JP2013000899A - Mold release polyester film - Google Patents

Mold release polyester film Download PDF

Info

Publication number
JP2013000899A
JP2013000899A JP2011130767A JP2011130767A JP2013000899A JP 2013000899 A JP2013000899 A JP 2013000899A JP 2011130767 A JP2011130767 A JP 2011130767A JP 2011130767 A JP2011130767 A JP 2011130767A JP 2013000899 A JP2013000899 A JP 2013000899A
Authority
JP
Japan
Prior art keywords
film
polyester
release
mold release
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011130767A
Other languages
Japanese (ja)
Inventor
Tomohisa Saito
智久 齋藤
Yuuka Kato
優佳 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2011130767A priority Critical patent/JP2013000899A/en
Priority to KR1020137023257A priority patent/KR20140027103A/en
Priority to CN201280021010.2A priority patent/CN103502007A/en
Priority to PCT/JP2012/064650 priority patent/WO2012173033A1/en
Publication of JP2013000899A publication Critical patent/JP2013000899A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mold release polyester film capable of realizing high-degree precision in executing the optical inspection of a polarizing plate by a crossed Nicol method.SOLUTION: The mold release polyester film which is a mold release film having a silicone mold release layer at least on one surface thereof and is characterized in that the internal transparency of the mold release film is 96.5% or above, the surface roughness (Ra) of the silicone mold release layer is 9.0 nm or above and the MOR value of the mold release film is 1.5-3.0.

Description

本発明は、光学用途向けの光学検査に有利な離型ポリエステルフィルムに関するものである。   The present invention relates to a release polyester film advantageous for optical inspection for optical applications.

ポリエチレンテレフタレートやポリエチレンナフタレートに代表されるポリエステルフィルムは、機械的強度、寸法安定性、平坦性、耐熱性、耐薬品性、光学特性等に優れた特性を有し、コストパフォーマンスに優れるため、各種の用途において使用されている。しかし、その用途が多様化するにつれて、ポリエステルフィルムの加工条件や使用条件が多様化し、偏光板用の離型ポリエステルフィルムとして使用する場合、異物検査の際、離型フィルム中の粒子成分が輝点となり、検査精度が低下する等の問題が生じている。   Polyester films represented by polyethylene terephthalate and polyethylene naphthalate have excellent mechanical strength, dimensional stability, flatness, heat resistance, chemical resistance, optical properties, etc. It is used in applications. However, as the application diversifies, the processing conditions and usage conditions of the polyester film diversify. When used as a release polyester film for polarizing plates, the particle component in the release film is a bright spot when inspecting foreign matter. Thus, problems such as a decrease in inspection accuracy occur.

近年、携帯電話やパーソナルコンピューターの急速な普及に伴い、従来型のディスプレイであるCRTに比べ、薄型軽量化、低消費電力、高画質化が可能である液晶ディスプレイ(LCD)の需要が著しく伸びつつあり、LCDの大画面化についてもその技術の成長は著しい。LCDの大画面化の一例として、最近では、30インチ以上の大型TV用途にLCDが使用されている。大画面化されたLCDにおいては、LCD内に組み込まれたバックライトの輝度を高めることや、輝度を向上させるフィルムを液晶ユニット内に組み込むこと等により、大画面で明るいLCDとする場合が多い。   In recent years, with the rapid spread of mobile phones and personal computers, the demand for liquid crystal displays (LCDs) that are thinner, lighter, consume less power, and have higher image quality than the conventional display CRT is growing significantly. There is also a remarkable growth in the technology for increasing the screen size of LCDs. As an example of increasing the screen size of LCD, recently, LCD is used for large TV applications of 30 inches or more. An LCD with a large screen is often a bright LCD with a large screen by increasing the luminance of a backlight incorporated in the LCD or incorporating a film for improving the luminance into a liquid crystal unit.

また、このようないわゆる高輝度タイプのLCDでは、ディスプレイ中に存在する小さな輝点が問題となる場合が多く、ディスプレイ中に組み込まれる偏光板、位相差板または位相差偏光板といった構成部材においては、これまでの低輝度タイプのLCDでは問題にならなかったような微小なサイズの異物が問題となってきている。このため、製造工程における異物の混入を防ぐ一方で、万一異物が混入した場合であっても欠陥として確実に認知できるような検査精度の向上も重要となってきている。   In such a so-called high-brightness type LCD, a small bright spot existing in the display is often a problem, and in a component such as a polarizing plate, a retardation plate or a retardation polarizing plate incorporated in the display, As a result, there is a problem of a foreign material having a minute size that has not been a problem in conventional low-brightness LCDs. For this reason, while preventing the entry of foreign matter in the manufacturing process, it is also important to improve the inspection accuracy so that even if foreign matter is mixed, it can be recognized as a defect.

従来、ポリエステルフィルム中の粒子はフィルムの滑り性、巻き特性を確保するために通常使用されるものであり、適度な粒径と配合量を満足しなければ、所望の滑り性を確保できなかったり、巻き特性が悪化したりして、その結果、生産性の悪化を招いてしまうものである。しかしながら、通常使用される範囲の粒径、配合量とした場合、先に述べたとおり、偏光板用離型フィルムとして使用された際に、異物検査工程で当該粒子が輝点となり、検査に支障を来すことが問題となっている。   Conventionally, the particles in the polyester film are usually used to ensure the slipperiness and winding characteristics of the film, and if the appropriate particle size and blending amount are not satisfied, the desired slipperiness cannot be ensured. As a result, the winding characteristics deteriorate, and as a result, the productivity deteriorates. However, when the particle size and blending amount are within the normally used range, as described above, when used as a release film for polarizing plates, the particles become bright spots in the foreign substance inspection process, which hinders inspection. Is a problem.

例えば偏光板の欠陥検査としては、クロスニコル法による目視検査が一般的であり、さらに例えば40インチ以上の大型TV用途に使用する偏光板等では、クロスニコル法を利用した自動異物検査器による検査も実施されつつある。このクロスニコル法によれば、2枚の偏光板をその配向主軸を直交させて消光状態とし、異物や欠陥があればそこが輝点として現れるので、目視による欠陥検査、または、ラインセンサカメラ等による自動欠陥検査ができる。ここで、通常、偏光板には粘着剤層が設けられ、そのための離形フィルムとして離型層を設置したポリエステルフィルムが使用されている。かかる構成の製品を検査する場合、2枚の偏光板の間に離型ポリエステルフィルムが挟み込まれた状態でクロスニコル検査を実施することになる。一般に、離型ポリエステルフィルムをこれに用いた場合には、クロスニコル法の検査において、異物や欠陥が見にくくなり、それらを見逃しやすくなるという不具合が生じる場合がある。   For example, as a defect inspection of a polarizing plate, a visual inspection by a crossed Nicols method is generally used. Further, for example, for a polarizing plate used for a large TV application of 40 inches or more, an inspection by an automatic particle inspection device using the crossed Nicols method is used. Is also being implemented. According to this crossed Nicol method, two polarizing plates are put in a quenching state with their orientation principal axes orthogonal to each other, and if there are foreign matters or defects, they appear as bright spots, so a visual defect inspection or a line sensor camera, etc. Automatic defect inspection can be performed. Here, the pressure-sensitive adhesive layer is usually provided on the polarizing plate, and a polyester film provided with a release layer is used as the release film for that purpose. When a product having such a configuration is inspected, a crossed Nicols inspection is performed in a state where a release polyester film is sandwiched between two polarizing plates. In general, when a release polyester film is used for this, foreign matter and defects are difficult to see in the crossed Nicols inspection, and it may be easy to miss them.

これらに関し、2枚の偏光板の間にポリエステルフィルムを挟み込んだ際、リタデーション値がある範囲内である場合に検査性が向上するといったもの(特許文献1参照)が開示されているが、近年の高度な品質を要求されるレベルにおいてはこれらを使用しても、欠陥を確実に見いだすための検査を実施する場合には、精度が不足する場合がある。   Regarding these, when a polyester film is sandwiched between two polarizing plates, an inspection property is improved when the retardation value is within a certain range (see Patent Document 1). Even if these are used at a level where quality is required, accuracy may be insufficient when inspection is performed to find defects reliably.

