JP2012530036A - Direct low temperature growth method of carbon nanotube (CNT) and fiber (CNF) on steel strip - Google Patents
Direct low temperature growth method of carbon nanotube (CNT) and fiber (CNF) on steel strip Download PDFInfo
- Publication number
- JP2012530036A JP2012530036A JP2012515514A JP2012515514A JP2012530036A JP 2012530036 A JP2012530036 A JP 2012530036A JP 2012515514 A JP2012515514 A JP 2012515514A JP 2012515514 A JP2012515514 A JP 2012515514A JP 2012530036 A JP2012530036 A JP 2012530036A
- Authority
- JP
- Japan
- Prior art keywords
- cnf
- cnt
- steel
- coating
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/041—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/046—Carbon nanorods, nanowires, nanoplatelets or nanofibres
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D179/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
- C09D179/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C09D179/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/08—Anti-corrosive paints
- C09D5/082—Anti-corrosive paints characterised by the anti-corrosive pigment
- C09D5/084—Inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/14—Paints containing biocides, e.g. fungicides, insecticides or pesticides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/24—Electrically-conducting paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/70—Additives characterised by shape, e.g. fibres, flakes or microspheres
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Textile Engineering (AREA)
- Medicinal Chemistry (AREA)
- Plant Pathology (AREA)
- General Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Composite Materials (AREA)
- Polymers & Plastics (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
本発明は、鋼帯上におけるカーボンナノチューブ及びカーボンナノファイバーの直接低温成長方法及びその方法により得られる基材に関する。 The present invention relates to a method for direct low temperature growth of carbon nanotubes and carbon nanofibers on a steel strip and a substrate obtained by the method.
Description
カーボンナノチューブ及びカーボンナノファイバー(以下、CNT/CNFと略記する)は、直径が数ナノメートルのオーダーにあり、縦横比が10〜1000である小円筒形構造を有する。CNT/CNFは、各炭素原子が3個の隣接する炭素原子と組み合わされたハニカム状六角形パターンを有する。また、CNT/CNFは、それらの構造に応じて導体、例えば金属、又は半導体として機能することができ、これらCNT/CNFの応用分野は広範囲であると期待される。CNT/CNFは、さらに魅力的な特性、例えば低密度、高強度、高靱性、高フレキシブル性、高表面積及び優れた導電性、を有する。残念ながら、CNT/CNFの製造はそう簡単ではない。 Carbon nanotubes and carbon nanofibers (hereinafter abbreviated as CNT / CNF) have a small cylindrical structure with a diameter on the order of several nanometers and an aspect ratio of 10 to 1000. CNT / CNF has a honeycomb-shaped hexagonal pattern in which each carbon atom is combined with three adjacent carbon atoms. Moreover, CNT / CNF can function as a conductor, for example, a metal, or a semiconductor according to their structure, and the application field of these CNT / CNF is expected to be wide. CNT / CNF has more attractive properties such as low density, high strength, high toughness, high flexibility, high surface area and excellent electrical conductivity. Unfortunately, the production of CNT / CNF is not so easy.
CNT/CNFを大規模に合成するために、炭化水素を使用する放電、レーザーデポジション、及び化学蒸着が広く使用されている。特に、放電技術は、炭素電極を使用するアーク放電によりCNT/CNFを成長させる。レーザーデポジション法は、レーザー光でグラファイトを照射することにより、CNT/CNFを合成する。しかし、これらの2方法は、CNT/CNFの直径及び長さ、及び炭素質材料の構造を制御するには不適切である。従って、CNT/CNFを合成する際に優れた結晶性構造を得ることが困難である。さらに、大量の無定形炭素の塊も同時に製造されるので、CNT/CNFの合成後に複雑な精製がさらに必要になり、製法が複雑になる。これらの方法のもう一つの欠点は、CNT/CNFを比較的広い面積にわたって合成するのが不可能なことである。従って、これらの方法は、様々な装置に応用することができない。プラズマCVDによりCNT/CNFを合成する方法は、CNT/CNFがプラズマ衝撃により損傷を受けることがあり、比較的大きな基材上にCNT/CNFを合成するのが困難なので、魅力的ではない。 Discharges using hydrocarbons, laser deposition, and chemical vapor deposition are widely used to synthesize CNT / CNF on a large scale. In particular, the discharge technique grows CNT / CNF by arc discharge using a carbon electrode. In the laser deposition method, CNT / CNF is synthesized by irradiating graphite with laser light. However, these two methods are unsuitable for controlling the diameter and length of CNT / CNF and the structure of the carbonaceous material. Therefore, it is difficult to obtain an excellent crystalline structure when synthesizing CNT / CNF. In addition, since a large amount of amorphous carbon mass is produced at the same time, further complicated purification is required after the synthesis of CNT / CNF, which complicates the production method. Another disadvantage of these methods is that it is impossible to synthesize CNT / CNF over a relatively large area. Therefore, these methods cannot be applied to various apparatuses. The method of synthesizing CNT / CNF by plasma CVD is not attractive because CNT / CNF can be damaged by plasma impact and it is difficult to synthesize CNT / CNF on a relatively large substrate.
本発明の目的は、鋼基材上でCNT/CNFを成長させる簡便な方法を提供することである。 The object of the present invention is to provide a simple method of growing CNT / CNF on a steel substrate.
本発明の目的は、鋼基材上に耐食性被覆を製造する方法を提供することである。 It is an object of the present invention to provide a method for producing a corrosion resistant coating on a steel substrate.
鋼基材上にカーボンナノチューブ及び/又はナノファイバーの密着性被覆を製造する方法を提供することも本発明の目的である。 It is also an object of the present invention to provide a method for producing an adhesive coating of carbon nanotubes and / or nanofibers on a steel substrate.
