JP2008158041A - Light control material, light control film and method for manufacturing light control film - Google Patents

Light control material, light control film and method for manufacturing light control film Download PDF

Info

Publication number
JP2008158041A
JP2008158041A JP2006344179A JP2006344179A JP2008158041A JP 2008158041 A JP2008158041 A JP 2008158041A JP 2006344179 A JP2006344179 A JP 2006344179A JP 2006344179 A JP2006344179 A JP 2006344179A JP 2008158041 A JP2008158041 A JP 2008158041A
Authority
JP
Japan
Prior art keywords
light control
light
particles
suspension
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006344179A
Other languages
Japanese (ja)
Inventor
Osamu Higashida
修 東田
Shuhei Yoshikawa
修平 吉川
Hirokazu Mitsui
博一 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2006344179A priority Critical patent/JP2008158041A/en
Publication of JP2008158041A publication Critical patent/JP2008158041A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light control material which can show high contrast and stable light control function, a light control film and its manufacturing method. <P>SOLUTION: The light control material contains a polymer medium which is cured by irradiation with an energy ray, and a light control suspension comprising light control particles dispersed in a dispersion medium in a fluid state, wherein the dispersion medium in the light control suspension is phase-separated from the polymer medium and its cured material, and an aspect ratio of the light control particles is 6-15. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、調光材料、それを用いた調光フィルム及びその製造方法に関する。詳しくは、窓ガラス、各種平面表示素子、各種液晶表示素子の代替品、光シャッター、広告及び案内表示板、眼鏡、サングラス等に好適に用いられる調光材料、調光フィルム及びその製造方法に関する。   The present invention relates to a light control material, a light control film using the same, and a method for producing the same. More specifically, the present invention relates to a light control material, a light control film, and a method for manufacturing the same, which are preferably used for window glass, various flat display elements, substitutes for various liquid crystal display elements, optical shutters, advertisement and guidance display boards, glasses, sunglasses, and the like.

調光材料は、電界の印加の有無により光透過率が変化し、入射光量の調整が可能な材料である。例えば、電界に対して応答可能な光調整粒子を分散した光調整懸濁液を樹脂マトリックス中に分散した調光層を透明伝導性基板上で挟持した調光フィルムが知られている。この調光フィルムは、光調整粒子を分散した光調整懸濁液の微細な液滴が紫外線照射によって硬化した樹脂マトリックス中に分散したフィルムである。この調光フィルム中で光調整粒子は、電界を印加していない状態では、ブラウン運動により光を吸収、散乱又は反射するため、フィルムへの入射光は透過できない。電界を印加した場合、光調整粒子の分極により、電界につれて平行な方向に配列するため、フィルムに入射した光を透過させる。このように、光調整粒子の電界への応答により、光の透過量を調整している(特許文献1参照)。   The light-modulating material is a material whose light transmittance changes depending on whether or not an electric field is applied and the amount of incident light can be adjusted. For example, a light control film is known in which a light control layer in which a light control suspension in which a light control particle capable of responding to an electric field is dispersed is dispersed in a resin matrix, is sandwiched on a transparent conductive substrate. This light control film is a film in which fine droplets of a light control suspension in which light control particles are dispersed are dispersed in a resin matrix cured by ultraviolet irradiation. In the light control film, the light adjusting particles absorb, scatter, or reflect light by Brownian motion in a state where no electric field is applied, and therefore light incident on the film cannot be transmitted. When an electric field is applied, the light adjusting particles are arranged in a direction parallel to the electric field due to the polarization of the light adjusting particles, so that the light incident on the film is transmitted. In this way, the amount of transmitted light is adjusted by the response of the light adjusting particles to the electric field (see Patent Document 1).

同様の調光フィルムにおいて、光調整粒子のアスペクト比を調整することにより、全体入射光量の調節が可能で、光調整粒子の凝集、沈降がなく、安定した調光機能を発揮する調光フィルムの検討がなされている(特許文献2参照)。また、樹脂マトリックス中に分散した光調整懸濁液の液滴のサイズを調整することにより、電界を印加した状態における光透過率との差であるコントラストが高く、電界を印加した状態のヘーズが低く、さらに、スイッチ速度が速い調光フィルムの検討がなされている(特許文献3参照)。   By adjusting the aspect ratio of the light control particles in the same light control film, the total amount of incident light can be adjusted, and there is no aggregation or settling of the light control particles, and a light control film that exhibits a stable light control function. Studies have been made (see Patent Document 2). Also, by adjusting the size of the droplets of the light control suspension dispersed in the resin matrix, the contrast, which is the difference from the light transmittance in the state where the electric field is applied, is high, and the haze in the state where the electric field is applied A light control film that is low and has a high switching speed has been studied (see Patent Document 3).

特開平11−218789号公報JP-A-11-218789 特開2002−214653号公報JP 2002-214653 A 特開2006―064832号公報JP 2006-064832 A

しかしながら、これらの調光フィルムは、太陽光に直接晒される自動車や建材用窓ガラスへの適応にともない近年及び今後要求させる高いコントラストを得るには不充分であり、さらなるコントラストの向上が求められている。本発明は、コントラストが高く、安定した調光機能を発揮することができる調光フィルムとその製造方法を提供することを目的とするものである。また、本発明は、この調光フィルムの製造に好適に用いられる調光材料を提供することを目的とするものである。   However, these light control films are insufficient to obtain the high contrast required in recent and future with the application to automobiles and window glass for building materials that are directly exposed to sunlight, and further improvement in contrast is required. Yes. An object of this invention is to provide the light control film which has high contrast, and can exhibit the stable light control function, and its manufacturing method. Moreover, an object of this invention is to provide the light control material used suitably for manufacture of this light control film.

本発明者らは、鋭意検討した結果、特定のアスペクト比を持つ光調整粒子を用いることで、上記課題を解決できることを見いだした。すなわち本発明は、下記[1]〜[5]に記載の事項をその特徴とするものである。
[1] エネルギー線を照射することにより硬化する高分子媒体と、光調整粒子が流動可能な状態で分散媒中に分散した光調整懸濁液とを含有する調光材料であって、光調整懸濁液中の分散媒が、高分子媒体及びその硬化物と層分離しうるものであり、前記光調整粒子のアスペクト比が6〜15である調光材料。
[2] エネルギー線を照射することにより硬化する高分子媒体と、光調整粒子が流動可能な状態で分散媒中に分散した光調整懸濁液とを含有する調光材料であって、光調整懸濁液中の分散媒が、高分子媒体及びその硬化物と層分離しうるものであり、前記光調整粒子のアスペクト比が7超12以下である調光材料。
[3] [1]又は[2]に記載の調光材料を用いて形成された調光フィルムであって、高分子媒体から形成された樹脂マトリックスと、前記樹脂マトリックス中に分散した光調整懸濁液を含む調光層を有する調光フィルム。
[4] 調光層が、2枚の透明導電性基板間に挟持されてなる[3]記載の調光フィルム。
[5] [1]又は[2]に記載の調光材料を透明導電性基板の上に塗布する工程、エネルギー線を照射して高分子媒体を硬化させて調光層を形成する工程及び調光層上に透明導電性基板を密着する工程を含むことを特徴とする調光フィルムの製造方法。
As a result of intensive studies, the present inventors have found that the above problems can be solved by using light adjusting particles having a specific aspect ratio. That is, the present invention is characterized by the following items [1] to [5].
[1] A light-modulating material comprising a polymer medium that is cured by irradiation with an energy beam, and a light-conditioning suspension that is dispersed in the dispersion medium in a state in which the light-adjusting particles can flow. A light control material in which a dispersion medium in a suspension can be separated into a polymer medium and a cured product thereof, and the light control particles have an aspect ratio of 6 to 15.
[2] A light-modulating material comprising a polymer medium that is cured by irradiation with energy rays, and a light-conditioning suspension that is dispersed in the dispersion medium in a state where the light-adjusting particles can flow. A light control material in which a dispersion medium in a suspension can be separated into a polymer medium and a cured product thereof, and an aspect ratio of the light control particles is more than 7 and 12 or less.
[3] A light control film formed using the light control material according to [1] or [2], wherein the resin matrix is formed from a polymer medium, and the light adjustment suspension is dispersed in the resin matrix. A light control film having a light control layer containing a turbid liquid.
[4] The light control film according to [3], wherein the light control layer is sandwiched between two transparent conductive substrates.
[5] A step of applying the light-modulating material according to [1] or [2] onto the transparent conductive substrate, a step of forming a light-control layer by irradiating energy rays to cure the polymer medium. The manufacturing method of the light control film characterized by including the process of closely_contact | adhering a transparent conductive substrate on an optical layer.

本発明によれば、コントラストが高く、安定した調光機能を発揮することができる調光フィルムを得ることが可能であり、この調光フィルムの製造に好適に用いられる調光材料を得ることが可能とある。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to obtain the light control film which has high contrast and can exhibit the stable light control function, and can obtain the light control material used suitably for manufacture of this light control film. It is possible.

本発明の調光材料は、エネルギー線を照射することにより硬化する高分子媒体と、光調整粒子が流動可能な状態で分散媒中に分散した光調整懸濁液とを含有し、光調整懸濁液中の分散媒が、高分子媒体及びその硬化物と層分離しうるものであり、前記光調整粒子のアスペクト比が6〜15であることを特徴とする。   The light control material of the present invention contains a polymer medium that cures when irradiated with energy rays, and a light control suspension that is dispersed in the dispersion medium so that the light control particles can flow. The dispersion medium in the turbid liquid can be separated into a polymer medium and a cured product thereof, and the light control particles have an aspect ratio of 6 to 15.