また、偏光板の歪みやムラと言った欠陥を検査する場合には、蛍光灯下での反射目視検査が行われることがある。この場合、離形フィルムを介して、その下に設けられている偏光板の検査を行うため、離形フィルムが極端に白いと、偏光板の欠陥が見にくくなり、それらを見逃しやすくなるという不具合が生じる場合がある。これに関し、使用される離型フィルムにおいて、内部ヘーズだけでは粒状感が残ってしまうことがあって不十分だが(特許文献2参照)、この内部ヘーズを含むフィルムの透明性が重要となる。   Further, when inspecting a defect such as distortion or unevenness of a polarizing plate, a reflection visual inspection under a fluorescent lamp may be performed. In this case, in order to inspect the polarizing plate provided thereunder through the release film, if the release film is extremely white, defects of the polarizing plate are difficult to see and it is easy to miss them. May occur. In this regard, in the release film to be used, the internal haze alone may leave a grainy feeling (see Patent Document 2), but the transparency of the film including the internal haze is important.

特開2000−338327号公報JP 2000-338327 A 特開平2009−214360号公報JP 2009-214360 A 特願2011−26005号公報Japanese Patent Application No. 2011-2605

本発明は、上記実情に鑑みなされたものであって、その解決課題は、偏光板のクロスニコル法による光学検査において、高度な精度を実現できる離型ポリエステルフィルムを提供することにある。   This invention is made | formed in view of the said situation, Comprising: The solution subject is providing the release polyester film which can implement | achieve a high precision in the optical test | inspection by the cross Nicol method of a polarizing plate.

本発明者らは、上記実情に鑑み鋭意検討した結果、特定の構成を有するポリエステルフィルムによれば、上記課題を容易に解決できることを見いだし、本発明を完成するに至った。   As a result of intensive studies in view of the above circumstances, the present inventors have found that the above problem can be easily solved by a polyester film having a specific configuration, and have completed the present invention.

すなわち、本発明の要旨は、少なくとも片面にシリコーン系離型層を有する離型フィルムであり、当該離型フィルムの内部透明度が96.5%以上であり、前記シリコーン系離型層の表面の粗さ(Ra)が9.0nm以上であり、当該離型フィルムのMOR値が1.5〜3.0であることを特徴とする離型ポリエステルフィルムに存する。   That is, the gist of the present invention is a release film having a silicone release layer on at least one side, the internal transparency of the release film is 96.5% or more, and the surface of the silicone release layer is rough. (Ra) is 9.0 nm or more, and the release film has a MOR value of 1.5 to 3.0.

本発明によれば、離型フィルムが貼り合わされた状態の偏光等の部材について、クリア感に優れ、歪みやムラのような欠陥や異物有無の検査をクロスニコル法による目視検査で行う場合に検査性に優れ、かつ、生産性に優れたポリエステルフィルムを提供することができるため、本発明の工業的価値は高い。   According to the present invention, a member such as polarized light in a state where a release film is bonded is excellent in a clear feeling, and is inspected when visual inspection by a cross Nicol method is performed for inspection of defects such as distortion and unevenness and the presence of foreign matter. Since the polyester film which is excellent in productivity and excellent in productivity can be provided, the industrial value of the present invention is high.

本発明で言うポリエステルフィルムとは、押出口金から溶融押出される、いわゆる押出法により押出した溶融ポリエステルシートを冷却した後、必要に応じ、延伸、熱処理を施したフィルムである。   The polyester film referred to in the present invention is a film which is melt-extruded from an extrusion die, and is subjected to stretching and heat treatment as necessary after cooling a molten polyester sheet extruded by a so-called extrusion method.

本発明のフィルムを構成するポリエステルとは、芳香族ジカルボン酸と脂肪族グリコールとを重縮合させて得られるものである。芳香族ジカルボン酸としては、テレフタル酸、2,6−ナフタレンジカルボン酸などが挙げられ、脂肪族グリコールとしては、エチレングリコール、ジエチレングリコール、1,4−シクロヘキサンジメタノール等が挙げられる。代表的なポリエステルとしては、ポリエチレンテレフタレート(PET)、ポリエチレン−2,6−ナフタレンジカルボキシレート(PEN)等が例示される。また、用いるポリエステルは、ホモポリエステルであっても共重合ポリエステルであってもよい。共重合ポリエステルの場合は、30モル%以下の第三成分を含有した共重合体であればよい。
このような共重合ポリエステルのジカルボン酸成分としては、イソフタル酸、フタル酸、テレフタル酸、2,6−ナフタレンジカルボン酸、アジピン酸、セバシン酸およびオキシカルボン酸(例えば、P−オキシ安息香酸など)等から選ばれる一種または二種以上が挙げられる。一方のグリコール成分としては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、1,4−シクロヘキサンジメタノール、ネオペンチルグリコール等から選ばれる一種または二種以上が挙げられる。
The polyester constituting the film of the present invention is obtained by polycondensation of an aromatic dicarboxylic acid and an aliphatic glycol. Examples of the aromatic dicarboxylic acid include terephthalic acid and 2,6-naphthalenedicarboxylic acid, and examples of the aliphatic glycol include ethylene glycol, diethylene glycol, and 1,4-cyclohexanedimethanol. Representative polyesters include polyethylene terephthalate (PET), polyethylene-2,6-naphthalenedicarboxylate (PEN), and the like. The polyester used may be a homopolyester or a copolyester. In the case of a copolyester, it may be a copolymer containing 30 mol% or less of the third component.
Examples of the dicarboxylic acid component of such a copolyester include isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, and oxycarboxylic acid (eg, P-oxybenzoic acid). 1 type or 2 types or more chosen from are mentioned. One glycol component includes one or more selected from ethylene glycol, diethylene glycol, propylene glycol, butanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, and the like.

本発明で得られるポリエステルには、本発明の要旨を損なわない範囲で、耐候剤、耐光剤、帯電防止剤、潤滑剤、遮光剤、抗酸化剤、蛍光増白剤、マット化剤、熱安定剤、および染料、顔料などの着色剤などを配合してもよい。   In the polyester obtained by the present invention, a weathering agent, a light-proofing agent, an antistatic agent, a lubricant, a light-shielding agent, an antioxidant, a fluorescent whitening agent, a matting agent, and a heat-stabilizing agent as long as the gist of the present invention is not impaired. You may mix | blend an agent and coloring agents, such as dye and a pigment.

フィルムに配合する粒子としては、酸化ケイ素、アルミナ、炭酸カルシウム、カオリン、酸化チタンおよび特公昭59−5216号公報に記載されているような架橋高分子微粉体等を挙げることができる。これらの粒子は、単独あるいは2成分以上を同時に使用してもよい。これら粒子の配合量は、フィルムを構成するポリエステルに対し、通常1重量%以下、好ましくは0.01〜1重量%、さらに好ましくは0.02〜0.6重量%の範囲である。粒子の含有量が少ない場合には、フィルム表面を適度な粗面にすることができず、フィルム製造工程において、表面のキズが発生しやすかったり、巻き特性が劣ったりする傾向がある。また、粒子の含有量が1重量%を超える場合には、フィルム表面の粗面化の度合いが大きくなりすぎて透明性が損なわれることがある。   Examples of the particles to be blended in the film include silicon oxide, alumina, calcium carbonate, kaolin, titanium oxide, and crosslinked polymer fine powder as described in JP-B-59-5216. These particles may be used alone or in combination of two or more components. The blending amount of these particles is usually 1% by weight or less, preferably 0.01 to 1% by weight, more preferably 0.02 to 0.6% by weight, based on the polyester constituting the film. When the content of the particles is small, the film surface cannot be appropriately roughened, and in the film production process, there is a tendency that the surface is easily scratched or the winding properties are inferior. Further, when the content of the particles exceeds 1% by weight, the degree of roughening of the film surface becomes too large, and the transparency may be impaired.

ポリエステルフィルム中に配合する粒子の平均粒径としては、特に限定されるものではないが、通常0.02μm〜5μm、好ましくは0.02μm〜3.5μm、さらに好ましくは0.02μm〜3.2μmの範囲である。平均粒径が0.02μm未満の粒子を用いた場合には、十分な易滑性の付与が出来ないため、フィルム製造工程における巻き特性が劣る傾向がある。また、平均粒径が5μmを超える場合には、フィルム表面の粗面化の度合いが大きくなりすぎてフィルムの曇り度が高くなる場合がある。   The average particle size of the particles blended in the polyester film is not particularly limited, but is usually 0.02 μm to 5 μm, preferably 0.02 μm to 3.5 μm, more preferably 0.02 μm to 3.2 μm. Range. When particles having an average particle size of less than 0.02 μm are used, sufficient slipperiness cannot be imparted, so that the winding characteristics in the film production process tend to be inferior. On the other hand, when the average particle diameter exceeds 5 μm, the degree of roughening of the film surface becomes too large, and the cloudiness of the film may increase.

