを所定のモル比で含む共重合体である。これにより、充分な耐熱性が確保できるとともに、光調整懸濁液に含まれる光調整粒子の分散性が向上し、安定な光透過率を維持することが可能になる。
従って、本発明によれば、長期に亘り、優れた耐熱性を有する調光材料を提供することができる。
<Light control material>
The light control material of the present invention comprises a polymer medium curable by energy ray irradiation,
A copolymer comprising a first structural unit derived from a (meth) acrylate having a hydroxy group and a second structural unit derived from an alkyl (meth) acrylate having 4 to 20 carbon atoms, and the first structure A resin dispersant having a molar ratio of the unit to the second structural unit of 5/95 to 20/80, and a light control particle, and a light control suspension dispersed in the polymer medium, It is configured to include other components as necessary.
That is, in the light control material of the present invention, a light control suspension containing a resin dispersant and light control particles is dispersed in a polymer medium that can be cured by irradiation with energy rays. The first structural unit derived from the (meth) acrylate having a hydroxy group in the resin dispersant contained in and the second structural unit derived from the alkyl (meth) acrylate having 4 to 20 carbon atoms in a predetermined molar ratio. It is a copolymer containing. As a result, sufficient heat resistance can be ensured, the dispersibility of the light adjusting particles contained in the light adjusting suspension is improved, and a stable light transmittance can be maintained.
Therefore, according to the present invention, a light control material having excellent heat resistance can be provided over a long period of time.

[光調整懸濁液]
前記光調整懸濁液は、前記樹脂分散剤の少なくとも1種と、光調整粒子の少なくとも1種とを含み、必要に応じてその他の成分を含んで構成される。
光調整懸濁液が、特定構造の樹脂分散剤を含むことで、光調整粒子の分散安定性が向上し、耐熱性に優れる調光材料を構成することができる。これは例えば、前記樹脂分散剤が適度な割合のヒドロキシ基を有することで、光調整粒子と樹脂分散剤の親和性がより向上するためと考えることができる。
[Light control suspension]
The light adjusting suspension includes at least one kind of the resin dispersant and at least one kind of light adjusting particles, and includes other components as necessary.
When the light adjustment suspension contains a resin dispersant having a specific structure, a light control material having improved dispersion stability of the light adjustment particles and excellent heat resistance can be formed. This can be considered, for example, because the affinity of the light control particles and the resin dispersant is further improved because the resin dispersant has an appropriate proportion of hydroxy groups.

(樹脂分散剤)
前記樹脂分散剤は、光調整粒子が分散した光調整懸濁液を構成する流動可能な分散媒として用いられる。
前記樹脂分散剤は、ヒドロキシ基を有する(メタ)アクリレートに由来する第一の構造単位及び炭素数4〜20のアルキル(メタ)アクリレートに由来する第二の構造単位を含む共重合体(以下、「特定共重合体」ということがある)である。
ここで、構造単位とは、共重合体中に含まれる、モノマー由来の繰り返し単位をいう。
(Resin dispersant)
The resin dispersant is used as a flowable dispersion medium constituting a light adjusting suspension in which light adjusting particles are dispersed.
The resin dispersant is a copolymer containing a first structural unit derived from a (meth) acrylate having a hydroxy group and a second structural unit derived from an alkyl (meth) acrylate having 4 to 20 carbon atoms (hereinafter, Sometimes referred to as "specific copolymer").
Here, the structural unit refers to a repeating unit derived from a monomer contained in the copolymer.

本発明において、前記特定共重合体は、例えば光調整懸濁液を調製する際、光調整粒子を安定に分散するときに好ましく用いられる。
本発明においては、第一の構造単位と第二の構造単位とを所定の比率で含む特定共重合体を樹脂分散剤として用いることにより、光調整粒子の分散性を高めることができ、耐熱性に優れた調光材料を得ることができる。
かかる特定共重合体は、必要に応じて第一の構造単位及び第二の構造単位以外に、その他の構造単位を含んでいてもよい。
In the present invention, the specific copolymer is preferably used for stably dispersing the light control particles, for example, when preparing a light control suspension.
In the present invention, by using a specific copolymer containing the first structural unit and the second structural unit in a predetermined ratio as a resin dispersant, the dispersibility of the light control particles can be increased, and the heat resistance It is possible to obtain a light control material excellent in the above.
Such a specific copolymer may contain other structural units as needed in addition to the first structural unit and the second structural unit.

前記第一の構造単位を構成するヒドロキシ基を有する(メタ)アクリレートは、少なくとも1つのヒドロキシ基と重合性基とを有するものであれば、特に限定されない。
前記ヒドロキシ基を有する(メタ)アクリレートとしては、下記式(I)で表される1つのヒドロキシ基がアルキレン基の末端に位置するヒドロキシルアルキル(メタ)アクリレートが好ましい。
The (meth) acrylate having a hydroxy group constituting the first structural unit is not particularly limited as long as it has at least one hydroxy group and a polymerizable group.
As the (meth) acrylate having a hydroxy group, a hydroxylalkyl (meth) acrylate in which one hydroxy group represented by the following formula (I) is located at the terminal of an alkylene group is preferable.




・・・式(I)



... Formula (I)

前記式(I)中、R1は水素原子又はメチル基を示し、R2は炭素数2〜8のアルキレン基を示す。
前記式(I)において、R1は水素原子又はメチル基であるが、メチル基であることが好ましい。
また、R2で表されるアルキレン基は、環状、直鎖状及び分岐鎖状のいずれであってもよく、中でも直鎖状であることが好ましい。炭素数は2〜8であるが、耐熱性の観点から、2〜4であることが好ましい。
R1、R2が上述のような条件を満たすことにより、光調整粒子の分散性を高めることができ、調光層において優れた耐熱性が実現できる。
In said formula (I), R1 shows a hydrogen atom or a methyl group, R2 shows a C2-C8 alkylene group.
In the formula (I), R1 is a hydrogen atom or a methyl group, but is preferably a methyl group.
In addition, the alkylene group represented by R2 may be any of cyclic, linear and branched, and is preferably linear. Although carbon number is 2-8, it is preferable that it is 2-4 from a heat resistant viewpoint.
When R1 and R2 satisfy the above conditions, the dispersibility of the light adjusting particles can be enhanced, and excellent heat resistance can be realized in the light control layer.

前記式(I)で表される化合物としては、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、5−ヒドロキシペンチル(メタ)アクリレート、6−ヒドロキシヘキシル(メタ)アクリレート、7−ヒドロキシヘプチル(メタ)アクリレート、8−ヒドロキシオクチル(メタ)アクリレート等が挙げられる。これらの中でも、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレートが好ましく、特に2−ヒドロキシエチル(メタ)アクリレートが好ましい。 Examples of the compound represented by the formula (I) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4 -Hydroxybutyl (meth) acrylate, 5-hydroxypentyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 7-hydroxyheptyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate and the like. Among these, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 2-hydroxybutyl (meth) acrylate are preferable, and 2-hydroxyethyl (meth) acrylate is particularly preferable.

前記第二の構造単位を構成する炭素数が4〜20のアルキル(メタ)アクリレートにおけるアルキル基は、炭素数が4〜20のアルキル基であれば特に限定されず、直鎖状及び分岐鎖状のいずれであってもよい。
前記炭素数が4〜20のアルキル(メタ)アクリレートとしては、光調整粒子の分散性を確保する視点より、炭素数8〜16のアルキル(メタ)アクリレートが好ましく、炭素数10〜14のアルキル(メタ)アクリレートがより好ましい。
前記炭素数が4〜20のアルキル(メタ)アクリレートとしては、例えば、2−メチルプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2,4,6−トリメチルヘプチル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、ノナデシル(メタ)アクリレート、エイコシル(メタ)アクリレート等が挙げられる。これらの中でもヘキシル(メタ)アクリレート、2,4,6−トリメチルヘプチル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレートが好ましく、特に2,4,6−トリメチルヘプチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレートが好ましい。
The alkyl group in the alkyl (meth) acrylate having 4 to 20 carbon atoms constituting the second structural unit is not particularly limited as long as it is an alkyl group having 4 to 20 carbon atoms, and is linear or branched. Any of these may be used.
The alkyl (meth) acrylate having 4 to 20 carbon atoms is preferably an alkyl (meth) acrylate having 8 to 16 carbon atoms from the viewpoint of ensuring the dispersibility of the light control particles, and the alkyl (meth) acrylate having 10 to 14 carbon atoms ( More preferred is (meth) acrylate.
Examples of the alkyl (meth) acrylate having 4 to 20 carbon atoms include 2-methylpropyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, and hexyl. (Meth) acrylate, 2,4,6-trimethylheptyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, Undecyl (meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, heptadecyl (meth) acrylate, octadecyl (meth) acrylate , Nonadecyl (meth) acrylate, eicosyl (meth) acrylate. Among these, hexyl (meth) acrylate, 2,4,6-trimethylheptyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl ( (Meth) acrylate, undecyl (meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, and pentadecyl (meth) acrylate are preferable, and 2,4,6-trimethylheptyl (meth) acrylate and 2-ethylhexyl (meth) are particularly preferable. Acrylate, dodecyl (meth) acrylate, and tridecyl (meth) acrylate are preferred.

前記特定共重合体において、第一の構造単位と第二の構造単位のモル比は5/95〜20/80であり、5/95〜15/85であることが好ましく、6/94〜10/90であることがより好ましい。第一の構造単位のモル比が5より小さい場合、耐熱性が低下してしまう場合がある。これは光調整粒子との親和性をもつヒドロキシ基の量が十分でないためであると予想する。また、第一の構造単位のモル比が20より大きい場合には、粒子の分散性が悪化してヘイズが大きくなったり、透過率が低下したりする傾向がある。これは、例えばヒドロキシ基同士の相互作用が強くなるためと考えられる。 In the specific copolymer, the molar ratio of the first structural unit to the second structural unit is 5/95 to 20/80, preferably 5/95 to 15/85, and 6/94 to 10 / 90 is more preferable. When the molar ratio of the first structural unit is smaller than 5, the heat resistance may be lowered. This is expected because the amount of hydroxy groups having an affinity for the light control particles is not sufficient. On the other hand, when the molar ratio of the first structural unit is larger than 20, the dispersibility of the particles tends to deteriorate and haze increases or the transmittance tends to decrease. This is considered to be because, for example, the interaction between hydroxy groups becomes strong.

前記特定共重合体において、前記第一の構造単位におけるヒドロキシ基は光調整粒子に親和性を示し、前記第二の構造単位におけるアルキル基は、高分子媒体中で光調整懸濁液が液滴として安定に維持するために作用すると考えられることから、光調整粒子が光調整懸濁液中で凝集したり、沈降したりすることなく安定的に分散される。また相分離の際には光調整粒子を相分離される液滴内に効率的に誘導することができる。
かかる特定共重合体としては、後述する高分子媒体及びその硬化物である樹脂マトリックスと完全に相分離するもの、もしくは部分的に相分離可能なものであることが好ましい。より好ましくは、光調整粒子を流動可能な状態で分散させる役割を果たすとともに、光調整粒子に選択的に付着被覆し、高分子媒体との相分離の際に光調整粒子が相分離された液滴相に移動するように作用し、電気導電性が小さく、高分子媒体との親和性が小さく、調光フィルムとした際に高分子媒体から形成される樹脂マトリックスとの屈折率が近似した液状共重合体を使用することがより好ましい。
In the specific copolymer, the hydroxy group in the first structural unit has an affinity for the light control particles, and the alkyl group in the second structural unit is a droplet of the light control suspension in a polymer medium. Therefore, the light control particles are stably dispersed without agglomeration or sedimentation in the light control suspension. Further, in the phase separation, the light control particles can be efficiently guided into the droplets to be phase separated.
Such a specific copolymer is preferably one that can be completely phase-separated from a polymer medium to be described later and a resin matrix that is a cured product thereof, or one that can be partially phase-separated. More preferably, the liquid in which the light control particles are dispersed in a flowable state, is selectively attached to and coated on the light control particles, and the light control particles are phase-separated during phase separation from the polymer medium. Liquid that acts to move to the droplet phase, has low electrical conductivity, low affinity with the polymer medium, and approximates the refractive index of the resin matrix formed from the polymer medium when used as a light control film It is more preferable to use a copolymer.

前記特定共重合体は、一般的な熱重合開始剤を用いたラジカル重合法で合成できる。例えば、前記ヒドロキシ基を有する(メタ)アクリレートと炭素数が4〜20のアルキル(メタ)アクリレートと、必要に応じてその他のモノマーとを含むモノマー混合物を一般的な熱重合開始剤を用いてラジカル重合することで合成できる。その際、連鎖移動剤を適宜添加してもよい。連鎖移動剤としては、通常使用されるものであれば、特に制限されない。例えば、炭素数1〜10のアルキルメルカプタン及びその誘導体、α−メチルスチレンダイマー誘導体等を挙げることができる。
中でも、β位およびγ位にヒドロキシ基を有するアルキルスルフィド構造を有する化合物を用いることが好ましい。このような連鎖移動剤としては、3−メルカプト−1,2−プロパンジオール、1−メルカプト−2,3−ジヒドロキシブタン、1−メルカプト−2,3−ジヒドロキシヘキサン等を挙げることができる。
The specific copolymer can be synthesized by a radical polymerization method using a general thermal polymerization initiator. For example, a monomer mixture containing the (meth) acrylate having a hydroxy group, an alkyl (meth) acrylate having 4 to 20 carbon atoms, and, if necessary, other monomers is used as a radical using a general thermal polymerization initiator. It can be synthesized by polymerization. In that case, you may add a chain transfer agent suitably. The chain transfer agent is not particularly limited as long as it is usually used. For example, C1-C10 alkyl mercaptan and its derivative (s), (alpha) -methylstyrene dimer derivative, etc. can be mentioned.
Among them, it is preferable to use a compound having an alkyl sulfide structure having a hydroxy group at the β-position and γ-position. Examples of such chain transfer agents include 3-mercapto-1,2-propanediol, 1-mercapto-2,3-dihydroxybutane, 1-mercapto-2,3-dihydroxyhexane and the like.

上述のようにして得られる特定共重合体は、合成後に精製工程に付することが好ましい。精製方法としては例えば、メタノール、エタノール、プロパノール等のアルコールを用いた分液精製、分子蒸留と呼ばれる10Pa以下の高真空下で蒸留して低分子成分を除去する方法等を挙げることができる。   The specific copolymer obtained as described above is preferably subjected to a purification step after synthesis. Examples of the purification method include liquid separation purification using alcohols such as methanol, ethanol, and propanol, and a method of removing low molecular components by distillation under a high vacuum of 10 Pa or less called molecular distillation.

前記特定共重合体は、ゲルパーミエーションクロマトグラフィー(GPC)で測定した標準ポリスチレン換算の重量平均分子量が500〜20,000であることが好ましく、1,000〜10,000であることがより好ましい。特定共重合体の分子量は、熱重合開始剤の添加量、連鎖移動剤の添加、反応時間の調節等で適宜制御することが可能である。   The specific copolymer preferably has a weight average molecular weight in terms of standard polystyrene measured by gel permeation chromatography (GPC) of 500 to 20,000, more preferably 1,000 to 10,000. . The molecular weight of the specific copolymer can be appropriately controlled by adding the thermal polymerization initiator, adding a chain transfer agent, adjusting the reaction time, and the like.