本発明の調光材料を用いて、2枚の透明導電性基板間等に、エネルギー線を照射することにより硬化する高分子媒体から形成された樹脂マトリックス中に光調整懸濁液が分散した調光層を挟持することにより、本発明の調光フィルムが得られる。本発明の調光フィルムの調光層では、液状の光調整懸濁液が、固体状の高分子媒体内に微細な液滴の形態で分散されている。このような調光フィルムは、電界を印加していない状態では、上記液滴中に流動状態で浮遊分散されている光調整粒子のブラウン運動により光を吸収、散乱又は反射するため、フィルムに入射した光はほとんど透過できない。しかし、調光フィルムに電界を印加すると、上記光調整粒子が電気的双極子モーメントを持つことから、光調整粒子が電界につれて平行な方向に配列するため、フィルムに入射した光を透過させる。このように、光調整粒子が印加された電界に対して応答することにより、光の透過量を調整することが可能となる。本発明の調光材料は、光調整粒子のアスペクトを6〜15とすることで、光調整粒子の電界に対する応答性が向上し、電界を印加していない状態における光透過率と、電界を印加した状態における光透過率との差であるコントラストに優れるものとなる。   Using the light control material of the present invention, a light control suspension is dispersed in a resin matrix formed from a polymer medium that is cured by irradiating energy rays between two transparent conductive substrates. The light control film of this invention is obtained by pinching | interposing an optical layer. In the light control layer of the light control film of the present invention, a liquid light control suspension is dispersed in the form of fine droplets in a solid polymer medium. Such a light control film absorbs, scatters or reflects light by the Brownian motion of the light control particles suspended and dispersed in a fluidized state in the liquid droplets when no electric field is applied. The transmitted light can hardly be transmitted. However, when an electric field is applied to the light control film, the light adjusting particles have an electric dipole moment, and therefore the light adjusting particles are arranged in a direction parallel to the electric field, so that light incident on the film is transmitted. In this way, the light transmission amount can be adjusted by responding to the electric field to which the light adjusting particles are applied. In the light control material of the present invention, the light control particles have an aspect ratio of 6 to 15 to improve the responsiveness of the light control particles to the electric field, and apply the light transmittance and the electric field when no electric field is applied. The contrast, which is the difference from the light transmittance in the above state, is excellent.

また、本発明の調光材料は、光調整粒子のアスペクト比が7超12以下であることが好ましく、7.5〜11であることがより好ましい。光調整粒子のアスペクト比が15を超えると、視覚的にヘーズ(濁度)が大きくなり、ざらつき感がでる。また、光調整粒子の電界に対する応答性が低下し、電界印加時の光透過率が低くなり、電界印加時のフィルムの透明感が低下する。一方、アスペクト比が6未満であると、コントラストが低下する。また、低周波数の電界において、光調整粒子の電界に対する応答性が低下する。本発明の調光材料は、30〜70Hzの比較的低周波数においても、良好な応答性が得られ、コントラストに優れるものとなる。   In the light control material of the present invention, the aspect ratio of the light control particles is preferably more than 7 and 12 or less, and more preferably 7.5 to 11. When the aspect ratio of the light control particles exceeds 15, the haze (turbidity) increases visually and a rough feeling is produced. Moreover, the responsiveness with respect to the electric field of light adjustment particle | grains falls, the light transmittance at the time of an electric field application becomes low, and the transparency of the film at the time of an electric field application falls. On the other hand, when the aspect ratio is less than 6, the contrast is lowered. In addition, in a low frequency electric field, the response of the light adjusting particles to the electric field is lowered. The light-modulating material of the present invention can provide good responsiveness and excellent contrast even at a relatively low frequency of 30 to 70 Hz.

本発明におけるアスペクト比は、走査型電子顕微鏡、透過型電子顕微鏡等の電子顕微鏡で光調整粒子を撮影し、撮影した画像より任意に50個の光調整粒子を抽出し、各光調整粒子の長径と短径の比(長径/短径)の平均値として算出することができる。ここで、長径とは、上記撮影した画像により二次元視野内に投影された光調整粒子について、最も長い部分の長さとする。また、短径とは、上記長径に直交する最も長い部分の長さとする。   In the present invention, the aspect ratio is obtained by photographing the light adjustment particles with an electron microscope such as a scanning electron microscope or a transmission electron microscope, and arbitrarily extracting 50 light adjustment particles from the photographed image. And the ratio of the minor axis (major axis / minor axis). Here, the major axis is the length of the longest part of the light control particles projected in the two-dimensional visual field by the photographed image. The minor axis is the length of the longest part orthogonal to the major axis.

本発明において、光調整粒子の長径は、200〜500nmが好ましく、250〜450nmがより好ましく、300〜400nmがさらに好ましい。また、光調整粒子の短径は30〜90nmが好ましく、40〜70nmがより好ましく、50〜70nmがさらに好ましい。   In the present invention, the major axis of the light adjusting particles is preferably 200 to 500 nm, more preferably 250 to 450 nm, and further preferably 300 to 400 nm. Further, the minor axis of the light adjusting particles is preferably 30 to 90 nm, more preferably 40 to 70 nm, and further preferably 50 to 70 nm.

光調整粒子のアスペクト比は、例えば、粉砕、分級等の機械的な処理による粒子径調整、遠心分離による微粒、粗粒等の除去による粒子径分布調整などを適宜行うことで調整することが可能である。また、光調整粒子の製造条件を適宜調整したり、光調整粒子の原料の粒子径、粒子径分布等を適宜調整することなどによっても調整することが可能である。本発明における光調整粒子としては、例えば、ポリ過ヨウ化物、炭素繊維、カーボンナノファイバー等の無機繊維、カーボンナノチューブ、無金属フタロシアニン、銅、ニッケル、鉄、コバルト、クロム、チタン、ベリリウム、モリブデン、タングステン、アルミニウム、クロム等を中心金属とする金属フタロシアニン等が挙げられる。中でも、ポリ過ヨウ化物を用いることが好ましい。   The aspect ratio of the light control particles can be adjusted by appropriately adjusting the particle size by mechanical processing such as pulverization and classification, and adjusting the particle size distribution by removing fine particles, coarse particles, etc. by centrifugation. It is. It is also possible to adjust the manufacturing conditions of the light adjusting particles as appropriate, or by adjusting the particle size, particle size distribution, etc. of the light adjusting particles as appropriate. Examples of the light control particles in the present invention include, for example, inorganic fibers such as polyperiodide, carbon fibers, and carbon nanofibers, carbon nanotubes, metal-free phthalocyanines, copper, nickel, iron, cobalt, chromium, titanium, beryllium, molybdenum, Examples thereof include metal phthalocyanine having tungsten, aluminum, chromium or the like as a central metal. Among these, it is preferable to use polyperiodide.

ポリ過ヨウ化物としては、ピラジン−2,3−ジカルボン酸・2水和物、ピラジン−2,5−ジカルボン酸・2水和物、ピリジン−2,5−ジカルボン酸・1水和物からなる群の中から選ばれた1つの物質とヨウ素及びヨウ化物を反応させて作製したポリ過ヨウ化物が挙げられる。このようにして得られるポリ過ヨウ化物としては、例えば、下記一般式
CaI(C)・XHO (X:1〜2)
CaI(C)b・cHO (a:3〜7、b:1〜2、c:1〜3)
で表されるものが挙げられる。これらのポリ過ヨウ化物は針状結晶であることが好ましい。
Polyperiodide is composed of pyrazine-2,3-dicarboxylic acid dihydrate, pyrazine-2,5-dicarboxylic acid dihydrate, pyridine-2,5-dicarboxylic acid monohydrate. Examples thereof include polyperiodide prepared by reacting one substance selected from the group with iodine and iodide. Examples of the polyperiodide thus obtained include the following general formula CaI 2 (C 6 H 4 N 2 O 4 ) · XH 2 O (X: 1 to 2).
CaI a (C 6 H 4 N 2 O 4 ) b · cH 2 O (a: 3 to 7, b: 1 to 2, c: 1 to 3)
The thing represented by is mentioned. These polyperiodides are preferably acicular crystals.

また、光調整粒子としては、例えば、米国特許第2,041,138号明細書(E.H.Land)、米国特許第2,306,108号明細書(Landら)、米国特許第2,375,963号明細書(Thomas)、米国特許第4,270,841号明細書(R.L.Saxe)及び英国特許第433,455号明細書等に開示されている化合物も用いることができる。これらに開示されている化合物は、ピラジンカルボン酸、ピリジンカルボン酸の内の1つを選択して、ヨウ素と反応させることにより、ポリヨウ化物、ポリ塩化物又はポリ臭化物等のポリハロゲン化物とすることによって作製されている。これらのポリハロゲン化物は、ハロゲン原子が無機質又は有機質と反応した錯化合物で、これらの詳しい製法は、例えば、サックスの米国特許第4,422,963号明細書に開示されている。   Examples of the light control particles include US Pat. No. 2,041,138 (EH Land), US Pat. No. 2,306,108 (Land et al.), US Pat. The compounds disclosed in US Pat. No. 375,963 (Thomas), US Pat. No. 4,270,841 (RL Sax) and British Patent 433,455 can also be used. . The compounds disclosed in these publications shall be made into polyhalides such as polyiodide, polychloride or polybromide by selecting one of pyrazinecarboxylic acid and pyridinecarboxylic acid and reacting with iodine. It is made by. These polyhalides are complex compounds in which a halogen atom reacts with an inorganic substance or an organic substance, and their detailed production methods are disclosed, for example, in US Pat. No. 4,422,963 to Sax.