第一の態様によれば、これらの目的の少なくとも一つは、炭素鋼又は低合金鋼帯基材の一方又は両方の表面上にカーボンナノチューブ及び/又はカーボンナノファイバー(CNT/CNF)の密着性被覆を直接低温成長させる方法であって、
‐所望により金属性被覆を備えた、鋼基材を用意し、
‐水素を含んでなる炭素供給源ガスを使用し、熱的化学蒸着(CVD)製法により、温度500〜750℃、好ましくは600〜750℃で、該基材の表面上にCNT/CNFを成長させ、
‐その際、該CNT/CNFの成長に触媒作用させるための触媒を加えず、該CNT/CNFの成長が、該基材及び/又は該金属性被覆中に存在する鉄、ニッケル及び/又はクロムによる触媒作用を受ける
工程を含んでなる、方法を提供することにより、達成される。
According to the first aspect, at least one of these objectives is the adhesion of carbon nanotubes and / or carbon nanofibers (CNT / CNF) on one or both surfaces of a carbon steel or low alloy steel strip substrate. A method for direct low temperature growth of a coating,
-Prepare a steel substrate, optionally with a metallic coating,
-CNT / CNF is grown on the surface of the substrate by a thermal chemical vapor deposition (CVD) process at a temperature of 500-750 ° C, preferably 600-750 ° C, using a carbon source gas comprising hydrogen Let
-No catalyst is added to catalyze the growth of the CNT / CNF, the growth of the CNT / CNF being caused by iron, nickel and / or chromium present in the substrate and / or the metallic coating This is achieved by providing a method comprising the step of catalyzing by:
本発明者らは、炭素含有供給源ガス、例えばオレフィンガス又は低分子量油、を使用することにより、CNT/CNFの層が、該鋼基材上にCVDにより低温で成長し得ることを見出した。触媒、例えば鉄、のナノ粒子は、CNT/CNFの先端及び/又は底部に見られた。CNT/CNFは、反応条件に応じて30〜120nmの直径を有していた。これらのCNT/CNFの鋼基材に対する密着性は非常に強いことが立証された。1〜60μmの層厚を達成することができた。CNT/CNFは、二方向成長ならびに先端成長を示す。基材として使用する鋼は、1.炭素鋼又は2.好ましくは7%以下の非鉄元素、好ましくは4%以下の非鉄元素を含む低合金鋼である。SAE方式では、カテゴリー1.及び2.の鋼は4桁の数で示され、第一桁は主要合金化元素を示し、第二桁は二次的合金化元素を示し、最後の2桁は炭素の量を100分の1重量%で示す。例えば、1060鋼は、0.60重量%のCを含む普通炭素鋼である。鋼基材は、ステンレス鋼ではない。SAE表示では、ステンレス鋼等級は3桁の数で指定され、所望によりその後に一つ以上の文字が続く。基材は、好ましくは帯、板(シート)又は箔の形態で用意する。基材は、CNT/CNF被覆を堆積させる前に清浄にする、及び/又は酸化物を除去する。 The inventors have found that by using a carbon-containing source gas, such as an olefin gas or low molecular weight oil, a layer of CNT / CNF can be grown on the steel substrate by CVD at low temperatures. . Catalyst, eg iron, nanoparticles were found at the tip and / or bottom of the CNT / CNF. CNT / CNF had a diameter of 30-120 nm depending on the reaction conditions. It was proved that the adhesion of these CNT / CNF to the steel substrate was very strong. A layer thickness of 1-60 μm could be achieved. CNT / CNF exhibits bi-directional growth as well as tip growth. The steel used as the substrate is: Carbon steel or 2. Preferably, it is a low alloy steel containing 7% or less non-ferrous element, preferably 4% or less non-ferrous element. In the SAE method, category 1. And 2. Steels are shown in four-digit numbers, the first digit indicates the main alloying element, the second digit indicates the secondary alloying element, and the last two digits indicate the amount of carbon in 1/100% by weight It shows with. For example, 1060 steel is a plain carbon steel containing 0.60 wt% C. The steel substrate is not stainless steel. In the SAE display, the stainless steel grade is specified as a three-digit number, optionally followed by one or more letters. The substrate is preferably prepared in the form of a band, a plate (sheet) or a foil. The substrate is cleaned and / or the oxide removed before depositing the CNT / CNF coating.
本発明の一実施態様では、鋼基材から来る鉄がCNT/CNFの成長に触媒作用する。驚くべきことに、鋼基材上にCNT/CNFの層を形成するこの製法は、触媒として鉄を添加しなくてもCNT/CNFの層を形成した。しかし、この場合でも、電子顕微鏡により、CNT/CNFの先端及び/又は底部にも鉄のナノ粒子が確認され、鋼基材を起源とする鉄粒子により触媒作用の効果が得られることが結論付けられた。 In one embodiment of the invention, iron coming from a steel substrate catalyzes the growth of CNT / CNF. Surprisingly, this process of forming a CNT / CNF layer on a steel substrate formed a CNT / CNF layer without the addition of iron as a catalyst. However, even in this case, it was concluded that iron nanoparticles were also confirmed at the tip and / or bottom of the CNT / CNF by an electron microscope, and that the catalytic effect was obtained by the iron particles originating from the steel substrate. It was.
本発明の一実施態様では、炭素含有供給源ガスが、アセチレン、エチレン、メタン、一酸化炭素、二酸化炭素又は低分子量脂肪油の一種以上を含んでなる。これらの炭素含有供給源を使用することにより、基材上にCNT/CNFの良好な層が形成されることが分かった。好ましい実施態様では、炭素供給源ガスは、好ましくは約30:60:10の体積比にある水素、一酸化炭素及び二酸化炭素からなる。実験により、44〜65体積%CO:26〜5体積%CO2:30体積%H2の混合物が優れた結果及び成長速度を与えることが分かった。この混合物で、COとCO2の比を約2:1〜8:1の比に維持しながら、水素含有量を25〜35%に変えても、良好な結果が得られた。従って、CO:H2混合物に二酸化炭素を加えることにより、驚くべき結果が得られた。 In one embodiment of the present invention, the carbon-containing source gas comprises one or more of acetylene, ethylene, methane, carbon monoxide, carbon dioxide, or low molecular weight fatty oil. It has been found that by using these carbon-containing sources, a good layer of CNT / CNF is formed on the substrate. In a preferred embodiment, the carbon source gas consists of hydrogen, carbon monoxide and carbon dioxide, preferably in a volume ratio of about 30:60:10. Experiments 44 to 65 vol% CO: 26-5 vol% CO 2: a mixture of 30 vol% H 2 was found to provide excellent results and the growth rate. With this mixture, good results were obtained even when the hydrogen content was changed to 25-35% while maintaining the ratio of CO to CO 2 at a ratio of about 2: 1 to 8: 1. Thus, surprising results were obtained by adding carbon dioxide to the CO: H 2 mixture.
本発明の一実施態様では、CNT/CNFを基材表面上に温度600〜750℃で成長させる。鉄の触媒作用効果のために、処理温度を低く維持することができる。600〜750℃の範囲は、良好な温度範囲と考えられ、CNT/CNFの良好な層を信頼性良く、経済的に形成した。より好ましい温度範囲は、600〜700℃である。より好ましい最高温度は695℃である。 In one embodiment of the invention, CNT / CNF is grown on the substrate surface at a temperature of 600-750 ° C. Due to the catalytic effect of iron, the processing temperature can be kept low. The range of 600 to 750 ° C. was considered a good temperature range, and a good layer of CNT / CNF was formed with good reliability and economically. A more preferable temperature range is 600 to 700 ° C. A more preferred maximum temperature is 695 ° C.