前記特定共重合体からなる樹脂分散剤の前記光調整懸濁液中における含有量は、後述する光調整粒子の含有率に応じて適宜選択することができる。例えば、耐熱性の観点から、光調整粒子100質量部に対して0.1〜20質量部であることが好ましく、0.2〜10質量部であることがより好ましい。   The content of the resin dispersant made of the specific copolymer in the light adjusting suspension can be appropriately selected according to the content of the light adjusting particles described later. For example, from a heat resistant viewpoint, it is preferable that it is 0.1-20 mass parts with respect to 100 mass parts of light adjustment particles, and it is more preferable that it is 0.2-10 mass parts.

(光調整粒子)
前記光調整懸濁液は、光調整粒子の少なくとも1種を含む。光調整粒子としては、前駆体であるピラジン−2,3−ジカルボン酸・2水和物、ピラジン−2,5−ジカルボン酸・2水和物、ピリジン−2,5−ジカルボン酸・1水和物からなる群の中から選ばれた1つの物質とヨウ素及びヨウ化物とニトロセルロースとを反応させて得られるポリヨウ化物が好ましい。
ヨウ化物としては、ヨウ化カルシウム等が挙げられる。このようにして得られるポリヨウ化物としては、例えば、下記一般式で表されるものが挙げられる。

CaI(C)・xHO (x:1〜2)
CaI(C・cHO (a:3〜7、b:1〜2、c:1〜3)

これらのポリヨウ化物は針状結晶であることが好ましい。
(Light control particles)
The light adjusting suspension includes at least one kind of light adjusting particles. Examples of the light control particles include precursors pyrazine-2,3-dicarboxylic acid dihydrate, pyrazine-2,5-dicarboxylic acid dihydrate, pyridine-2,5-dicarboxylic acid monohydrate. A polyiodide obtained by reacting one substance selected from the group consisting of iodine, iodine and iodide with nitrocellulose is preferred.
Examples of iodide include calcium iodide. Examples of the polyiodide thus obtained include those represented by the following general formula.

CaI 2 (C 6 H 4 N 2 O 4) · xH 2 O (x: 1~2)
CaI a (C 6 H 4 N 2 O 4 ) b · cH 2 O (a: 3 to 7, b: 1 to 2, c: 1 to 3)

These polyiodides are preferably acicular crystals.

また、調光フィルム用光調整懸濁液に用いる光調整粒子として、米国特許第2,041,138号明細書(E.H.Land)、米国特許第2,306,108号明細書(Landら)、米国特許第2,375,963号明細書(Thomas)、米国特許第4,270,841号明細書(R.L.Saxe)及び英国特許第433,455号明細書に開示されている光調整粒子も、使用することができる。これらの特許によって公知とされたポリヨウ化物の結晶は、ピラジンカルボン酸、又はピリジンカルボン酸の1つを選択して、ヨウ素、塩素又は臭素と反応させることにより、ポリヨウ化物、ポリ塩化物又はポリ臭化物等のポリハロゲン化物とすることによって作製されている。これらのポリハロゲン化物は、ハロゲン原子が無機質又は有機質と反応した錯化合物で、これらの詳しい製法は、例えば、サックスの米国特許第4,422,963号明細書に開示されている。   Further, as light adjusting particles used in the light adjusting suspension for light control film, US Pat. No. 2,041,138 (EH Land), US Pat. No. 2,306,108 (Land) Et al., U.S. Pat. No. 2,375,963 (Thomas), U.S. Pat. No. 4,270,841 (RL Sax) and British Patent 433,455. Light conditioning particles can also be used. The polyiodide crystals known by these patents are obtained by selecting one of pyrazinecarboxylic acid or pyridinecarboxylic acid and reacting with iodine, chlorine or bromine to produce polyiodide, polychloride or polybromide. And so on. These polyhalides are complex compounds in which a halogen atom reacts with an inorganic substance or an organic substance, and their detailed production methods are disclosed, for example, in US Pat. No. 4,422,963 to Sax.

前記光調整粒子の粒子サイズは、調光フィルムとしたときの印加電圧に対する応答時間と、光調整懸濁液中の凝集及び沈殿との関係から、以下のサイズが好ましいと考えられる。
光調整粒子の長径は、225nm〜625nmが好ましく、250nm〜550nmがより好ましく、300nm〜500nmがさらに好ましい。
また、光調整粒子の短径に対する長径の比率、すなわちアスペクト比は3〜8が好ましく、3.3〜7がより好ましく、3.6〜6がさらに好ましい。
本発明における光調整粒子の長径と短径は、走査型電子顕微鏡、透過型電子顕微鏡等の電子顕微鏡で光調整粒子を撮影し、撮影した画像より任意に50個の光調整粒子を抽出し、各光調整粒子の長径と短径を平均値として算出することができる。ここで、長径とは、前記撮影した画像により二次元視野内に投影された光調整粒子について、最も長い部分の長さとする。また、短径とは、前記長径に直交する最も長い部分の長さとする。
The particle size of the light control particles is considered to be preferably the following size from the relationship between the response time with respect to the applied voltage when the light control film is used and the aggregation and precipitation in the light control suspension.
The major axis of the light control particles is preferably 225 nm to 625 nm, more preferably 250 nm to 550 nm, and further preferably 300 nm to 500 nm.
Further, the ratio of the major axis to the minor axis of the light control particles, that is, the aspect ratio is preferably 3 to 8, more preferably 3.3 to 7, and still more preferably 3.6 to 6.
The major axis and minor axis of the light adjusting particles in the present invention are obtained by photographing the light adjusting particles with an electron microscope such as a scanning electron microscope or a transmission electron microscope, and arbitrarily extracting 50 light adjusting particles from the photographed image, The major axis and minor axis of each light control particle can be calculated as an average value. Here, the major axis is the length of the longest part of the light control particles projected in the two-dimensional visual field by the photographed image. The minor axis is the length of the longest part orthogonal to the major axis.

また、本発明における光調整粒子の粒子径を評価する方法として、光子相関法や動的光散乱法の原理を用いた粒度分布計を用いることができる。この方法では直接粒子の大きさや形状を計測するのではなく、粒子を球状と仮定して相当径を評価することになり、SEM観察とは異なる値となる。特に、シスメックス株式会社製ゼータサイザーナノシリーズを用い、Z averageとして出力される相当径を粒子径とした場合に、光調整粒子の粒子径(以下、「粒度分布測定により求められる粒子径」ともいう)は135nm〜220nmが好ましく、140nm〜210nmがより好ましく、145nm〜205nmがさらに好ましい。
このZ average値は、例えば光相関法や動的光散乱法に基づいた、違う粒度分布計の測定値、具体的には上述の透過型電子顕微鏡等の電子顕微鏡で測定される光調整粒子の長径、短径とよい相関を示すことが知られおり、粒子径を評価する指標として適当である。
In addition, as a method for evaluating the particle diameter of the light control particles in the present invention, a particle size distribution meter using the principle of a photon correlation method or a dynamic light scattering method can be used. In this method, the size and shape of the particles are not directly measured, but the equivalent diameter is evaluated on the assumption that the particles are spherical, which is different from the SEM observation. In particular, when using the Zetasizer Nano series manufactured by Sysmex Corporation and assuming that the equivalent diameter output as Z average is the particle diameter, the particle diameter of the light control particles (hereinafter also referred to as “particle diameter determined by particle size distribution measurement”) ) Is preferably 135 nm to 220 nm, more preferably 140 nm to 210 nm, and even more preferably 145 nm to 205 nm.
This Z average value is a measured value of a different particle size distribution meter based on, for example, a light correlation method or a dynamic light scattering method, specifically, a light adjustment particle measured by an electron microscope such as the transmission electron microscope described above. It is known to show a good correlation with the long diameter and the short diameter, and is suitable as an index for evaluating the particle diameter.

製造された光調整粒子は、未反応物や副生成物、またサイズが小さい粒子や大きい粒子、アスペクト比が小さい粒子や大きい粒子が含まれる場合がある。通常は精製して用いることが好ましい。この精製方法としては例えば遠心分離を行う方法がある。遠心分離の条件は処理する量にもよるが、3000G〜20000Gが好ましい。また処理回数は2回以上が好ましい。遠心後は上澄みを傾斜して廃棄し、粒子が凝集せずに分散可能な有機溶剤を加えるとよい。このとき、加える有機溶剤に制限はないが、例えば酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸ペンチル、酢酸イソアミル、酢酸ヘキシル、アセトン、エチルメチルケトン、イソブチルケトン等が挙げられ、中でも、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸ペンチル、酢酸イソアミル、酢酸ヘキシルを好適に使用することができ、これらの溶媒が1種以上含まれていることが好ましい。これら溶媒は1種のみでもよいし、2種類以上を混合して用いてもよい。また、遠心分離処理を2回以上行う場合、最初の遠心分離処理にはニトロセルロースを溶解させた溶剤を用いてもよい。このとき、ニトロセルロースの濃度は3〜20%、好ましくは5〜15%である。また、溶剤を加えた後は、光調整粒子が溶剤中で分散できるように、ホモジナイザーや超音波で処理するとよい。
以上のようにして光調整粒子分散液を得ることができる。
The produced light control particles may include unreacted materials and by-products, small particles and large particles, particles having a small aspect ratio, and large particles. Usually, it is preferably used after purification. As this purification method, for example, there is a method of performing centrifugation. Centrifugation conditions depend on the amount to be treated, but 3000G to 20000G is preferable. The number of treatments is preferably 2 or more. After centrifugation, the supernatant is decanted and discarded, and an organic solvent that can be dispersed without agglomeration of particles is added. At this time, the organic solvent to be added is not limited, but examples thereof include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, pentyl acetate, isoamyl acetate, hexyl acetate, acetone, ethyl methyl ketone, isobutyl ketone, etc. Ethyl, propyl acetate, butyl acetate, pentyl acetate, isoamyl acetate, and hexyl acetate can be suitably used, and it is preferable that one or more of these solvents are contained. These solvents may be used alone or in combination of two or more. Moreover, when performing the centrifugation process twice or more, you may use the solvent which dissolved nitrocellulose for the first centrifugation process. At this time, the concentration of nitrocellulose is 3 to 20%, preferably 5 to 15%. Moreover, after adding a solvent, it is good to process with a homogenizer or an ultrasonic wave so that light control particles can be disperse | distributed in a solvent.
The light adjusting particle dispersion can be obtained as described above.

光調整粒子分散液における光調整粒子の濃度を求める方法として、この光調整粒子分散液を少量サンプリングし、加熱乾燥して残存する固形重量をもって粒子量とし、濃度を計算する方法がある。
さらに正確な濃度決定方法としては、例えば、光調整粒子分散液の密度を測定し、この密度の値から濃度を求める方法が挙げられる。具体的には、光調整懸濁液の製造方法においては、光調整粒子分散液の密度を測定する工程と、測定した前記密度に基づいて、前記光調整粒子分散液の濃度を算出する工程とを設けることができる。このような粒子と媒体である溶剤の密度に差があれば、粒子の濃度と分散液の密度には相関関係があると考えられる。溶剤、分散液の密度を測定する装置は特に制限されないが、例えば、アントンパール社製の振動式デジタル密度計を用いると、小数点以下第4位から6位までの密度を求めることが可能である。
As a method for obtaining the concentration of the light control particles in the light control particle dispersion, there is a method in which a small amount of the light control particle dispersion is sampled and the solid weight remaining after heating and drying is used as the amount of particles to calculate the concentration.
As a more accurate concentration determination method, for example, a method of measuring the density of the light control particle dispersion and obtaining the concentration from the density value can be mentioned. Specifically, in the method for producing a light control suspension, a step of measuring the density of the light control particle dispersion, and a step of calculating the concentration of the light control particle dispersion based on the measured density Can be provided. If there is a difference between the density of the particles and the solvent as the medium, it is considered that there is a correlation between the concentration of the particles and the density of the dispersion. The apparatus for measuring the density of the solvent and the dispersion is not particularly limited. For example, if an oscillating digital density meter manufactured by Anton Paar is used, it is possible to obtain the density from the 4th place to the 6th place after the decimal point. .

また、光調整粒子分散液の密度と粒子濃度の関係を表す式は、それぞれの、光調整粒子の密度、溶剤の密度、分散液の密度をそれぞれDp、Ds、Dsusとし、分散液中の粒子濃度をCpとすると、単位重量当たりの光調整粒子分散液の体積が、粒子と溶剤の体積の和になるとすれば求めることができる。単位重量の光調整粒子分散液に含まれる光調整粒子、溶剤の重量はそれぞれ、Cp/100、(100−Cp)/100となる。それぞれの体積は密度で除してCp/(100・Dp)、(100−Cp)/(100Ds)となる。従って式(1)のとおりになる。   In addition, the expression expressing the relationship between the density of the light control particle dispersion and the particle concentration is expressed as follows: the density of the light control particles, the density of the solvent, and the density of the dispersion are Dp, Ds, and Dsus, respectively. If the concentration is Cp, the volume of the light control particle dispersion per unit weight can be obtained if it is the sum of the volume of the particles and the solvent. The weights of the light control particles and the solvent contained in the unit weight of the light control particle dispersion are Cp / 100 and (100−Cp) / 100, respectively. Each volume is divided by the density to be Cp / (100 · Dp), (100−Cp) / (100 Ds). Therefore, the equation (1) is obtained.

前記式(1)を展開すると、光調整分散液の粒子濃度を求める式(2)なる。   When the formula (1) is developed, the formula (2) for obtaining the particle concentration of the light adjusting dispersion liquid is obtained.

このとき、Dsus、Dsは密度計を用いて測定することが可能であるが、固体の密度であるDpは測定することが困難である。ただし、式(2)を展開した下記式(3)のような光調整粒子密度を求める式において、適当な基準となる光調整粒子分散液の濃度を任意に決めるならば、基準となる光調整粒子密度が求まり、その値を式(2)に代入すると、粒子濃度が求められる。ここで求められる粒子濃度は、基準を決めた時の相対値であり、真の値とは言えないが、相対的な比較は可能であることから、事実上問題はない。また、基準となる光調整粒子分散液の濃度としては、例えば、光調整粒子分散液における不揮発分比であるNV値(乾燥後の光調整粒子分散液の質量/乾燥前の光調整分散液の質量)を採用すればよい。   At this time, Dsus and Ds can be measured using a density meter, but it is difficult to measure Dp which is the density of the solid. However, if the concentration of the light adjustment particle dispersion liquid as an appropriate reference is arbitrarily determined in the expression for obtaining the light adjustment particle density, such as the following expression (3) obtained by developing the expression (2), the light adjustment as a reference When the particle density is obtained and the value is substituted into the equation (2), the particle concentration is obtained. The particle concentration obtained here is a relative value when the standard is determined and cannot be said to be a true value. However, since a relative comparison is possible, there is virtually no problem. The concentration of the light adjustment particle dispersion used as a reference is, for example, the NV value (the weight ratio of the light adjustment particle dispersion after drying / the weight of the light adjustment dispersion before drying). Mass) may be employed.

前記光調整懸濁液中における前記光調整粒子の含有量は、目的に応じて適宜選択できる。耐熱性と調光性能の観点から、光調整懸濁液中における含有率が、0.1質量%〜30質量%であることが好ましく、0.5質量%〜25質量%であることがより好ましい。   The content of the light control particles in the light control suspension can be appropriately selected according to the purpose. From the viewpoint of heat resistance and dimming performance, the content in the light adjusting suspension is preferably 0.1% by mass to 30% by mass, and more preferably 0.5% by mass to 25% by mass. preferable.

