JP2013001921A - Leaching method for lithium - Google Patents

Leaching method for lithium Download PDF

Info

Publication number
JP2013001921A
JP2013001921A JP2011131994A JP2011131994A JP2013001921A JP 2013001921 A JP2013001921 A JP 2013001921A JP 2011131994 A JP2011131994 A JP 2011131994A JP 2011131994 A JP2011131994 A JP 2011131994A JP 2013001921 A JP2013001921 A JP 2013001921A
Authority
JP
Japan
Prior art keywords
lithium
leaching
metal oxide
containing metal
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011131994A
Other languages
Japanese (ja)
Inventor
Takashi Furuya
崇 古谷
Mieko Hara
美永子 原
Masayuki Tsuda
昌幸 津田
Jiro Nakamura
二朗 中村
Tatsuya Kunioka
達也 國岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2011131994A priority Critical patent/JP2013001921A/en
Publication of JP2013001921A publication Critical patent/JP2013001921A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To readily enable leaching of lithium from a lithium-containing metal oxide at low cost.SOLUTION: A leaching method for lithium includes: preparing a mixed powder by mixing a powder containing the lithium-containing metal oxide, in which lithium is combined with a transition metal oxide, with a carbon material powder; pulverizing the prepared mixed powder, e.g. by carrying out pulverization using a ball mill, thereby inducing a solid-phase reaction between the lithium-containing metal oxide and carbon in the mixed powder through a mechanochemical reaction and reducing the lithium-containing metal oxide to produce a reductant of a lithium-containing metal from the lithium-containing metal oxide; and mixing the pulverized mixed powder with water to induce leaching of lithium into water.

Description

本発明は、リチウム含有金属酸化物からリチウムを浸出させるリチウムの浸出方法に関する。   The present invention relates to a lithium leaching method for leaching lithium from a lithium-containing metal oxide.

リチウムイオン二次電池は、携帯電話をはじめとする小型電子機器の電源として急速に用途が広がっており、生産量が急増することが予想される。リチウムイオン二次電池の正極材活物質であるコバルト酸リチウム等のリチウム含有金属酸化物に含まれるコバルト等の金属は、乾式処理方法によって回収されている。一方、リチウムについては、乾式処理による回収が困難であるため、再利用されることなく廃棄処理されている。   The use of lithium ion secondary batteries is rapidly expanding as a power source for small electronic devices such as mobile phones, and the production volume is expected to increase rapidly. A metal such as cobalt contained in a lithium-containing metal oxide such as lithium cobaltate which is a positive electrode material active material of a lithium ion secondary battery is recovered by a dry processing method. On the other hand, since lithium is difficult to recover by dry processing, it is discarded without being reused.

リチウムイオン二次電池の生産量の増加に伴い、廃リチウムイオン二次電池の電極に含まれるリチウムの経済的な回収方法の確立が必要となっている。リチウムを回収する方法として、リチウム含有金属酸化物を酸に浸出させ、イオン交換樹脂等を用いてリチウム以外の金属を回収し、この残渣からリチウムを回収する湿式処理方法が有望視されている。   With an increase in production of lithium ion secondary batteries, it is necessary to establish an economical method for recovering lithium contained in the electrodes of waste lithium ion secondary batteries. As a method for recovering lithium, a wet processing method in which a lithium-containing metal oxide is leached in an acid, a metal other than lithium is recovered using an ion exchange resin or the like, and lithium is recovered from this residue is promising.