ここで光調整粒子を合成する過程において、均一な大きさの粒子を形成させるため、及び、光調整懸濁液内での粒子の分散性を向上させるため、ニトロセルロース等の高分子物質を使用することが好ましい。ニトロセルロース等の高分子分子物質を用いることにより、光調整懸濁液が固体状の高分子媒体内に微細な液滴の形態で分散された際に、光調整粒子が微細な液滴内へ容易に分散、浮遊し、電界に対する応答性が向上する傾向にある。   Here, in the process of synthesizing the light control particles, a polymer substance such as nitrocellulose is used to form particles of uniform size and to improve the dispersibility of the particles in the light control suspension. It is preferable to do. By using a polymer molecular substance such as nitrocellulose, when the light control suspension is dispersed in the form of fine droplets in a solid polymer medium, the light control particles are moved into the fine droplets. It tends to disperse and float easily, and the response to an electric field tends to be improved.

本発明において、エネルギー線を照射することにより硬化する高分子媒体としては、例えば、光重合開始剤及び、紫外線、可視光線、電子線等のエネルギー線により硬化する高分子化合物を含む高分子組成物が挙げられる。上記高分子組成物としては、例えば、エチレン性不飽和結合を有する置換基をもつ高分子化合物及び光重合開始剤を含む高分子組成物が挙げられる。   In the present invention, as a polymer medium that is cured by irradiation with energy rays, for example, a polymer composition comprising a photopolymerization initiator and a polymer compound that is cured by energy rays such as ultraviolet rays, visible rays, and electron beams. Is mentioned. Examples of the polymer composition include a polymer composition containing a polymer compound having a substituent having an ethylenically unsaturated bond and a photopolymerization initiator.

上記エチレン性不飽和結合を有する置換基をもつ高分子化合物としては、シリコーン系樹脂、アクリル系樹脂、ポリエステル樹脂等が合成容易性、調光性能、耐久性等の点から好ましい。これらの樹脂は、置換基として、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、アミル基、イソアミル基、ヘキシル基、シクロヘキシル基等のアルキル基、フェニル基、ナフチル基等のアリール基を有することが、調光性能、耐久性等の点から好ましい。   As the polymer compound having a substituent having an ethylenically unsaturated bond, a silicone resin, an acrylic resin, a polyester resin, and the like are preferable from the viewpoints of ease of synthesis, light control performance, durability, and the like. These resins are substituted with alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, amyl group, isoamyl group, hexyl group, and cyclohexyl group, and phenyl group. It is preferable to have an aryl group such as a naphthyl group from the viewpoints of light control performance and durability.

シリコーン系樹脂として、具体的には、例えば、特公昭53−36515号公報、特公昭57−52371号公報、特公昭58−53656号公報、特公昭61−17863号公報等に記載の高分子化合物を挙げることができる。   Specific examples of the silicone resin include polymer compounds described in, for example, JP-B-53-36515, JP-B-57-52371, JP-B-58-53656, JP-B-61-17863, and the like. Can be mentioned.

また、上記シリコーン系樹脂としては、例えば、両末端シラノールポリジメチルシロキサン、両末端シラノールポリジフェニルシロキサン−ジメチルシロキサンコポリマー、両末端シラノールポリジメチルジフェニルシロキサン等の両末端シラノールシロキサンポリマー、トリメチルエトキシシラン等のトリアルキルアルコキシシラン、(3−アクリロキシプロピル)メチルジメトキシシラン等のエチレン性不飽和結合含有シラン化合物などを、有機錫系触媒である2−エチルヘキサン錫の存在下で、脱水素縮合反応及び脱アルコール反応させて合成される。樹脂の形態としては、無溶剤型が好ましい。すなわち、樹脂の合成に溶剤を用いた場合には、合成反応後に溶剤を除去することが好ましい。(3−アクリロキシプロピル)メトキシシラン等のエチレン性不飽和結合含有シラン化合物の使用量は、原料シロキサン及びシラン化合物総量の2〜30重量%とすることが好ましく、5〜18重量%とすることがより好ましい。   Examples of the silicone resin include, for example, both-end silanol polydimethylsiloxane, both-end silanol polydiphenylsiloxane-dimethylsiloxane copolymer, both-end silanol siloxane polymer such as both-end silanol polydimethyldiphenylsiloxane, and trimethylethoxysilane. Dehydrogenation condensation reaction and dealcoholization of ethylenically unsaturated bond-containing silane compounds such as alkylalkoxysilane and (3-acryloxypropyl) methyldimethoxysilane in the presence of 2-ethylhexanetin, which is an organic tin catalyst. It is synthesized by reacting. The form of the resin is preferably a solventless type. That is, when a solvent is used for resin synthesis, it is preferable to remove the solvent after the synthesis reaction. The amount of the ethylenically unsaturated bond-containing silane compound such as (3-acryloxypropyl) methoxysilane is preferably 2 to 30% by weight, and preferably 5 to 18% by weight of the total amount of the raw material siloxane and silane compound. Is more preferable.

前記アクリル系樹脂は、例えば、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸アリールエステル、(メタ)アクリル酸ベンジル、スチレン等の主鎖形成モノマーと、(メタ)アクリル酸、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸イソシアナトエチル、(メタ)アクリル酸グリシジル等のエチレン性不飽和結合導入用官能基含有モノマーなどを共重合して、プレポリマーを一旦合成し、次いで、このプレポリマーの官能基と反応させるべく(メタ)アクリル酸グリシジル、(メタ)アクリル酸イソシアナトエチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸等のモノマーを前記プレポリマーに付加反応させることにより得ることができる。前記ポリエステル樹脂は、公知の方法で容易に製造できる。   The acrylic resin includes, for example, (meth) acrylic acid alkyl ester, (meth) acrylic acid aryl ester, (meth) acrylic acid benzyl, main chain forming monomers such as styrene, (meth) acrylic acid, (meth) acrylic A prepolymer was synthesized by copolymerizing ethylenically unsaturated bond-introducing functional group-containing monomers such as hydroxyethyl acid, isocyanatoethyl (meth) acrylate, and glycidyl (meth) acrylate. By reacting monomers such as glycidyl (meth) acrylate, isocyanatoethyl (meth) acrylate, hydroxyethyl (meth) acrylate, (meth) acrylic acid, etc. to the prepolymer to react with the functional group of the polymer Obtainable. The polyester resin can be easily produced by a known method.

これらエチレン性不飽和結合を有する置換基をもつ高分子化合物のゲルパーミエーションクロマトグラフィーによって得られるポリスチレン換算の重量平均分子量は、20,000〜100,000であることが好ましく、30,000〜80,000であることがより好ましい。   The polystyrene equivalent weight average molecular weight obtained by gel permeation chromatography of the polymer compound having a substituent having an ethylenically unsaturated bond is preferably 20,000 to 100,000, and preferably 30,000 to 80. Is more preferable.

上記エチレン性不飽和結合を有する置換基をもつ高分子化合物を用いる場合、エネルギー線に露光するとラジカル重合を活性化する光重合開始剤を用いることができる。具体的には2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−(4−(2−ヒドロキシエトキシ)フェニル)−2−ヒドロキシ−2−メチル−1−プロパン−1−オン、ビス(2,4,6−トリメチルベンゾイル)フェニルフォスフィンオキサイド、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、(1−ヒドロキシシクロヘキシル)フェニルケトン等を用いることができる。   When using the polymer compound having a substituent having an ethylenically unsaturated bond, a photopolymerization initiator that activates radical polymerization when exposed to energy rays can be used. Specifically, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1- (4- (2-hydroxyethoxy) phenyl) -2-hydroxy-2-methyl-1-propan-1-one Bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2-hydroxy-2-methyl-1-phenylpropan-1-one, (1-hydroxycyclohexyl) phenyl ketone, and the like can be used.

これらの光重合開始剤の使用量は、上記エチレン性不飽和結合を有する置換基をもつ高分子化合物100重量部に対して0.05〜20重量部であることが好ましく、0.1〜5重量部であることがより好ましい。また、上記エチレン性不飽和結合を有する置換基をもつ高分子化合物の他に、有機溶剤可溶型樹脂又は熱可塑性樹脂、例えば、ゲルパーミエーションクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量が1,000〜100,000のポリアクリル酸、ポリメタクリル酸等も併用することができる。また、高分子媒体中には、ジブチル錫ジラウレート等の着色防止剤等の添加物を必要に応じて添加してもよい。   The amount of these photopolymerization initiators used is preferably 0.05 to 20 parts by weight with respect to 100 parts by weight of the polymer compound having a substituent having an ethylenically unsaturated bond, More preferred are parts by weight. In addition to the polymer compound having a substituent having an ethylenically unsaturated bond, the weight average molecular weight in terms of polystyrene measured by an organic solvent-soluble resin or thermoplastic resin, for example, gel permeation chromatography is 1. 1,000 to 100,000 polyacrylic acid, polymethacrylic acid and the like can be used in combination. Moreover, you may add additives, such as coloring inhibitors, such as dibutyltin dilaurate, in a polymer medium as needed.