(可塑剤)
前記光調整粒子が分散した光調整懸濁液は、流動可能な分散媒として上述の樹脂分散剤を含むが、必要に応じて可塑剤の少なくとも1種をさらに含んでいてもよい。これにより光調整懸濁液の粘度をより低減することができる。
可塑剤は上述の樹脂分散剤と同様に流動可能な状態で、光調整粒子を分散させる役割を果たすものであればよい。例えば、フタル酸ジオクチル、フタル酸ジイソオクチル、フタル酸ジブチル、フタル酸ブチルオクチル等のフタル酸アルキルエステル類、イソフタル酸ジオクチル等のイソフタル酸アルキルエステル類、オレイン酸ブチル、オレイン酸−n−プロピル等のオレイン酸アルキルエステル類、アジピン酸ジオクチル等のアジピン酸アルキルエステル類、ジ安息香酸ジエチレングリコール等の安息香酸アルキルエステル、トリメリット酸オクチル、トリメリット酸ドデシル、トリメリット酸イソデシル等を挙げることができる。
光調整懸濁液中の分散媒として樹脂分散剤と可塑剤の割合に特に制限はなく、必要に応じて適宜選択できる。例えば、樹脂分散剤と可塑剤の総量中における樹脂分散剤の割合が3%以上であることが好ましく、5%以上であることがより好ましい。
(Plasticizer)
The light adjusting suspension in which the light adjusting particles are dispersed contains the above-described resin dispersant as a flowable dispersion medium, but may further contain at least one plasticizer as necessary. Thereby, the viscosity of light adjustment suspension can be reduced more.
Any plasticizer may be used as long as it plays the role of dispersing the light control particles in a flowable state in the same manner as the resin dispersant. For example, phthalic acid alkyl esters such as dioctyl phthalate, diisooctyl phthalate, dibutyl phthalate and butyl octyl phthalate, isophthalic acid alkyl esters such as dioctyl isophthalate, olein such as butyl oleate and oleic acid-n-propyl Examples include acid alkyl esters, adipic acid alkyl esters such as dioctyl adipate, benzoic acid alkyl esters such as diethylene glycol dibenzoate, octyl trimellitic acid, dodecyl trimellitic acid, and isodecyl trimellitic acid.
There is no restriction | limiting in particular in the ratio of a resin dispersing agent and a plasticizer as a dispersion medium in light control suspension liquid, It can select suitably as needed. For example, the ratio of the resin dispersant in the total amount of the resin dispersant and the plasticizer is preferably 3% or more, and more preferably 5% or more.

前記光調整懸濁液は、溶剤を含む光調整粒子分散液と、前記樹脂分散剤と、必要に応じて前記可塑剤とを通常用いられる方法で混合した後、光調整粒子が所望の濃度となるように溶剤の少なくとも一部を除去することで調製することができる。
溶剤の除去方法として具体的には、所定の濃度の光調整粒子分散液と分散高分子を混合した後、加熱しながら溶剤を減圧留去する方法が好ましい。ロータリーエバポレータにアスピーレータやダイヤフラム式もしくは油回転式ポンプを接続し、減圧すると効率的に溶剤を留去できる。また光調整粒子分散液の濃度は上述のようにして算出することができる。
The light adjusting suspension is prepared by mixing a light adjusting particle dispersion containing a solvent, the resin dispersant, and, if necessary, the plasticizer by a method usually used. Thus, it can be prepared by removing at least a part of the solvent.
Specifically, a method for removing the solvent is preferably a method in which the light control particle dispersion having a predetermined concentration and the dispersed polymer are mixed, and then the solvent is distilled off under reduced pressure while heating. When an aspirator, diaphragm type or oil rotary type pump is connected to the rotary evaporator and the pressure is reduced, the solvent can be distilled off efficiently. Further, the concentration of the light control particle dispersion can be calculated as described above.

[高分子媒体]
本発明の調光材料はエネルギー線照射により硬化可能な高分子媒体の少なくとも1種を含む。エネルギー線を照射することにより硬化する高分子媒体としては、例えば、紫外線、可視光線、電子線等のエネルギー線により硬化する高分子化合物、及び光重合開始剤を含む高分子組成物が挙げられる。
[Polymer medium]
The light control material of this invention contains at least 1 sort (s) of the polymeric medium which can be hardened | cured by energy ray irradiation. Examples of the polymer medium that is cured by irradiation with energy rays include a polymer composition that contains a polymer compound that is cured by energy rays such as ultraviolet rays, visible rays, and electron beams, and a photopolymerization initiator.

前記高分子組成物としては、例えば、エチレン性不飽和基を有する高分子化合物及び光重合開始剤を含む高分子組成物が挙げられる。
前記エチレン性不飽和基を有する高分子化合物としては、シリコーン系樹脂、アクリル系樹脂、ポリエステル樹脂等が合成容易性、調光性能、耐久性等の点から好ましい。
これらの樹脂は、置換基として、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、アミル基、イソアミル基、ヘキシル基、シクロヘキシル基等のアルキル基、フェニル基、ナフチル基等のアリール基をさらに有することが、調光性能、耐久性等の点から好ましい。
Examples of the polymer composition include a polymer composition containing a polymer compound having an ethylenically unsaturated group and a photopolymerization initiator.
As the polymer compound having an ethylenically unsaturated group, a silicone resin, an acrylic resin, a polyester resin and the like are preferable from the viewpoints of ease of synthesis, light control performance, durability, and the like.
These resins are substituted with alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, amyl group, isoamyl group, hexyl group, and cyclohexyl group, and phenyl group. Further, it is preferable to further have an aryl group such as a naphthyl group from the viewpoints of light control performance and durability.

シリコーン系樹脂として、具体的には、例えば、特公昭53−36515号公報、特公昭57−52371号公報、特公昭58−53656号公報、特公昭61−17863号公報等に記載の高分子化合物を挙げることができる。
また、前記シリコーン系樹脂は、例えば、両末端シラノールポリジメチルシロキサン、両末端シラノールポリジフェニルシロキサン−ジメチルシロキサンコポリマー、両末端シラノールポリジメチルジフェニルシロキサン等の両末端シラノールシロキサンポリマー、トリメチルエトキシシラン等のトリアルキルアルコキシシラン、(3−アクリロキシプロピル)メチルジメトキシシラン等のエチレン性不飽和結合含有シラン化合物などを、有機スズ系触媒である2−エチルヘキサン錫の存在下で、脱水縮合反応及び脱アルコール反応させて合成される。
シリコーン系樹脂の形態としては、無溶剤型が好ましい。すなわち、樹脂の合成に溶剤を用いた場合には、合成反応後に溶剤を除去することが好ましい。
シリコーン系樹脂の調製における(3−アクリロキシプロピル)メトキシシラン等のエチレン性不飽和結合含有シラン化合物の使用量は、原料シロキサン及びシラン化合物総量の2質量%〜30質量%とすることが好ましく、5質量%〜18質量%とすることがより好ましい。
Specific examples of the silicone resin include polymer compounds described in, for example, JP-B-53-36515, JP-B-57-52371, JP-B-58-53656, JP-B-61-17863, and the like. Can be mentioned.
The silicone resin may be, for example, a both-end silanol polydimethylsiloxane, a both-end silanol polydiphenylsiloxane-dimethylsiloxane copolymer, a both-end silanol siloxane polymer such as a both-end silanol polydimethyldiphenylsiloxane, or a trialkyl such as trimethylethoxysilane. Dehydration condensation reaction and dealcoholization reaction of ethylenically unsaturated bond-containing silane compounds such as alkoxysilane and (3-acryloxypropyl) methyldimethoxysilane in the presence of 2-ethylhexanetin which is an organotin catalyst Are synthesized.
The form of the silicone resin is preferably a solventless type. That is, when a solvent is used for resin synthesis, it is preferable to remove the solvent after the synthesis reaction.
The amount of the ethylenically unsaturated bond-containing silane compound such as (3-acryloxypropyl) methoxysilane in the preparation of the silicone resin is preferably 2% by mass to 30% by mass of the total amount of the raw material siloxane and the silane compound, It is more preferable to set it as 5 mass%-18 mass%.

前記アクリル系樹脂は、例えば、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸アリールエステル、(メタ)アクリル酸ベンジル、スチレン等の主鎖形成モノマーと、(メタ)アクリル酸、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸イソシアナートエチル、(メタ)アクリル酸グリシジル等のエチレン性不飽和基導入用官能基含有モノマーなどを共重合して、プレポリマーを合成する。次いで、このプレポリマーのエチレン性不飽和基導入用官能基に応じて選択されるエチレン性不飽和基含有モノマーを前記プレポリマーに付加反応させることにより得ることができる。
前記エチレン性不飽和基含有モノマーとしては例えば、(メタ)アクリル酸グリシジル、(メタ)アクリル酸イソシアナートエチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸等を挙げることができる。
The acrylic resin includes, for example, (meth) acrylic acid alkyl ester, (meth) acrylic acid aryl ester, (meth) acrylic acid benzyl, main chain forming monomers such as styrene, (meth) acrylic acid, (meth) acrylic A prepolymer is synthesized by copolymerizing a functional group-containing monomer for introducing an ethylenically unsaturated group such as hydroxyethyl acid, isocyanatoethyl (meth) acrylate, and glycidyl (meth) acrylate. Next, the prepolymer can be obtained by addition reaction of an ethylenically unsaturated group-containing monomer selected according to the ethylenically unsaturated group-introducing functional group of the prepolymer.
Examples of the ethylenically unsaturated group-containing monomer include glycidyl (meth) acrylate, isocyanate ethyl (meth) acrylate, hydroxyethyl (meth) acrylate, and (meth) acrylic acid.

これらエチレン性不飽和基を有する高分子化合物のゲルパーミエーションクロマトグラフィーによって得られるポリスチレン換算の重量平均分子量は、20,000〜100,000であることが好ましく、30,000〜80,000であることがより好ましい。   The weight average molecular weight in terms of polystyrene obtained by gel permeation chromatography of the polymer compound having an ethylenically unsaturated group is preferably 20,000 to 100,000, and preferably 30,000 to 80,000. It is more preferable.

本発明の調光材料が高分子媒体として、前記エチレン性不飽和基を有する高分子化合物を含む場合、エネルギー線に露光するとラジカル重合を活性化する光重合開始剤をさらに含むことが好ましい。
光重合開始剤として具体的には、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−(4−(2−ヒドロキシエトキシ)フェニル)−2−ヒドロキシ−2−メチル−1−プロパン−1−オン、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキサイド、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、(1−ヒドロキシシクロヘキシル)フェニルケトン等を挙げることができる。
これらの光重合開始剤の使用量は、前記エチレン性不飽和基を有する高分子化合物100質量部に対して0.05質量部〜20質量部であることが好ましく、0.1質量部〜5質量部であることがより好ましい。
When the light control material of this invention contains the high molecular compound which has the said ethylenically unsaturated group as a high molecular medium, it is preferable to further contain the photoinitiator which activates radical polymerization when exposed to an energy ray.
Specific examples of the photopolymerization initiator include 2,2-dimethoxy-1,2-diphenylethane-1-one and 1- (4- (2-hydroxyethoxy) phenyl) -2-hydroxy-2-methyl-1. -Propane-1-one, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2-hydroxy-2-methyl-1-phenylpropan-1-one, (1-hydroxycyclohexyl) phenyl ketone, etc. be able to.
The amount of these photopolymerization initiators used is preferably 0.05 to 20 parts by mass, and 0.1 to 5 parts by mass with respect to 100 parts by mass of the polymer compound having an ethylenically unsaturated group. More preferably, it is part by mass.

また前記高分子媒体は、前記エチレン性不飽和基を有する高分子化合物に加えて、エチレン性不飽和基をもたない有機溶剤可溶型樹脂及び熱可塑性樹脂の少なくとも1種を含んでもよい。具体的には例えば、ゲルパーミエーションクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量が1,000〜100,000のポリアクリル酸、ポリメタクリル酸等も併用することができる。
さらに高分子媒体中には、ジブチル錫ジラウレート等の着色防止剤等の添加物を必要に応じて添加してもよく、必要に応じて溶剤が含まれていてもよい。
In addition to the polymer compound having an ethylenically unsaturated group, the polymer medium may include at least one of an organic solvent-soluble resin having no ethylenically unsaturated group and a thermoplastic resin. Specifically, for example, polyacrylic acid or polymethacrylic acid having a polystyrene-equivalent weight average molecular weight of 1,000 to 100,000 measured by gel permeation chromatography can be used in combination.
Furthermore, in the polymer medium, additives such as coloring inhibitors such as dibutyltin dilaurate may be added as necessary, and a solvent may be included as necessary.

本発明の調光材料は、前記光調整懸濁液と、前記高分子媒体とを混合することで調製することができる。前記光調整懸濁液及び高分子媒体の混合比率は、目的に応じて適宜選択できる。調光性能とフィルム形成の観点から、5:90〜70:30となるような混合比率であることが好ましく、10:90〜60:40となるような混合比率であることがより好ましい。   The light control material of the present invention can be prepared by mixing the light control suspension and the polymer medium. The mixing ratio of the light adjusting suspension and the polymer medium can be appropriately selected according to the purpose. From the viewpoint of light control performance and film formation, the mixing ratio is preferably 5:90 to 70:30, and more preferably 10:90 to 60:40.

<調光フィルム>
本発明の調光フィルムは、2つの透明導電性樹脂基材と、前記2つの透明導電性樹脂基材に挟持され、前記調光材料を用いて形成される調光層とを有するものである。前記調光材料から、高分子媒体から形成された樹脂マトリックスと、樹脂マトリックス中に分散した光調整懸濁液とを含む調光層が形成される。
調光層が前記調光材料から形成されることで、高温環境におかれた後であっても光透過性の変化が抑制される耐熱性に優れた調光フィルムを構成することができる。また調光層における光調整粒子濃度のバラつきが抑えられ、透過率のバラつきや外観差が抑えられた調光フィルムを構成することができる。
<Light control film>
The light control film of this invention has two transparent conductive resin base materials, and the light control layer formed between the said two transparent conductive resin base materials, and is formed using the said light control material. . A light control layer including a resin matrix formed from a polymer medium and a light control suspension dispersed in the resin matrix is formed from the light control material.
By forming the light control layer from the light control material, it is possible to configure a light control film excellent in heat resistance in which a change in light transmittance is suppressed even after being placed in a high temperature environment. In addition, it is possible to configure a light control film in which variations in the light control particle concentration in the light control layer are suppressed, and in which transmittance variations and appearance differences are suppressed.

(透明導電性樹脂基材)
透明導電性樹脂基材としては、一般的に、透明樹脂基材に、光透過率が80%以上の透明導電膜(ITO、SnO、In、有機導電膜等の膜)がコーティングされている表面抵抗値が3Ω〜3000Ωの透明導電性樹脂基材を使用することができる。なお、透明樹脂基材の光透過率はJIS K7105の全光線透過率の測定法に準拠して測定することができる。また、透明樹脂基材としては、例えば、高分子フィルム等を使用することができる。
(Transparent conductive resin substrate)
As a transparent conductive resin base material, a transparent conductive film (film such as ITO, SnO 2 , In 2 O 3 , organic conductive film) having a light transmittance of 80% or more is generally coated on the transparent resin base material. A transparent conductive resin substrate having a surface resistance value of 3Ω to 3000Ω can be used. In addition, the light transmittance of a transparent resin base material can be measured based on the measuring method of the total light transmittance of JISK7105. Moreover, as a transparent resin base material, a polymer film etc. can be used, for example.