一方、フィルムの透明性を向上させるため、2層以上の積層フィルムとした場合、表層のみに粒子を配合する方法も好ましく採用される。この場合の表層とは、少なくとも表裏どちらか1層であり、もちろん表裏両層に粒子を配合することもできる。かかる積層フィルムとした場合の粒子の配合量は、表層を構成するポリエステルに対し、好ましくは0.01〜1重量%、さらに好ましくは0.02〜0.6重量%の範囲である。   On the other hand, in order to improve the transparency of the film, when a laminated film of two or more layers is used, a method of blending particles only in the surface layer is also preferably employed. The surface layer in this case is at least one of the front and back layers, and of course, particles can be blended in both the front and back layers. The blending amount of the particles in the case of such a laminated film is preferably 0.01 to 1% by weight, more preferably 0.02 to 0.6% by weight, based on the polyester constituting the surface layer.

また、用いられる粒子の粒度分布はシャープな物が好ましい。具体的には、粒度分布のシャープさを表す指標である粒度分布値が1.0〜2.0のものが好ましい。なお、ここで粒度分布値とは、粒度分布値d25/d75(d25、d75は粒子群の積算堆積を大粒子側から計算し、それぞれ総体積の25%、75%に相当する粒径(μm)を示す)により定義される値である。粒度分布値が2.0を超える場合、透明性が不十分になる可能性がある。   In addition, a sharp particle size distribution is preferably used. Specifically, those having a particle size distribution value of 1.0 to 2.0, which is an index representing the sharpness of the particle size distribution, are preferable. Here, the particle size distribution value is the particle size distribution value d25 / d75 (d25 and d75 are calculated by calculating the accumulated accumulation of the particle group from the large particle side, and the particle size (μm corresponding to 25% and 75% of the total volume, respectively) Is a value defined by When the particle size distribution value exceeds 2.0, transparency may be insufficient.

本発明において、ポリエステルに粒子を配合する方法としては、特に限定されるものではなく、公知の方法を採用し得る。例えば、ポリエステルを製造する任意の段階において添加することができるが、好ましくはエステル化の段階、もしくはエステル交換反応終了後重縮合反応開始前の段階でエチレングリコール等に分散させたスラリーとして添加し重縮合反応を進めてもよい。またベント付き混練押出機を用い、エチレングリコールまたは水などに分散させた粒子のスラリーとポリエステル原料とをブレンドする方法、または、混練押出機を用い、乾燥させた粒子とポリエステル原料とをブレンドする方法などによって行われる。   In the present invention, the method of blending the particles with the polyester is not particularly limited, and a known method can be adopted. For example, it can be added at any stage for producing the polyester, but it is preferably added as a slurry dispersed in ethylene glycol or the like at the stage of esterification or before the start of the polycondensation reaction after completion of the transesterification reaction. The condensation reaction may proceed. Also, a method of blending a slurry of particles dispersed in ethylene glycol or water with a vented kneading extruder and a polyester raw material, or a method of blending dried particles and a polyester raw material using a kneading extruder Etc.

なおポリエステルは、溶融重合後これをチップ化し、加熱減圧下または窒素等不活性気流中に必要に応じてさらに固相重合を施してもよい。得られるポリエステルの固有粘度は0.40dL/g以上であることが好ましく、0.40〜0.90dL/gであることがさらに好ましい。   The polyester may be converted into chips after melt polymerization, and further subjected to solid phase polymerization as necessary under heating under reduced pressure or in an inert gas stream such as nitrogen. The intrinsic viscosity of the obtained polyester is preferably 0.40 dL / g or more, and more preferably 0.40 to 0.90 dL / g.

本発明のフィルムの総厚みは、フィルムとして製膜可能な範囲で有れば特に限定されるものではないが、通常4〜300μm、好ましくは25〜188μmの範囲である。   The total thickness of the film of the present invention is not particularly limited as long as it can be formed as a film, but is usually in the range of 4 to 300 μm, preferably 25 to 188 μm.

次に本発明のフィルムの製造方法に関して具体的に説明するが、本発明の要旨を満足する限り、以下の例示に特に限定されるものではない。   Next, although the manufacturing method of the film of this invention is demonstrated concretely, as long as the summary of this invention is satisfied, it is not specifically limited to the following illustrations.

まず、本発明で使用するポリエステルの製造方法の好ましい例について説明する。ここではポリエステルとしてポリエチレンテレフタレートを用いた例を示すが、使用するポリエステルにより製造条件は異なる。常法に従って、テレフタル酸とエチレングリコールからエステル化し、または、テレフタル酸ジメチルとエチレングリコールとを、エステル交換反応させ、その生成物を重合槽に移送し、減圧しながら温度を上昇させ、最終的に真空下で280℃に加熱して重合反応を進め、ポリエチレンテレフタレート得る。   First, the preferable example of the manufacturing method of polyester used by this invention is demonstrated. Here, an example in which polyethylene terephthalate is used as the polyester is shown, but the production conditions differ depending on the polyester used. According to a conventional method, esterification from terephthalic acid and ethylene glycol, or dimethyl terephthalate and ethylene glycol are transesterified, the product is transferred to a polymerization tank, and the temperature is increased while reducing the pressure. The polymerization reaction proceeds by heating to 280 ° C. under vacuum to obtain polyethylene terephthalate.

次に例えば上記のようにして得、公知の手法により乾燥したポリエステルチップを溶融押出装置に供給し、それぞれのポリマーの融点以上である温度に加熱し溶融する。次いで、溶融したポリマーを口金から押出し、回転冷却ドラム上でガラス転移温度以下の温度になるように急冷固化し、実質的に非晶状態の未配向シートを得る。この場合、シートの平面性を向上させるため、シートと回転冷却ドラムとの密着性を高めることが好ましく、本発明においては静電印加密着法および/または液体塗布密着法が好ましく採用される。本発明においては、このようにして得られたシートを2軸方向に延伸してフィルム化する。
延伸条件について具体的に述べると、前記未延伸シートを好ましくは縦方向に70〜145℃で2〜6倍に延伸し、縦1軸延伸フィルムとした後、横方向に90〜160℃で2〜6倍延伸を行い、150〜240℃で1〜600秒間熱処理を行うことが好ましい。さらにこの際、熱処理の最高温度ゾーンおよび/または熱処理出口のクーリングゾーンにおいて、縦方向および/または横方向に0.1〜20%弛緩する方法が好ましい。また、必要に応じて再縦延伸、再横延伸を付加することも可能である。さらに、前記の未延伸シートを面積倍率が10〜40倍になるように同時二軸延伸を行うことも可能である。
Next, for example, the polyester chip obtained as described above and dried by a known method is supplied to a melt-extrusion apparatus and heated to a temperature equal to or higher than the melting point of each polymer and melted. Next, the molten polymer is extruded from the die, and rapidly cooled and solidified on the rotary cooling drum so as to have a temperature equal to or lower than the glass transition temperature to obtain a substantially amorphous unoriented sheet. In this case, in order to improve the flatness of the sheet, it is preferable to improve the adhesion between the sheet and the rotary cooling drum. In the present invention, an electrostatic application adhesion method and / or a liquid application adhesion method is preferably employed. In the present invention, the sheet thus obtained is stretched biaxially to form a film.
Specifically describing the stretching conditions, the unstretched sheet is preferably stretched 2 to 6 times at 70 to 145 ° C. in the longitudinal direction to form a longitudinal uniaxially stretched film, and then 2 to 90 to 160 ° C. in the lateral direction. It is preferable to perform ~ 6 times stretching and heat treatment at 150 to 240 ° C for 1 to 600 seconds. Further, at this time, a method of relaxing 0.1 to 20% in the longitudinal direction and / or the transverse direction in the maximum temperature zone of the heat treatment and / or the cooling zone at the heat treatment outlet is preferable. Further, it is possible to add re-longitudinal stretching and re-lateral stretching as necessary. Furthermore, it is also possible to perform simultaneous biaxial stretching of the unstretched sheet so that the area magnification is 10 to 40 times.

本発明のポリエステルフィルムは、本発明の効果を損なわない範囲であれば、延伸工程中にフィルム表面を処理する、いわゆるインラインコーティングを施すこともできる。それは以下に限定するものではないが、例えば、1段目の延伸が終了して、2段目の延伸前に、帯電防止性、滑り性、接着性等の改良、2次加工性改良、耐候性および表面硬度の向上等の目的で、水溶液、水系エマルジョン、水系スラリー等によるコーティング処理を施すことができる。また、フィルム製造後にオフラインコートで各種のコートを行ってもよい。このようなコートは片面、両面のいずれでもよい。コーティングの材料としてはオフラインコーティングの場合は水系、溶媒系のいずれでもよいが、インラインコーティングの場合は水系が好ましい。   The polyester film of the present invention can be subjected to so-called in-line coating for treating the film surface during the stretching step as long as the effects of the present invention are not impaired. Although it is not limited to the following, for example, after the first stage of stretching is completed, before the second stage of stretching, improvement of antistatic property, slipperiness, adhesion, etc., secondary workability improvement, weather resistance, etc. In order to improve the property and surface hardness, a coating treatment with an aqueous solution, an aqueous emulsion, an aqueous slurry, or the like can be performed. Various coatings may be performed by offline coating after film production. Such a coat may be either single-sided or double-sided. The coating material may be either water-based or solvent-based for offline coating, but is preferably water-based for in-line coating.