本発明において、光調整懸濁液中の分散媒としては、光調整粒子を流動可能な状態で分散させる役割を果たし、また、光調整粒子に選択的に付着被覆し、高分子媒体との相分離の際に光調整粒子が相分離された液滴相に移動するように作用し、電気導電性がなく、高分子媒体とは親和性がなく、調光フィルムとした際に高分子媒体から形成される樹脂マトリックスとの屈折率が近似した液状共重合体を使用することが好ましい。例えば、フルオロ基及び/又は水酸基を有する(メタ)アクリル酸エステルオリゴマーが好ましく、フルオロ基及び水酸基を有する(メタ)アクリル酸エステルオリゴマーがより好ましい。このような共重合体を使用すると、フルオロ基、水酸基のどちらか1つのモノマー単位は光調整粒子に向き、残りのモノマー単位は高分子媒体中で光調整懸濁液が液滴として安定に維持するために働くことから、光調整懸濁液内に光調整粒子が分散しやすく、相分離の際に光調整粒子が相分離される液滴内に誘導されやすい。このようなフルオロ基及び/又は水酸基を有するアクリル酸エステルオリゴマーとしては、メタクリル酸2,2,2−トリフルオロエチル/アクリル酸ブチル/アクリル酸2−ヒドロキシエチル共重合体、アクリル酸3,5,5−トリメチルヘキシル/アクリル酸2−ヒドロキシプロピル/フマール酸共重合体、アクリル酸ブチル/アクリル酸2−ヒドロキシエチル共重合体、アクリル酸2,2,3,3−テトラフルオロプロピル/アクリル酸ブチル/アクリル酸2−ヒドロキシエチル共重合体、アクリル酸1H,1H,5H−オクタフルオロペンチル/アクリル酸ブチル/アクリル酸2−ヒドロキシエチル共重合体、アクリル酸1H,1H,2H,2H−ヘプタデカフルオロデシル/アクリル酸ブチル/アクリル酸2−ヒドロキシエチル共重合体、メタクリル酸2,2,2−トリフルオロエチル/アクリル酸ブチル/アクリル酸2−ヒドロキシエチル共重合体、メタクリル酸2,2,3,3−テトラフルオロプロピル/アクリル酸ブチル/アクリル酸2−ヒドロキシエチル共重合体、メタクリル酸1H,1H,5H−オクタフルオロペンチル/アクリル酸ブチル/アクリル酸2−ヒドロキシエチル共重合体、メタクリル酸1H,1H,2H,2H−ヘプタデカフルオロデシル/アクリル酸ブチル/アクリル酸2−ヒドロキシエチル共重合体等が挙げられる。また、これらのアクリル酸エステルオリゴマーはフルオロ基及び水酸基の両方を有することがより好ましい。   In the present invention, the dispersion medium in the light adjustment suspension serves to disperse the light adjustment particles in a flowable state, and selectively adheres and coats the light adjustment particles to form a phase with the polymer medium. During separation, the light control particles act to move to the phase-separated droplet phase, have no electrical conductivity, have no affinity with the polymer medium, and when the light control film is formed from the polymer medium It is preferable to use a liquid copolymer having a refractive index close to that of the resin matrix to be formed. For example, a (meth) acrylic acid ester oligomer having a fluoro group and / or a hydroxyl group is preferred, and a (meth) acrylic acid ester oligomer having a fluoro group and a hydroxyl group is more preferred. When such a copolymer is used, one monomer unit of either a fluoro group or a hydroxyl group is directed to the light control particles, and the remaining monomer units are stably maintained as droplets of the light control suspension in the polymer medium. Therefore, the light adjusting particles are easily dispersed in the light adjusting suspension, and the light adjusting particles are easily induced in the phase-separated liquid droplet during the phase separation. Examples of the acrylic ester oligomer having a fluoro group and / or a hydroxyl group include 2,2,2-trifluoroethyl methacrylate / butyl acrylate / 2-hydroxyethyl acrylate copolymer, acrylic acid 3,5, 5-trimethylhexyl / 2-hydroxypropyl acrylate / fumaric acid copolymer, butyl acrylate / 2-hydroxyethyl acrylate copolymer, 2,2,3,3-tetrafluoropropyl acrylate / butyl acrylate / 2-Hydroxyethyl acrylate copolymer, 1H, 1H, 5H-octafluoropentyl acrylate / butyl acrylate / 2-hydroxyethyl acrylate copolymer, 1H, 1H, 2H, 2H-heptadecafluorodecyl acrylate / Butyl acrylate / 2-hydroxyethyl acrylate Polymer, 2,2,2-trifluoroethyl methacrylate / butyl acrylate / 2-hydroxyethyl acrylate copolymer, 2,2,3,3-tetrafluoropropyl methacrylate / butyl acrylate / acrylic acid 2- Hydroxyethyl copolymer, 1H, 1H, 5H-octafluoropentyl methacrylate / butyl acrylate / 2-hydroxyethyl acrylate copolymer, 1H, 1H, 2H, 2H-heptadecafluorodecyl methacrylate / butyl acrylate / 2-hydroxyethyl acrylate copolymer and the like. Moreover, it is more preferable that these acrylate oligomers have both a fluoro group and a hydroxyl group.

これらのアクリル酸エステルオリゴマーは、ゲルパーミエーションクロマトグラフィーで測定した標準ポリスチレン換算の重量平均分子量が1,000〜20,000であることが好ましく、2,000〜10,000であることがより好ましい。これらのアクリル酸エステルオリゴマーの原料となるフルオロ基含有モノマーの使用量は、原料であるモノマー総量の6〜12モル%であることが好ましく、7〜8モル%であることがより好ましい。フルオロ基含有モノマーの使用量が12モル%を超えると、屈折率が大きくなり、光透過率が低下する傾向がある。また、これらのアクリル酸エステルオリゴマーの原料となる、水酸基含有モノマーの使用量は0.5〜22.0モル%であることが好ましく、1〜8モル%であることがより好ましい。水酸基含有モノマーの使用量が22.0モル%を超えると、屈折率が大きくなり、光透過性が低下する傾向がある。   These acrylate oligomers preferably have a standard polystyrene equivalent weight average molecular weight measured by gel permeation chromatography of 1,000 to 20,000, more preferably 2,000 to 10,000. . The amount of the fluoro group-containing monomer used as a raw material for these acrylic acid ester oligomers is preferably 6 to 12 mol%, more preferably 7 to 8 mol%, based on the total amount of monomers as raw materials. When the usage-amount of a fluoro group containing monomer exceeds 12 mol%, there exists a tendency for a refractive index to become large and for the light transmittance to fall. Moreover, it is preferable that the usage-amount of the hydroxyl-containing monomer used as the raw material of these acrylic acid ester oligomers is 0.5-22.0 mol%, and it is more preferable that it is 1-8 mol%. When the usage-amount of a hydroxyl-containing monomer exceeds 22.0 mol%, a refractive index will become large and there exists a tendency for light transmittance to fall.

本発明における光調整懸濁液は、光調整粒子を1〜70重量%含有することが好ましく、4〜50重量%含有することがより好ましい。また、分散媒を30〜99重量%含有することが好ましく、50〜96重量%含有することがより好ましい。   The light adjusting suspension in the present invention preferably contains 1 to 70% by weight of light adjusting particles, and more preferably 4 to 50% by weight. Moreover, it is preferable to contain 30 to 99 weight% of dispersion media, and it is more preferable to contain 50 to 96 weight%.

また、光調整懸濁液は、高分子媒体に100重量部に対して、1〜100重量部含有することが好ましく、4〜70重量部含有することがより好ましく、6〜60重量部含有することがさらに好ましく、8〜50重量部含有することが特に好ましい。   Moreover, it is preferable to contain 1-100 weight part with respect to 100 weight part in a polymer medium, as for light adjustment suspension, It is more preferable to contain 4-70 weight part, It contains 6-60 weight part. It is more preferable to contain 8 to 50 parts by weight.

本発明の調光フィルムは、高分子媒体から形成された樹脂マトリックスと、樹脂マトリックス中に分散した光調整懸濁液を含む調光層を有してなることが好ましい。また、本発明の調光フィルムは、前記調光層が、透明導電性基板間に挟持されてなることによって形成される。   The light control film of the present invention preferably has a light control layer including a resin matrix formed from a polymer medium and a light control suspension dispersed in the resin matrix. Moreover, the light control film of this invention is formed when the said light control layer is pinched | interposed between transparent conductive substrates.

本発明の調光フィルムは、例えば、本発明の調光材料を透明導電性基板の上に塗布し、エネルギー線を照射して高分子媒体を硬化させて調光層を形成し、調光層上に透明導電性基板を密着せしめることによって製造することができる。   The light control film of the present invention is formed by, for example, applying the light control material of the present invention on a transparent conductive substrate, irradiating energy rays to cure the polymer medium, and forming a light control layer. It can be manufactured by bringing a transparent conductive substrate into close contact therewith.

具体的には、まず、光調整懸濁液、光重合開始剤及びエネルギー線により硬化する高分子化合物を含む高分子組成物を混合し、光偏調整濁液が光重合開始剤及びエネルギー線により硬化する高分子化合物を含む高分子組成物又はその溶液中に液滴状態で分散した混合液とする。この混合液を透明導電性基板上に一定な厚さで塗布し、必要に応じて溶剤を乾燥除去した後、メタルハライドランプ、高圧水銀灯等を用いてエネルギー線を照射し、上記高分子化合物を硬化させる。その結果、硬化した上記高分子化合物を含む樹脂マトリックス中に、液状光調整懸濁液が液滴状に分散されているフィルムが得られる。この際、高分子組成物と光調整懸濁液との混合比率を様々に変えることにより、フィルムの光透過率を調節することができる。このようにして形成された調光層の上に他の透明導電性基板を密着せしめることにより、調光フィルムが得られる。他の透明導電性基板は、エネルギー線照射前に調光層に密着してもよいし、エネルギー線照射時に調光層に密着させてもよい。また、2枚の透明導電性基板の両方の上に調光層を形成し、それを調光層同士が密着するようにして積層してもよい。調光層の厚みは、5〜1,000μmが好ましく、20〜100μmがより好ましい。   Specifically, first, a polymer composition containing a light control suspension, a photopolymerization initiator, and a polymer compound that cures by energy rays is mixed, and the light polarization control turbid liquid is mixed by a photopolymerization initiator and energy rays. A polymer composition containing a polymer compound to be cured or a mixed liquid dispersed in a droplet state in the polymer composition is used. This mixed solution is applied to a transparent conductive substrate with a certain thickness, and the solvent is dried and removed as necessary, and then irradiated with energy rays using a metal halide lamp, high-pressure mercury lamp, etc., and the polymer compound is cured. Let As a result, a film is obtained in which the liquid light control suspension is dispersed in the form of droplets in the cured resin matrix containing the polymer compound. At this time, the light transmittance of the film can be adjusted by variously changing the mixing ratio of the polymer composition and the light control suspension. A light control film is obtained by bringing another transparent conductive substrate into close contact with the light control layer thus formed. The other transparent conductive substrate may be in close contact with the light control layer before the energy beam irradiation, or may be in close contact with the light control layer during the energy beam irradiation. Alternatively, a light control layer may be formed on both of the two transparent conductive substrates, and the light control layers may be laminated so that the light control layers are in close contact with each other. The thickness of the light control layer is preferably 5 to 1,000 μm, and more preferably 20 to 100 μm.