本発明の一実施態様では、鋼基材は、高強度鋼(HSS)、改良HSS、ホウ素含有鋼、超HSS又は複合相鋼であり、好ましくは0.01〜1%のC、0.15〜2%のMn、0.005〜2%のSi、0.01〜1.5%のAl、10〜200ppmのN、最大0.015%のP、最大0.15%のS、所望により0.01〜0.1%のNb、0.002〜0.15%のTi、0.02〜0.2%のV、10〜60ppmのBの一種以上、並びに残部鉄及び不可避不純物を含んでなる。 In one embodiment of the invention, the steel substrate is high strength steel (HSS), modified HSS, boron containing steel, super HSS or composite phase steel, preferably 0.01-1% C, 0.15. ~ 2% Mn, 0.005-2% Si, 0.01-1.5% Al, 10-200 ppm N, up to 0.015% P, up to 0.15% S, as desired Contains one or more of 0.01-0.1% Nb, 0.002-0.15% Ti, 0.02-0.2% V, 10-60 ppm B, and the balance iron and inevitable impurities It becomes.
本発明の好ましい実施態様では、鋼基材が、該基材の一方又は両方の表面上にCNT/CNFを成長させる前に、ニッケル、ニッケル−クロム又はクロムめっき層若しくは亜鉛合金層を備える。 In a preferred embodiment of the invention, the steel substrate is provided with a nickel, nickel-chromium or chromium plating layer or zinc alloy layer before growing CNT / CNF on one or both surfaces of the substrate.
本発明の好ましい実施態様では、本発明により基材上にCNT/CNFの層をその場で形成することにより、鋼帯基材上に耐食性被覆を形成する方法であって、該CNT/CNFの層に重合体被覆を施す、方法を提供する。好ましい実施態様では、重合体被覆はポリ−イミド(PI)系の被覆である。重合体層を伴うCNT/CNFの厚さは1μm〜60μmでよく、0.2〜0.5重量%損失で300〜550℃の耐熱性を与える。 In a preferred embodiment of the present invention, there is provided a method for forming a corrosion resistant coating on a steel strip substrate by in situ forming a layer of CNT / CNF on the substrate according to the present invention, the CNT / CNF comprising: A method is provided for applying a polymer coating to a layer. In a preferred embodiment, the polymer coating is a poly-imide (PI) based coating. The thickness of the CNT / CNF with the polymer layer may be 1 μm to 60 μm, giving a heat resistance of 300 to 550 ° C. with a loss of 0.2 to 0.5% by weight.
CNT/CNFの密着性被覆に重合体被覆を施すことにより、CNT/CNF層の特性が保持される。重合体被覆は、CNT/CNF被覆された基材をさらに腐食から保護する。ポリ−イミド系被覆は、熱的安定性、良好な耐薬品性、優れた機械的特性及び絶縁特性を有することが分かっている。しかし、これら重合体の鋼基材に対する密着性には問題がある。上に説明したように鋼基材上にCNT/CNFの層を先ず施し、続いて該CNT/CNF層にポリ−イミド系被覆を施すことにより、PIのCNT/CNF層に対する密着性ならびにCNT/CNF層の鋼基材に対する密着性が優れているので、ポリ−イミド系被覆の鋼基材に対する密着性がはるかに改良される。鋼の表面上にあるCNT/CNFは、密着させるべきポリ−イミド系被覆又は他のいずれかの重合体被覆に、大きな界面表面積を創出する。CNT/CNFと重合体の間の類似性は、その濡れ性及び相容性を増加させるので、微小亀裂形成及びその伝播が抑制される。試験により、優れたCNT/CNF−PI被覆された鋼基材及びCNT/CNF−重合体被覆された鋼基材が形成されることが分かっている。この製品は、CNT/CNFが重合体、例えばポリ−イミド系被覆、の中に分散している複合材料に対する良好な代替品である。CNT/CNFの重合体中への分散が困難であることは良く知られており、分散不良につながるCNT/CNFの凝固が起こるのが難点である。CNT/CNFの上に重合体層、例えばポリ−イミド系被覆、を追加することには、その層からCNT/CNFがもはや離脱し得ないという利点がある。それによって、遊離CNT/CNFに関連して起こり得る健康上の問題が防止される。ポリ−イミド系被覆が本発明の好ましい実施態様であることに注意すべきである。しかし、製造及び使用の条件に耐えられる他の重合体、例えばポリエチレンのようなポリオレフィン、を使用できることにも注意すべきである。 By applying the polymer coating to the CNT / CNF adhesive coating, the properties of the CNT / CNF layer are retained. The polymer coating further protects the CNT / CNF coated substrate from corrosion. Poly-imide-based coatings have been found to have thermal stability, good chemical resistance, excellent mechanical properties and insulating properties. However, there is a problem with the adhesion of these polymers to the steel substrate. As described above, a layer of CNT / CNF is first applied on a steel substrate, and subsequently, a poly-imide coating is applied to the CNT / CNF layer, whereby adhesion of PI to the CNT / CNF layer and CNT / CNF Since the adhesion of the CNF layer to the steel substrate is excellent, the adhesion of the poly-imide coating to the steel substrate is much improved. The CNT / CNF on the surface of the steel creates a large interfacial surface area in the poly-imide based coating or any other polymer coating to be adhered. The similarity between CNT / CNF and the polymer increases its wettability and compatibility, so that microcrack formation and its propagation are suppressed. Tests have shown that excellent CNT / CNF-PI coated steel substrates and CNT / CNF-polymer coated steel substrates are formed. This product, CNT / CNF is a polymer, such as poly - imide coatings are good alternative for the composite material are dispersed in a. It is well known that it is difficult to disperse CNT / CNF in a polymer, and it is difficult for CNT / CNF to coagulate which leads to poor dispersion. The addition of a polymer layer, such as a poly-imide coating, over CNT / CNF has the advantage that CNT / CNF can no longer be detached from that layer. Thereby, possible health problems associated with free CNT / CNF are prevented. It should be noted that poly-imide based coatings are a preferred embodiment of the present invention. However, it should also be noted that other polymers that can withstand the conditions of manufacture and use, such as polyolefins such as polyethylene, can be used.
本発明の一実施態様では、ポリ−イミド系被覆は、CNT/CNF層の上に、ポリアミック酸(PAA)の層を好ましくはロールコーティング及び/又はスプレーすることにより塗布し、続いてイミド化することにより、形成する。 In one embodiment of the invention, the poly-imide-based coating is applied over the CNT / CNF layer, preferably by roll coating and / or spraying, followed by imidization. To form.
本発明の一実施態様では、ポリ−イミド系被覆は、CNT/CNF層の上に、PAAを合成する際にMn、Ag、Si、Ti、Al及び/又はMgを添加し、続いてイミド化することにより、形成する。 In one embodiment of the present invention, the poly-imide coating is coated on the CNT / CNF layer by adding Mn, Ag, Si, Ti, Al and / or Mg during synthesis of PAA, followed by imidization. To form.