本発明において用いる塗布液は、通常、安全性や衛生性の観点から水を主たる媒体として調整されていることが好ましい。水を主たる媒体とする限りにおいて、水への分散を改良する目的あるいは造膜性能を改良する目的で少量の有機溶剤を含有していてもよい。有機溶剤は、主たる媒体である水と混合して使用する場合、水に溶解する範囲で使用することが好ましいが、長時間の放置で分離しないような安定した乳濁液(エマルジョン)であれば、水に溶解しない状態で使用してもよい。有機溶剤は単独で用いてもよいが、必要に応じて二種以上を併用してもよい。   The coating solution used in the present invention is usually preferably adjusted with water as the main medium from the viewpoint of safety and hygiene. As long as water is the main medium, a small amount of an organic solvent may be contained for the purpose of improving the dispersion in water or improving the film forming performance. The organic solvent is preferably used as long as it dissolves in water when mixed with water, which is the main medium. Alternatively, it may be used in a state where it does not dissolve in water. The organic solvent may be used alone or in combination of two or more as necessary.

本発明における離型層は、離型性を有する材料を含有していれば、特に限定されるものではない。その中でも、硬化型シリコーン樹脂を含有するものによれば離型性が良好となるので好ましい。硬化型シリコーン樹脂を主成分とするタイプでもよいし、ウレタン樹脂、エポキシ樹脂、アルキッド樹脂等の有機樹脂とのグラフト重合等による変性シリコーンタイプ等を使用してもよい。   The release layer in the present invention is not particularly limited as long as it contains a material having releasability. Among them, the one containing a curable silicone resin is preferable because the releasability is improved. A type having a curable silicone resin as a main component may be used, or a modified silicone type by graft polymerization with an organic resin such as a urethane resin, an epoxy resin, or an alkyd resin may be used.

硬化型シリコーン樹脂の種類としては、付加型・縮合型・紫外線硬化型・電子線硬化型・無溶剤型等何れの硬化反応タイプでも用いることができる。   As the type of the curable silicone resin, any of the curing reaction types such as an addition type, a condensation type, an ultraviolet ray curable type, an electron beam curable type, and a solventless type can be used.

硬化型シリコーン樹脂の具体例を挙げると、信越化学工業(株)製KS−774、KS−775、KS−778、KS−779H、KS−847H、KS−856、X−62−2422、X−62−2461、ダウ・コーニング・アジア(株)製DKQ3−202、DKQ3−203、DKQ3−204、DKQ3−205、DKQ3−210、東芝シリコーン(株)製YSR−3022、TPR−6700、TPR−6720、TPR−6721、東レ・ダウ・コーニング(株)製SD7220、SD7226、SD7229等が挙げられる。さらに離型層の剥離性等を調整するために剥離コントロール剤を併用してもよい。また、上述のとおり、離型層中にアミノ基を有するシラン化合物を添加することもある。   Specific examples of the curable silicone resin include KS-774, KS-775, KS-778, KS-779H, KS-847H, KS-856, X-62-2422, X-manufactured by Shin-Etsu Chemical Co., Ltd. 62-2461, DKQ3-202, DKQ3-203, DKQ3-204, DKQ3-205, DKQ3-210 manufactured by Dow Corning Asia Co., Ltd. YSR-3022, TPR-6700, TPR-6720 manufactured by Toshiba Silicone Co., Ltd. , TPR-6721, SD 7220, SD 7226, SD 7229 manufactured by Toray Dow Corning Co., Ltd., and the like. Further, a release control agent may be used in combination to adjust the release property of the release layer. Further, as described above, a silane compound having an amino group may be added to the release layer.

本発明において、ポリエステルフィルムに離型層を設ける方法としては、リバースロールコート、グラビアコート、バーコート、ドクターブレードコート等、従来公知の塗工方式を用いることができる。本発明における離型層の塗布量は、通常0.01〜1g/mの範囲である。 In the present invention, as a method for providing a release layer on the polyester film, a conventionally known coating method such as reverse roll coating, gravure coating, bar coating, doctor blade coating, or the like can be used. The application amount of the release layer in the present invention is usually in the range of 0.01 to 1 g / m 2 .

本発明において、離型層が設けられていない面には、接着層、帯電防止層、オリゴマー析出防止層等の塗布層を設けてもよく、また、ポリエステルフィルムにはコロナ処理、プラズマ処理等の表面処理を施してもよい。   In the present invention, a coating layer such as an adhesive layer, an antistatic layer and an oligomer precipitation preventing layer may be provided on the surface where the release layer is not provided, and the polyester film may be subjected to corona treatment, plasma treatment, etc. A surface treatment may be applied.

また、粘着剤層または離型層の塗膜の乾燥および/または硬化(熱硬化、電離放射線硬化等)は、それぞれ個別又は同時に行うことができる。同時に行う場合には、80℃以上の温度で行うことが好ましい。乾燥および硬化の条件としては、80℃以上で10秒以上が好ましい。乾燥温度が80℃未満または硬化時間が10秒未満では塗膜の硬化が不完全であり、塗膜が脱落しやすくなる傾向がある。   Moreover, drying and / or curing (thermal curing, ionizing radiation curing, etc.) of the coating film of the pressure-sensitive adhesive layer or the release layer can be performed individually or simultaneously. When performing simultaneously, it is preferable to carry out at the temperature of 80 degreeC or more. The drying and curing conditions are preferably 80 ° C. or higher and 10 seconds or longer. If the drying temperature is less than 80 ° C. or the curing time is less than 10 seconds, the coating film is incompletely cured and the coating film tends to fall off.

本発明のポリエステルフィルムの塗布層を綺麗かつ頑丈にするため、遷移金属系触媒を用いる。塗布層中の遷移金属系触媒含有量は、0.5〜5.0重量%、好ましくは1.5〜4.0重量%の範囲である。塗布層中の遷移金属系触媒含有量が0.5重量%よりも低い場合、剥離力の不具合や、塗布層での硬化反応が不十分になるため、面状悪化などの不具合を生じる場合があり、一方、塗布層中の遷移金属系触媒の含有量が5.0重量%を超える場合には、コストがかかる、また、反応性が高まり、ゲル異物が発生する等の工程不具合を生じてしまう。   In order to make the coated layer of the polyester film of the present invention clean and strong, a transition metal catalyst is used. The content of the transition metal catalyst in the coating layer is 0.5 to 5.0% by weight, preferably 1.5 to 4.0% by weight. When the content of the transition metal catalyst in the coating layer is lower than 0.5% by weight, there may be a problem such as deterioration of the surface condition due to insufficient peeling force or insufficient curing reaction in the coating layer. On the other hand, if the content of the transition metal catalyst in the coating layer exceeds 5.0% by weight, the cost is increased, the reactivity is increased, and process defects such as generation of gel foreign matter are caused. End up.

本発明においては、通常のオリゴマー含有量のポリエステルからなる層の少なくとも片側の表面に、オリゴマー含有量の少ないポリエステルを共押出積層した構造を有するフィルムであってもよく、かかる構造を有する場合、本発明で得られる離型フィルム用ポリエステルフィルムにおいて、析出したオリゴマーによる輝点を防止する効果が得られ、特に好ましい。   In the present invention, it may be a film having a structure in which a polyester having a low oligomer content is coextruded and laminated on at least one surface of a layer made of a polyester having a normal oligomer content. In the polyester film for release film obtained by the invention, the effect of preventing bright spots due to the precipitated oligomer is obtained, which is particularly preferable.

本発明において、後述する測定法におけるフィルムの内部透明度は96.5%以上であることが必要であり、97%以上であることが好ましい。フィルムの透明度が96.5%を下回る場合、フィルムの透明感が低下する。フィルムの内部透明度を上記範囲とするためには、例えば、用いる粒子の種類、粒径、添加量、製造ラインにおけるフィルターの強化、フィルム製造条件(フィルム延伸温度、延伸倍率)、フィルム製造ラインで使用するロールの平滑化等、種々の条件を適宜組み合わせることによって達成することができる。   In the present invention, the internal transparency of the film in the measurement method described later needs to be 96.5% or more, preferably 97% or more. When the transparency of the film is less than 96.5%, the transparency of the film is lowered. In order to set the internal transparency of the film within the above range, for example, the type of particles to be used, the particle size, the amount added, the strengthening of the filter in the production line, the film production conditions (film stretching temperature, draw ratio), used in the film production line This can be achieved by appropriately combining various conditions such as smoothing the rolls to be rolled.