廃リチウムイオン二次電池に含まれるリチウム含有金属酸化物には、リチウムイオン二次電池の電極材料であるコバルト酸リチウムがある。コバルト酸リチウムは安定な層状岩塩型構造であり、従来の湿式処理では、リチウムおよび遷移金属のリチウム金属酸化物からの浸出方法として、高濃度の塩酸、硫酸、硝酸等による酸浸出が用いられている。この方法では,高濃度の酸を使用し、さらには過酸化水素を添加して長時間の加熱処理を行い、リチウムおよび遷移金属を浸出させた後、中和反応を行い目的に応じたリチウムおよび遷移金属を回収している。この方法では、比較的酸溶液に浸出容易なリチウム以外の遷移金属に関しても酸に浸出させることになり、浸出後にリチウムと他の金属とを各々分離回収する必要があった。   Lithium-containing metal oxides included in the waste lithium ion secondary battery include lithium cobalt oxide, which is an electrode material for the lithium ion secondary battery. Lithium cobaltate has a stable layered rock-salt structure, and in conventional wet processing, acid leaching with high concentrations of hydrochloric acid, sulfuric acid, nitric acid, etc. is used as a leaching method of lithium and transition metals from lithium metal oxides. Yes. In this method, a high-concentration acid is used, hydrogen peroxide is added, and heat treatment is performed for a long time. After leaching out lithium and transition metal, a neutralization reaction is performed, and lithium and an appropriate amount are selected. Transition metal is recovered. In this method, transition metals other than lithium that are relatively easily leached into an acid solution are also leached in an acid, and it is necessary to separate and recover lithium and other metals after leaching.

特開2004−011010号公報JP 2004-011010 A

上述したように、リチウム含有金属酸化物の酸浸出には、長時間の加熱処理、酸の使用および多量の中和剤の使用によるコストの問題があった。さらに、塩酸を使用した際には塩素ガスが発生し、硫酸を用いた際には硫化水素が発生し、取り扱いが容易ではないという問題がある。また、多量の薬剤を使用することから、環境負荷対策としての操業コストも問題となっていた。   As described above, acid leaching of lithium-containing metal oxides has cost problems due to long-time heat treatment, use of acid, and use of a large amount of neutralizing agent. Further, when hydrochloric acid is used, chlorine gas is generated, and when sulfuric acid is used, hydrogen sulfide is generated, which makes it difficult to handle. In addition, since a large amount of chemicals is used, the operation cost as a measure against the environmental load has been a problem.

加えて、浸出後のリチウムと遷移金属との分離工程も、コストを増大させる要因となっている、特許文献1では、コバルト酸リチウムを還元焙焼することによって、コバルト酸リチウムの化合物形態を変化させ、焙焼物を水で浸出することにより、焙焼物中のリチウム分を水に溶出させて、かつ、コバルトを残差中に分配させて分離回収を行っている。リチウムは水に溶解するが、コバルトなどの遷移金属は水に溶解しないので、上述したことにより、リチウムを分離回収できる。   In addition, the separation process of lithium and transition metal after leaching is also a factor that increases the cost. In Patent Document 1, by reducing and roasting lithium cobaltate, the compound form of lithium cobaltate is changed. Then, by leaching the roasted product with water, the lithium content in the roasted product is eluted in water, and cobalt is distributed in the residual to separate and recover. Lithium dissolves in water, but transition metals such as cobalt do not dissolve in water. Therefore, lithium can be separated and recovered as described above.

しかし、この還元焙焼は、水素気流中でかつ400℃以上の温度で行うか、炭素を添加してから不活性ガス雰囲気中で700℃以上の温度にする還元焙焼が必要であり、コストや安全面において実用化し難いものであった。   However, this reduction roasting is performed in a hydrogen stream and at a temperature of 400 ° C. or higher, or reduction roasting is performed at a temperature of 700 ° C. or higher in an inert gas atmosphere after adding carbon. It was difficult to put it into practical use in terms of safety.

本発明は、以上のような問題点を解消するためになされたものであり、より容易に低コストで、リチウム含有金属酸化物からリチウムを浸出できるようにすることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to allow lithium to be leached from a lithium-containing metal oxide more easily and at low cost.