前記高分子フィルムとしては、例えば、ポリエチレンテレフタレート等のポリエステル系フィルム、ポリプロピレン等のポリオレフィン系フィルム、ポリ塩化ビニル、アクリル樹脂系のフィルム、ポリエーテルサルフォンフィルム、ポリアリレートフィルム、ポリカーボネートフィルム等の樹脂フィルムが挙げられるが、ポリエチレンテレフタレートフィルムが、透明性に優れ、成形性、接着性、加工性等に優れるので好ましい。   Examples of the polymer film include polyester films such as polyethylene terephthalate, polyolefin films such as polypropylene, polyvinyl chloride, acrylic resin films, polyether sulfone films, polyarylate films, and polycarbonate resin films. However, a polyethylene terephthalate film is preferable because it is excellent in transparency and excellent in moldability, adhesiveness, workability, and the like.

透明樹脂基材にコーティングされる透明導電膜の厚みは、10nm〜5,000nmであることが好ましい。透明樹脂基材の厚みは特に制限はない。例えば、高分子フィルムの場合には10μm〜200μmが好ましい。   The thickness of the transparent conductive film coated on the transparent resin substrate is preferably 10 nm to 5,000 nm. The thickness of the transparent resin substrate is not particularly limited. For example, in the case of a polymer film, 10 μm to 200 μm is preferable.

透明樹脂基材の間隔が狭く、異物質の混入等により発生する短絡現象を防止するために、透明導電膜の上に数nm〜1μm程度の厚さの透明絶縁層が形成されている透明樹脂導電性基材を使用してもよい。また、本発明の調光フィルムを反射型の調光窓に利用する場合(例えば、自動車用リアビューミラー等)は、反射体であるアルミニウム、金、又は銀のような導電性金属の薄膜を電極として直接用いてもよい。   A transparent resin in which a transparent insulating substrate having a thickness of several nm to 1 μm is formed on a transparent conductive film in order to prevent a short-circuit phenomenon caused by mixing of different substances, etc. A conductive substrate may be used. When the light control film of the present invention is used for a reflection type light control window (for example, a rear view mirror for automobiles), a thin film made of a conductive metal such as aluminum, gold, or silver which is a reflector is used as an electrode. May be used directly.

本発明の調光フィルム、調光層との密着性を向上させるためのプライマー層を有する2枚の透明導電性樹脂基材に挟持されているか、あるいはプライマー層を有する透明導電性樹脂基材とプライマー層を有さない透明導電性樹脂基材の2枚の透明導電性樹脂基材に挟持されていてもよい。   The light control film of the present invention, a transparent conductive resin substrate sandwiched between two transparent conductive resin substrates having a primer layer for improving adhesion to the light control layer, or having a primer layer The transparent conductive resin base material having no primer layer may be sandwiched between two transparent conductive resin base materials.

前記プライマー層は、ペンタエリスリトール骨格を含有するウレタンアクリレートを含有する材料、分子内に水酸基を有する(メタ)アクリレートを含有する材料、金属酸化物微粒子を有機バインダー樹脂に分散させた材料、分子内に1つ以上の重合性基を有するリン酸エステル、アミノ基を有するシランカップリング剤等からなる薄膜で形成されるのが好ましい。   The primer layer is composed of a material containing urethane acrylate containing a pentaerythritol skeleton, a material containing (meth) acrylate having a hydroxyl group in the molecule, a material in which metal oxide fine particles are dispersed in an organic binder resin, The thin film is preferably formed of a phosphate ester having one or more polymerizable groups, a silane coupling agent having an amino group, or the like.

本発明における透明導電性樹脂基材のプライマー処理(プライマー層の形成)は、例えば、プライマー層を形成する材料を、バーコーター法、マイヤーバーコーター法、アプリケーター法、ドクターブレード法、ロールコーター法、ダイコーター法、コンマコーター法、グラビアコート法、マイクログラビアコート法、ロールブラッシュ法、スプレーコート法、エアーナイフコート法、含浸法、カーテンコート法等を単独又は組み合わせて用いて、透明導電性樹脂基材に塗布することにより行うことができる。   The primer treatment (formation of the primer layer) of the transparent conductive resin substrate in the present invention includes, for example, a material for forming the primer layer, a bar coater method, a Mayer bar coater method, an applicator method, a doctor blade method, a roll coater method, A transparent conductive resin group using a die coater method, a comma coater method, a gravure coating method, a micro gravure coating method, a roll brush method, a spray coating method, an air knife coating method, an impregnation method, a curtain coating method, etc. alone or in combination. This can be done by applying to the material.

なお、塗布する際は必要に応じて適当な溶剤で希釈し、プライマー層を形成する材料の溶液を用いてもよい。溶剤を用いた場合には、透明導電性樹脂基材上に塗布した後乾燥を要する。尚、プライマー層となる塗膜は必要に応じて透明導電性樹脂基材の片面のみ(透明導電膜側)に形成してもよいし、含浸法やディップコート法によって両面に形成してもよい。
プライマー層形成に用いる溶剤としては、プライマー層を形成する材料を溶解あるいは分散し、プライマー層形成後に乾燥等により除去できるものであればよく、イソプロピルアルコール、エタノール、メタノール、1−メトキシ−2−プロパノール、2−メトキシエタノール、シクロヘキサノン、メチルイソブチルケトン、アニソール、メチルエチルケトン、アセトン、テトラヒドロフラン、トルエン、ヘプタン、シクロヘキサン、エチルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチルジグリコール、ジメチルジグリコール、酢酸イソアミル、酢酸ヘキシル等を用いることができ、これらの混合溶媒でもよい。
In addition, when apply | coating, you may dilute with a suitable solvent as needed, and you may use the solution of the material which forms a primer layer. When a solvent is used, drying is required after coating on the transparent conductive resin substrate. In addition, the coating film used as a primer layer may be formed only on one side (transparent conductive film side) of the transparent conductive resin base material as necessary, or may be formed on both sides by an impregnation method or a dip coating method. .
The solvent used for forming the primer layer may be any solvent that dissolves or disperses the material forming the primer layer and can be removed by drying or the like after forming the primer layer. Isopropyl alcohol, ethanol, methanol, 1-methoxy-2-propanol 2-methoxyethanol, cyclohexanone, methyl isobutyl ketone, anisole, methyl ethyl ketone, acetone, tetrahydrofuran, toluene, heptane, cyclohexane, ethyl acetate, propylene glycol monomethyl ether acetate, diethyl diglycol, dimethyl diglycol, isoamyl acetate, hexyl acetate, etc. These solvents can be used.

(調光層)
本発明における調光層は、樹脂マトリックスと該樹脂マトリックス中に分散した前記光調整懸濁液とを含む。なお、樹脂マトリックスは、調光材料に含まれるエネルギー線照射により硬化可能な高分子媒体(好ましくは、エチレン性不飽和基含有高分子化合物)を硬化したものである。前記高分子媒体及び分散媒(光調整懸濁液中の樹脂分散剤および可塑剤等の分散媒)としては、前記高分子媒体及びその硬化物と分散媒とが、少なくともフィルム化したときに互いに相分離しうるものを用いる。互いに非相溶又は部分相溶性の前記高分子媒体と分散媒とを組み合わせて用いることが好ましい。
(Light control layer)
The light control layer in the present invention includes a resin matrix and the light control suspension dispersed in the resin matrix. The resin matrix is obtained by curing a polymer medium (preferably an ethylenically unsaturated group-containing polymer compound) that can be cured by irradiation with energy rays contained in the light control material. Examples of the polymer medium and the dispersion medium (dispersion medium such as a resin dispersant and a plasticizer in the light control suspension) are the same when the polymer medium and its cured product and the dispersion medium are at least formed into a film. Use what can be phase-separated. It is preferable to use the polymer medium and the dispersion medium which are incompatible or partially compatible with each other in combination.

調光フィルムを得るためには、まず、液状の前記光調整懸濁液を、前記高分子媒体と均質に混合し、光調整懸濁液が高分子媒体中に液滴状態で分散した混合液からなる調光材料を得る。
光調整懸濁液と高分子媒体とを混合する方法は特に制限されず、通常の液体混合方法から適宜選択して適用することができる。
In order to obtain a light control film, first, the liquid light control suspension is homogeneously mixed with the polymer medium, and the light control suspension is dispersed in the polymer medium in the form of droplets. A light control material consisting of
The method for mixing the light-adjusting suspension and the polymer medium is not particularly limited, and can be applied by appropriately selecting from ordinary liquid mixing methods.

この調光材料を、前記透明導電性樹脂基材上に一定な厚さで塗布し、必要に応じて溶剤を乾燥除去した後、高圧水銀灯等を用いて紫外線を照射し高分子媒体を硬化させる。その結果、硬化した高分子媒体からなる樹脂マトリックス中に、光調整懸濁液が液滴状に分散されている調光層が形成される。高分子媒体と光調整懸濁液との混合比率を様々に変えることにより、調光層の光透過率を調節することができる。   This light-modulating material is applied to the transparent conductive resin substrate with a certain thickness, and after removing the solvent by drying as necessary, the polymer medium is cured by irradiating with ultraviolet rays using a high-pressure mercury lamp or the like. . As a result, a light control layer in which the light control suspension is dispersed in the form of droplets is formed in a resin matrix made of a cured polymer medium. The light transmittance of the light control layer can be adjusted by variously changing the mixing ratio of the polymer medium and the light control suspension.

このようにして形成された調光層の上にもう一方の透明導電性樹脂基材を密着させることにより、調光フィルムが得られる。あるいは、この調光材料を、透明導電性樹脂基材上に一定な厚さで塗布し、必要に応じて溶剤を乾燥除去した後、もう一方の透明導電性樹脂基材でラミネートした後に紫外線を照射し高分子媒体を硬化させてもよい。2枚の透明導電性樹脂基材の両方の上に調光層を形成し、それを調光層同士が密着するようにして積層してもよい。調光層の厚みは、5μm〜1,000μmが好ましく、20μm〜100μmがより好ましい。   A light control film is obtained by sticking another transparent conductive resin base material on the light control layer formed in this way. Alternatively, this light-modulating material is applied on the transparent conductive resin substrate at a constant thickness, and if necessary, the solvent is dried and removed, and then laminated with the other transparent conductive resin substrate, and then UV rays are applied. The polymer medium may be cured by irradiation. A light control layer may be formed on both of the two transparent conductive resin substrates, and the light control layers may be laminated so that the light control layers are in close contact with each other. The thickness of the light control layer is preferably 5 μm to 1,000 μm, and more preferably 20 μm to 100 μm.

樹脂マトリックス中に分散されている光調整懸濁液の液滴の大きさ(平均液滴径)は、通常0.5μm〜100μm、好ましくは0.5μm〜20μm、より好ましいくは1μm〜5μmである。液滴の大きさは、光調整懸濁液を構成している各成分の濃度、光調整懸濁液及び高分子媒体の粘度、光調整懸濁液中の分散媒の高分子媒体に対する相溶性等により決められる。   The droplet size (average droplet diameter) of the light control suspension dispersed in the resin matrix is usually 0.5 μm to 100 μm, preferably 0.5 μm to 20 μm, more preferably 1 μm to 5 μm. is there. The size of the droplets depends on the concentration of each component constituting the light control suspension, the viscosity of the light control suspension and the polymer medium, and the compatibility of the dispersion medium in the light control suspension with the polymer medium. It is decided by etc.

平均液滴径は、例えば、SEMを用いて、調光フィルムの一方の面方向から写真等の画像を撮影し、任意に選択した複数の液滴直径を測定し、その平均値として算出することができる。また、調光フィルムの光学顕微鏡での視野画像をデジタルデータとしてコンピュータに取り込み、画像処理インテグレーションソフトウェアを使用し算出することも可能である。   The average droplet diameter is calculated, for example, by taking an image such as a photograph from one surface direction of the light control film using SEM, measuring a plurality of arbitrarily selected droplet diameters, and calculating the average value thereof. Can do. It is also possible to capture a visual field image of the light control film with an optical microscope into a computer as digital data and calculate it using image processing integration software.

調光層となる調光材料の塗布には、例えば、バーコーター、アプリケーター、ドクターブレード、ロールコーター、ダイコーター、コンマコーター等の公知の塗工手段を用いることができる。調光材料を、透明導電性樹脂基材上に設けたプライマー層面に塗布し、あるいは、一方にプライマー層を有さない透明導電性樹脂基材を用いる場合には、透明導電性樹脂基材に直接塗布することもできる。なお、塗布する際は、必要に応じて、適当な溶剤で希釈してもよい。溶剤を用いた場合には、透明導電性樹脂基材上に塗布した後に乾燥を要する。   For application of the light control material to be the light control layer, for example, known coating means such as a bar coater, applicator, doctor blade, roll coater, die coater, and comma coater can be used. When the light-modulating material is applied to the surface of the primer layer provided on the transparent conductive resin substrate, or when using a transparent conductive resin substrate without a primer layer on one side, the transparent conductive resin substrate It can also be applied directly. In addition, when apply | coating, you may dilute with a suitable solvent as needed. When a solvent is used, drying is required after coating on the transparent conductive resin substrate.

調光材料の塗布に用いる溶剤としては、テトラヒドロフラン、トルエン、ヘプタン、シクロヘキサン、エチルアセテート、エタノール、メタノール、酢酸イソアミル、酢酸ヘキシル等を用いることができる。液状の光調整懸濁液が、固体の樹脂マトリックス中に微細な液滴形態で分散されているフィルムを形成するためには、調光材料をホモジナイザー、超音波ホモジナイザー等で混合してシロキサン樹脂中に光調整懸濁液を微細に分散させる方法、シロキサン樹脂中の樹脂成分の重合による相分離法、溶媒揮発による相分離法、又は温度による相分離法等を利用することができる。   Tetrahydrofuran, toluene, heptane, cyclohexane, ethyl acetate, ethanol, methanol, isoamyl acetate, hexyl acetate, etc. can be used as a solvent used for application of the light modulating material. In order to form a film in which the liquid light-conditioning suspension is dispersed in the form of fine droplets in a solid resin matrix, the light-modulating material is mixed with a homogenizer, an ultrasonic homogenizer, or the like in the siloxane resin. For example, a method of finely dispersing the light control suspension, a phase separation method by polymerization of a resin component in the siloxane resin, a phase separation method by solvent volatilization, or a phase separation method by temperature can be used.

上述の方法によれば、電場の形成により任意に光透過率が調節できる調光フィルムが提供される。この調光フィルムは、電場が形成されていない場合にも、光の散乱のない鮮明な着色状態を維持し、電場が形成されると透明な状態に転換される。この能力は、20万回以上の可逆的反復特性を示す。   According to the above-mentioned method, the light control film which can adjust light transmittance arbitrarily by formation of an electric field is provided. Even when no electric field is formed, the light control film maintains a clear coloring state without light scattering, and is converted into a transparent state when the electric field is formed. This ability exhibits a reversible repeat characteristic of over 200,000 times.

透明な状態においての光透過率増進と、着色された状態における鮮明度の増進のためには、液状の光調整懸濁液の屈折率と、樹脂マトリックスの屈折率を一致させることが好ましい。   In order to enhance the light transmittance in the transparent state and the sharpness in the colored state, it is preferable to match the refractive index of the liquid light adjusting suspension with the refractive index of the resin matrix.