本発明の一実施態様では、ポリ−イミド系被覆をポリ−エーテルイミドから製造し、ポリ−イミド系被覆をCNT/CNF層の上に、液体ポリエーテルアミック(PEA)溶液を塗布し、続いてイミド化することにより、形成する。本発明の一実施態様では、CNT/CNFを続いて好適な化合物、例えばMgO又はCaO、で処理し、CO2を炭素質化合物の形態で保存するための触媒担体を形成するか、又は光触媒、例えばチタニア、又は有機光開始剤で処理して触媒転化剤を形成し、二酸化炭素をカルボン酸、例えばギ酸(HCOOH)、及び/又はアルコール、例えばエタノール(C2H5OH)、に転化する、被覆形成方法を提供する。このように処理したCNT/CNFを備えた鋼表面を処理し、例えば管状形態に変換するか、又はCNT/CNFを炭素鋼又は低合金鋼管上に堆積させ、それらを上記のように好適な化合物又は光触媒で処理することにより、二酸化炭素を発生するあらゆる方法の炭素痕跡を還元するための非常に効果的で経済的な触媒が得られる。 In one embodiment of the present invention, a poly-imide based coating is made from a poly-ether imide, the poly-imide based coating is applied over a CNT / CNF layer, followed by a liquid polyether amic (PEA) solution, It is formed by imidization. In one embodiment of the invention, CNT / CNF is subsequently treated with a suitable compound, such as MgO or CaO, to form a catalyst support for storing CO 2 in the form of a carbonaceous compound, or a photocatalyst, Treatment with, for example, titania, or an organic photoinitiator to form a catalytic conversion agent and convert carbon dioxide to a carboxylic acid, such as formic acid (HCOOH), and / or an alcohol, such as ethanol (C 2 H 5 OH), A method of forming a coating is provided. Treat the steel surface with CNT / CNF treated in this way and convert it into, for example, a tubular form, or deposit CNT / CNF on carbon steel or low alloy steel tubes and make them suitable compounds as described above Alternatively, treatment with a photocatalyst provides a highly effective and economical catalyst for reducing the carbon traces of any method that generates carbon dioxide.
本発明の一実施態様では、上記の製法は、冷間圧延した鋼帯のコイルを用意する工程、該コイルを連続焼きなましにかける工程、所望により該冷間圧延したコイルを再結晶化させる工程、該鋼の表面を還元、脱酸素化及び/又は清浄化する工程、該鋼の上にCNT/CNFの層を温度600〜750℃で形成し、該鋼を冷却する工程、続いて所望により、該被覆された鋼にポリ−イミド系被覆を施す工程を含んでなる。この製法により、連続製法の規模により得られる経済性を活かすことができる。冷間圧延帯のコイルは比較的安価な基材を与え、これらの基材にCNT/CNFの密着性被覆を連続的な様式で施すことができる。これによって、そのような被覆された基材のコストが大幅に低下する。表面を還元するとは、還元雰囲気中で鋼表面から酸化物を除去することを意味する。 In one embodiment of the present invention, the above manufacturing method includes a step of preparing a coil of a cold-rolled steel strip, a step of subjecting the coil to continuous annealing, a step of recrystallizing the cold-rolled coil as desired, Reducing, deoxygenating and / or cleaning the surface of the steel, forming a layer of CNT / CNF on the steel at a temperature of 600-750 ° C., cooling the steel, and optionally, Applying a poly-imide coating to the coated steel. By this manufacturing method, it is possible to make use of the economic efficiency obtained by the scale of the continuous manufacturing method. Cold rolled strip coils provide relatively inexpensive substrates, and these substrates can be coated with a CNT / CNF adhesive coating in a continuous fashion. This greatly reduces the cost of such coated substrates. Reducing the surface means removing oxides from the steel surface in a reducing atmosphere.
一実施態様では、CNT/CNFの製造方法が、鋼基材の表面からCNT/CNFを、例えば機械的研削により除去すること、及び該CNT/CNFを集めることをさらに含んでなる。この簡単で安価なCNT/CNF製造方法により、電気的及び機械的用途に使用できるCNT/CNFが大量に、安価に供給される。 In one embodiment, the method for producing CNT / CNF further comprises removing CNT / CNF from the surface of the steel substrate, for example by mechanical grinding, and collecting the CNT / CNF. By this simple and inexpensive CNT / CNF manufacturing method, a large amount of CNT / CNF that can be used for electrical and mechanical applications is supplied at low cost.
本製法の一実施態様では、上記のようなCNT/CNFの層を施した鋼基材を、腐食性環境に、太陽電池用途に、燃料電池用途に、水素貯蔵に、触媒担体として、レーダー捕捉被覆に、又は界面導電性層若しくは抗菌製品として使用する。 In one embodiment of the present manufacturing method, the steel substrate provided with the CNT / CNF layer as described above is used in a corrosive environment, for solar cell use, for fuel cell use, for hydrogen storage, as a catalyst carrier, and for radar capture. Use in coatings or as interfacial conductive layers or antimicrobial products.
本発明の好ましい実施態様では、上記のようなCNT/CNFの層を施した鋼基材に重合体被覆、例えばポリ−イミド系被覆、を施し、腐食性環境に、太陽電池用途に、燃料電池用途に、水素貯蔵に、触媒担体として、レーダー捕捉被覆に、又は界面導電性層若しくは抗菌製品として使用する。無論、レーダー捕捉被覆として作用する被覆では、所望により使用する重合体被覆は、問題とするレーダー放射線に対して透明であることが必要である。 In a preferred embodiment of the present invention, a polymer coating, such as a poly-imide coating, is applied to a steel substrate having a CNT / CNF layer as described above, for use in corrosive environments, for solar cell applications, and for fuel cells. Use in hydrogen storage, as a catalyst support, as a radar capture coating, or as an interfacial conductive layer or antimicrobial product. Of course, in coatings that act as radar capture coatings, the polymer coating that is optionally used needs to be transparent to the radar radiation in question.