本発明に係るリチウムの浸出方法は、遷移金属の酸化物とリチウムとが化合しているリチウム含有金属酸化物を含む粉末と炭素材料の粉末とを混合して混合粉末を作製する第1工程と、混合粉末をボールミルにより粉砕処理する第2工程と、粉砕処理した混合粉末と水とを混合してリチウムを水に浸出する第3工程とを少なくとも備える。   The lithium leaching method according to the present invention includes a first step of preparing a mixed powder by mixing a powder containing a lithium-containing metal oxide in which a transition metal oxide and lithium are combined with a carbon material powder. And a second step of pulverizing the mixed powder with a ball mill and at least a third step of mixing the pulverized mixed powder with water and leaching lithium into the water.

上記リチウムの浸出方法において、遷移金属は、コバルト,ニッケル,マンガン,鉄,銅,クロム,およびチタンの少なくとも1つであればよい。例えば、リチウム含有金属酸化物は、コバルト酸リチウムである。コバルト酸リチウムは、電池の電極材料として用いられているものである。なお、炭素材料は、黒鉛、活性炭、石炭、コークス、木炭、および電池の電極を構成する炭素より選択されたものであればよい。   In the lithium leaching method, the transition metal may be at least one of cobalt, nickel, manganese, iron, copper, chromium, and titanium. For example, the lithium-containing metal oxide is lithium cobaltate. Lithium cobalt oxide is used as a battery electrode material. The carbon material may be any material selected from graphite, activated carbon, coal, coke, charcoal, and carbon constituting the battery electrode.

以上説明したことにより、本発明によれば、より容易に低コストで、リチウム含有金属酸化物からリチウムを浸出できるようになるという優れた効果が得られる。   As described above, according to the present invention, it is possible to obtain an excellent effect that lithium can be leached from a lithium-containing metal oxide more easily and at low cost.

図1は、本発明の実施の形態におけるリチウムの浸出方法を説明するためのフローチャートである。FIG. 1 is a flowchart for explaining a lithium leaching method according to an embodiment of the present invention. 図2は、本発明の実施例において実施した実験の方法を説明するためのフローチャートである。FIG. 2 is a flowchart for explaining a method of an experiment performed in the embodiment of the present invention.

以下、本発明の実施の形態について図を参照して説明する。図1は、本発明の実施の形態におけるリチウムの浸出方法を説明するためのフローチャートである。まず、ステップS101で、遷移金属の酸化物とリチウムとが化合しているリチウム含有金属酸化物を含む粉末と炭素材料の粉末とを混合して混合粉末を作製する。炭素材料としては、炭素の粉末を用いればよい。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart for explaining a lithium leaching method according to an embodiment of the present invention. First, in step S101, a powder containing a lithium-containing metal oxide in which a transition metal oxide and lithium are combined is mixed with a carbon material powder to produce a mixed powder. As the carbon material, carbon powder may be used.

次に、ステップS102で、作製した混合粉末を粉砕処理する。例えば、ボールミルを用いて粉砕処理を行えばよい。粉砕処理において用いるボールは、ジルコニア製ボール,SUS製ボール,アルミナ製ボール,メノウ製ボールなどを用いればよく、特に制限はない。また、粉砕処理は、大気の雰囲気で行えばよい。例えば、遊星ボールミルを用いる場合、回転速度200〜1500rpm、粉砕処理時間4〜8時間で処理を行えばよい。また、加える炭素粉末の量は、対象のリチウム含有金属酸化物との還元反応における化学量論式から求められる値の2〜10倍の量を加えるとよい。   Next, in step S102, the produced mixed powder is pulverized. For example, a pulverization process may be performed using a ball mill. The balls used in the pulverization process may be zirconia balls, SUS balls, alumina balls, agate balls, or the like, and are not particularly limited. The pulverization process may be performed in an air atmosphere. For example, when a planetary ball mill is used, the processing may be performed at a rotation speed of 200 to 1500 rpm and a pulverization processing time of 4 to 8 hours. The amount of carbon powder to be added is preferably 2 to 10 times the value obtained from the stoichiometric formula in the reduction reaction with the target lithium-containing metal oxide.