また、離型層の表面粗さ(Ra)は、9.0nm以上であり、12nm以上であることが好ましい。フィルムのRaが9.0nmを下回る場合、フィルム表面が極端に平坦となり、フィルム製造工程における巻き特性が劣る。また、フィルムのRaが22nmを超える場合、表面の平面性が損なわれることがあり、フィルムが白っぽくなる恐れがあるので、Raの上限は22nmとすることが好ましい。   Moreover, the surface roughness (Ra) of the release layer is 9.0 nm or more, and preferably 12 nm or more. When Ra of the film is less than 9.0 nm, the film surface becomes extremely flat, and the winding characteristics in the film manufacturing process are inferior. Moreover, when Ra of the film exceeds 22 nm, the planarity of the surface may be impaired, and the film may become whitish. Therefore, the upper limit of Ra is preferably 22 nm.

上記、ポリエステルフィルムの粗さの範囲を満足するための手段は、任意の粒度分布の範囲を持つ、適当な有機粒子を用いて、配合量を最適に調整することである。   The above-mentioned means for satisfying the roughness range of the polyester film is to optimally adjust the blending amount using appropriate organic particles having an arbitrary particle size distribution range.

本発明の離型ポリエステルフィルムにおいて、工程の光学検査等で異物や光干渉色の発生を低減するには、離型フィルムをマイクロ波方式分子配向計で測定したMOR_C値の最適化が非常に重要である。   In the release polyester film of the present invention, the optimization of the MOR_C value obtained by measuring the release film with a microwave molecular orientation meter is very important in order to reduce the occurrence of foreign matter and light interference colors in the optical inspection of the process. It is.

本発明の離型フィルムのMOR_C値は1.5〜3.0であり、好ましくは1.8〜2.7、さらに好ましくは2.1〜2.4である。MOR_C値が3.0よりも大きい場合には、離型層の均一性に欠けたり、光学検査において、光干渉色が見えやすくなる等の不具合が生じたりする。MOR_C値が1.5よりも小さい場合には、離型フィルム自体の生産歩留まり悪くなってしまう等の問題がある。   The MOR_C value of the release film of the present invention is 1.5 to 3.0, preferably 1.8 to 2.7, more preferably 2.1 to 2.4. When the MOR_C value is larger than 3.0, the release layer is not uniform, and in optical inspection, the light interference color is easily visible. When the MOR_C value is smaller than 1.5, there is a problem that the production yield of the release film itself is deteriorated.

本発明の離型フィルムのMOR_C値の範囲を満足させるための手段は、製膜時に所望のフィルム厚みに対して、延伸条件を創意工夫することにある。   A means for satisfying the range of the MOR_C value of the release film of the present invention is to ingenuate stretching conditions for a desired film thickness during film formation.

以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。また、本発明で用いた測定法および評価方法は次のとおりである。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded. The measurement method and evaluation method used in the present invention are as follows.

(1)ポリエステルの固有粘度の測定
ポリエステルに非相溶な他のポリマー成分および顔料を除去したポリエステル1gを精秤し、フェノール/テトラクロロエタン=50/50(重量比)の混合溶媒100mlを加えて溶解させ、30℃で測定した。
(1) Measurement of intrinsic viscosity of polyester 1 g of polyester from which other polymer components and pigments incompatible with polyester have been removed are precisely weighed, and 100 ml of a mixed solvent of phenol / tetrachloroethane = 50/50 (weight ratio) is added. It was dissolved and measured at 30 ° C.

(2)平均粒径(d50:μm)の測定
遠心沈降式粒度分布測定装置(株式会社島津製作所社製SA−CP3型)を使用して測定した等価球形分布における積算(重量基準)50%の値を平均粒径とした。
(2) Measurement of average particle size (d50: μm) 50% integrated (weight basis) in equivalent spherical distribution measured using centrifugal sedimentation type particle size distribution measuring device (SA-CP3 type manufactured by Shimadzu Corporation) The value was defined as the average particle size.

(3)ポリエステルフィルムの透過率測定
JIS − K7105に準じ、日本電色工業社製積分球式濁度計NDH−300Aによりポリエステルフィルムの全光線透過率を測定した。次のような基準で判断する。
(3) Measurement of transmittance of polyester film According to JIS-K7105, the total light transmittance of the polyester film was measured with an integrating sphere turbidimeter NDH-300A manufactured by Nippon Denshoku Industries Co., Ltd. Judgment is based on the following criteria.

(4)ポリエステルフィルムの加熱収縮率測定
ポリエステルフィルムを縦長さの方向(以後、MDと略する)と横幅の方向(以後、TDと略する)にそれぞれ、任意の長さL(cm)でサンプリングする。続いて、そのサンプルをオーブンで160℃、5分の加熱を行い、そのサンプルをオーブンから取り出して長さl(cm)を測定する。この操作を3回行い、平均値を加熱収縮率の値として採用する。下記式で加熱収縮率は算出できる。
加熱収縮率(%)={(L−l)/L}×100
(4) Measurement of Heat Shrinkage Ratio of Polyester Film A polyester film is sampled at an arbitrary length L (cm) in a longitudinal direction (hereinafter abbreviated as MD) and a lateral width direction (hereinafter abbreviated as TD). To do. Subsequently, the sample is heated in an oven at 160 ° C. for 5 minutes, and the sample is taken out of the oven and the length l (cm) is measured. This operation is performed three times, and the average value is adopted as the value of the heat shrinkage rate. The heat shrinkage rate can be calculated by the following formula.
Heat shrinkage (%) = {(L−l) / L} × 100

(5)離型フィルムの剥離力(F)の評価
試料フィルムの離型層表面に両面粘着テープ(日東電工製「No.502」)の片面を貼り付けた後、50mm×300mmのサイズにカットした後、室温にて1時間放置後の剥離力を測定する。剥離力は、引張試験機((株)インテスコ製「インテスコモデル2001型」)を使用し、引張速度300mm/分の条件下、180°剥離を行った。
(5) Evaluation of release film peeling force (F) After attaching one side of a double-sided adhesive tape (Nitto Denko “No. 502”) to the surface of the release layer of the sample film, cut into a size of 50 mm × 300 mm After that, the peel strength after standing for 1 hour at room temperature is measured. For the peeling force, a tensile tester (“Intesco model 2001 type” manufactured by Intesco Co., Ltd.) was used, and 180 ° peeling was performed under the condition of a tensile speed of 300 mm / min.

(6)フィルム内部透明度の測定
フィルム内部透明度は、村上色彩技術研究所製の透明度測定器(TM-1D小数点以下2桁型:光源波長546±5nm)を用いてエタノール中で測定した。なお、内部透明度は下記の式で定義される。
内部透明度(%)=(エタノール溶液中にフィルムがあるときの光量/エタノール溶液中にフィルムがないときの光量)×100
(6) Measurement of transparency inside the film The transparency inside the film was measured in ethanol using a transparency measuring instrument (TM-1D two decimal place type: light source wavelength 546 ± 5 nm) manufactured by Murakami Color Research Laboratory. The internal transparency is defined by the following formula.
Internal transparency (%) = (light quantity when film is in ethanol solution / light quantity when film is not in ethanol solution) × 100

(7)ポリエステルフィルムの二次元表面粗度(Ra)の測定
Raは、小坂研究所社製表面粗さ測定機(SE3500型)を用いて、JIS B0601−1994に準じて測定した。なお測定長は2.5mmとした。
(7) Measurement of two-dimensional surface roughness (Ra) of polyester film Ra was measured according to JIS B0601-1994 using a surface roughness measuring machine (SE3500 type) manufactured by Kosaka Laboratory. The measurement length was 2.5 mm.

(8)ポリエステルフィルムの3波長蛍光灯下でのクリア感観察
フィルムに3波長蛍光灯光を透過させてフィルムのクリア感を目視観察した。フィルムのクリア感(透明度、鮮明度、粒子感など)は下記基準で評価した。
<3波長蛍光灯下での粒子感観察 判定基準>
(クリア感高) ○>△>× (クリア感低)
なお、上記判定基準中、△以上のものが実使用上問題なく使用できるレベルである。
(8) Observation of clear feeling of polyester film under three-wavelength fluorescent lamp The three-wavelength fluorescent lamp light was transmitted through the film, and the clearness of the film was visually observed. The clearness (transparency, clarity, graininess, etc.) of the film was evaluated according to the following criteria.
<Criteria for observation of particle feeling under a three-wavelength fluorescent lamp>
(Clear feeling high) ○ > △ > × (Clear feeling low)
Of the above criteria, those above Δ are levels that can be used without any problem in actual use.