上記光偏調整濁液が光重合開始剤及びエネルギー線により硬化する高分子化合物を含む高分子組成物又はその溶液中に液滴状態で分散した混合液を得る方法としては、例えば、それらをホモジナイザー、超音波ホモジナイザー等で混合して光調整懸濁液を微細に分散させる方法、高分子媒体中の樹脂成分の重合による相分離法、溶媒揮発による相分離法、温度による相分離法等を利用することができる。   Examples of a method for obtaining a polymer composition containing a polymer compound in which the light polarization control turbid liquid is cured by a photopolymerization initiator and energy rays or a mixed solution dispersed in the solution in a liquid droplet form thereof include, for example, a homogenizer , Using a method such as mixing with an ultrasonic homogenizer to finely disperse the light control suspension, a phase separation method by polymerizing resin components in a polymer medium, a phase separation method by solvent volatilization, a phase separation method by temperature, etc. can do.

また、上記混合液を透明導電性基板上に一定な厚さで塗布する方法としては、バーコーター、アプリケーター、ドクターブレード、ロールコーター、ダイコーター、コンマコーター等の塗工手段を用いて、透明導電性基板等の基材に塗布することができる。なお、塗布する際は、必要に応じて、適当な溶剤で希釈してもよい。溶剤を用いた場合には、基材上に塗布した後に乾燥を要する。溶剤としては、例えば、テトラヒドロフラン、トルエン、ヘプタン、シクロヘキサン、エチルアセテート、エタノール、メタノール、酢酸イソアミル、酢酸ヘキシル等を用いることができる。   In addition, as a method of applying the above-mentioned mixed liquid on the transparent conductive substrate with a certain thickness, transparent conductive using a coating means such as a bar coater, applicator, doctor blade, roll coater, die coater, comma coater, etc. It can apply | coat to base materials, such as a conductive substrate. In addition, when apply | coating, you may dilute with a suitable solvent as needed. When a solvent is used, drying is required after coating on the substrate. As the solvent, for example, tetrahydrofuran, toluene, heptane, cyclohexane, ethyl acetate, ethanol, methanol, isoamyl acetate, hexyl acetate and the like can be used.

上記透明導電性基板としては、例えば、ITO、SnO、In等の透明導電膜がコーティングされている透明基板を用いることができる。透明導電膜の光透過率は80%以上であることが好ましく、透明導電膜の厚みは、10〜5,000nmであることが好ましい。なお、光透過率はJISK7105の全光線透過率の測定法に準拠して測定することができる。また、透明基板としては、例えば、ガラス、高分子フィルム等を使用することができる。 As the transparent conductive substrate, for example, a transparent substrate coated with a transparent conductive film such as ITO, SnO 2 or In 2 O 3 can be used. The light transmittance of the transparent conductive film is preferably 80% or more, and the thickness of the transparent conductive film is preferably 10 to 5,000 nm. The light transmittance can be measured according to the total light transmittance measuring method of JISK7105. Moreover, as a transparent substrate, glass, a polymer film, etc. can be used, for example.

上記ガラスとしては、可視光線等に透明な基板を意味し、二酸化ケイ素を主成分とする一般的なガラスの他、種々の組成の無機材料のガラス、透明なアクリル樹脂、ポリカーボネート樹脂等の有機材料を用いた樹脂ガラスも用いることができる。   The above glass means a substrate transparent to visible light, etc., in addition to general glass mainly composed of silicon dioxide, glass of inorganic materials of various compositions, organic materials such as transparent acrylic resin, polycarbonate resin, etc. Resin glass using can also be used.

上記高分子フィルムとしては、例えば、ポリエチレンテレフタレート等のポリエステル系フィルム、ポリプロピレン等のポリオレフィン系フィルム、ポリ塩化ビニル、アクリル樹脂系のフィルム,ポリエーテルサルフォンフィルム,ポリアリレートフィルム,ポリカーボネートフィルムなどの樹脂フィルムが挙げられるが、ポリエチレンテレフタレートフィルムが、透明性に優れ、成形性、接着性、加工性等に優れるので好ましい。透明基板の厚さに特に制限はないが、例えば、ガラスの場合には1〜15mmが好ましく、高分子フィルムの場合には10〜200μmが好ましい。   Examples of the polymer film include polyester films such as polyethylene terephthalate, polyolefin films such as polypropylene, polyvinyl chloride, acrylic resin films, polyether sulfone films, polyarylate films, polycarbonate films, and the like. However, a polyethylene terephthalate film is preferable because it is excellent in transparency and excellent in moldability, adhesiveness, workability, and the like. Although there is no restriction | limiting in particular in the thickness of a transparent substrate, For example, 1-15 mm is preferable in the case of glass, and 10-200 micrometers is preferable in the case of a polymer film.

上記透明導電性基板の表面抵抗値は3〜600Ωであることが好ましい。また、透明導電性基板同士の間隔を狭くして調光フィルムを作製する際は、異物質の混入等により発生する短絡現象を防止するために、透明導電膜の上に200〜1,000Åの厚さの透明絶縁層が形成されている基板を使用してもよい。また、自動車用リアビューミラー等の反射型の調光窓を作製する場合、反射体であるアルミニウム、金、又は銀のような導電性金属の薄膜を電極として直接用いてもよい。   The surface resistance value of the transparent conductive substrate is preferably 3 to 600Ω. Moreover, when producing a light control film by narrowing the interval between transparent conductive substrates, in order to prevent a short-circuit phenomenon that occurs due to the mixing of foreign substances, 200-1,000 mm of the conductive film is formed on the transparent conductive film. You may use the board | substrate with which the transparent insulating layer of thickness is formed. When a reflective light control window such as a rear view mirror for automobiles is produced, a thin film of a conductive metal such as aluminum, gold, or silver that is a reflector may be directly used as an electrode.

上記の方法によれば、電場の形成により任意に光透過率が調節できる調光フィルムを作製することができる。   According to said method, the light control film which can adjust light transmittance arbitrarily by formation of an electric field is producible.

上記調光フィルムにおいて、樹脂マトリックス中に分散されている光調整懸濁液の液滴の大きさ(平均液滴径)は、光調整粒子の凝集と沈積を防止する観点で、0.5〜50μmであることが好ましく、1〜10μmであることがより好ましい。平均液滴径は、例えば、光学顕微鏡を用いて、調光フィルムの一方の面方向から写真等の画像を撮影し、任意に選択した複数の液滴直径を測定し、その平均値として算出することができる。また、上記調光フィルムの光学顕微鏡での視野画像をデジタルデータとしてコンピュータに取り込み、画像処理インテグレーションソフトウェアを使用し算出することも可能である。液滴の大きさは、光調整懸濁液を構成している各成分の濃度、光調整懸濁液及び高分子媒体の粘度、光調整懸濁液中の分散媒の高分子媒体に対する相溶性等により決められる。   In the light control film, the droplet size (average droplet diameter) of the light control suspension dispersed in the resin matrix is 0.5 to from the viewpoint of preventing aggregation and deposition of the light control particles. It is preferable that it is 50 micrometers, and it is more preferable that it is 1-10 micrometers. The average droplet diameter is calculated, for example, by taking an image such as a photograph from one surface direction of the light control film using an optical microscope, measuring a plurality of arbitrarily selected droplet diameters, and calculating the average value thereof. be able to. Further, it is also possible to take a visual field image of the light control film with an optical microscope into a computer as digital data and calculate it using image processing integration software. The size of the droplets depends on the concentration of each component constituting the light control suspension, the viscosity of the light control suspension and the polymer medium, and the compatibility of the dispersion medium in the light control suspension with the polymer medium. It is decided by etc.

また、液状の光調整懸濁液の屈折率と、エネルギー線を照射することにより硬化する高分子媒体の屈折率は近似していることが透明状態における透過率の向上と、着色状態における鮮明度の向上の点で好ましい。   In addition, the refractive index of the liquid light-adjusting suspension and the refractive index of the polymer medium that cures when irradiated with energy rays are close to each other. It is preferable in terms of improvement.

調光性能を発揮させる条件は特に制限はないが、通常、使用電源は交流で、10〜220ボルト(実効値)、30Hz〜500kHzの周波数の範囲で作動させることができる。   The conditions for exerting the light control performance are not particularly limited, but the power source used is normally AC, and can be operated in the frequency range of 10 to 220 volts (effective value) and 30 Hz to 500 kHz.