調光フィルムを作動させるための使用電源は交流で、10ボルト〜100ボルト(実効値)、30Hz〜500kHzの周波数範囲とすることができる。本発明の調光フィルムは、電界に対する応答時間を、消色時には1秒〜50秒以内、着色時には1秒〜100秒以内とすることができる。また、紫外線耐久性は、750W紫外線等を利用した紫外線照射試験の結果、250時間が経過した後にも安定な可変特性を示し、−50℃〜90℃で長時間放置した場合にも、初期の可変特性を維持することが可能である。   The power source used for operating the light control film is alternating current, and can be in the frequency range of 10 to 100 volts (effective value) and 30 Hz to 500 kHz. The light control film of this invention can make the response time with respect to an electric field into 1 second-50 second at the time of decoloring, and within 1 second-100 second at the time of coloring. In addition, as a result of an ultraviolet irradiation test using 750 W ultraviolet rays or the like, the ultraviolet durability shows a stable variable characteristic even after 250 hours have passed, and even when left at -50 ° C. to 90 ° C. for a long time, It is possible to maintain variable characteristics.

従来技術である液晶を使用した調光フィルムの製造における、水を用いたエマルションによる方法を使用すると、液晶が水分と反応して光調整特性を失うことが多く、同一の特性のフィルムを製造しにくいという問題がある。   In the production of a light control film using liquid crystal, which is a conventional technique, when a method using an emulsion using water is used, the liquid crystal often reacts with moisture and loses its light adjustment characteristics. There is a problem that it is difficult.

しかし本発明においては、液晶ではなく、光調整粒子が光調整懸濁液内に分散されている液状の光調整懸濁液を使用するため、液晶を利用した調光フィルムとは異なり、電界が印加されていない場合にも光が散乱せず、鮮明度が優れて視野角の制限のない着色状態を表す。そして、光調整粒子の含量、液滴形態や膜厚を調節したり、又は電界強度を調節したりすることにより、光可変度を任意に調節できる。   However, in the present invention, a liquid light adjusting suspension in which the light adjusting particles are dispersed in the light adjusting suspension is used instead of the liquid crystal, so that the electric field is different from the light control film using the liquid crystal. Even when not applied, light is not scattered, and it represents a colored state with excellent definition and no viewing angle limitation. Then, the light variability can be arbitrarily adjusted by adjusting the content of the light adjusting particles, the droplet form and the film thickness, or adjusting the electric field strength.

また、本発明の調光フィルムは、液晶を用いないことから、紫外線露光による色調変化及び可変能力の低下、大型製品特有の透明導電性樹脂基材の周辺部と中央部間に生ずる電圧降下に伴う応答時間差も解消される。
また、液晶を利用した従来技術による調光窓の場合には、液晶が紫外線に容易に劣化し、またネマチック液晶の熱的特性によりその使用温度の範囲も狭い。更に、光学特性面においても、電界が印加されていない場合には光散乱による乳白色の半透明な状態を示し、電界が印加される場合にも、完全には鮮明化せず、乳濁状態が残存する問題点がある。従って、このような調光窓では、既存の液晶表示素子で動作原理として利用されている光の遮断及び透過による表示機能が不可能である。しかし、本発明による調光フィルムを使用すれば、このような問題点が解決できる。
In addition, since the light control film of the present invention does not use liquid crystals, the color change due to ultraviolet exposure and the variable capacity decrease, and the voltage drop generated between the peripheral part and the central part of the transparent conductive resin base material peculiar to large products. The accompanying response time difference is also eliminated.
Further, in the case of a light control window according to the prior art using liquid crystal, the liquid crystal is easily deteriorated to ultraviolet rays, and the operating temperature range is narrow due to the thermal characteristics of nematic liquid crystal. Furthermore, also in terms of optical characteristics, when no electric field is applied, it shows a milky white translucent state due to light scattering, and even when an electric field is applied, it is not completely sharpened and the milky state is There are remaining problems. Therefore, in such a light control window, a display function based on light blocking and transmission, which is used as an operation principle in existing liquid crystal display elements, is impossible. However, such a problem can be solved by using the light control film according to the present invention.

本発明の調光フィルムは、例えば、室内外の仕切り(パーティッション)、建築物用の窓硝子/天窓、電子産業及び映像機器に使用される各種平面表示素子、各種計器板と既存の液晶表示素子の代替品、光シャッター、各種室内外広告及び案内標示板、航空機/鉄道車両/船舶用の窓硝子、自動車用の窓硝子/バックミラー/サンルーフ、眼鏡、サングラス、サンバイザー等の用途に好適に使用することができる。   The light control film of the present invention includes, for example, indoor and outdoor partitions, window glass / skylights for buildings, various flat display elements used in the electronics industry and video equipment, various instrument panels, and existing liquid crystal display elements. Suitable for applications such as light shutters, various indoor / outdoor advertisements and signboards, window glass for aircraft / railway vehicles / ships, window glass / back mirror / sunroof for automobiles, glasses, sunglasses, sun visors, etc. Can be used.

適用法としては、本発明の調光フィルムを直接使用することも可能であるが、用途によっては、例えば、本発明の調光フィルムを2枚の基材に挟持させて使用したり、基材の片面に貼り付けて使用したりしてもよい。前記基材としては、例えば、ガラスや、前記透明樹脂基材と同様の高分子フィルム等を使用することができる。   As an application method, it is possible to directly use the light control film of the present invention. However, depending on the application, for example, the light control film of the present invention may be sandwiched between two base materials or used. It may be used by pasting it on one side. As said base material, glass, the polymer film similar to the said transparent resin base material, etc. can be used, for example.

以下、図面を参照しながら本発明の調光フィルムの構造および動作について説明する。
図1に、本発明の調光フィルムの一態様を構造概略図として示す。図1に示す調光フィルムでは、透明導電膜5aがコーティングされた透明樹脂基材5bからなる透明導電性樹脂基材4の2枚の間に、調光層1が挟持されている。調光層1と透明導電性樹脂基材4の間にはプライマー層6が設けられている。
Hereinafter, the structure and operation of the light control film of the present invention will be described with reference to the drawings.
In FIG. 1, the one aspect | mode of the light control film of this invention is shown as a structure schematic. In the light control film shown in FIG. 1, the light control layer 1 is sandwiched between two sheets of a transparent conductive resin substrate 4 made of a transparent resin substrate 5b coated with a transparent conductive film 5a. A primer layer 6 is provided between the light control layer 1 and the transparent conductive resin substrate 4.

調光層1は、高分子媒体としての前記エチレン性不飽和基を有する高分子化合物を紫外線硬化させたフィルム状の樹脂マトリックス2と、樹脂マトリックス2内に液滴3の形態で分散されている液状の光調整懸濁液と、を含む。光調整懸濁液の液滴3には、光調整粒子10が分散媒9の中に分散されている(図2(b)参照)。   The light control layer 1 is dispersed in the form of droplets 3 in the resin matrix 2 in the form of a film obtained by ultraviolet curing the polymer compound having an ethylenically unsaturated group as a polymer medium. Liquid light conditioning suspension. In the droplet 3 of the light adjustment suspension, the light adjustment particles 10 are dispersed in the dispersion medium 9 (see FIG. 2B).

調光フィルムは、スイッチ8の切り換えにより、電源7と2枚の透明導電膜5aの接続、非接続を行う。   The light control film connects or disconnects the power source 7 and the two transparent conductive films 5 a by switching the switch 8.

図2(a)は、図1に示した調光フィルムの作動を説明するための概略断面図であり、スイッチ8が切られ、電界が印加されていない状態を示す。この状態では、液滴3中に分散している光調整粒子10は、図2(b)に示すようにブラウン運動により、それぞれランダムな方向を向いている。そのため、入射光11は光調整粒子10に吸収、散乱又は反射され、透過できない。   FIG. 2A is a schematic cross-sectional view for explaining the operation of the light control film shown in FIG. 1, and shows a state where the switch 8 is turned off and no electric field is applied. In this state, the light adjusting particles 10 dispersed in the droplet 3 are each directed in a random direction by Brownian motion as shown in FIG. Therefore, the incident light 11 is absorbed, scattered or reflected by the light adjusting particles 10 and cannot be transmitted.

一方、図3(a)は、図1の調光フィルムの電界が印加されている状態の作動を説明するための概略断面図である。図3(a)に示すように、スイッチ8を接続して電界を印加すると、電気的双極子モーメントをもつ光調整粒子10が、印加された電界によって形成される電場と平行に配列する。そのため入射光11は配列した光調整粒子10間を通過するようになる。このようにして、液滴3が入射光に対して透明な状態に転換され、視野角度による散乱、又は透明性低下が殆どない状態で入射光を透過させる。   On the other hand, Fig.3 (a) is a schematic sectional drawing for demonstrating the action | operation of the state in which the electric field of the light control film of FIG. 1 is applied. As shown in FIG. 3A, when an electric field is applied by connecting the switch 8, the light adjusting particles 10 having an electric dipole moment are arranged in parallel with the electric field formed by the applied electric field. Therefore, the incident light 11 passes between the arranged light adjusting particles 10. In this way, the droplet 3 is converted to a transparent state with respect to the incident light, and the incident light is transmitted in a state where there is almost no scattering due to the viewing angle or a decrease in transparency.

図4は透明導電膜5aに電圧印加するための導線13を接続する方法の一例を示す模式図である。調光フィルムの端部には、透明樹脂基材5bと透明導電膜5aからなり、透明導電膜5bが露出したタップ領域12が設けられている。タップ領域12には導線13が電気的に接続されている。この導線13に、スイッチと電源(図示せず)を接続することで調光フィルムを動作させることができる。   FIG. 4 is a schematic diagram showing an example of a method of connecting the conductive wire 13 for applying a voltage to the transparent conductive film 5a. A tap region 12 made of the transparent resin substrate 5b and the transparent conductive film 5a and having the transparent conductive film 5b exposed is provided at the end of the light control film. A conductive wire 13 is electrically connected to the tap region 12. The light control film can be operated by connecting a switch and a power source (not shown) to the conductive wire 13.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。尚、本実施例において、特に指示がない限り、百分率は全て質量を基準とする。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In this example, all percentages are based on mass unless otherwise specified.

<参考例>
(基準粒子密度決定のための光調整粒子分散液の調製)
ヨウ素(JIS試薬特級、和光純薬工業(株)製)と酢酸イソアミル(試薬特級、和光純薬工業(株)製)から8.5質量%ヨウ素の酢酸イソアミル溶液を、またニトロセルロース1/4LIG(商品名:ベルジュラックNC社製)と酢酸イソアミルから20.0質量%ニトロセルロースの酢酸イソアミル溶液を調製した。ヨウ化カルシウム水和物(化学用、和光純薬工業(株)製)を加熱乾燥して無水化して酢酸イソアミルに溶解させ、20.9質量%ヨウ化カルシウム溶液を調製した。20Lフラスコに撹拌機と冷却管を備え、ヨウ素溶液を6905g、ニトロセルロース溶液を8723g、を加え水浴温度を35℃〜40℃としてフラスコを加熱した。ニトロセルロース溶液中の水分比(%)は平沼産業(株)製、平沼水分測定装置AQ−7(発生液:ハイドラナールアクアライトRS、対極液:アクアライトCN)を用いて測定したところ、0.61%であり、加えた溶液質量からニトロセルロース溶液中の水分量は53.2gであった。フラスコ内容物の温度が35℃〜40℃となった後、脱水メタノール(試薬特級、和光純薬工業(株)製)を260g、精製水(和光純薬工業(株)製)を55.6g加えて撹拌した。ヨウ化カルシウム溶液を1643g、次いでピラジン−2,5−ジカルボン酸(日化テクノサービス(株)製)を390g加えた。水浴温度を42℃〜44℃として4時間撹拌した後、放冷した。
得られた合成液を9260Gで5時間遠心分離後、傾斜して上澄み液を除き、底部に残存した沈殿に、この沈殿の質量の5倍に相当する酢酸イソアミルを加え超音波で沈殿を分散し、次に710Gで10分間遠心分離後、上澄みを9260Gで3時間遠心分離した。傾斜して上澄みを除き、底部に残存した沈殿に、この沈殿の質量の5倍に相当する酢酸イソアミルを加え超音波で沈殿を分散して光調整粒子分散液を調製した。
<Reference example>
(Preparation of light control particle dispersion for determination of reference particle density)
An 8.5 mass% iodine isoamyl acetate solution from iodine (JIS reagent special grade, Wako Pure Chemical Industries, Ltd.) and isoamyl acetate (reagent special grade, Wako Pure Chemical Industries, Ltd.), and nitrocellulose 1 / 4LIG An isoamyl acetate solution of 20.0 mass% nitrocellulose was prepared from (trade name: manufactured by Bergerac NC) and isoamyl acetate. Calcium iodide hydrate (chemical use, manufactured by Wako Pure Chemical Industries, Ltd.) was dried by heating, dehydrated and dissolved in isoamyl acetate to prepare a 20.9 mass% calcium iodide solution. A 20 L flask was equipped with a stirrer and a condenser, 6905 g of iodine solution and 8723 g of nitrocellulose solution were added, and the flask was heated at a water bath temperature of 35 ° C. to 40 ° C. The water ratio (%) in the nitrocellulose solution was measured using Hiranuma Sangyo Co., Ltd., Hiranuma moisture measuring device AQ-7 (generating liquid: Hydranal Aqualite RS, counter electrode liquid: Aqualite CN). The amount of water in the nitrocellulose solution was 53.2 g from the added solution mass. After the temperature of the flask contents reached 35 to 40 ° C., 260 g of dehydrated methanol (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) and 55.6 g of purified water (produced by Wako Pure Chemical Industries, Ltd.) Added and stirred. 1643 g of calcium iodide solution was added, and then 390 g of pyrazine-2,5-dicarboxylic acid (manufactured by Nikka Techno Service Co., Ltd.) was added. The water bath temperature was set to 42 ° C. to 44 ° C. and the mixture was stirred for 4 hours and then allowed to cool.
The resultant synthesis solution was centrifuged at 9260 G for 5 hours, and the supernatant was removed by inclining. To the precipitate remaining at the bottom, isoamyl acetate corresponding to 5 times the mass of the precipitate was added, and the precipitate was dispersed with ultrasound. Then, after centrifugation at 710 G for 10 minutes, the supernatant was centrifuged at 9260 G for 3 hours. The supernatant was removed by inclining, and isoamyl acetate corresponding to 5 times the mass of the precipitate was added to the precipitate remaining at the bottom, and the precipitate was dispersed with ultrasonic waves to prepare a light control particle dispersion.

得られた光調整粒子は、粒度分布測定(サブミクロン粒子アナライザ(製品名:N4MD、ベックマン・コールタ社製)で測定)で求められる平均粒子径が185nm、SEM観察による平均長径は350nm、平均アスペクト比は7.0であった。なお、SEMによる観察では、300個の光調整粒子から、長径及びアスペクト比の平均値を求めた。   The obtained light control particles have an average particle size of 185 nm determined by particle size distribution measurement (measured with a submicron particle analyzer (product name: N4MD, manufactured by Beckman Coulter)), an average major axis by SEM observation of 350 nm, and an average aspect. The ratio was 7.0. In addition, in the observation by SEM, the average value of the major axis and the aspect ratio was obtained from 300 light adjusting particles.