本発明の好ましい実施態様では、本発明によりCNT/CNF層を備えた鋼基材を、電池、例えばLi系電池及び/又はアルカリ電池、の電極部品の製造に、あるいはフレキシブルバックコンタクト型電極用の光起電力基材の製造に使用する。重合体層を備えたCNT/CNFの厚さは、0.5μm〜60μmでよく、0.2〜0.5重量%損失で300〜500℃の耐熱性を与える。例として、電極材料を通るLiの拡散速度は低いので、Li電池は、電極材料の薄層、電解質及び集電装置からなる。十分な材料を得るために、これらの層を巻き上げる。従来のLi電池では、これらの層は銅層を含んでなり、その両側が炭素層で被覆されている。めっきされた鋼基材、例えばNi−Crめっきされた鋼基材、を使用し、その両側をCNT/CNF被覆層で被覆し、所望によりその上を重合体層、例えばPI層、で被覆することにより、この高価な銅基材を、より安価なCNT/CNF被覆を備えた基材で置き換えることができる。めっきされた層、例えばNi−Cr層、に対する被覆の密着性、及び所望により重合体層で補完した層の腐食保護性が優れているので、この基材は、高価な銅層の代替品として非常に好適である。この電極は結合剤を必要としないので、電池の重量も低下する。 In a preferred embodiment of the invention, the steel substrate provided with a CNT / CNF layer according to the invention is used for the production of electrode parts of batteries, for example Li-based batteries and / or alkaline batteries, or for flexible back contact type electrodes. Used in the production of photovoltaic substrates. The thickness of the CNT / CNF provided with the polymer layer may be 0.5 μm to 60 μm, and gives heat resistance of 300 to 500 ° C. with a loss of 0.2 to 0.5% by weight. As an example, the Li battery consists of a thin layer of electrode material, an electrolyte and a current collector because the diffusion rate of Li through the electrode material is low. These layers are rolled up to obtain sufficient material. In a conventional Li battery, these layers comprise a copper layer, both sides of which are coated with a carbon layer. A plated steel substrate, such as a Ni—Cr plated steel substrate, is used, coated on both sides with a CNT / CNF coating layer and optionally coated with a polymer layer, such as a PI layer. Thus, this expensive copper substrate can be replaced by a substrate with a cheaper CNT / CNF coating. The substrate is an excellent alternative to expensive copper layers because of the excellent adhesion of the coating to the plated layer, such as the Ni-Cr layer, and, if desired, the corrosion protection of the layer supplemented with the polymer layer. Very suitable. Since this electrode does not require a binder, the weight of the battery is also reduced.
本発明の好ましい実施態様では、例えば研削により基材から除去したCNT/CNF粉末を、熱交換機用の水分散させたナノ冷却剤又は流体の製造に、若しくはナノ複合材料被覆の製造に使用する。これらの粉末を熱交換機用の水分散させたナノ冷却剤流体の処方に使用することにより、その熱交換機は水よりも効率的に冷却される。 In a preferred embodiment of the invention, the CNT / CNF powder removed from the substrate, for example by grinding, is used for the production of water-dispersed nanocoolants or fluids for heat exchangers or for the production of nanocomposite coatings. By using these powders in formulating water-dispersed nanocoolant fluids for heat exchangers, the heat exchangers are cooled more efficiently than water.
ここで下記の本発明を制限しない例及び図面により、本発明をさらに説明する。 The invention will now be further illustrated by the following non-limiting examples and drawings.
例:下記の範囲(最小−最大)を有する化学組成物を鋼基材に施した。
CNT/CNFを冷間圧延した鋼の上に化学蒸着により、炭素含有供給源としてエチレンを使用して下記のように合成した。高純度ガスH2(99.999%、INDUGAS)、N2(99.999%、INDUGAS)、及びエチレン(99.95%、PRAXAIR)を使用した。冷間圧延試料(3cm×3cm)を、ガス混合物用の入口及び出口を有するガラス管中に入れた石英プレート上に載せた。ガラス管を加熱炉中で必要な温度に加熱した。試料を先ずH2/N2で、総流量100ml/分で還元した。次いで、同じ流量100ml/分の、C2H4/N2を含むガス混合物を使用してCNT/CNFを合成した。
図1の反応式は、エチレンの代わりに、アセチレン(C2H2)又は一酸化炭素、所望により二酸化炭素、と水素も使用できることを示している。CNF被覆された試料のSEM画像を図2に示す。この画像は、CNFの一様な分布及び成長を明らかに示している。この画像は、CNFの先端成長と、その先端上にある鉄ナノ粒子も示している。 The reaction scheme of FIG. 1 shows that acetylene (C 2 H 2 ) or carbon monoxide, optionally carbon dioxide, and hydrogen can be used instead of ethylene. An SEM image of the CNF coated sample is shown in FIG. This image clearly shows the uniform distribution and growth of CNF. The image also shows the CNF tip growth and the iron nanoparticles on the tip.
ポリイミド被覆は、下記のように製造した。PAA酸を図4の図式により調製し、次いでCNT/CNF被覆された鋼基材上に塗布し、250〜350℃の異なった温度にある加熱炉中に入れ、次いでこの試料を室温に冷却させ、続いて様々な方法で試験した。 The polyimide coating was produced as follows. PAA acid was prepared according to the scheme of FIG. 4, then applied onto a CNT / CNF coated steel substrate, placed in a furnace at a different temperature of 250-350 ° C., and then the sample was allowed to cool to room temperature. Subsequently, it was tested in various ways.
カーボンナノチューブ層を備えた複数の鋼基材にポリ−イミド系被覆を施した。これらの試料を、ASTM B117に準じて模擬塩水環境に露出し、湿潤密着性及び腐食挙動を評価した。電位差動力学的測定を模擬塩水環境中で行った。これらの結果は、ポリ−イミド系被覆を施したCNT/CNFの性能が、被覆していないCNT/CNF層より遙かに優れている(SSTで1000時間)ことを示している。 A plurality of steel substrates provided with a carbon nanotube layer were subjected to poly-imide coating. These samples were exposed to a simulated salt water environment according to ASTM B117 and evaluated for wet adhesion and corrosion behavior. Potential differential mechanical measurements were performed in a simulated saline environment. These results indicate that the performance of the CNT / CNF with the poly-imide coating is far superior to the uncoated CNT / CNF layer (1000 hours in SST).
表3は、低炭素鋼基材上にCNT/CNFを成長させるための様々な処理条件を概観する。成長速度は、単位時間及び表面あたりに形成されるCNT/CNFの質量に対する比率で表す。
60%CO、10%CO2及び30%H2を含んでなる炭素供給源ガスを使用して600℃で行った追加試験は、成長速度1.00mg/分を示した。 Additional tests conducted at 600 ° C. using a carbon source gas comprising 60% CO, 10% CO 2 and 30% H 2 showed a growth rate of 1.00 mg / min.
両側にCNT/CNF被覆層を施したNi−Crめっき鋼基材を、図6により、Li電池に使用した。容量は、0.1C充電速度を使用し、1500mAh/gまで高いことが分かった。小電位範囲1V〜5mV及び大電位範囲3V〜5mVの両方で、この電極は、サイクル試験でほぼ同等の容量を維持している。これらの結果を市販の炭素系アノードと比較した場合、これらの容量は非常に良好である。図6で、Lは液体電解質を、Cは缶壁を、Sはセパレータを表し、Aは、両側をLi1+xMn2O4で覆った金属層(例えばアルミニウム)である。Fは、両側にCNT/CNF層及び所望により重合体層、例えばPI系被覆、を施した炭素鋼又は低合金鋼基材である。 A Ni—Cr plated steel substrate with a CNT / CNF coating layer on both sides was used for a Li battery according to FIG. The capacity was found to be as high as 1500 mAh / g using a 0.1 C charge rate. In both the low potential range 1 V to 5 mV and the large potential range 3 V to 5 mV, the electrode maintains approximately the same capacity in cycle testing. When comparing these results with commercially available carbon-based anodes, these capacities are very good. In FIG. 6, L represents a liquid electrolyte, C represents a can wall, S represents a separator, and A represents a metal layer (for example, aluminum) covered with Li 1 + x Mn 2 O 4 on both sides. F is a carbon steel or low alloy steel substrate with a CNT / CNF layer on both sides and optionally a polymer layer such as a PI coating.