本発明の調光フィルムは、例えば、室内外の仕切り(パーティッション)、建築物用の窓硝子/天窓、電子産業および映像機器に使用される各種平面表示素子、各種計器板と既存の液晶表示素子の代替品、光シャッター、各種室内外広告および案内標示板、航空機/鉄道車両/船舶用の窓硝子、自動車用の窓硝子/バックミラー/サンルーフ、眼鏡、サングラス、サンバイザー等の用途に好適に使用することができる。   The light control film of the present invention includes, for example, indoor and outdoor partitions, window glass / skylights for buildings, various flat display elements used in the electronics industry and video equipment, various instrument panels, and existing liquid crystal display elements. Suitable for applications such as light shutters, various indoor / outdoor advertisements and signboards, window glass for aircraft / railway vehicles / ships, window glass / back mirror / sunroof for automobiles, glasses, sunglasses, sun visors, etc. Can be used.

適用法としては、本発明の調光フィルムを直接使用することも可能であるが、用途によっては、例えば、本発明の調光フィルムを2枚の基材に挟持させて使用したり、基材の片面に貼り付けて使用したりしてもよい。前記基材としては、上記透明基板と同様に、例えば、ガラス、高分子フィルム等を使用することができる。   As an application method, it is possible to directly use the light control film of the present invention. However, depending on the application, for example, the light control film of the present invention may be sandwiched between two base materials or used. It may be used by pasting it on one side. As said base material, glass, a polymer film, etc. can be used similarly to the said transparent substrate, for example.

本発明の調光フィルムの構造及び動作を図面により更に詳しく説明する。
図1は、本発明の一態様の調光フィルムの構造概略図で、調光層1が、透明導電膜5がコーティングされている2枚の透明基板6からなる透明導電性基板4の間に挟まれている。スイッチ8の切り換えにより、電源7と2枚の透明導電膜5の接続、非接続を行う。調光層1は、エネルギー線を照射することにより硬化する高分子媒体を硬化させたフィルム状の樹脂マトリックス2と、樹脂マトリックス2内に液滴3の形態で分散されている液状の光調整懸濁液からなる。
The structure and operation of the light control film of the present invention will be described in more detail with reference to the drawings.
FIG. 1 is a schematic view of the structure of a light control film according to one embodiment of the present invention, in which a light control layer 1 is interposed between a transparent conductive substrate 4 composed of two transparent substrates 6 coated with a transparent conductive film 5. It is sandwiched. By switching the switch 8, the power supply 7 and the two transparent conductive films 5 are connected or disconnected. The light control layer 1 includes a film-shaped resin matrix 2 in which a polymer medium that is cured by irradiation with energy rays is cured, and a liquid light adjustment suspension dispersed in the form of droplets 3 in the resin matrix 2. Consists of a turbid liquid.

図2は、図1に示した調光フィルムの作動を説明するための図面で、スイッチ8が切られ、電界が印加されていない場合を示す。この場合には、液状の光調整懸濁液の液滴3を構成している分散媒9の中に分散している光調整粒子10のブラウン運動により、入射光11は光調整粒子10に吸収、散乱又は反射され、透過できない。しかし、図3に示すように、スイッチ8を接続して電界を印加すると、光調整粒子10が印加された電界によって形成される電場と平行に配列するため、入射光11は配列した光調整粒子10間を通過するようになる。このようにして、散乱及び透明性の低下のない光透過機能が付与される。   FIG. 2 is a view for explaining the operation of the light control film shown in FIG. 1, and shows a case where the switch 8 is turned off and no electric field is applied. In this case, incident light 11 is absorbed by the light adjusting particles 10 due to Brownian motion of the light adjusting particles 10 dispersed in the dispersion medium 9 constituting the droplets 3 of the liquid light adjusting suspension. It is scattered or reflected and cannot be transmitted. However, as shown in FIG. 3, when the switch 8 is connected and an electric field is applied, the light adjusting particles 10 are arranged in parallel with the electric field formed by the applied electric field. 10 passes. In this way, a light transmission function without scattering and a decrease in transparency is provided.

以下、本発明の実施例及びその比較例によって本発明を更に具体的に説明する。
(光調整粒子の製造例1)
光調整粒子を製造するために、攪拌機及び冷却管を装着した500mlの四つ口フラスコに、ニトロセルロース1/4LIG(商品名、ベルジュラックNC社製)15重量%の酢酸イソアミル(試薬特級、和光純薬工業(株)製)希釈溶液87.54g、酢酸イソアミル44.96g、脱水CaI(水分量0.3%)(化学用、和光純薬工業(株)製)4.5g、無水メタノール(有機合成用、和光純薬工業(株)製)2.0g及び精製水(精製水、和光純薬工業(株)製)を0.45g添加量した溶液に、沃素(JIS試薬特級、和光純薬工業(株)製)4.5gを溶解し、光調整粒子の基板形成物質であるピラジン−2,5−ジカルボン酸2水和物(日化テクノサービス(株)製)3gを添加した。45℃で3時間撹拌して反応を終了させた後、超音波分散機で2時間分散させた。
Hereinafter, the present invention will be described more specifically with reference to examples of the present invention and comparative examples thereof.
(Production example 1 of light control particles)
In order to produce light control particles, a 500 ml four-necked flask equipped with a stirrer and a condenser tube was charged with 15% by weight of nitrocellulose 1 / 4LIG (trade name, manufactured by Bergerac NC) isoamyl acetate (reagent special grade, Japanese). Kojun Pharmaceutical Co., Ltd.) Diluted solution 87.54 g, Isoamyl acetate 44.96 g, Dehydrated CaI 2 (water content 0.3%) (Chemical, Wako Pure Chemical Industries, Ltd.) 4.5 g, anhydrous methanol To a solution containing 2.0 g (for organic synthesis, manufactured by Wako Pure Chemical Industries, Ltd.) and 0.45 g of purified water (purified water, manufactured by Wako Pure Chemical Industries, Ltd.), iodine (JIS reagent special grade, Japanese 4 g of Pyrazine-2,5-dicarboxylic acid dihydrate (manufactured by Nikka Techno Service Co., Ltd.), which is a substrate-forming substance of light adjusting particles, was added. . After stirring at 45 ° C. for 3 hours to complete the reaction, the mixture was dispersed with an ultrasonic disperser for 2 hours.

次に、反応溶液から一定な大きさの光調整粒子を取り出すために、遠心分離機を用いて粒子を分離した。反応溶液を750Gの速度で10分間遠心分離して沈殿物を取り除き、更に7390Gで2時間遠心分離して、浮遊物を取り除き、沈殿物粒子を回収し光調整粒子とした。得られた光調整粒子は長径277nm,短径46nmであり、アスペクト比が6.0であった。なお、光調整粒子の長径、短径及びアスペクト比は下記の方法により算出した。   Next, in order to take out light control particles having a certain size from the reaction solution, the particles were separated using a centrifuge. The reaction solution was centrifuged at a speed of 750 G for 10 minutes to remove the precipitate, and further centrifuged at 7390 G for 2 hours to remove the suspended matter, and the precipitate particles were collected to obtain light control particles. The obtained light control particles had a major axis of 277 nm, a minor axis of 46 nm, and an aspect ratio of 6.0. The major axis, minor axis, and aspect ratio of the light control particles were calculated by the following method.

[アスペクト比の測定方法]
ポリ瓶に5mlの酢酸イソペンチル及び光調整粒子の分散液(光調整粒子9gを酢酸イソアミル88gに分散した分散液)を0.1ml入れ5分間超音波分散した。その後、超音波分散をしながら5×10mmのアルミ断片を液中に10秒間浸し光調整粒子をアルミ断片上にコーティングし、取り出し、風乾燥した。この光調整粒子がコーティングされたアルミ断片表面を走査型電子顕微鏡で撮影し、撮影した画像より任意に50個の光調整粒子を抽出し、各光調整粒子の長径と短径を測定し、(長径/短径)の平均値からアスペクト比を算出した。
[Aspect ratio measurement method]
0.1 ml of 5 ml of isopentyl acetate and a dispersion liquid of light adjusting particles (a dispersion liquid in which 9 g of light adjusting particles were dispersed in 88 g of isoamyl acetate) was placed in a plastic bottle and ultrasonically dispersed for 5 minutes. Thereafter, an aluminum piece of 5 × 10 mm was immersed in the liquid for 10 seconds while ultrasonic dispersion was performed, and the light control particles were coated on the aluminum piece, taken out, and air-dried. The surface of the aluminum piece coated with the light control particles was photographed with a scanning electron microscope, 50 light control particles were arbitrarily extracted from the photographed image, and the major axis and the minor axis of each light control particle were measured. The aspect ratio was calculated from the average value of (major axis / minor axis).

(光調整粒子の製造例2)
精製水(精製水、和光純薬工業(株)製)の添加を0.50gに増量した以外は前記(光調整粒子の製造例1)と同様に製造した。光調整粒子は長径340nm,短径41nmであり、アスペクト比が8.3であった。
(Production example 2 of light control particles)
It was produced in the same manner as in the above (Production Example 1 for light control particles) except that the amount of purified water (purified water, manufactured by Wako Pure Chemical Industries, Ltd.) was increased to 0.50 g. The light adjusting particles had a major axis of 340 nm, a minor axis of 41 nm, and an aspect ratio of 8.3.

(光調整粒子の製造例3)
精製水(精製水、和光純薬工業(株)製)の添加を0.6gに増量した以外は前記(光調整粒子の製造例1)と同様に製造した。
得られた光調整粒子は長径568nm,短径38nmであり、アスペクト比が14.9であった。
(Production Example 3 of Light Adjusting Particle)
Manufactured in the same manner as described above (Production Example 1 for light-controlling particles) except that the amount of purified water (purified water, manufactured by Wako Pure Chemical Industries, Ltd.) was increased to 0.6 g.
The obtained light control particles had a major axis of 568 nm, a minor axis of 38 nm, and an aspect ratio of 14.9.