この粉砕処理により、混合粉末中のリチウム含有金属酸化物と炭素とが、メカノケミカル反応により固相で反応し、リチウム含有金属酸化物が還元される。ボールミルによる粉砕用ボールを用いての回転運動による粉砕処理では、物理的な粉砕処理のみでなく、機械的エネルギーによる化学反応を起こすメカノケミカル反応を起こすことが知られている。この還元により、リチウム含有金属酸化物よりリチウムおよび遷移金属の還元体が生成される。   By this pulverization treatment, the lithium-containing metal oxide and carbon in the mixed powder react in a solid phase by a mechanochemical reaction, and the lithium-containing metal oxide is reduced. It is known that in the pulverization process by the rotational motion using the ball for pulverization by the ball mill, not only a physical pulverization process but also a mechanochemical reaction that causes a chemical reaction by mechanical energy is known. By this reduction, a reduced form of lithium and transition metal is generated from the lithium-containing metal oxide.

次に、ステップS103で、粉砕処理した混合粉末と水とを混合してリチウムを水に浸出する。上述した粉砕処理により、還元された金属酸化物の還元体の中で、リチウムは水溶性を有するので水に溶解するが、他の遷移金属は水に溶解(浸出)せず、例えば沈殿する。この処理において、水の温度は、室温(20〜25℃)程度でよく、数百℃などの高温の状態とする必要がない。   Next, in step S103, the pulverized mixed powder and water are mixed and lithium is leached into water. In the reduced form of the metal oxide reduced by the above-described pulverization treatment, lithium dissolves in water because it is water-soluble, but other transition metals do not dissolve (leach) in water but precipitate, for example. In this treatment, the temperature of water may be about room temperature (20 to 25 ° C.), and does not need to be a high temperature such as several hundred degrees C.

このように、本実施の形態によれば、大気中・室温(20〜25℃)程度の環境で、水を用いることで、リチウム含有金属酸化物を含む廃棄物よりリチウムの浸出ができるようになる。従って、塩酸,硝酸,硫酸などの酸を用いる必要がなく、中和剤などが不要となり、また、加熱処理も不要となる。この結果、操業コストを大幅に削減することが可能となる。このように、本実施の形態によれば、より容易に低コストでリチウムが回収できるようになる。   Thus, according to this embodiment, lithium can be leached from waste containing lithium-containing metal oxides by using water in the atmosphere and at an environment of room temperature (20 to 25 ° C.). Become. Accordingly, it is not necessary to use an acid such as hydrochloric acid, nitric acid, sulfuric acid, etc., and a neutralizing agent is not necessary, and heat treatment is also unnecessary. As a result, the operation cost can be greatly reduced. Thus, according to the present embodiment, lithium can be recovered more easily at low cost.

例えば、本実施の形態により得られた水中のリチウムは、この水をろ過することで不溶物(沈殿物)を除去した後、溶媒抽出法、イオン交換法、電解採取法、沈澱法などといった公知の抽出手段を用いることによって、容易にかつ高効率に分離回収することが可能である。また、還元剤として用いている炭素材料は、水に溶解せずに沈殿物となり、ろ過により容易に分離できる。従って、余剰の炭素材料は容易に回収でき、還元剤として再度利用することが容易である。この結果、炭素材料の新規購入量を抑制できることになり、さらにコストを抑制することが可能となる。   For example, the lithium in the water obtained by the present embodiment removes insoluble matters (precipitates) by filtering the water, and then a known method such as a solvent extraction method, an ion exchange method, an electrowinning method, a precipitation method, etc. By using this extraction means, it is possible to separate and recover easily and with high efficiency. In addition, the carbon material used as the reducing agent does not dissolve in water but becomes a precipitate and can be easily separated by filtration. Therefore, surplus carbon material can be easily recovered and easily reused as a reducing agent. As a result, the amount of new carbon material purchased can be reduced, and the cost can be further reduced.