(基準粒子密度の決定)
上述の光調整分散液の密度を25.00℃で測定したところ、0.92854g/cmだった。この分散した液を1g金属プレートに秤量し、120℃1時間で乾燥後、再び質量を測定し、光調整分散液における不揮発成分の質量比である不揮発分比NV値を求めたところ、6.98%であった。この不揮発分比NV値を粒子濃度とし、密度の値とともに既述の式(3)に代入して得られた密度2.9722g/cmを基準粒子密度として、以下密度から粒子濃度を求めるときはすべてこの値を用いた。
(Determination of standard particle density)
When the density of the above-mentioned light control dispersion was measured at 25.00 ° C., it was 0.92854 g / cm 3 . When this dispersed liquid was weighed on a 1 g metal plate and dried at 120 ° C. for 1 hour, the mass was measured again, and the non-volatile fraction NV value, which is the mass ratio of non-volatile components in the light control dispersion, was determined. It was 98%. When the non-volatile content ratio NV value is defined as the particle concentration, and the density 2.9722 g / cm 3 obtained by substituting the density value into the above-described equation (3) is set as the reference particle density, the particle concentration is obtained from the density below. All used this value.

<実施例1>
(光調整粒子分散液の調製)
水分比が0.68%のニトロセルロース溶液を用いたこと、及び脱水メタノールと一緒に加える精製水を57.3gとしたこと以外は前記参考例と同様にして光調整粒子分散液を調製した。調製した光調整粒子分散液の密度は0.90732g/cm、粒子濃度は6.1213%となった。
<Example 1>
(Preparation of light control particle dispersion)
A light control particle dispersion was prepared in the same manner as in the above Reference Example except that a nitrocellulose solution with a water ratio of 0.68% was used and that 57.3 g of purified water was added together with dehydrated methanol. The density of the prepared light adjusting particle dispersion was 0.90732 g / cm 3 and the particle concentration was 6.1213%.

(光調整粒子と可塑剤との混合)
この光調整粒子分散液529.9g、トリメリット酸イソデシル(花王製)300.78gを1Lナス型フラスコに加えロータリーエバポレータにセットし、80℃で加熱しながら油回転ポンプでゆっくり減圧を開始し、約45分間で溶媒を留去した後、そのまま減圧を継続した。減圧開始から1時間経過後に真空度1000Pa以下を確認し、3時間後に減圧と加熱を停止して脱溶した。次に、フラスコに内容物重量と同量の酢酸イソアミルを加え、再び同じ手順で脱溶2回目を実施して粒子濃度9.73%の光調整粒子混合液を得た。
(Mixing of light control particles and plasticizer)
Add 529.9 g of this light control particle dispersion and 300.78 g of isodecyl trimellitic acid (manufactured by Kao) to a 1 L eggplant-shaped flask, set in a rotary evaporator, and slowly start depressurization with an oil rotary pump while heating at 80 ° C. After the solvent was distilled off in about 45 minutes, the pressure reduction was continued as it was. After 1 hour from the start of the decompression, the degree of vacuum was confirmed to be 1000 Pa or less, and after 3 hours, the decompression and heating were stopped to dissolve. Next, isoamyl acetate in the same amount as the weight of the contents was added to the flask, and the second dissolution was performed again by the same procedure to obtain a light control particle mixture having a particle concentration of 9.73%.

(樹脂分散剤(分散高分子) [P−6] の合成)
トルエン(試薬特級、和光純薬工業(株)製)164g、メタクリル酸ドデシル231.4g(共栄社化学)、メタクリル酸2−ヒドロキシエチル(試薬特級、和光純薬工業(株)製)7.56g、ヘキシルメルカプタン(東京化成)18.40gを3つ口フラスコに加え窒素雰囲気下で撹拌しながら60℃に加熱した。1時間後、アゾイソブチロニトリル(試薬特級、和光純薬工業(株)製)1.84gをトルエン80gに溶解させた後、全量滴下した。そのまま21時間加熱した後、115℃に加熱して2時間撹拌した。その後、減圧して溶剤を留去した。これにメタノールを200g加えて分液ロートに移して激しく振って30分放置した。上層と下層に分離し、下層を分液ロートに移し、メタノール200gを加え激しく振って30分放置した。上層と下層に分離し、下層を分液ロートに移し、メタノール200gを加え激しく振って30分放置した。上層と下層に分離し、回収した下層から減圧下に溶剤を留去した後、110Pa200℃条件で短行程蒸留精製を行い、樹脂分散剤(分散高分子[P−6])を得た。ヒドロキシ基をもつメタクリル酸エステルとアルキル基をもつメタクリル酸エステルのモル比は6:94であった。
(光調整懸濁液の調製)
前記光調整粒子混合液7.50g、樹脂分散剤[P−6](重量平均分子量3420)14.22g、トリメリット酸イソデシル26.51gをポリカップに量り取り、攪拌して光調整懸濁液を得た。光調整懸濁液から粒子を除いた質量のうち、樹脂分散剤(分散高分子[P−6])の質量の比率は3.36%であった。
(Synthesis of resin dispersant (dispersed polymer) [P-6])
164 g of toluene (reagent special grade, manufactured by Wako Pure Chemical Industries, Ltd.), dodecyl methacrylate 231.4 g (Kyoeisha Chemical), 2-hydroxyethyl methacrylate (reagent special grade, manufactured by Wako Pure Chemical Industries, Ltd.) 7.56 g, 18.40 g of hexyl mercaptan (Tokyo Kasei) was added to a three-necked flask and heated to 60 ° C. with stirring in a nitrogen atmosphere. After 1 hour, 1.84 g of azoisobutyronitrile (reagent special grade, manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 80 g of toluene, and then the whole amount was dropped. After heating for 21 hours, the mixture was heated to 115 ° C. and stirred for 2 hours. Then, the pressure was reduced and the solvent was distilled off. To this was added 200 g of methanol, transferred to a separatory funnel, shaken vigorously and allowed to stand for 30 minutes. The mixture was separated into an upper layer and a lower layer, and the lower layer was transferred to a separatory funnel, 200 g of methanol was added and shaken vigorously, and left for 30 minutes. The mixture was separated into an upper layer and a lower layer, and the lower layer was transferred to a separatory funnel, 200 g of methanol was added and shaken vigorously, and left for 30 minutes. After separating into an upper layer and a lower layer and distilling off the solvent from the recovered lower layer under reduced pressure, short-path distillation purification was performed at 110 Pa at 200 ° C. to obtain a resin dispersant (dispersed polymer [P-6]). The molar ratio of the methacrylic acid ester having a hydroxy group and the methacrylic acid ester having an alkyl group was 6:94.
(Preparation of light control suspension)
7.75 g of the light adjusting particle mixed solution, 14.22 g of the resin dispersant [P-6] (weight average molecular weight 3420) and 26.51 g of isodecyl trimellitic acid are weighed in a polycup and stirred to obtain a light adjusting suspension. Obtained. The mass ratio of the resin dispersant (dispersed polymer [P-6]) out of the mass excluding the particles from the light control suspension was 3.36%.

(高分子媒体の製造)
ディーンスタークトラップ、冷却管、撹拌機、加熱装置を備えた四つ口フラスコに、(3−アクリロキシプロピル)メチルジメトキシシラン(商品名:KBM−5102、信越化学工業(株)製)150.0g、蒸留水19.0g、酢酸(和光純薬工業(株)製)375.0g、質量比でエタノール/メタノール=9/1の混合溶媒89gを仕込み、65℃に昇温して5時間反応させた。反応溶液を40℃以下まで冷却した後、300Pa以下に減圧して70℃まで昇温して2時間、脱溶工程を行った。その後、室温まで冷却してアルコキシシランの一部をシラノールへ変換した化合物140gを得た。また、シラノールへの変換率は54.5%であった。
この変換反応を繰り返し行い、アルコキシシランの一部をシラノールへ変換した化合物14.0gを得た。変換率は54.5%であった。
ディーンスタークトラップ、冷却管、撹拌機、加熱装置を備えた四つ口フラスコに、両末端シラノールポリジメチルシロキサン(商品名:X−21−3114、信越化学工業(株)製)44.0g、両末端シラノールポリジメチルジフェニルシロキサン(商品名:X−21−3193B、信越化学工業(株)製)156.0g、前記KBM−5102のメトキシ基をシラノールに変換したもの22.0g、ビス(2−エチルヘキサン酸)錫(商品名:KCS−405T、城北化学工業(株)製)0.01gを仕込み、ヘプタン中100℃で5時間還流して反応を行った。温度を50℃まで冷却し、トリメチルメトキシシラン(商品名:KBM−31、信越化学工業(株)製)168.0gを添加し、再び85℃において2時間還流スしてエンドキャップ反応させた。次いで温度を75℃に冷却してリン酸ジエチル(別名:エチルアシッドホスフェート)(商品名:JP−502、城北化学工業(株)製)0.01g(脱水縮合触媒ビス(2−エチルヘキサン酸)錫に対して100質量部に対して100質量部)を添加し20分攪拌した後30℃まで冷却した。次いでメタノールを210g、エタノールを90g添加し20分攪拌した。12時間静置した後にアルコール層を除去し、100Pa以下に減圧して、115℃に昇温した。そのまま5時間、脱溶を行い、高分子媒体である重量平均分子量49,000のポリシロキサン樹脂188.3gを得た。NMRの水素積分比からこの樹脂に含まれる3−アクリロキシプロピルメチルシロキサン繰り返し単位量は、3.5質量%であった。
(Manufacture of polymer media)
In a four-necked flask equipped with a Dean-Stark trap, cooling tube, stirrer, and heating device, (3-acryloxypropyl) methyldimethoxysilane (trade name: KBM-5102, manufactured by Shin-Etsu Chemical Co., Ltd.) 150.0 g , 19.0 g of distilled water, 375.0 g of acetic acid (manufactured by Wako Pure Chemical Industries, Ltd.), 89 g of a mixed solvent of ethanol / methanol = 9/1 by mass ratio, heated to 65 ° C. and reacted for 5 hours It was. After the reaction solution was cooled to 40 ° C. or lower, the pressure was reduced to 300 Pa or lower, the temperature was raised to 70 ° C., and a desolubilization step was performed for 2 hours. Then, it cooled to room temperature and obtained 140g of compounds which converted a part of alkoxysilane into silanol. The conversion rate to silanol was 54.5%.
This conversion reaction was repeated to obtain 14.0 g of a compound in which a part of alkoxysilane was converted to silanol. The conversion rate was 54.5%.
In a four-necked flask equipped with a Dean-Stark trap, condenser, stirrer, and heating device, both ends silanol polydimethylsiloxane (trade name: X-21-3114, manufactured by Shin-Etsu Chemical Co., Ltd.) 44.0 g, both 156.0 g of terminal silanol polydimethyldiphenylsiloxane (trade name: X-21-3193B, manufactured by Shin-Etsu Chemical Co., Ltd.), 22.0 g of methoxy group converted to silanol in the KBM-5102, bis (2-ethyl) Hexanoic acid) tin (trade name: KCS-405T, manufactured by Johoku Chemical Industry Co., Ltd.) 0.01 g was charged, and the reaction was performed by refluxing in heptane at 100 ° C. for 5 hours. The temperature was cooled to 50 ° C., 168.0 g of trimethylmethoxysilane (trade name: KBM-31, manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and the mixture was refluxed at 85 ° C. for 2 hours to cause an end cap reaction. Next, the temperature was cooled to 75 ° C. and diethyl phosphate (also known as ethyl acid phosphate) (trade name: JP-502, manufactured by Johoku Chemical Co., Ltd.) 0.01 g (dehydration condensation catalyst bis (2-ethylhexanoic acid)) 100 parts by mass with respect to 100 parts by mass) was added and stirred for 20 minutes, and then cooled to 30 ° C. Next, 210 g of methanol and 90 g of ethanol were added and stirred for 20 minutes. After standing for 12 hours, the alcohol layer was removed, the pressure was reduced to 100 Pa or less, and the temperature was raised to 115 ° C. The dissolution was carried out for 5 hours as it was to obtain 188.3 g of a polysiloxane resin having a weight average molecular weight of 49,000 as a polymer medium. From the NMR hydrogen integration ratio, the amount of 3-acryloxypropylmethylsiloxane repeating units contained in this resin was 3.5% by mass.

(調光材料の調製)
上記で得られた高分子媒体31.3g、光重合開始剤のビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキサイド(BASFジャパン(株)製)とテトラヒドロフラン(和光純薬、特級)を各0.2g、上述のようにして調製した光調整懸濁液18.7gをポリカップに量り取り、攪拌して調光材料を得た。
(Preparation of light control material)
31.3 g of the polymer medium obtained above, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (manufactured by BASF Japan Ltd.) and tetrahydrofuran (Wako Pure Chemicals, special grade) as photopolymerization initiators 0.2 g and 18.7 g of the light control suspension prepared as described above were weighed into a polycup and stirred to obtain a light control material.

(調光フィルムの作製)
ITO(インジウム錫の酸化物)の透明導電膜(厚み30nm)がコーティングされている表面電気抵抗値が200Ω〜700ΩのPETフィルム(300R、東洋紡績(株)製、厚み125μm)からなる透明導電性樹脂基材の透明導電膜上に前記調光材料を全面塗布した。次いで、その上に同様にプライマー層を形成した同じ透明導電性樹脂基材を、透明導電膜が調光材料の塗布層に向くようにして積層して密着させた。最後に、メタルハライドランプを用いて3000mJ/cmの紫外線を前記積層した透明導電性樹脂基材のポリエステルフィルム側から照射し、光調整懸濁液が球形の液滴として紫外線硬化した樹脂マトリックス内に分散形成されたフィルム状の厚み90μm〜98μmの調光層が透明導電性樹脂基材に挟まれた厚み330μm〜350μm調光フィルムを製造した。
(Preparation of light control film)
Transparent conductivity made of PET film (300R, manufactured by Toyobo Co., Ltd., thickness 125 μm) having a surface electrical resistance value of 200Ω to 700Ω coated with a transparent conductive film (thickness 30 nm) of ITO (indium tin oxide) The light control material was applied on the entire surface of the transparent conductive film of the resin base material. Subsequently, the same transparent conductive resin base material on which a primer layer was similarly formed was laminated and adhered so that the transparent conductive film faced the coating layer of the light control material. Finally, 3000 mJ / cm 2 of ultraviolet light is irradiated from the polyester film side of the laminated transparent conductive resin base material using a metal halide lamp, and the light control suspension is turned into a spherical droplet in the UV cured resin matrix. A light-modulating film having a thickness of 330 μm to 350 μm in which a light-modulating layer having a thickness of 90 μm to 98 μm formed in a dispersed manner was sandwiched between transparent conductive resin substrates was produced.