(9)ポリエステルフィルムのキズのつきにくさの評価
フィルム表面のキズの個数を数え、キズのつきにくさを3段階で評価した。評価はA4サイズのフィルムで行った。
<キズのつきにくさ 判定基準>
(キズがつきにくい) ○>△>× (キズがつきやすい)
なお、上記判定基準中、○のみが実使用上問題なく使用できるレベルである。
(3)、(5)、(6)、(7)の評価結果を踏まえてフィルム性能を総合的に評価した。
(9) Evaluation of scratch resistance of polyester film The number of scratches on the film surface was counted, and the scratch resistance was evaluated in three stages. Evaluation was performed with an A4 size film.
<Criteria for scratch resistance>
(It is hard to be scratched) ○ > △ > × (It is easy to be scratched)
In the above criteria, only ○ is a level that can be used without any problem in actual use.
The film performance was comprehensively evaluated based on the evaluation results of (3), (5), (6), and (7).

(10)ポリエステルフィルムのマイクロ波分子配向計によるMOR_C値測定
王子計測機器株式会社製のマイクロ波方式分子配向計を用い、透過マイクロ波強度パターンからMOR_C値を求めた。
(10) MOR_C value measurement by microwave molecular orientation meter of polyester film Using a microwave molecular orientation meter manufactured by Oji Scientific Instruments Co., Ltd., the MOR_C value was determined from the transmission microwave intensity pattern.

(11)ポリエステルフィルムのマイクロ波分子配向計によるMOR_C値測定
王子計測機器株式会社製のマイクロ波方式分子配向計を用い、透過マイクロ波強度パターンからMOR_C値を求めた。次のような基準で判断する。
○:2.0〜2.5
△:1.5〜1.9、もしくは、2.6〜3.0
×:1.5%よりも低い、もしくは、3.0よりも高い
(11) MOR_C value measurement by microwave molecular orientation meter of polyester film Using a microwave molecular orientation meter manufactured by Oji Scientific Instruments Co., Ltd., the MOR_C value was determined from the transmission microwave intensity pattern. Judgment is based on the following criteria.
○: 2.0 to 2.5
Δ: 1.5 to 1.9, or 2.6 to 3.0
X: Lower than 1.5% or higher than 3.0

(12)実用特性
<反射光下での目視検査性>
偏光板検査を考慮に入れて、フィルム上に離型剤を塗布しドライヤー温度120℃、ライン速度30m/minの条件で得た離型フィルムの幅方向が、偏光フィルムの配向軸と平行となるように、粘着剤を介して離型フィルムを偏光フィルムに密着させ偏光板とし、蛍光灯反射下で偏光板を目視にて観察し、反射光下での目視検査性を下記基準に従い評価した。なお、測定の際には、A4サイズのサンプルを切り出して実施した。
「判定基準」
○:検査性良好
△:ほぼ問題なく検査できる
×:検査性不良
○および△のものが実使用上問題のないレベルである
(12) Practical characteristics <Visual inspection under reflected light>
Taking the polarizing plate inspection into consideration, the width direction of the release film obtained by applying a release agent on the film and having a dryer temperature of 120 ° C. and a line speed of 30 m / min is parallel to the alignment axis of the polarizing film. As described above, the release film was closely adhered to the polarizing film through an adhesive to form a polarizing plate. The polarizing plate was visually observed under reflection of a fluorescent lamp, and the visual inspection property under reflected light was evaluated according to the following criteria. In the measurement, an A4 size sample was cut out.
"Criteria"
○: Good testability △: Can be inspected almost without problems ×: Poor testability ○ and △ are at a level where there is no problem in actual use

<クロスニコル下での目視検査性>
偏光板検査を考慮に入れて、フィルム上に離型剤を塗布しドライヤー温度120℃、ライン速度30m/minの条件で得た離型フィルムの幅方向が、偏光フィルムの配向軸と平行となるように、粘着剤を介して離型フィルムを偏光フィルムに密着させ偏光板とした。ここで上記偏光板を作成する際、粘着剤と偏光フィルムとの間に50μm以上の大きさを持つ黒色の金属粉(異物)を50個/mとなるように混入させた。このようにして得られた異物を混入させた偏光板離型フィルム上に配向軸が離型フィルム幅方向と直交するように検査用の偏光板を重ね合わせ、偏光板側より白色光を照射し、検査用の偏光板より目視にて観察し、クロスニコル下で粘着剤と偏光フィルムとの間に混入させた異物を見いだせるかどうかを下記基準に従い評価した。なお、測定の際には、得られたフィルムの幅方向に対し中央部と両端部の計3ヶ所から、それぞれA4サイズのサンプルを切り出して実施した。
「判定基準」
○:異物認知性良好
△:比較的問題なく異物認知できる
×:異物認知性不良
○および△のものが実使用上問題のないレベルである
上記判定基準中、○以上のものが実使用上問題なく使用できるレベルである。
<離型特性>
粘着層を有する積層フィルムより離型フィルムを剥がした時の状況より、離型特性を評価した。
○:離型フィルムが綺麗に剥がれ、粘着剤が離型層に付着する現象が見られない
△:離型フィルムは剥がれるが、速い速度で剥離した場合に粘着剤が離型層に付着する ×:離型フィルムに粘着剤が付着する
<Visual inspection under crossed Nicols>
Taking the polarizing plate inspection into consideration, the width direction of the release film obtained by applying a release agent on the film and having a dryer temperature of 120 ° C. and a line speed of 30 m / min is parallel to the alignment axis of the polarizing film. As described above, the release film was adhered to the polarizing film through the pressure-sensitive adhesive to obtain a polarizing plate. Here, when the polarizing plate was prepared, black metal powder (foreign matter) having a size of 50 μm or more was mixed between the pressure-sensitive adhesive and the polarizing film so as to be 50 / m 2 . A polarizing plate for inspection is superimposed on the polarizing plate release film mixed with the foreign matter thus obtained so that the orientation axis is orthogonal to the width direction of the release film, and white light is irradiated from the polarizing plate side. Then, it was visually observed from a polarizing plate for inspection, and whether or not a foreign matter mixed between the adhesive and the polarizing film was found under crossed Nicols was evaluated according to the following criteria. In the measurement, A4 size samples were cut out from a total of three locations in the center and both ends in the width direction of the obtained film.
"Criteria"
○: Good foreign object recognition △: Recognize foreign objects with relatively no problem ×: Poor foreign substance recognition ○ ○ and △ are at a level where there is no problem in actual use. It is a level that can be used without any problems.
<Release properties>
The release characteristics were evaluated from the situation when the release film was peeled off from the laminated film having the adhesive layer.
○: The release film is peeled off cleanly, and the phenomenon that the adhesive adheres to the release layer is not observed. Δ: The release film peels off, but the adhesive adheres to the release layer when peeled off at a high speed. : Adhesive adheres to the release film

(13)総合評価
製膜性、生産性、検査特性等、全てを考慮に入れた評価を行う。次のような基準で判断する。
○:生産しても充分に製品として供給できる
△:生産性が良い、かつ、光学検査での不具合の頻度が少ない
×:生産性が悪い。光学検査での不具合が多発する。
(13) Comprehensive evaluation An evaluation that takes all of film forming properties, productivity, inspection characteristics and the like into consideration is performed. Judgment is based on the following criteria.
○: Even if it is produced, it can be sufficiently supplied as a product. Δ: Productivity is good and the frequency of defects in optical inspection is low. ×: Productivity is poor. There are many problems with optical inspection.