[実施例]
以下、実施例を用いてより詳細に説明する。まず、実験の方法について、図2を用いて説明する。実験では、リチウム含有金属酸化物としてコバルト酸リチウムを用い、コバルト酸リチウムの粉末に3.75:1.25の割合で炭素粉末を混合して混合試料を作製する(ステップS201)。これは化学量論式で求められる値の約10倍である。なお、コバルト酸リチウムは、リチウムイオン二次電池の電極材料である。また、炭素粉末としては、よく知られたアセチレンブラックを用いた。
[Example]
Hereinafter, it demonstrates in detail using an Example. First, an experimental method will be described with reference to FIG. In the experiment, lithium cobaltate is used as the lithium-containing metal oxide, and carbon powder is mixed with the lithium cobaltate powder at a ratio of 3.75: 1.25 to prepare a mixed sample (step S201). This is about 10 times the value determined by the stoichiometric formula. In addition, lithium cobaltate is an electrode material of a lithium ion secondary battery. As the carbon powder, well-known acetylene black was used.

次に、遊星ボールミル(フリッチュ社製premium line P-7)を用いて混合試料を粉砕処理する(ステップS202)。この遊星ボールミルは、2個のジルコニア製の密閉容器(内容量50ml)が、自転および公転することで、容器内の試料を粉砕する。粉砕処理では、ジルコニア製直径15mmの粉砕用ボールを7個用いた。また、ミルの回転速度は700rpm一定とした。   Next, the mixed sample is pulverized using a planetary ball mill (premium line P-7 manufactured by Fritsch) (step S202). In this planetary ball mill, two zirconia sealed containers (with an internal volume of 50 ml) rotate and revolve to pulverize the sample in the container. In the grinding treatment, seven zirconia balls for grinding having a diameter of 15 mm were used. The rotation speed of the mill was constant at 700 rpm.

次に、粉砕処理が終了したら、上記容器内より混合試料1.33gを採取し(ステップS203)、採取した混合試料を水50mlに混合し、24時間撹拌する。この撹拌には、マグネチックスターラを用いた。次に、撹拌後の混合溶液をろ過する(ステップS205)。ろ過には、ポアサイズ0.1μmのメンブレンフィルターを用いた。次に、ろ液中のリチウムおよびコバルトの定量を行う(ステップS206)。この定量分析では、よく知られた誘導結合プラズマ質量分析装置(ICP−MS)を用い、浸出率を算出した。算出の結果、コバルトの浸出率は0%であるが、リチウムの浸出率は50%であった。   Next, when the pulverization process is finished, 1.33 g of the mixed sample is collected from the container (step S203), and the collected mixed sample is mixed with 50 ml of water and stirred for 24 hours. A magnetic stirrer was used for this stirring. Next, the mixed solution after stirring is filtered (step S205). For the filtration, a membrane filter having a pore size of 0.1 μm was used. Next, lithium and cobalt in the filtrate are quantified (step S206). In this quantitative analysis, the leaching rate was calculated using a well-known inductively coupled plasma mass spectrometer (ICP-MS). As a result of the calculation, the leaching rate of cobalt was 0%, but the leaching rate of lithium was 50%.

ここで、上述した実施例に対する比較の実験を行った結果について説明する。この比較実験では、上記実施例と同じコバルト酸リチウムの粉末1gを、粉砕処理することなく、水50mlに混合して室温下で浸出を行った。この浸出では、粉末を混合した水をマグネチックスターラにより24時間攪拌した。次に、攪拌後の溶液をろ紙(メンブレンフィルター、0.1um)によりろ過分離し、ろ液中の溶存元素の濃度をICP−MSで分析した。この分析結果からリチウムとコバルトの浸出率を算出したところ、リチウムの浸出率は5%程度と低く、コバルトの浸出率は0%であった。   Here, the result of a comparative experiment performed on the above-described embodiment will be described. In this comparative experiment, 1 g of the same lithium cobalt oxide powder as in the above example was mixed with 50 ml of water without pulverization and leached at room temperature. In this leaching, water mixed with powder was stirred for 24 hours with a magnetic stirrer. Next, the solution after stirring was separated by filtration with a filter paper (membrane filter, 0.1 μm), and the concentration of dissolved elements in the filtrate was analyzed by ICP-MS. When the leaching rate of lithium and cobalt was calculated from this analysis result, the leaching rate of lithium was as low as about 5%, and the leaching rate of cobalt was 0%.