(調光フィルムの透過率測定)
分光式色差計SZ−Σ90(日本電色工業(株)製)を使用し、A光源、視野角2度で測定したY値(%)を光透過率とした。なお、電界印加時と未印加時の光透過率を測定した。また、電界印加時は、50Hzの交流電圧(実効値)100Vの印加時の透過率をTon(%)、電圧印加がないときをToff(%)、透過率差をΔT(%)=Ton(%)−Toff(%)とし、印加後60秒後のΔT(%)値を測定したところ54.55%であった。この調光フィルムを100℃で528時間保管した後に同様にΔT(%)値を測定したところ54.27%、1008時間保管した後ではΔT(%)は54.08%、1488時間保管した後ではΔT(%)は51.64%、1992時間保管した後ではΔT(%)は50.01%、2496時間保管した後ではΔT(%)は46.85%、3000時間保管した後ではΔT(%)は48.43%、3504時間保管した後ではΔT(%)は46.79%、4008時間保管した後ではΔT(%)は45.80%であった。
(Measurement of transmittance of light control film)
Using a spectroscopic color difference meter SZ-Σ90 (manufactured by Nippon Denshoku Industries Co., Ltd.), the Y value (%) measured with an A light source and a viewing angle of 2 degrees was defined as light transmittance. The light transmittance was measured when an electric field was applied and when it was not applied. Further, when an electric field is applied, the transmittance in application of the AC voltage (effective value) 100 V of 50Hz T on (%), T off (%) when no voltage is applied, the transmittance difference [Delta] T (%) = T on (%) - T and off (%), ΔT 0 ( %) 60 seconds after application of value was 54.55% was measured. After the light control film was stored at 100 ° C. for 528 hours, the ΔT 1 (%) value was measured in the same manner. As a result, after storing it at 54.27% for 1008 hours, ΔT 2 (%) was stored at 54.08% for 1488 hours. ΔT 3 (%) is 51.64% after storage for 1992 hours, ΔT 4 (%) is 50.01% after storage for 1992 hours, and ΔT 5 (%) is 46.85% for 3000 hours after storage for 2496 hours. After storage, ΔT 6 (%) was 48.43%, after storage for 3504 hours, ΔT 7 (%) was 46.79%, and after storage for 4008 hours, ΔT 8 (%) was 45.80%. It was.

(耐熱性評価)
耐熱性の目安として、加熱後の透過率差(ΔT〜ΔT)を加熱前の透過率差(ΔT)で除した値をΔT保持率として算出し、これを評価したところ、このフィルムの100℃、528時間におけるΔT保持率は99.5%、1008時間でのΔT保持率は99.1%、1488時間でのΔT保持率は94.7%、1992時間でのΔT保持率は91.7%、2496時間でのΔT保持率は85.9%、3000時間でのΔT保持率は88.8%、3504時間でのΔT保持率は85.8%、4008時間でのΔT保持率は84.0%であった。
(Heat resistance evaluation)
As a measure of heat resistance, a value obtained by dividing the transmittance difference after heating (ΔT 1 to ΔT 7 ) by the transmittance difference before heating (ΔT 0 ) was calculated as ΔT retention, and this was evaluated. ΔT retention at 100 ° C. for 528 hours was 99.5%, ΔT retention at 1008 hours was 99.1%, ΔT retention at 1488 hours was 94.7%, and ΔT retention at 1992 hours was 91.7%, ΔT retention at 2496 hours is 85.9%, ΔT retention at 3000 hours is 88.8%, ΔT retention at 3504 hours is 85.8%, ΔT retention at 4008 hours The rate was 84.0%.

<実施例2>
(樹脂分散剤(分散高分子)[P−10]の合成)
実施例1で合成した樹脂分散剤の組成中、メタクリル酸2−ヒドロキシエチルの量を13.15gに変更した以外は実施例1と同じ方法で樹脂分散剤(分散高分子[P−10] (重量平均分子量3550))を得た。ヒドロキシ基をもつメタクリル酸エステルとアルキル基をもつメタクリル酸エステルのモル比は10:90であった。
<Example 2>
(Synthesis of resin dispersant (dispersed polymer) [P-10])
In the composition of the resin dispersant synthesized in Example 1, except that the amount of 2-hydroxyethyl methacrylate was changed to 13.15 g, a resin dispersant (dispersed polymer [P-10] ( A weight average molecular weight 3550)) was obtained. The molar ratio of the methacrylate having a hydroxy group and the methacrylate having an alkyl group was 10:90.

(光調整懸濁液の調製)
実施例1で樹脂分散剤として用いた分散高分子[P−6]を前記分散高分子[P−10]に変更した以外は実施例1と同じ方法で、光調整懸濁液を調製した。
(調光材料の調製と調光フィルムの作製、透過率の測定及び耐熱性評価)
この光調整懸濁液を用いたこと以外は実施例1と同様にして、調光材料を調製し、その調光材料を用いて調光フィルムを作製し、ΔT(%)値の測定及び耐熱性評価を行った。
この結果、ΔT(%)値は57.44%であった。この調光フィルムを100℃で528時間保管した後に同様にΔT(%)値を測定したところ57.82%、1008時間保管した後ではΔT(%)は58.46%、1488時間保管した後ではΔT(%)は57.31%、1992時間保管した後ではΔT(%)は56.75%、2496時間保管した後ではΔT(%)は55.04%、3000時間保管した後ではΔT(%)は56.53%、3504時間保管した後ではΔT(%)は56.69%、4008時間保管した後ではΔT(%)は56.03%であった。
(Preparation of light control suspension)
A light control suspension was prepared in the same manner as in Example 1 except that the dispersed polymer [P-6] used as the resin dispersant in Example 1 was changed to the dispersed polymer [P-10].
(Preparation of light control material and production of light control film, transmittance measurement and heat resistance evaluation)
A light control material was prepared in the same manner as in Example 1 except that this light control suspension was used, a light control film was prepared using the light control material, and a ΔT 0 (%) value was measured. The heat resistance was evaluated.
As a result, the ΔT 0 (%) value was 57.44%. After this light control film was stored at 100 ° C. for 528 hours, the ΔT 1 (%) value was measured in the same manner, and after storing 57.82% for 1008 hours, ΔT 2 (%) was 58.46% for 1488 hours. ΔT 3 (%) is 57.31%, after storage for 1992 hours, ΔT 4 (%) is 56.75%, and after storage for 2496 hours, ΔT 5 (%) is 55.04%, 3000 hours After storage, ΔT 6 (%) was 56.53%, after storage for 3504 hours, ΔT 7 (%) was 56.69%, and after storage for 4008 hours, ΔT 8 (%) was 56.03%. It was.

また、このフィルムの100℃、528時間におけるΔT保持率は100.7%、1008時間でのΔT保持率は101.8%、1488時間でのΔT保持率は99.8%、1992時間でのΔT保持率は98.8%、2496時間でのΔT保持率は95.9%、3000時間でのΔT保持率は98.4%、3504時間でのΔT保持率は98.7%、4008時間でのΔT保持率は97.5%であった。   In addition, the ΔT retention rate at 100 ° C. and 528 hours of this film was 100.7%, the ΔT retention rate at 1008 hours was 101.8%, the ΔT retention rate at 1488 hours was 99.8%, and at 1992 hours. ΔT retention was 98.8%, ΔT retention at 2496 hours was 95.9%, ΔT retention at 3000 hours was 98.4%, and ΔT retention at 3504 hours was 98.7%, 4008 hours. The ΔT retention at was 97.5%.

<比較例1>
(樹脂分散剤(分散高分子)[P−0]の合成)
実施例1で合成した樹脂分散剤の組成中、メタクリル酸2−ヒドロキシエチルの量を0gに変更した以外は実施例1と同じ方法で樹脂分散剤(分散高分子[P−0] (重量平均分子量3220)を得た。ヒドロキシ基をもつメタクリル酸エステルとアルキル基をもつメタクリル酸エステルのモル比は0:100であった。
<Comparative Example 1>
(Synthesis of resin dispersant (dispersed polymer) [P-0])
In the composition of the resin dispersant synthesized in Example 1, the resin dispersant (dispersed polymer [P-0] (weight average) was changed in the same manner as in Example 1 except that the amount of 2-hydroxyethyl methacrylate was changed to 0 g. The molecular weight was 3220. The molar ratio of the methacrylic acid ester having a hydroxy group to the methacrylic acid ester having an alkyl group was 0: 100.

(光調整懸濁液の調製)
実施例1で樹脂分散剤として用いた分散高分子[P−6]を前記分散高分子[P−0]に変更した以外は実施例1と同じ方法で、光調整懸濁液を調製した。
(Preparation of light control suspension)
A light control suspension was prepared in the same manner as in Example 1 except that the dispersed polymer [P-6] used as the resin dispersant in Example 1 was changed to the dispersed polymer [P-0].

(調光材料の調製と調光フィルムの作製、透過率の測定及び耐熱性評価)
この光調整懸濁液を用いたこと以外は実施例1と同様にして、調光材料を調製し、その調光材料を用いて調光フィルムを作製し、ΔT(%)値の測定及び耐熱性評価を行った。
この結果、ΔT(%)値は44.51%であった。この調光フィルムを100℃で528時間保管した後に同様にΔT(%)値を測定したところ34.06%、1008時間保管した後ではΔT(%)は14.11%、1488時間保管した後ではΔT(%)は3.35%であった。
また、このフィルムの100℃、528時間におけるΔT保持率は76.5%、1008時間でのΔT保持率は31.7%、1488時間でのΔT保持率は7.5%であった。
(Preparation of light control material and production of light control film, transmittance measurement and heat resistance evaluation)
A light control material was prepared in the same manner as in Example 1 except that this light control suspension was used, a light control film was prepared using the light control material, and a ΔT 0 (%) value was measured. The heat resistance was evaluated.
As a result, the ΔT 0 (%) value was 44.51%. After this light control film was stored at 100 ° C. for 528 hours, the ΔT 1 (%) value was measured in the same manner. As a result, after storing 34.06% for 1008 hours, ΔT 2 (%) was 14.11% for 1488 hours. After that, ΔT 3 (%) was 3.35%.
Further, this film had a ΔT retention of 76.5% at 100 ° C. and 528 hours, a ΔT retention of 1008 hours of 31.7%, and a ΔT retention of 1488 hours of 7.5%.

<比較例2>
(樹脂分散剤(分散高分子)[P−1]の合成)
実施例1で合成した樹脂分散剤の組成中、メタクリル酸2−ヒドロキシエチルの量を1.20gに変更した以外は実施例1と同じ方法で樹脂分散剤(分散高分子[P−1] (重量平均分子量3240)を得た。ヒドロキシ基をもつメタクリル酸エステルとアルキル基をもつメタクリル酸エステルのモル比は1:99であった。
<Comparative example 2>
(Synthesis of resin dispersant (dispersed polymer) [P-1])
In the composition of the resin dispersant synthesized in Example 1, except that the amount of 2-hydroxyethyl methacrylate was changed to 1.20 g, resin dispersant (dispersed polymer [P-1] ( A weight average molecular weight of 3240) was obtained, and the molar ratio of the methacrylic acid ester having a hydroxy group to the methacrylic acid ester having an alkyl group was 1:99.

(光調整懸濁液の調製)
実施例1で樹脂分散剤として用いた分散高分子[P−6]を前記分散高分子[P−1]に変更した以外は実施例1と同じ方法で、光調整懸濁液を調製した。
(Preparation of light control suspension)
A light control suspension was prepared in the same manner as in Example 1 except that the dispersed polymer [P-6] used as the resin dispersant in Example 1 was changed to the dispersed polymer [P-1].

(調光材料の調製と調光フィルムの作製、透過率の測定及び耐熱性評価)
この光調整懸濁液を用いたこと以外は実施例1と同様にして、調光材料を調製し、その調光材料を用いて調光フィルムを作製し、ΔT(%)値の測定及び耐熱性評価を行った。
この結果、ΔT(%)値は47.53%であった。この調光フィルムを100℃で528時間保管した後に同様にΔT(%)値を測定したところ42.46%、1008時間保管した後ではΔT(%)は32.05%、1488時間保管した後ではΔT(%)は15.41%であった。
また、このフィルムの100℃、528時間におけるΔT保持率は89.3%、1008時間でのΔT保持率は67.4%、1488時間でのΔT保持率は32.4%であった。
(Preparation of light control material and production of light control film, transmittance measurement and heat resistance evaluation)
A light control material was prepared in the same manner as in Example 1 except that this light control suspension was used, a light control film was prepared using the light control material, and a ΔT 0 (%) value was measured. The heat resistance was evaluated.
As a result, the ΔT 0 (%) value was 47.53%. 42.46% was measured in the same manner [Delta] T 1 (%) value of the light control film after storage 528 hours at 100 ℃, ΔT 2 (%) is after storage 1008 hours 32.05%, storage 1488 hours After that, ΔT 3 (%) was 15.41%.
Also, this film had a ΔT retention of 89.3% at 100 ° C. for 528 hours, a ΔT retention of 1008 hours at 67.4%, and a ΔT retention at 1488 hours of 32.4%.

<比較例3>
(樹脂分散剤(分散高分子)[P−2]の合成)
実施例1で合成した樹脂分散剤の組成中、メタクリル酸2−ヒドロキシエチルの量を2.41gに変更した以外は実施例1と同じ方法で樹脂分散剤(分散高分子[P−2] (重量平均分子量3310)を得た。ヒドロキシ基をもつメタクリル酸エステルとアルキル基をもつメタクリル酸エステルのモル比は2:98であった。
<Comparative Example 3>
(Synthesis of resin dispersant (dispersed polymer) [P-2])
In the composition of the resin dispersant synthesized in Example 1, except that the amount of 2-hydroxyethyl methacrylate was changed to 2.41 g, the resin dispersant (dispersed polymer [P-2] ( The weight average molecular weight was 3310. The molar ratio of the methacrylic acid ester having a hydroxy group and the methacrylic acid ester having an alkyl group was 2:98.

(光調整懸濁液の調製)
実施例1で樹脂分散剤として用いた分散高分子[P−6]を前記分散高分子[P−2]に変更した以外は実施例1と同じ方法で、光調整懸濁液を調製した。
(調光材料の調製と調光フィルムの作製、透過率の測定及び耐熱性評価)
この光調整懸濁液を用いたこと以外は実施例1と同様にして、調光材料を調製し、その調光材料を用いて調光フィルムを作製し、ΔT(%)値の測定及び耐熱性評価を行った。
(Preparation of light control suspension)
A light control suspension was prepared in the same manner as in Example 1 except that the dispersed polymer [P-6] used as the resin dispersant in Example 1 was changed to the dispersed polymer [P-2].
(Preparation of light control material and production of light control film, transmittance measurement and heat resistance evaluation)
A light control material was prepared in the same manner as in Example 1 except that this light control suspension was used, a light control film was prepared using the light control material, and a ΔT 0 (%) value was measured. The heat resistance was evaluated.

この結果、ΔT(%)値は48.88%であった。この調光フィルムを100℃で528時間保管した後に同様にΔT(%)値を測定したところ44.48%、1008時間保管した後ではΔT(%)は37.69%、1488時間保管した後ではΔT(%)は24.03%、1992時間保管した後ではΔT(%)は11.75%であった。
また、このフィルムの100℃、528時間におけるΔT保持率は91.0%、1008時間でのΔT保持率は77.1%、1488時間でのΔT保持率は49.2%、1992時間でのΔT保持率は24.0%であった。
As a result, the ΔT 0 (%) value was 48.88%. After the light control film was stored at 100 ° C. for 528 hours, the ΔT 1 (%) value was measured in the same manner, and after storing 44.48% for 1008 hours, ΔT 2 (%) was 37.69% for 1488 hours. After that, ΔT 3 (%) was 24.03%, and after storage for 1992 hours, ΔT 4 (%) was 11.75%.
The ΔT retention of this film at 100 ° C. for 528 hours was 91.0%, the ΔT retention at 1008 hours was 77.1%, the ΔT retention at 1488 hours was 49.2%, and the 1992 hours. The ΔT retention was 24.0%.

<比較例4>
(樹脂分散剤(分散高分子)の合成[P−4])
実施例1で合成した樹脂分散剤の組成中、メタクリル酸2−ヒドロキシエチルの量を4.77gに変更した以外は実施例1と同じ方法で樹脂分散剤(分散高分子[P−4] (重量平均分子量3370)を得た。ヒドロキシ基をもつメタクリル酸エステルとアルキル基をもつメタクリル酸エステルのモル比は4:96であった。
<Comparative example 4>
(Synthesis of resin dispersant (dispersed polymer) [P-4])
In the composition of the resin dispersant synthesized in Example 1, except that the amount of 2-hydroxyethyl methacrylate was changed to 4.77 g, the resin dispersant (dispersed polymer [P-4] ( A weight average molecular weight of 3370) was obtained, and the molar ratio of the methacrylic acid ester having a hydroxy group to the methacrylic acid ester having an alkyl group was 4:96.