CNT/CNF及びPI系被覆を備えた鋼の耐食性を、CNT/CNF層が無い同じ鋼の耐食性と比較した。PI被覆は、促進腐食試験で5日後に剥離する。他方、CNT/CNF界面層では、その被覆が30日より長く持続した。 The corrosion resistance of the steel with CNT / CNF and PI coating was compared with the corrosion resistance of the same steel without the CNT / CNF layer. The PI coating peels after 5 days in the accelerated corrosion test. On the other hand, in the CNT / CNF interface layer, the coating lasted longer than 30 days.
図8は、燃料電池用途向けの、鋼基材(1)上のCNT/CNF(3)と重合体層(2)の組合せを図式的に示す。PEM燃料電池構造の主要構成部品は、双極板及びメンブラン電極アセンブリー(MEA)である。MEAは、プロトン交換メンブラン、ガス拡散層(GDL)及び触媒層を含んでなる。双極板に対する主な必要条件は、低コスト、容易に製造できること、及び良好な電気的及び機械的特性である。双極板は、燃料電池におけるいわゆる積重構造で重要な機能、例えば各電池から電流を遠くへ運ぶこと、燃料及び酸化体を個別電池中で均質に配分すること、個々の電池を分離し、電池中で十分な水管理を行うこと、を果たす。本発明の方法により、双極板は、鋼基材上にCNT/CNFを成長させることにより、製造することができる。CNTを冷間圧延上に成長させ、薄い重合体被膜、この場合ポリエーテル−イミド、をロールコーターを使用して塗布し、250℃で2分間硬化させた。被覆厚さは8μmであった。次いで、この基材に接触抵抗試験及び電位差動力学的試験を行った。ポリエーテルイミド層をさらに加えることにより、耐食性が得られ、CNT/CNFが良好な導電性を与え、CNT/CNF−PEI組合せの特性は、米国エネルギー省(DOE)の基準に適合している。 FIG. 8 schematically shows a combination of CNT / CNF (3) and polymer layer (2) on a steel substrate (1) for fuel cell applications. The main components of the PEM fuel cell structure are the bipolar plate and membrane electrode assembly (MEA). The MEA comprises a proton exchange membrane, a gas diffusion layer (GDL) and a catalyst layer. The main requirements for a bipolar plate are low cost, ease of manufacture and good electrical and mechanical properties. Bipolar plates are important functions in so-called stacking structures in fuel cells, such as carrying current away from each cell, distributing fuel and oxidant homogeneously in individual cells, separating individual cells, To achieve sufficient water management. By the method of the present invention, a bipolar plate can be produced by growing CNT / CNF on a steel substrate. CNTs were grown on cold rolling and a thin polymer coating, in this case polyether-imide, was applied using a roll coater and cured at 250 ° C. for 2 minutes. The coating thickness was 8 μm. Next, the substrate was subjected to a contact resistance test and a potential differential mechanical test. By further adding a polyetherimide layer, corrosion resistance is obtained, CNT / CNF provides good conductivity, and the properties of the CNT / CNF-PEI combination meet US Department of Energy (DOE) standards.
Claims (15)
‐所望により金属性被覆を備えた、鋼基材を用意し、
‐水素を含んでなる炭素供給源ガスを使用し、熱的化学蒸着(CVD)製法により、温度500〜750℃、好ましくは600〜750℃で、前記基材の表面上にCNT/CNFを成長させ、
‐その際、前記CNT/CNFの成長に触媒作用させるための触媒を加えず、前記CNT/CNFの成長が、前記基材及び/又は前記金属性被覆中に存在する鉄、ニッケル及び/又はクロムによる触媒作用を受ける
工程を含んでなる、方法。 A method of directly low temperature growing a carbon nanotube and / or carbon nanofiber (CNT / CNF) adhesion coating on one or both surfaces of a carbon steel or low alloy steel strip substrate,
-Prepare a steel substrate, optionally with a metallic coating,
-CNT / CNF is grown on the surface of the substrate by a thermal chemical vapor deposition (CVD) process using a carbon source gas comprising hydrogen at a temperature of 500-750 ° C, preferably 600-750 ° C. Let
-No catalyst is added to catalyze the growth of the CNT / CNF, the growth of the CNT / CNF being caused by iron, nickel and / or chromium present in the substrate and / or the metallic coating Comprising the step of catalyzing by.