上述した実験の結果から明らかなように、本実施の形態によれば、室温程度の温度条件で、水にリチウムを選択的に浸出させることができるようになる。   As is clear from the results of the experiment described above, according to the present embodiment, lithium can be selectively leached into water under a temperature condition of about room temperature.

以上のように、本発明によれば、高効率かつ低コストで、リチウム含有金属酸化物からリチウムをを水に浸出させることができ、湿式処理による安全・安価なリチウムの回収を可能にする。   As described above, according to the present invention, lithium can be leached into water from a lithium-containing metal oxide with high efficiency and low cost, and safe and inexpensive lithium recovery can be achieved by wet processing.

なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。例えば、炭素材料としては、黒鉛、活性炭、石炭、コークス、木炭、および電池の電極を構成する炭素などを用いることができる。   The present invention is not limited to the embodiment described above, and many modifications and combinations can be implemented by those having ordinary knowledge in the art within the technical idea of the present invention. It is obvious. For example, as the carbon material, graphite, activated carbon, coal, coke, charcoal, carbon constituting a battery electrode, and the like can be used.

上述では、遷移金属がコバルトの場合(コバルト酸リチウム)について説明したが、これに限るものではなく、遷移金属は、コバルト,ニッケル,マンガン,鉄,銅,クロム,およびチタンの少なくとも1つの金属であればよい。また、コバルト酸リチウムに限らず、リチウムと2つ以上の遷移金属とから構成されたリチウム含有金属酸化物であっても、本発明により、選択的にリチウムが浸出できる。   In the above description, the case where the transition metal is cobalt (lithium cobaltate) has been described. However, the transition metal is not limited to this, and the transition metal is at least one metal of cobalt, nickel, manganese, iron, copper, chromium, and titanium. I just need it. Further, not only lithium cobaltate but also a lithium-containing metal oxide composed of lithium and two or more transition metals, lithium can be selectively leached according to the present invention.

Claims (5)

遷移金属の酸化物とリチウムとが化合しているリチウム含有金属酸化物を含む粉末と炭素材料の粉末とを混合して混合粉末を作製する第1工程と、
前記混合粉末をボールミルにより粉砕処理する第2工程と、
粉砕処理した前記混合粉末と水とを混合してリチウムを前記水に浸出する第3工程と
を少なくとも備えることを特徴とするリチウムの浸出方法。
A first step of preparing a mixed powder by mixing a powder containing a lithium-containing metal oxide in which an oxide of a transition metal and lithium are combined with a powder of a carbon material;
A second step of pulverizing the mixed powder with a ball mill;
And a third step of leaching lithium into the water by mixing the pulverized mixed powder and water.
請求項1記載のリチウムの浸出方法において、
前記遷移金属は、コバルト,ニッケル,マンガン,鉄,銅,クロム,およびチタンの少なくとも1つであることを特徴とするリチウムの浸出方法。
The lithium leaching method according to claim 1,
The lithium leaching method, wherein the transition metal is at least one of cobalt, nickel, manganese, iron, copper, chromium, and titanium.
請求項2記載のリチウムの浸出方法において、
前記リチウム含有金属酸化物は、コバルト酸リチウムであることを特徴とするリチウムの浸出方法。
The method of leaching lithium according to claim 2,
The lithium leaching method is characterized in that the lithium-containing metal oxide is lithium cobalt oxide.
請求項3記載のリチウムの浸出方法において、
前記リチウム含有金属酸化物は、電池の電極材料として用いられているものであることを特徴とするリチウムの浸出方法。
The lithium leaching method according to claim 3,
The method for leaching lithium, wherein the lithium-containing metal oxide is used as a battery electrode material.
請求項1〜4のいずれか1項に記載のリチウムの浸出方法において、
前記炭素材料は、黒鉛、活性炭、石炭、コークス、木炭、および電池の電極を構成する炭素より選択されたものであることを特徴とするリチウムの浸出方法。
The lithium leaching method according to any one of claims 1 to 4,
The method for leaching lithium, wherein the carbon material is selected from graphite, activated carbon, coal, coke, charcoal, and carbon constituting a battery electrode.
JP2011131994A 2011-06-14 2011-06-14 Leaching method for lithium Withdrawn JP2013001921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011131994A JP2013001921A (en) 2011-06-14 2011-06-14 Leaching method for lithium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011131994A JP2013001921A (en) 2011-06-14 2011-06-14 Leaching method for lithium