実施例および比較例において使用したポリエステルは、以下のようにして準備したものである。
(ポリエステル(A)の製造)
テレフタル酸ジメチル100重量%とエチレングリコール60重量%とを出発原料とし、触媒として酢酸マグネシウム四水塩を加えて反応器にとり、反応開始温度を150℃とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後に230℃とした。
4時間後、実質的にエステル交換反応を終了させた。この反応混合物にエチルアシッドフォスフェートを添加した後、重縮合槽に移し、三酸化アンチモン0.04部を加えて、4時間重縮合反応を行った。すなわち、温度を230℃から徐々に昇温し280℃とした。
一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、反応槽の攪拌動力の変化により、極限粘度0.64dL/gに相当する時点で反応を停止し、窒素加圧下ポリマーを吐出させ、ポリエステルのチップ(A)を得た。この、ポリエステルの極限粘度は0.64dL/gであった。
The polyester used in the examples and comparative examples was prepared as follows.
(Production of polyester (A))
Starting from 100% by weight of dimethyl terephthalate and 60% by weight of ethylene glycol, magnesium acetate tetrahydrate is added as a catalyst to the reactor, the reaction start temperature is 150 ° C., and the reaction temperature is gradually increased as methanol is distilled off. The temperature was raised to 230 ° C. after 3 hours.
After 4 hours, the transesterification reaction was substantially terminated. Ethyl acid phosphate was added to the reaction mixture, which was then transferred to a polycondensation tank, and 0.04 part of antimony trioxide was added to carry out a polycondensation reaction for 4 hours. That is, the temperature was gradually raised from 230 ° C. to 280 ° C.
On the other hand, the pressure was gradually reduced from normal pressure, and finally 0.3 mmHg. After the start of the reaction, the reaction was stopped at a time corresponding to an intrinsic viscosity of 0.64 dL / g due to a change in the stirring power of the reaction vessel, and the polymer was discharged under nitrogen pressure to obtain a polyester chip (A). The intrinsic viscosity of this polyester was 0.64 dL / g.

(ポリエステル(B)の製造)
テレフタル酸ジメチル100重量部とエチレングリコール60重量部とを出発原料とし、触媒として酢酸マグネシウム四水塩を加えて反応器にとり、反応開始温度を150℃とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後に230℃とした。
4時間後、実質的にエステル交換反応を終了させた。この反応混合物にエチルアシッドフォスフェートを添加した後、重縮合槽に移し、三酸化アンチモン0.04部を加えて、4時間重縮合反応を行った。すなわち、温度を230℃から徐々に昇温し280℃とした。
一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、反応槽の攪拌動力の変化により、固有粘度0.45に相当する時点で反応を停止し、窒素加圧下ポリマーを吐出させ、ポリエステルのチップ(B)を得た。このポリエステルの固有粘度は0.45であった。
(Manufacture of polyester (B))
Starting from 100 parts by weight of dimethyl terephthalate and 60 parts by weight of ethylene glycol, magnesium acetate tetrahydrate is added as a catalyst to the reactor, the reaction start temperature is 150 ° C., and the reaction temperature is gradually increased as methanol is distilled off. The temperature was raised to 230 ° C. after 3 hours.
After 4 hours, the transesterification reaction was substantially terminated. Ethyl acid phosphate was added to the reaction mixture, which was then transferred to a polycondensation tank, and 0.04 part of antimony trioxide was added to carry out a polycondensation reaction for 4 hours. That is, the temperature was gradually raised from 230 ° C. to 280 ° C.
On the other hand, the pressure was gradually reduced from normal pressure, and finally 0.3 mmHg. After the start of the reaction, the reaction was stopped at a time corresponding to an intrinsic viscosity of 0.45 due to a change in stirring power of the reaction vessel, and the polymer was discharged under nitrogen pressure to obtain a polyester chip (B). The intrinsic viscosity of this polyester was 0.45.

(ポリエステル(C)の製造)
このポリエステルチップを固相重縮合法にて固有粘度を上げた。予備結晶化槽にて170℃の窒素雰囲気化にて0.5時間処理した後、不活性ガスを流す塔式乾燥機を用い、200℃の温度下にて水分率が0.005%になるまで乾燥した。その後固相重合槽へ送り、240℃にて3時間、固相重合を行い固有粘度0.70のポリエステル(C)を得た。
(Manufacture of polyester (C))
The intrinsic viscosity of this polyester chip was increased by a solid phase polycondensation method. After treatment in a preliminary crystallization tank at 170 ° C. in a nitrogen atmosphere for 0.5 hours, the moisture content becomes 0.005% at a temperature of 200 ° C. using a tower dryer that flows an inert gas. Until dried. Thereafter, it was sent to a solid phase polymerization tank and subjected to solid phase polymerization at 240 ° C. for 3 hours to obtain polyester (C) having an intrinsic viscosity of 0.70.

(ポリエステル(D)の製造)
ポリエステル(C)を製造する際、固相重合槽にて5時間固相重合を行い、固有粘度0.80のポリエステル(D)を得た。
(Production of polyester (D))
When producing the polyester (C), solid phase polymerization was performed in a solid phase polymerization tank for 5 hours to obtain a polyester (D) having an intrinsic viscosity of 0.80.

(ポリエステル(E)の製造)
ポリエステル(A)の製造方法において、エチルアシッドフォスフェートを添加後、平均粒子径1.4μmのジビニルベンゼン/メタクリル酸メチル共重合架橋粒子のエチレングリコールスラリーを粒子のポリエステルに対する含有量が0.5重量%となるように添加した以外は、ポリエステル(A)の製造方法と同様の方法を用いてポリエステル(E)を得た。得られたポリエステル(E)は極限粘度0.62dL/gであった。
(Manufacture of polyester (E))
In the method for producing polyester (A), after adding ethyl acid phosphate, the content of ethylene glycol slurry of divinylbenzene / methyl methacrylate copolymer crosslinked particles having an average particle size of 1.4 μm is 0.5% by weight with respect to polyester. The polyester (E) was obtained using the same method as the production method of the polyester (A) except that the addition was made so as to be%. The obtained polyester (E) had an intrinsic viscosity of 0.62 dL / g.

(ポリエステル(F)の製造)
ポリエステル(E)の製造方法において、添加粒子を、平均粒子径2.7μmのシリカ粒子に、ポリエステルに対する含有量を0.3重量%にした以外は、ポリエステル(E)の製造方法と同様の方法を用いてポリエステル(F)を得た。得られたポリエステル(F)は極限粘度0.61dL/gであった。
であった。
(Manufacture of polyester (F))
In the method for producing polyester (E), the same method as the method for producing polyester (E), except that the additive particles are silica particles having an average particle diameter of 2.7 μm and the content with respect to the polyester is 0.3 wt%. Was used to obtain a polyester (F). The obtained polyester (F) had an intrinsic viscosity of 0.61 dL / g.
Met.

(ポリエステル(G)の製造)
ポリエステル(E)の製造方法において、添加粒子を、平均粒子径3.2μmのシリカ粒子に、ポリエステルに対する含有量を、0.6重量%にした以外は、ポリエステル(E)の製造方法と同様の方法を用いてポリエステル(G)を得た。なお、平均粒径はレーザー法により求めた。得られたポリエステル(G)は極限粘度0.62dL/gであった。
(Manufacture of polyester (G))
In the method for producing polyester (E), the additive particles are the same as in the method for producing polyester (E) except that silica particles having an average particle diameter of 3.2 μm are contained in the polyester in an amount of 0.6% by weight. Polyester (G) was obtained using the method. The average particle size was determined by a laser method. The obtained polyester (G) had an intrinsic viscosity of 0.62 dL / g.

実施例1:
(ポリエステルフィルムの製造)
上記ポリエステル(A)、(D)チップと、ポリエステル(E)、(F)、(G)チップとを、下記表1および2に示すとおりの割合で混合した混合原料を最外層(表層)および中間層の原料とし、2台の押出機に各々供給し、280℃で溶融押出した後、静電印加密着法を用いて表面温度を40℃に設定した冷却ロール上で冷却固化して未延伸シートを得た。次いで、100℃にて縦方向に2.8倍延伸した後、テンター内で予熱工程を経て120℃で5.1倍の横延伸を施した後、220℃で10秒間の熱処理を行い、その後180℃で幅方向に4%の弛緩を加え、幅4000mmのマスターロールを得た。このマスターロールの端から1400mmの位置よりスリットを行い、コアに1000m巻き取りし、ポリエステルフィルムを得た。得られたフィルムの全厚みは50μm(層構成:表層2.5μm/中間層45μm/表層2.5μm)であった。
Example 1:
(Manufacture of polyester film)
A mixed raw material obtained by mixing the polyester (A), (D) chip and the polyester (E), (F), (G) chip at a ratio as shown in Tables 1 and 2 below, is the outermost layer (surface layer) and The raw material for the intermediate layer is supplied to two extruders, melt-extruded at 280 ° C., and then cooled and solidified on a cooling roll set at a surface temperature of 40 ° C. using an electrostatic application adhesion method. A sheet was obtained. Next, the film was stretched 2.8 times in the longitudinal direction at 100 ° C., then subjected to a preheating step in a tenter and subjected to a transverse stretching of 5.1 times at 120 ° C., followed by heat treatment at 220 ° C. for 10 seconds, 4% relaxation was added in the width direction at 180 ° C. to obtain a master roll having a width of 4000 mm. A slit was made from a position of 1400 mm from the end of the master roll, and the core roll was wound up 1000 m to obtain a polyester film. The total thickness of the obtained film was 50 μm (layer structure: surface layer 2.5 μm / intermediate layer 45 μm / surface layer 2.5 μm).