(光調整粒子の製造例4)
精製水(精製水、和光純薬工業(株)製)の添加を0.45gに減量した以外は前記(光調整粒子の製造例1)と同様に製造した。得られた光調整粒子は長径190nm,短径38nmであり、アスペクト比が5.0であった。
(Production Example 4 of Light Adjusting Particle)
Manufactured in the same manner as described above (Production Example 1 for light-adjusting particles) except that the amount of purified water (purified water, manufactured by Wako Pure Chemical Industries, Ltd.) was reduced to 0.45 g. The obtained light control particles had a major axis of 190 nm and a minor axis of 38 nm, and an aspect ratio of 5.0.

(光調整粒子の製造例5)
精製水(精製水、和光純薬工業(株)製)の添加を0.65gに減量した以外は前記(光調整粒子の製造例1)と同様に製造した。得られた光調整粒子は長径608nm,短径38nmであり、アスペクト比が16.0であった。
(Production Example 5 of Light Adjusting Particle)
Manufactured in the same manner as in the above (Production Example 1 of light control particles) except that the amount of purified water (purified water, manufactured by Wako Pure Chemical Industries, Ltd.) was reduced to 0.65 g. The obtained light control particles had a major axis of 608 nm and a minor axis of 38 nm, and an aspect ratio of 16.0.

(紫外線硬化型シリコーン樹脂の製造例)
ディーンスタークトラップ、冷却管、攪拌機、加熱装置を備えた四つ口フラスコに、両末端シラノールポリジメチルシロキサン(信越化学工業(株)製)11.75g、両末端シラノールポリジメチルジフェニルシロキサン(信越化学工業(株)製)31g、(3−アクリロキシプロピル)メチルジメトキシシラン(信越化学工業(株)製)4g、2−エチルヘキサン錫(和光純薬工業(株)製)0.6gを仕込み、ヘプタン中で100℃で3時間リフラックスし、反応を行った。
(Example of UV curable silicone resin production)
In a four-necked flask equipped with a Dean-Stark trap, condenser, stirrer, and heating device, 11.75 g of both-end silanol polydimethylsiloxane (Shin-Etsu Chemical Co., Ltd.), both-end silanol polydimethyldiphenylsiloxane (Shin-Etsu Chemical) 31 g, (3-acryloxypropyl) methyldimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) 4 g, 2-ethylhexane tin (manufactured by Wako Pure Chemical Industries, Ltd.) 0.6 g, and heptane The mixture was refluxed at 100 ° C. for 3 hours to carry out the reaction.

次いで、トリメチルエトキシシラン(信越化学工業(株)製)10.6gを添加し、2時間リフラックスし、脱アルコール反応させ、ヘプタンをロータリーエバポレーターを用いて60Paの真空で80℃、3時間減圧除去し、重量平均分子量40,000、屈折率1.468の紫外線硬化型シリコーン樹脂(エチレン性不飽和結合を有する置換基をもつシリコーン樹脂)を得た。   Next, 10.6 g of trimethylethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) was added, refluxed for 2 hours, dealcoholized, and heptane was removed under reduced pressure at 80 ° C. for 3 hours at 60 Pa using a rotary evaporator. Thus, an ultraviolet curable silicone resin having a weight average molecular weight of 40,000 and a refractive index of 1.468 (a silicone resin having a substituent having an ethylenically unsaturated bond) was obtained.

(光調整懸濁液の製造例1)
前記の(光調整粒子の製造例1)で得た光調整粒子の酢酸イソアミル分散液97g(光調整粒子9gを酢酸イソアミル88gに分散した分散液)を、光調整懸濁液の分散媒としてのアクリル酸ブチル(和光特級、和光純薬工業(株)製)/メタクリル酸2,2,2−トリフルオロエチル(工業用、共栄社化学工業(株)製)/アクリル酸2−ヒドロキシエチル(和光1級、和光純薬工業(株)製)共重合体(モノマーモル比:18/1.5/0.5、重量平均分子量:2,200、屈折率1.468)59gに加え、攪拌機により30分間混合した。次いでロータリーエバポレーターを用いて80℃で60Paの真空下で3時間減圧し酢酸イソアミルを除去した。これにトリメリット酸デシル29.5g(花王(株)製),ジメチルドデカスベレート(Exfluor社製)を添加し,粒子沈降及び凝集現象のない安定な液状の光調整懸濁液を製造した。
(Production Example 1 of Light Adjustment Suspension)
97 g of an isoamyl acetate dispersion of the light control particles obtained in (Preparation Example 1 of the light control particles) (dispersion in which 9 g of light control particles were dispersed in 88 g of isoamyl acetate) was used as a dispersion medium for the light control suspension. Butyl acrylate (Wako special grade, manufactured by Wako Pure Chemical Industries, Ltd.) / 2,2,2-trifluoroethyl methacrylate (for industrial use, manufactured by Kyoeisha Chemical Co., Ltd.) / 2-hydroxyethyl acrylate (Wako 1 Grade, manufactured by Wako Pure Chemical Industries, Ltd.) (monomer molar ratio: 18 / 1.5 / 0.5, weight average molecular weight: 2,200, refractive index 1.468) in addition to 59 g, 30 minutes with a stirrer Mixed. Then, using a rotary evaporator, the pressure was reduced at 80 ° C. under a vacuum of 60 Pa for 3 hours to remove isoamyl acetate. To this was added 29.5 g of decyl trimellitic acid (manufactured by Kao Corporation) and dimethyl dodecave belate (manufactured by Exfluor) to produce a stable liquid light-conditioning suspension free from particle sedimentation and agglomeration.

(光調整懸濁液の製造例2)
光調整粒子を(光調整粒子の製造例2)で得た光調整粒子に変更した以外は(光調整懸濁液の製造例1)と同様に製造した。
(Production Example 2 of Light Adjusting Suspension)
The light adjustment particles were produced in the same manner as (Light adjustment suspension production example 1) except that the light adjustment particles were changed to the light adjustment particles obtained in (Light adjustment particle production example 2).

(光調整懸濁液の製造例3)
光調整粒子を(光調整粒子の製造例3)で得た光調整粒子に変更した以外は(光調整懸濁液の製造例1)と同様に製造した。
(Production Example 3 of Light Adjustment Suspension)
The light adjustment particles were produced in the same manner as in (Light adjustment suspension production example 1) except that the light adjustment particles were changed to the light adjustment particles obtained in (Production Example 3 of light adjustment particles).

(光調整懸濁液の製造例4)
光調整粒子を(光調整粒子の製造例4)で得た光調整粒子に変更した以外は(光調整懸濁液の製造例1)と同様に製造した。
(Production Example 4 of Light Adjustment Suspension)
The light adjustment particles were produced in the same manner as (Light adjustment suspension production example 1) except that the light adjustment particles were changed to the light adjustment particles obtained in (Light adjustment particle production example 4).

(光調整懸濁液の製造例5)
光調整粒子を(光調整粒子の製造例5)で得た光調整粒子に変更した以外は(光調整懸濁液の製造例1)と同様に製造した。
(Production Example 5 of Light Adjusting Suspension)
The light-adjusting particles were produced in the same manner as (Light-adjusting suspension production example 1), except that the light-adjusting particles were changed to the light-adjusting particles obtained in (Manufacturing example 5 of light-adjusting particles).

(実施例1)
(紫外線硬化型シリコーン樹脂の製造例)で得た紫外線硬化型シリコーン樹脂10g、光重合開始剤としてのビス(2,4,6−トリメチルベンゾイル)フェニルフォスフィンオキサイド(チバ・スペシャルティ・ケミカルス(株)製)0.2g、着色防止剤としてのジブチル錫ジラウレート0.3gに、前記(光調整懸濁液の製造例1)で得た光調整懸濁液2.5gを添加し、1分間機械的に混合し、調光材料を製造した。
(Example 1)
10 g of the ultraviolet curable silicone resin obtained in (Production Example of UV curable silicone resin), bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (Ciba Specialty Chemicals Co., Ltd.) as a photopolymerization initiator (Manufactured) 0.2 g and dibutyltin dilaurate 0.3 g as a coloring inhibitor are added with 2.5 g of the light control suspension obtained in (Preparation Example 1 of light control suspension), and mechanical for 1 minute. To prepare a light-modulating material.

この調光材料をITO(インジウム錫の酸化物)の透明導電膜(厚み300Å)がコーティングされている表面電気抵抗値が200〜300Ω/Sqのポリエチレンテレフタレートフィルム(商品名300R,東洋紡績(株)製,厚み125μm)のロールから引き出し、その上に乾燥膜厚が45μmになるように自動塗工機(テスタ工業(株)製)を用い,ベーカ式アプリケータ(目盛14)で塗布し、反対側に前記と同じポリエステルフィルムをラミネートした。ついで、照度160W/cmのメタルハライドランプを用いてUV−Aで4,000mJ/cmの紫外線を照射し、光調整懸濁液が球形の液滴として紫外線硬化したシリコーン樹脂内に分散形成された調光層を持つ調光フィルムを製造した。 A polyethylene terephthalate film (trade name 300R, Toyobo Co., Ltd.) having a surface electrical resistance value of 200 to 300 Ω / Sq coated with a transparent conductive film (thickness 300 mm) of ITO (indium tin oxide) on this light-modulating material Made from a roll with a thickness of 125 μm), and coated with a bakery applicator (scale 14) using an automatic coating machine (manufactured by Tester Kogyo Co., Ltd.) so that the dry film thickness is 45 μm. The same polyester film as above was laminated on the side. Then, using a metal halide lamp with an illuminance of 160 W / cm 2 , UV-A is irradiated with ultraviolet rays of 4,000 mJ / cm 2 , and the light-adjusting suspension is dispersed and formed in ultraviolet cured silicone resin as spherical droplets. A light control film having a light control layer was produced.