‐ポリアミック酸(PAA)の層を塗布し、続いてイミド化することにより、及び/又は
‐PAAを合成する際にMn、Ag、Si、Ti、Al及び/又はMgを添加し、続いてイミド化することにより、及び/又は
‐液体ポリエーテルイミド(PEI)溶液を、好ましくはロールコーティング及び/又はスプレーにより塗布し、及び/又は
‐前記ポリ−イミドがポリ−エーテルイミドから生成されること
により製造される、請求項6に記載のポリ−イミド系被覆の製造方法。 The poly-imide coating is on the CNT / CNF layer,
By applying a layer of polyamic acid (PAA), followed by imidization, and / or by adding Mn, Ag, Si, Ti, Al and / or Mg in the synthesis of PAA, followed by imide And / or by applying a liquid polyetherimide (PEI) solution, preferably by roll coating and / or spraying, and / or by producing the poly-imide from a poly-etherimide. The manufacturing method of the poly-imide type | system | group coating | cover of Claim 6 manufactured.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09007979 | 2009-06-18 | ||
EP09007979.9 | 2009-06-18 | ||
EP10002142.7 | 2010-03-03 | ||
EP10002142 | 2010-03-03 | ||
PCT/EP2010/058658 WO2010146169A2 (en) | 2009-06-18 | 2010-06-18 | A process of direct low-temperature growth of carbon nanotubes (cnt) and fibers (cnf) on a steel strip |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012530036A true JP2012530036A (en) | 2012-11-29 |
JP5646613B2 JP5646613B2 (en) | 2014-12-24 |
Family
ID=42575751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012515514A Expired - Fee Related JP5646613B2 (en) | 2009-06-18 | 2010-06-18 | Direct low temperature growth method of carbon nanotube (CNT) and fiber (CNF) on steel strip |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2443060A2 (en) |
JP (1) | JP5646613B2 (en) |
KR (1) | KR20120041198A (en) |
CN (1) | CN102459075A (en) |
WO (1) | WO2010146169A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016076483A (en) * | 2014-10-02 | 2016-05-12 | エルジー・ケム・リミテッド | Corrosion resistant tube for secondary battery and secondary battery including the same |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2758694C (en) | 2009-04-17 | 2017-05-23 | Seerstone Llc | Method for producing solid carbon by reducing carbon oxides |
CN104302576B (en) | 2012-04-16 | 2017-03-08 | 赛尔斯通股份有限公司 | For catching and sealing up for safekeeping carbon and the method and system for reducing the quality of oxycarbide in waste gas stream |
NO2749379T3 (en) | 2012-04-16 | 2018-07-28 | ||
CN104271498B (en) | 2012-04-16 | 2017-10-24 | 赛尔斯通股份有限公司 | The method and structure of oxycarbide is reduced with non-iron catalyst |
MX354529B (en) | 2012-04-16 | 2018-03-07 | Seerstone Llc | Method for producing solid carbon by reducing carbon dioxide. |
EP2838841A4 (en) * | 2012-04-16 | 2015-12-23 | Seerstone Llc | Methods for using metal catalysts in carbon oxide catalytic converters |
WO2013158158A1 (en) | 2012-04-16 | 2013-10-24 | Seerstone Llc | Methods for treating an offgas containing carbon oxides |
US9896341B2 (en) | 2012-04-23 | 2018-02-20 | Seerstone Llc | Methods of forming carbon nanotubes having a bimodal size distribution |
US10815124B2 (en) | 2012-07-12 | 2020-10-27 | Seerstone Llc | Solid carbon products comprising carbon nanotubes and methods of forming same |
US9604848B2 (en) | 2012-07-12 | 2017-03-28 | Seerstone Llc | Solid carbon products comprising carbon nanotubes and methods of forming same |
JP6025979B2 (en) | 2012-07-13 | 2016-11-16 | シーアストーン リミテッド ライアビリティ カンパニー | Methods and systems for forming ammonia and solid carbon products |
US9779845B2 (en) | 2012-07-18 | 2017-10-03 | Seerstone Llc | Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same |
US9650251B2 (en) | 2012-11-29 | 2017-05-16 | Seerstone Llc | Reactors and methods for producing solid carbon materials |
EP3129135A4 (en) | 2013-03-15 | 2017-10-25 | Seerstone LLC | Reactors, systems, and methods for forming solid products |
EP3129133B1 (en) | 2013-03-15 | 2024-10-09 | Seerstone LLC | Systems for producing solid carbon by reducing carbon oxides |
WO2014151144A1 (en) | 2013-03-15 | 2014-09-25 | Seerstone Llc | Carbon oxide reduction with intermetallic and carbide catalysts |
EP3114077A4 (en) | 2013-03-15 | 2017-12-27 | Seerstone LLC | Methods of producing hydrogen and solid carbon |
ES2900814T3 (en) | 2013-03-15 | 2022-03-18 | Seerstone Llc | Electrodes comprising nanostructured carbon |
WO2018022999A1 (en) | 2016-07-28 | 2018-02-01 | Seerstone Llc. | Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same |
CN107699096B (en) * | 2017-10-25 | 2019-07-05 | 南昌工程学院 | A kind of protective layer and preparation method thereof for bearing surface Cold-resistant anti-corrosion |
CN110071261A (en) * | 2018-01-23 | 2019-07-30 | 清华大学 | The preparation method of battery electrode |
FR3079675B1 (en) | 2018-03-29 | 2020-04-24 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | COLLECTOR PLATE HAVING AN ANTI-CORROSION COATING |
CN108950671B (en) * | 2018-09-25 | 2023-12-01 | 湖南工业大学 | Stainless steel-based corrosion-resistant and wear-resistant coating structure and preparation method and application thereof |
CN109532145B (en) * | 2018-11-30 | 2020-08-21 | 曾瑾 | Non-adhesive double-sided flexible copper-clad plate and preparation method thereof |
CN111293292B (en) * | 2020-02-19 | 2022-08-09 | 肇庆市华师大光电产业研究院 | Preparation method of lithium-sulfur battery positive electrode material |
CN114162813B (en) * | 2021-12-23 | 2023-12-26 | 南京大学 | Method for directly converting carbon dioxide into solid carbon by utilizing photochemical reaction |
CN115432695A (en) * | 2022-10-10 | 2022-12-06 | 四川天人化学工程有限公司 | Method for manufacturing carbon nano tube by replacing methane with high-concentration carbon monoxide |
CN115584151B (en) * | 2022-11-28 | 2023-10-24 | 南京深业智能化系统工程有限公司 | Carbon nano tube modified wear-resistant corrosion-resistant composite coating and manufacturing method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006083357A2 (en) * | 2004-11-17 | 2006-08-10 | Research Foundation Of The City University Of New York | Methods and devices for making carbon nanotubes and compositions thereof |
WO2007018078A1 (en) * | 2005-08-10 | 2007-02-15 | Electric Power Development Co., Ltd. | Method for selectively synthesizing platelet carbon nanofiber |
JP2007051041A (en) * | 2005-08-19 | 2007-03-01 | Kansai Electric Power Co Inc:The | Method for production of carbon nanotube, carbon nanotube produced thereby, and catalyst for carbon nanotube production |
US20070253888A1 (en) * | 2006-04-28 | 2007-11-01 | Industrial Technology Research Institute | A method for preparing carbon nanofluid |
US20090017361A1 (en) * | 2007-07-13 | 2009-01-15 | Dae Soon Lim | Separator for fuel cell and method for fabricating the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1043256C (en) * | 1996-11-05 | 1999-05-05 | 中国科学院物理研究所 | Orderly arranged carbon nano-tube and preparation method and special device thereof |
CN1239387C (en) * | 2002-11-21 | 2006-02-01 | 清华大学 | Carbon nano transistor array and grwoth method thereof |
CN1286716C (en) * | 2003-03-19 | 2006-11-29 | 清华大学 | Method for growing carbon nano tube |