得られたポリエステルフィルムに、下記に示す離型剤組成−Aからなる離型剤を塗布量(乾燥後)が0.1g/mになるようにリバースグラビアコート方式により塗布し、ドライヤー温度120℃、ライン速度30m/minの条件でロール状の剥離力が21mN/cm、内部透明度が96.9%、Raが9.5nm、MOR_C値が2.5の離型ポリエステルフィルムを得た。
<離型剤組成−A>
硬化型シリコーン樹脂(KS−847H:信越化学製) 20部
触媒(PL−50T:信越化学製) 0.3部(1.5重量%)
MEK/トルエン混合溶媒(混合比率は1:1)
A release agent composed of release agent composition-A shown below was applied to the obtained polyester film by a reverse gravure coating method so that the coating amount (after drying) was 0.1 g / m 2 , and the dryer temperature was 120. A release polyester film having a roll peel strength of 21 mN / cm, internal transparency of 96.9%, Ra of 9.5 nm, and MOR_C value of 2.5 was obtained under the conditions of ° C and a line speed of 30 m / min.
<Releasing agent composition-A>
Curable silicone resin (KS-847H: manufactured by Shin-Etsu Chemical) 20 parts Catalyst (PL-50T: manufactured by Shin-Etsu Chemical) 0.3 parts (1.5% by weight)
MEK / toluene mixed solvent (mixing ratio is 1: 1)

今回新たにフィルムの評価に導入した内部透明度という指標は、従来の透明性の指標である内部ヘーズよりも、より目視検査によるクリア感と高い相関を示している。   The index of internal transparency newly introduced in the evaluation of the film this time shows a higher correlation with clearness by visual inspection than the internal haze which is a conventional index of transparency.

得られたポリエステルフィルムは、下記方法で偏向板を作成し、光学特性の検査性と剥離特性の評価を行った。得られた離型フィルムは反射による検査性良好、異物認知性良好であり、かつ、偏光板綺麗に剥がれ、粘着剤が離型層に付着する現象が見られなかった。   For the obtained polyester film, a deflector plate was prepared by the following method, and optical property inspection and peeling properties were evaluated. The obtained release film had good inspection by reflection and good recognition of foreign matter, and the polarizing plate was peeled off cleanly, and the phenomenon that the adhesive adhered to the release layer was not observed.

<離型フィルム付き偏光板の製造>
偏光板に下記に示すアクリル粘着剤を、乾燥後の厚みが25μmとなるように塗布し、130℃の乾燥炉内を30秒で通過させた後、離型フィルムを貼り合わせ、粘着剤を介して離型フィルムと偏光フィルムが密着された離型フィルム付き偏光板を作成した。フィルムの貼り合せ方向は、離型フィルムの幅方向が、偏光フィルムの配向軸と平行となるように行った。
・アクリル粘着剤塗布液
アクリル粘着剤(オリバインBPS429−4:東洋インキ製) 100部
硬化剤(BPS8515:東洋インキ製) 3部
MEK/トルエン混合溶媒(混合比率は1:1) 50部
<Manufacture of polarizing plate with release film>
The acrylic adhesive shown below is applied to the polarizing plate so that the thickness after drying is 25 μm, and after passing through a 130 ° C. drying oven in 30 seconds, the release film is bonded, and the adhesive is interposed. Thus, a polarizing plate with a release film in which the release film and the polarizing film were adhered to each other was prepared. The laminating direction of the film was performed so that the width direction of the release film was parallel to the orientation axis of the polarizing film.
Acrylic adhesive coating solution Acrylic adhesive (Olivein BPS429-4: manufactured by Toyo Ink) 100 parts Curing agent (BPS8515: manufactured by Toyo Ink) 3 parts MEK / toluene mixed solvent (mixing ratio is 1: 1) 50 parts

実施例2〜4:
実施例1において、ポリエステルフィルム製造時の延伸倍率、フィルム厚さ、表層の粒子含有ポリエステル種、表層の粒子含有ポリエステルの配合量をそれぞれ変更したこと以外は実施例1と同様にして製造し、ポリエステルフィルムを得た。得られた結果をまとめて下記表1に示す。
Examples 2-4:
In Example 1, the polyester film was produced in the same manner as in Example 1 except that the draw ratio at the time of production of the polyester film, the film thickness, the particle-containing polyester type of the surface layer, and the compounding amount of the particle-containing polyester of the surface layer were changed. A film was obtained. The obtained results are summarized in Table 1 below.

Figure 2013000899
Figure 2013000899

比較例1〜6:
実施例1において、ポリエステルフィルム製造時の延伸倍率、フィルム厚さ、表層の粒子含有ポリエステル種、表層の粒子含有ポリエステルの配合量をそれぞれ変更したこと以外は実施例1と同様にして製造し、ポリエステルフィルムを得た。得られた結果をまとめて下記表2に示す。
Comparative Examples 1-6:
In Example 1, the polyester film was produced in the same manner as in Example 1 except that the draw ratio at the time of production of the polyester film, the film thickness, the particle-containing polyester type of the surface layer, and the compounding amount of the particle-containing polyester of the surface layer were changed. A film was obtained. The results obtained are summarized in Table 2 below.

Figure 2013000899
Figure 2013000899

本発明のフィルムは、偏光板基材用途等で必要な光学検査法において、高度な精度を実現できる、離型ポリエテルフィルムとして好適に利用することができる。   The film of the present invention can be suitably used as a release polyether film capable of realizing a high degree of accuracy in an optical inspection method necessary for polarizing plate substrate applications and the like.

Claims (1)

少なくとも片面にシリコーン系離型層を有する離型フィルムであり、当該離型フィルムの内部透明度が96.5%以上であり、前記シリコーン系離型層の表面の粗さ(Ra)が9.0nm以上であり、当該離型フィルムのMOR値が1.5〜3.0であることを特徴とする離型ポリエステルフィルム。 A release film having a silicone release layer on at least one surface, the release film has an internal transparency of 96.5% or more, and the surface roughness (Ra) of the silicone release layer is 9.0 nm. It is above, The MOR value of the said release film is 1.5-3.0, The release polyester film characterized by the above-mentioned.
JP2011130767A 2011-06-13 2011-06-13 Mold release polyester film Withdrawn JP2013000899A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011130767A JP2013000899A (en) 2011-06-13 2011-06-13 Mold release polyester film
KR1020137023257A KR20140027103A (en) 2011-06-13 2012-06-07 Mold releasing polyester film
CN201280021010.2A CN103502007A (en) 2011-06-13 2012-06-07 Mold releasing polyester film
PCT/JP2012/064650 WO2012173033A1 (en) 2011-06-13 2012-06-07 Mold releasing polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011130767A JP2013000899A (en) 2011-06-13 2011-06-13 Mold release polyester film

Publications (1)

Publication Number Publication Date
JP2013000899A true JP2013000899A (en) 2013-01-07

Family

ID=47669998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011130767A Withdrawn JP2013000899A (en) 2011-06-13 2011-06-13 Mold release polyester film

Country Status (1)

Country Link
JP (1) JP2013000899A (en)

Similar Documents

Publication Publication Date Title
WO2009084180A1 (en) Polyester film for release film for polarizer and layered product with improved polarizing property
WO2009107326A1 (en) Release film
JP2009204755A (en) Release film for liquid crystal polarizing plate
JP2009184269A (en) Release film
JP2009178908A (en) Mold release film
WO2008032428A1 (en) Polyester film for release film
JP2008074988A (en) Polyester film for mold releasing film
JP5242900B2 (en) Polyether film for release film
JP2009199024A (en) Mold release film
WO2012173033A1 (en) Mold releasing polyester film
JP2009178920A (en) Mold release film
JP2009178933A (en) Mold release film
JP2009178929A (en) Mold release film
JP2009199023A (en) Mold release film
JP2011212891A (en) Mold releasing film
JP2009178930A (en) Mold release film
JP2009161569A (en) Polyester film for mold-releasing film
JP2009161574A (en) Polyester film for mold-releasing film
JP2009155621A (en) Polyester film for release film
JP2009204754A (en) Release film for liquid crystal polarizing plate
JP2010175620A (en) Release film
JP5607992B2 (en) Polyester film for polarizing plate release film
JP2012025060A (en) Release polyester film for polarizing plate
JP2012027231A (en) Polyester film for polarizer substrate
JP2010197894A (en) Mold releasing film for liquid crystal polarizing plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140407

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20140411