(光調整懸濁液の調製)
実施例1で樹脂分散剤として用いた分散高分子[P−6]を前記分散高分子[P−4]に変更した以外は実施例1と同じ方法で、光調整懸濁液を調製した。
(調光材料の調製と調光フィルムの作製、透過率の測定及び耐熱性評価)
この光調整懸濁液を用いたこと以外は実施例1と同様にして、調光材料を調製し、その調光材料を用いて調光フィルムを作製し、ΔT(%)値の測定及び耐熱性評価を行った。
(Preparation of light control suspension)
A light control suspension was prepared in the same manner as in Example 1 except that the dispersed polymer [P-6] used as the resin dispersant in Example 1 was changed to the dispersed polymer [P-4].
(Preparation of light control material and production of light control film, transmittance measurement and heat resistance evaluation)
A light control material was prepared in the same manner as in Example 1 except that this light control suspension was used, a light control film was prepared using the light control material, and a ΔT 0 (%) value was measured. The heat resistance was evaluated.

この結果、ΔT(%)値は53.49%であった。この調光フィルムを100℃で528時間保管した後に同様にΔT(%)値を測定したところ52.63%、1008時間保管した後ではΔT(%)は49.48%、1488時間保管した後ではΔT(%)は44.22%、1992時間保管した後ではΔT(%)は35.45%、2496時間保管した後ではΔT(%)は28.17%であった。
また、このフィルムの100℃、528時間におけるΔT保持率は98.4%、1008時間でのΔT保持率は92.5%、1488時間でのΔT保持率は82.7%、1992時間でのΔT保持率は66.3%、2496時間でのΔT保持率は52.7%であった。
As a result, the ΔT 0 (%) value was 53.49%. After the light control film was stored at 100 ° C. for 528 hours, the ΔT 1 (%) value was measured in the same manner. As a result, after storing it at 52.63% and 1008 hours, ΔT 2 (%) was 49.48% and stored for 1488 hours. After that, ΔT 3 (%) was 44.22%, after storage for 1992 hours, ΔT 4 (%) was 35.45%, and after storage for 2496 hours, ΔT 5 (%) was 28.17%. .
The ΔT retention of this film at 100 ° C. and 528 hours was 98.4%, the ΔT retention at 1008 hours was 92.5%, the ΔT retention at 1488 hours was 82.7%, and the 1992 hours. The ΔT retention was 66.3%, and the ΔT retention at 2496 hours was 52.7%.

<比較例5>
(樹脂分散剤(分散高分子)の合成[P−30])
実施例1で合成した樹脂分散剤の組成中、メタクリル酸ドデシルの量を178.1gに、またメタクリル酸2−ヒドロキシエチルの量を39.05g、ヘキシルメルカプタンの量を36.99gにそれぞれ変更した以外は実施例1と同じ方法で樹脂分散剤(分散高分子[P−30] (重量平均分子量2240)を得た。ヒドロキシ基をもつメタクリル酸エステルとアルキル基をもつメタクリル酸エステルのモル比は30:70であった。
<Comparative Example 5>
(Synthesis of resin dispersant (dispersed polymer) [P-30])
In the composition of the resin dispersant synthesized in Example 1, the amount of dodecyl methacrylate was changed to 178.1 g, the amount of 2-hydroxyethyl methacrylate was 39.05 g, and the amount of hexyl mercaptan was changed to 36.99 g. Except for the above, a resin dispersant (dispersed polymer [P-30] (weight average molecular weight 2240) was obtained in the same manner as in Example 1. The molar ratio of the methacrylic acid ester having a hydroxy group to the methacrylic acid ester having an alkyl group was as follows. 30:70.

(光調整粒子と[P−30]との混合)
実施例1で作製した光調整粒子分散液71.81gと、前記分散高分子[P−30]81.45gを1Lナス型フラスコに加えロータリーエバポレータにセットし、80℃で加熱しながら油回転ポンプでゆっくり減圧を開始し、約45分間で溶媒を留去した後、そのまま減圧を継続した。減圧開始から1時間経過後に真空度1000Pa以下を確認し、3時間後に減圧と加熱を停止した。次に、フラスコに内容物重量と同量の酢酸イソアミルを加え、再び同じ手順で脱溶2回目を実施して粒子濃度5.27%の光調整粒子混合液を得た。
(Mixing of light control particles and [P-30])
71.81 g of the light control particle dispersion prepared in Example 1 and 81.45 g of the dispersed polymer [P-30] were added to a 1 L eggplant-shaped flask, set in a rotary evaporator, and heated at 80 ° C. while being heated at 80 ° C. The pressure was slowly reduced and the solvent was distilled off in about 45 minutes, and then the pressure reduction was continued. After 1 hour from the start of pressure reduction, a vacuum degree of 1000 Pa or less was confirmed, and pressure reduction and heating were stopped after 3 hours. Next, isoamyl acetate in the same amount as the weight of the contents was added to the flask, and the second dissolution was carried out again by the same procedure to obtain a light control particle mixture having a particle concentration of 5.27%.

(光調整懸濁液の調製)
得られた光調整粒子混合液14.10g、トリメリット酸イソデシル6.42gをポリカップに量り取り、攪拌して光調整懸濁液を得た。光調整懸濁液中における粒子の質量の比率は3.62%であった。
(調光材料の調製と調光フィルムの作製、透過率の測定及び耐熱性評価)
この光調整懸濁液を用いたこと以外は実施例1と同様にして、調光材料を調製し、その調光材料を用いて調光フィルムを作製し、ΔT(%)値を測定した。
(Preparation of light control suspension)
14.10 g of the obtained light control particle mixture and 6.42 g of isodecyl trimellitic acid were weighed into a polycup and stirred to obtain a light control suspension. The ratio of the mass of the particles in the light control suspension was 3.62%.
(Preparation of light control material and production of light control film, transmittance measurement and heat resistance evaluation)
A light control material was prepared in the same manner as in Example 1 except that this light control suspension was used, a light control film was prepared using the light control material, and the ΔT 0 (%) value was measured. .

この結果、ΔT(%)値は2.75%であった。

以上の結果を図5に示す。図5中、100℃での放置時間を横軸に、ΔT保持率を縦軸としてプロットした。尚、図5中の()内の数値は、実施例1〜2及び比較例1〜4における樹脂分散剤中のヒドロキシ基をもつメタクリル酸エステルとアルキル基をもつメタクリル酸エステルのモル比を表す。
図5から、上述の分散高分子[P−6]、 [P−10]を使用した本発明にかかる調光フィルムは、耐熱性に優れ、高温環境下におかれた後であっても優れたΔT保持率を示すことがわかった。
As a result, the ΔT 0 (%) value was 2.75%.

The above results are shown in FIG. In FIG. 5, the standing time at 100 ° C. is plotted on the horizontal axis and the ΔT retention is plotted on the vertical axis. In addition, the numerical value in () in FIG. 5 represents the molar ratio of the methacrylic acid ester having a hydroxy group and the methacrylic acid ester having an alkyl group in the resin dispersant in Examples 1-2 and Comparative Examples 1-4. .
From FIG. 5, the light control film according to the present invention using the above-described dispersed polymers [P-6] and [P-10] is excellent in heat resistance and excellent even after being placed in a high temperature environment. It was found to show a ΔT retention.

1 調光層
2 樹脂マトリックス
3 液滴
4 透明導電性樹脂基材
5a 透明導電膜
5b 透明樹脂基材
6 プライマー層
7 電源
8 スイッチ
9 分散媒
10 光調整粒子
11 入射光
12 調光層を除去して露出した透明導電膜の表面
13 透明導電膜に電圧印加する導線

DESCRIPTION OF SYMBOLS 1 Light control layer 2 Resin matrix 3 Droplet 4 Transparent conductive resin base material 5a Transparent conductive film 5b Transparent resin base material 6 Primer layer 7 Power supply 8 Switch 9 Dispersion medium 10 Light adjustment particle 11 Incident light 12 The light control layer is removed. Exposed surface 13 of transparent conductive film Conductive wire for applying voltage to transparent conductive film

Claims (2)

エネルギー線照射により硬化可能な高分子媒体と、
ヒドロキシ基を有する(メタ)アクリレートに由来する第一の構造単位及び炭素数4〜20のアルキル(メタ)アクリレートに由来する第二の構造単位を含む共重合体であり、且つ前記第一の構造単位と前記第二の構造単位のモル比が5/95〜20/80である樹脂分散剤並びに光調整粒子を含有し、前記高分子媒体中に分散された光調整懸濁液と
を含む調光材料。
A polymer medium curable by energy ray irradiation;
A copolymer comprising a first structural unit derived from a (meth) acrylate having a hydroxy group and a second structural unit derived from an alkyl (meth) acrylate having 4 to 20 carbon atoms, and the first structure A preparation comprising: a resin dispersant having a molar ratio of the unit to the second structural unit of 5/95 to 20/80; and a light control suspension containing the light control particles and dispersed in the polymer medium. Light material.
2つの透明導電性樹脂基材と、前記2つの透明導電性樹脂基材に挟持された調光層とを有し、前記調光層が、
樹脂マトリックスと、
前記樹脂マトリックス中に分散され、ヒドロキシ基を有する(メタ)アクリレートに由来する第一の構造単位及び炭素数4〜20のアルキル(メタ)アクリレートに由来する第二の構造単位を含む共重合体であり、且つ前記第一の構造単位と第二の構造単位のモル比が5/95〜20/80である樹脂分散剤と光調整粒子とを含有する、光調整懸濁液と
を有する調光フィルム。
Two transparent conductive resin base materials, and a light control layer sandwiched between the two transparent conductive resin base materials, the light control layer,
A resin matrix;
A copolymer containing a first structural unit derived from a (meth) acrylate having a hydroxy group and a second structural unit derived from an alkyl (meth) acrylate having 4 to 20 carbon atoms, dispersed in the resin matrix. And a light control suspension comprising a resin dispersant having a molar ratio of the first structural unit to the second structural unit of 5/95 to 20/80 and light control particles. the film.
JP2011133669A 2011-06-15 2011-06-15 Light control material and light control film Active JP5842396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011133669A JP5842396B2 (en) 2011-06-15 2011-06-15 Light control material and light control film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011133669A JP5842396B2 (en) 2011-06-15 2011-06-15 Light control material and light control film

Publications (2)

Publication Number Publication Date
JP2013003319A true JP2013003319A (en) 2013-01-07
JP5842396B2 JP5842396B2 (en) 2016-01-13

Family

ID=47671963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011133669A Active JP5842396B2 (en) 2011-06-15 2011-06-15 Light control material and light control film

Country Status (1)

Country Link
JP (1) JP5842396B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190076037A (en) 2017-01-24 2019-07-01 제이에스알 가부시끼가이샤 Liquid crystal device, manufacturing method thereof, display device, and liquid crystal alignment agent
CN115477760A (en) * 2021-06-16 2022-12-16 江苏集萃智能液晶科技有限公司 Polyglycol modified iodine-doped coordination polymer, preparation method thereof, suspension and light modulation device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144895A (en) * 1977-05-23 1978-12-16 Research Frontiers Inc Light valve
JPH02232630A (en) * 1989-03-06 1990-09-14 Toyota Motor Corp Light control element
JPH06332016A (en) * 1993-05-11 1994-12-02 Res Frontiers Inc Light-valve suspension containing trimellitate or trimesate and light valve containing said suspension
JP2002082364A (en) * 2000-06-29 2002-03-22 Hitachi Chem Co Ltd Light regulation material, light regulation film and method for manufacturing the light regulation film
JP2005300962A (en) * 2004-04-13 2005-10-27 Dainippon Ink & Chem Inc Light control material, light control film, light control glass and its production method
JP2007520577A (en) * 2003-06-18 2007-07-26 リサーチ フロンティアーズ インコーポレイテッド Siloxane matrix polymer and SPD light valve film containing the same
JP2011033780A (en) * 2009-07-31 2011-02-17 Dic Corp Dispersed resin composition, curable composition, and film for suspended particle device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144895A (en) * 1977-05-23 1978-12-16 Research Frontiers Inc Light valve
JPH02232630A (en) * 1989-03-06 1990-09-14 Toyota Motor Corp Light control element
JPH06332016A (en) * 1993-05-11 1994-12-02 Res Frontiers Inc Light-valve suspension containing trimellitate or trimesate and light valve containing said suspension
JP2002082364A (en) * 2000-06-29 2002-03-22 Hitachi Chem Co Ltd Light regulation material, light regulation film and method for manufacturing the light regulation film
JP2007520577A (en) * 2003-06-18 2007-07-26 リサーチ フロンティアーズ インコーポレイテッド Siloxane matrix polymer and SPD light valve film containing the same
JP2005300962A (en) * 2004-04-13 2005-10-27 Dainippon Ink & Chem Inc Light control material, light control film, light control glass and its production method
JP2011033780A (en) * 2009-07-31 2011-02-17 Dic Corp Dispersed resin composition, curable composition, and film for suspended particle device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190076037A (en) 2017-01-24 2019-07-01 제이에스알 가부시끼가이샤 Liquid crystal device, manufacturing method thereof, display device, and liquid crystal alignment agent
CN115477760A (en) * 2021-06-16 2022-12-16 江苏集萃智能液晶科技有限公司 Polyglycol modified iodine-doped coordination polymer, preparation method thereof, suspension and light modulation device
CN115477760B (en) * 2021-06-16 2023-11-17 江苏集萃智能液晶科技有限公司 Polyglycol modified iodine-doped coordination polymer, preparation method thereof, suspension and light modulation device

Also Published As

Publication number Publication date
JP5842396B2 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5359276B2 (en) Light control film and light control glass
JP5600874B2 (en) Light control film
JP6164271B2 (en) Light control film
JP5233676B2 (en) Light control film and light control glass
JP2008158043A (en) Light control film
JP5110157B2 (en) Method for producing light control film and light control film
JP5614415B2 (en) Light control film
JP5704076B2 (en) Method for producing (meth) acryloyl group-containing polysiloxane resin and light control film using (meth) acryloyl group-containing polysiloxane resin obtained by the method
JP2012037558A (en) Light-controlling structure
JP2008158042A (en) Light control film
JP2008158040A (en) Photochromic material, photochromic film using it, and its manufacturing method
JP5842396B2 (en) Light control material and light control film
JP6048011B2 (en) Light control material and light control film
JP5712787B2 (en) Method for measuring curing rate of light control film, method for manufacturing light control film, and light control film
JP5569412B2 (en) Light control material and light control film
JP2019139110A (en) Dimming element
JP2013182112A (en) Light control film and method of manufacturing the same
JP5266767B2 (en) Light control material, light control film, and method of manufacturing light control material
JP5614416B2 (en) Light control film
JP5682338B2 (en) Light control material and light control film
JP2008158041A (en) Light control material, light control film and method for manufacturing light control film
JP5652033B2 (en) Manufacturing method of light control suspension, manufacturing method of light control material, and manufacturing method of light control film
JP5477224B2 (en) Light control film
JP2012042521A (en) Dimmer film

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

R151 Written notification of patent or utility model registration

Ref document number: 5842396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350