(実施例2)
光調整懸濁液を(光調整懸濁液の製造例2)で得られた光調整懸濁液に変更した以外は実施例1と同様に製造した。
(Example 2)
The light adjustment suspension was produced in the same manner as in Example 1 except that the light adjustment suspension was changed to the light adjustment suspension obtained in (Production Example 2 of Light Adjustment Suspension).

(実施例3)
光調整懸濁液を(光調整懸濁液の製造例3)で得られた光調整懸濁液に変更した以外は実施例1と同様に製造した。
(Example 3)
The light adjustment suspension was produced in the same manner as in Example 1 except that the light adjustment suspension was changed to the light adjustment suspension obtained in (Production Example 3 of Light Adjustment Suspension).

(比較例1)
光調整懸濁液を(光調整懸濁液の製造例4)で得られた光調整懸濁液に変更した以外は実施例1と同様に製造した。
(Comparative Example 1)
The light adjustment suspension was produced in the same manner as in Example 1 except that the light adjustment suspension was changed to the light adjustment suspension obtained in (Production Example 4 of Light Adjustment Suspension).

(比較例2)
光調整懸濁液を(光調整懸濁液の製造例5)で得られた光調整懸濁液に変更した以外は比較例1と同様に製造した。
(Comparative Example 2)
The light adjustment suspension was manufactured in the same manner as in Comparative Example 1 except that the light adjustment suspension was changed to the light adjustment suspension obtained in (Example 5 of Light Adjustment Suspension).

表1は、実施例1〜3、比較例1〜2で得られた調光フィルムの電界未印加時及び電界印加時の光透過率の評価結果である。電界印加時は、400Hzの交流電圧(実効値)100Vの印加時である。なお、調光フィルムの光透過率は、分光式色差計(SZ−Σ90、日本電色工業(株)製)を使用し、A光源、視野角2度で測定したY値(%)を光透過率とした。   Table 1 shows the evaluation results of the light transmittance of the light control films obtained in Examples 1 to 3 and Comparative Examples 1 and 2 when no electric field is applied and when an electric field is applied. The electric field is applied when an AC voltage (effective value) of 100 V is applied at 400 Hz. In addition, the light transmittance of the light control film is obtained by using a spectroscopic color difference meter (SZ-Σ90, manufactured by Nippon Denshoku Industries Co., Ltd.) and measuring the Y value (%) measured with an A light source and a viewing angle of 2 degrees. It was set as the transmittance.

Figure 2008158041
Figure 2008158041

本発明の調光フィルムの一態様の断面構造概略図である。It is a sectional structure schematic diagram of one mode of a light control film of the present invention. 図1の調光フィルムの電界が印加されていない場合の作動を説明するための概略図である。It is the schematic for demonstrating the action | operation when the electric field of the light control film of FIG. 1 is not applied. 図1の調光フィルムの電界が印加されている場合の作動を説明するための概略図である。It is the schematic for demonstrating the action | operation when the electric field of the light control film of FIG. 1 is applied.

符号の説明Explanation of symbols

1 調光層
2 樹脂マトリックス
3 液滴
4 透明導電性基板
5 導電性薄膜(透明導電膜)
6 透明基板
7 電源
8 スイッチ
9 分散媒
10 光調整粒子
11 入射光
DESCRIPTION OF SYMBOLS 1 Light control layer 2 Resin matrix 3 Droplet 4 Transparent conductive substrate 5 Conductive thin film (transparent conductive film)
6 Transparent substrate 7 Power supply 8 Switch 9 Dispersion medium 10 Light control particle 11 Incident light

Claims (5)

エネルギー線を照射することにより硬化する高分子媒体と、光調整粒子が流動可能な状態で分散媒中に分散した光調整懸濁液とを含有する調光材料であって、光調整懸濁液中の分散媒が、高分子媒体及びその硬化物と層分離しうるものであり、前記光調整粒子のアスペクト比が6〜15である調光材料。   A light control material comprising a polymer medium that is cured by irradiation with energy rays, and a light control suspension that is dispersed in a dispersion medium so that the light control particles can flow. The light control material in which the dispersion medium in it can be separated into a polymer medium and a cured product thereof, and the light control particles have an aspect ratio of 6 to 15. エネルギー線を照射することにより硬化する高分子媒体と、光調整粒子が流動可能な状態で分散媒中に分散した光調整懸濁液とを含有する調光材料であって、光調整懸濁液中の分散媒が、高分子媒体及びその硬化物と層分離しうるものであり、前記光調整粒子のアスペクト比が7超12以下である調光材料。   A light control material comprising a polymer medium that is cured by irradiation with energy rays, and a light control suspension that is dispersed in a dispersion medium so that the light control particles can flow. A light-modulating material in which a dispersion medium therein is capable of layer separation from a polymer medium and a cured product thereof, and the light control particles have an aspect ratio of more than 7 and 12 or less. 請求項1又は2に記載の調光材料を用いて形成された調光フィルムであって、高分子媒体から形成された樹脂マトリックスと、前記樹脂マトリックス中に分散した光調整懸濁液とを含む調光層を有する調光フィルム。   A light control film formed using the light control material according to claim 1, comprising: a resin matrix formed from a polymer medium; and a light control suspension dispersed in the resin matrix. A light control film having a light control layer. 調光層が、透明導電性基板間に挟持されてなる請求項3記載の調光フィルム。   The light control film according to claim 3, wherein the light control layer is sandwiched between transparent conductive substrates. 請求項1又は2に記載の調光材料を透明導電性基板の上に塗布する工程、エネルギー線を照射して高分子媒体を硬化させて調光層を形成する工程及び調光層上に透明導電性基板を密着する工程を含むことを特徴とする調光フィルムの製造方法。   A step of applying the light-modulating material according to claim 1 or 2 onto a transparent conductive substrate, a step of irradiating an energy ray to cure a polymer medium to form a light-modulating layer, and a transparent on the light-modulating layer The manufacturing method of the light control film characterized by including the process of closely_contact | adhering an electroconductive board | substrate.
JP2006344179A 2006-12-21 2006-12-21 Light control material, light control film and method for manufacturing light control film Pending JP2008158041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006344179A JP2008158041A (en) 2006-12-21 2006-12-21 Light control material, light control film and method for manufacturing light control film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006344179A JP2008158041A (en) 2006-12-21 2006-12-21 Light control material, light control film and method for manufacturing light control film

Publications (1)

Publication Number Publication Date
JP2008158041A true JP2008158041A (en) 2008-07-10

Family

ID=39659046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006344179A Pending JP2008158041A (en) 2006-12-21 2006-12-21 Light control material, light control film and method for manufacturing light control film

Country Status (1)

Country Link
JP (1) JP2008158041A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012027326A (en) * 2010-07-26 2012-02-09 Hitachi Chem Co Ltd Suspended particle device and driving method thereof
JP2017090530A (en) * 2015-11-04 2017-05-25 日立化成株式会社 Dispersion for wave adjustment and wave adjustment element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04240829A (en) * 1991-01-25 1992-08-28 Nippon Sheet Glass Co Ltd Dimmer
JPH0583733U (en) * 1992-04-08 1993-11-12 日本板硝子株式会社 Car light emitting device
JP2002082364A (en) * 2000-06-29 2002-03-22 Hitachi Chem Co Ltd Light regulation material, light regulation film and method for manufacturing the light regulation film
JP2002189123A (en) * 2000-12-19 2002-07-05 Hitachi Chem Co Ltd Light control material, light control film and method for manufacturing light control film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04240829A (en) * 1991-01-25 1992-08-28 Nippon Sheet Glass Co Ltd Dimmer
JPH0583733U (en) * 1992-04-08 1993-11-12 日本板硝子株式会社 Car light emitting device
JP2002082364A (en) * 2000-06-29 2002-03-22 Hitachi Chem Co Ltd Light regulation material, light regulation film and method for manufacturing the light regulation film
JP2002189123A (en) * 2000-12-19 2002-07-05 Hitachi Chem Co Ltd Light control material, light control film and method for manufacturing light control film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012027326A (en) * 2010-07-26 2012-02-09 Hitachi Chem Co Ltd Suspended particle device and driving method thereof
JP2017090530A (en) * 2015-11-04 2017-05-25 日立化成株式会社 Dispersion for wave adjustment and wave adjustment element

Similar Documents

Publication Publication Date Title
JP5600874B2 (en) Light control film
JP5359276B2 (en) Light control film and light control glass
JP5768843B2 (en) Light control film
JP5233676B2 (en) Light control film and light control glass
JP2008158043A (en) Light control film
JP5110157B2 (en) Method for producing light control film and light control film
JP2008158042A (en) Light control film
JP2008158040A (en) Photochromic material, photochromic film using it, and its manufacturing method
JP5704076B2 (en) Method for producing (meth) acryloyl group-containing polysiloxane resin and light control film using (meth) acryloyl group-containing polysiloxane resin obtained by the method
JP2005300962A (en) Light control material, light control film, light control glass and its production method
JP2006064832A (en) Light control material, light control film and method of manufacturing the same
JP2008158041A (en) Light control material, light control film and method for manufacturing light control film
JP5266767B2 (en) Light control material, light control film, and method of manufacturing light control material
JP5849393B2 (en) Manufacturing method of light control particles and light control film using light control particles obtained by the manufacturing method
JP5842396B2 (en) Light control material and light control film
JP6048011B2 (en) Light control material and light control film
JP2005105131A (en) Light-modulating material, light-modulating film and method for producing the same
JP5569412B2 (en) Light control material and light control film
JP2013182112A (en) Light control film and method of manufacturing the same
JP5652033B2 (en) Manufacturing method of light control suspension, manufacturing method of light control material, and manufacturing method of light control film
JP2012032715A (en) Light control structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110303