Publications (1)

Publication Number Publication Date
JP2013001921A true JP2013001921A (en) 2013-01-07

Family

ID=47670808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011131994A Withdrawn JP2013001921A (en) 2011-06-14 2011-06-14 Leaching method for lithium

Country Status (1)

Country Link
JP (1) JP2013001921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113481368A (en) * 2021-05-26 2021-10-08 广东佳纳能源科技有限公司 Method for leaching valuable metals from waste lithium cobaltate battery powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113481368A (en) * 2021-05-26 2021-10-08 广东佳纳能源科技有限公司 Method for leaching valuable metals from waste lithium cobaltate battery powder

Similar Documents

Publication Publication Date Title
Mishra et al. A review on recycling of lithium-ion batteries to recover critical metals
Fan et al. Low-temperature molten-salt-assisted recovery of valuable metals from spent lithium-ion batteries
Xiao et al. Novel approach for in situ recovery of lithium carbonate from spent lithium ion batteries using vacuum metallurgy
Ordoñez et al. Processes and technologies for the recycling and recovery of spent lithium-ion batteries
Nayaka et al. Recovery of valuable metal ions from the spent lithium-ion battery using aqueous mixture of mild organic acids as alternative to mineral acids
Wang et al. Cleaner recycling of cathode material by in-situ thermite reduction
Vieceli et al. Hydrometallurgical recycling of EV lithium-ion batteries: Effects of incineration on the leaching efficiency of metals using sulfuric acid
Wang et al. Separation of Li and Co from the active mass of spent Li-ion batteries by selective sulfating roasting with sodium bisulfate and water leaching
Meshram et al. Acid baking of spent lithium ion batteries for selective recovery of major metals: a two-step process
Xu et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries
CN108075203B (en) Method for recycling valuable metal components in waste lithium ion battery material
Nan et al. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction
JP2021530838A (en) Recycling process for used lithium-ion batteries
Zheng et al. Leaching procedure and kinetic studies of cobalt in cathode materials from spent lithium ion batteries using organic citric acid as leachant
JP5847741B2 (en) Waste cathode material and method for recovering metal from waste battery
Aktas Silver recovery from spent silver oxide button cells
CN111118294A (en) Method for recycling valuable metals from waste lithium ion battery materials step by step
Wang et al. Selective regeneration of lithium from spent lithium-ion batteries using ionic substitution stimulated by mechanochemistry
JP2012246519A (en) Metal leaching method
JP2019178395A (en) Collection method of lithium from lithium ion battery scrap
Mohanty et al. Application of various processes to recycle lithium-ion batteries (LIBs): A brief review
JP5719792B2 (en) Method for producing chemical manganese dioxide from ternary positive electrode active material, chemical manganese dioxide produced by the production method, and secondary battery containing chemical manganese dioxide
KR102562997B1 (en) Method for recovering useful metals by water leaching of sulfate roasted products of waste lithium secondary batteries
Wang et al. A green process to recover valuable metals from the spent ternary lithium-ion batteries
JP2017115179A (en) Recovery method of valuable substance

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902