KR100540639B1 (en) * | 2003-10-06 | 2006-01-10 | 주식회사 카본나노텍 | Method of Making Catalyst for Carbon Nanotubes and Carbon Nanofibers and Catalyst for Carbon Nanotubes and Nanofibers thereof |
CN100509619C (en) * | 2005-09-23 | 2009-07-08 | 中国科学技术大学 | Method for preparing carbon nano fiber |
CN104674153B (en) * | 2008-01-08 | 2016-08-24 | 特来德斯通技术公司 | Highly electrically conductive surfaces for electrochemical applications |
-
2010
- 2010-06-18 CN CN2010800317929A patent/CN102459075A/en active Pending
- 2010-06-18 WO PCT/EP2010/058658 patent/WO2010146169A2/en active Application Filing
- 2010-06-18 EP EP10725737A patent/EP2443060A2/en not_active Withdrawn
- 2010-06-18 JP JP2012515514A patent/JP5646613B2/en not_active Expired - Fee Related
- 2010-06-18 KR KR1020127000806A patent/KR20120041198A/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006083357A2 (en) * | 2004-11-17 | 2006-08-10 | Research Foundation Of The City University Of New York | Methods and devices for making carbon nanotubes and compositions thereof |
WO2007018078A1 (en) * | 2005-08-10 | 2007-02-15 | Electric Power Development Co., Ltd. | Method for selectively synthesizing platelet carbon nanofiber |
JP2007051041A (en) * | 2005-08-19 | 2007-03-01 | Kansai Electric Power Co Inc:The | Method for production of carbon nanotube, carbon nanotube produced thereby, and catalyst for carbon nanotube production |
US20070253888A1 (en) * | 2006-04-28 | 2007-11-01 | Industrial Technology Research Institute | A method for preparing carbon nanofluid |
US20090017361A1 (en) * | 2007-07-13 | 2009-01-15 | Dae Soon Lim | Separator for fuel cell and method for fabricating the same |
Non-Patent Citations (7)
Title |
---|
JPN5012015075; VANDER WAL R L: 'DEMONSTRATION OF CARBON NANOTUBE COATED METALS REINFORCING POLYMER MATRIX COMPOSITES' ADVANCED ENGINEERING MATERIALS V6 N1-2, 20040201, P48-52, WILEY-VCH VERLAG * |
JPN5012015076; BADDOUR C E: 'A SIMPLE THERMAL CVD METHOD FOR CARBON NANOTUBE SYNTHESIS ON STAINLESS STEEL 304 WITHOUT THE ADDITIO' CARBON V47 N1, 20090101, P313-318, ELSEIVIER * |
JPN5012015079; DING D Y: 'NI-NI3P ALLOY CATALYST FOR CARBON NANOSTRUCTURES' CHEMICAL PHYSICS LETTERS V371 N3-4, 20030407, P333-336, ELSEVIER * |
JPN5012015081; DAO QUANG DUY: 'GROWTH OF CARBON NANOTUBES ON STAINLESS STEEL SUBSTRATES BY DC-PECVD' APPLIED SURFACE SCIENCE V256 N4, 20090602, P1065-1068, ELSEVIER SCIENCE B.V. * |
JPN5012015082; GAO: 'GROWTH OF CARBON NANOTUBES AND MICROFIBERS OVER STAINLESS STEEL MESH BY CRACKING OF METHANE' SURFACE AND COATING TECHNOLOGY V202 N13, 20071112, P3029-3042, ELSEVIER * |
JPN5012015083; SU F: 'CAPTURE OF CO2 FROM FLUE GAS VIA MULTIWALLED CARBON NANOTUBES' SCIENCE OF THE TOTAL ENVIRONMENT V407 N8, 20090207, P3017-3023, ELSEVIER * |
JPN5012015084; XIA: 'PREPARATION OF MULTI-WALLED CARBON NANOTUBE SUPPORTED TIO2 AND ITS PHOTOCATALYTIC ACTIVITY IN THE RE' CARBON V45 N4, 20070111, P717-721, ELSEVIER * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016076483A (en) * | 2014-10-02 | 2016-05-12 | エルジー・ケム・リミテッド | Corrosion resistant tube for secondary battery and secondary battery including the same |
US10115935B2 (en) | 2014-10-02 | 2018-10-30 | Lg Chem, Ltd. | Corrosion resistant tube for secondary battery and secondary battery comprising the same |
Also Published As
Publication number | Publication date |
---|---|
JP5646613B2 (en) | 2014-12-24 |
WO2010146169A2 (en) | 2010-12-23 |
KR20120041198A (en) | 2012-04-30 |
CN102459075A (en) | 2012-05-16 |
EP2443060A2 (en) | 2012-04-25 |
WO2010146169A3 (en) | 2011-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5646613B2 (en) | Direct low temperature growth method of carbon nanotube (CNT) and fiber (CNF) on steel strip | |
Yu et al. | Vertical‐graphene‐reinforced titanium alloy bipolar plates in fuel cells | |
CN105047958B (en) | Graphene composite coating for fuel battery metal pole plate and preparation method thereof | |
Zhang et al. | Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell | |
JP6078024B2 (en) | Rolled copper foil for producing a two-dimensional hexagonal lattice compound and a method for producing a two-dimensional hexagonal lattice compound | |
US20180131015A1 (en) | Low Temperature Atmospheric Pressure Atomic Layer Deposition (ALD) of Graphene on Stainless Steel Substrates as BPP Coating | |
TW201126797A (en) | Negative electrode for nonaqueous electrolyte secondary batteries and lithium ion secondary battery | |
CN103201405A (en) | Graphene-coated steel sheet, and method for manufacturing same | |
JP2012028045A (en) | Titanium fuel cell separator and method for manufacturing the same | |
Zhang et al. | In situ synthesis of MoS 2/graphene nanosheets as free-standing and flexible electrode paper for high-efficiency hydrogen evolution reaction | |
CN109943803A (en) | Resist melt alusil alloy corrodes composite coating and its preparation method and application | |
EP4088332A1 (en) | Carbon coated hydrogen fuel cell bipolar plates | |
Jin et al. | Investigation of corrosion protection with conductive chromium-aluminum carbonitride coating on metallic bipolar plates | |
Moyer-Vanderburgh et al. | Growth of carbon nanotube forests on flexible metal substrates: Advances, challenges, and applications | |
CN114665114A (en) | Multilayer composite carbon coating and preparation method and application thereof | |
CN110808181A (en) | Thin film electrode and preparation method | |
Tsai et al. | The characteristics and performance of electroless nickel and immersion Au plated aluminum alloy bipolar plates in polymer electrolyte membrane fuel cells | |
Lian et al. | Amorphous Fe− Co− P− C film on a carbon fiber paper support as an efficient electrocatalyst for the oxygen evolution reaction | |
JP3980150B2 (en) | Low temperature fuel cell separator | |
Wang et al. | Hydrogen interaction characteristics of a Cr2O3Y2O3 coating formed on stainless steel in an ultra-low oxygen environment | |
US20100239854A1 (en) | Metallic material coated with carbon film | |
Liao et al. | Ultrafast synthesis of novel coal-based graphene and its anticorrosion properties of epoxy/graphene nanocomposite coatings | |
Liu et al. | Nitrogen-doped carbon nanotubes and graphene nanohybrid for oxygen reduction reaction in acidic, alkaline and neutral solutions | |
Ghosh et al. | Bamboo-shaped aligned CNx nanotubes synthesized using single feedstock at different temperatures and study of their field electron emission | |
JP4238024B2 (en) | Method for producing composite carbonaceous substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130617 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140320 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140408 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140707 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141010 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141105 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5646613 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |