JP2012523889A - 胸部x線写真の重ね合わせ,減算及び表示 - Google Patents

胸部x線写真の重ね合わせ,減算及び表示 Download PDF

Info

Publication number
JP2012523889A
JP2012523889A JP2012505870A JP2012505870A JP2012523889A JP 2012523889 A JP2012523889 A JP 2012523889A JP 2012505870 A JP2012505870 A JP 2012505870A JP 2012505870 A JP2012505870 A JP 2012505870A JP 2012523889 A JP2012523889 A JP 2012523889A
Authority
JP
Japan
Prior art keywords
image
storage medium
images
overlay
coarse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012505870A
Other languages
English (en)
Inventor
ダブリュ.ウォーレル スティーブ
ブイ.バーンズ リチャード
エフ.ナップ ジェイソン
シャーストリー トリプティ
Original Assignee
リバレイン メディカル グループ,リミティド ライアビリティ カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リバレイン メディカル グループ,リミティド ライアビリティ カンパニー filed Critical リバレイン メディカル グループ,リミティド ライアビリティ カンパニー
Publication of JP2012523889A publication Critical patent/JP2012523889A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30008Bone

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)

Abstract

【課題】胸部X線写真の重ね合わせ,減算及び表示の方法,並びにそのための記憶媒体を提供すること。
【解決手段】粗位置揃えと,粗重ね合わせと,詳細重ね合わせとを含むいくつかの操作を実行することによって,画像が重ね合わされる。残差画像を得るために詳細重ね合わせがされた画像が減算される。
【選択図】図15

Description

本発明は,胸部X線写真の重ね合わせ,減算及び表示の方法,並びにそのための記憶媒体に関する。
医療用放射線造影は当業において周知である。例えば胸部の放射線画像は,肺,胸部骨組織,上腹部器官,肺の血管組織,及び中胸郭部脊椎(mid−thoracic spine)の円盤状空間(disc space)を含む多くの症状を検出し,治療するための重要な診断情報を提供する。
デジタル画像の大きな利点のために,放射線写真は通常デジタル形式で記憶され,処理される。デジタル放射線写真は,デジタル形式の原画像を直接取り込んでもよいし,“アナログ”システムによって得られた画像をデジタル形式に変換することによって生成してもよい。デジタル画像は,放射線写真を正しく患者に対応させることのような記録維持を容易にし,より効率のよい記憶及び配布を可能にする。デジタル画像はまた,放射線写真のデジタルでの補正及び強調,並びに計算機支援診断及び処置の応用を可能にする。
いったんデジタル形式にすれば,放射線画像の効用を高めるために,種々の技法を用いることができる。そのような技法の一つは分割(segmentation)である。分割は,例えば診断,評価又は測定のために,対象物を分離すること(例えば,前景から背景の分離)又は画像から解剖学的表面若しくは組織を抽出することを含む。分割は,時間的比較のための可視化及び重ね合わせのような作業に有用である。
ほかの技法は,無関係な要素を抑圧しつつ,放射線画像内の重要な特徴の被視認性を強化するために役立つ。放射線写真を使用する際に遭遇するよくある課題は,体内の種々の組織が互いに重なり合って,重要な特徴が,その上又は下にあるほかの組織によって隠ぺいされることである。例えば,肺の軟組織内の詳細は,放射線写真では患者の肋骨の画像が重畳するため解釈が難しいことがある。Riverain Medical Group , LLC(本願譲渡人)が開発したSoftView(登録商標)システムのような骨抑圧技法は,本質的には骨の画像を取り除くことによって,デジタル放射線写真における軟組織の明瞭度を向上させることができる。
画像の重ね合わせ(registration)は,比較及び医学的診断を容易にするため,別個の画像の位置を揃える(aligning)処理である。重ね合わせは,時間経過による患者の生理学的変化を可視化し,監視することによって,医師を支援することができる。例えば,重ね合わせは医師が病巣又は結節の増大又は縮小を監視することを支援し,時間経過による濃度のわずかな変化を検出することを支援する。
別々の時間に患者を撮影した放射線画像の重ね合わせは,患者の造影装置に対する位置が完全には再現されないため困難なことがある。なぜならば,取り込み装置は別の造影パラメータ(例えば,標本化,露出,コントラスト応答関数,など)を有し,及び/又は患者内に差(臨床的に関係するもの及び関係しないものの双方)があるためである。例えば胸部放射線写真において,別々の時間に撮影された画像は,患者の呼吸に関して位相がずれており,横隔膜の位置が異なることがある。また,患者の医学的状態,例えば肺炎などのような肺の病気の変化が肺野の見えの変化になることがあり,画像マッチングを複雑にする。
放射線画像の重ね合わせはまた,画像内の種々の組織が互いに強く結合しておらず,そのため,時間を経過して撮影された画像間で異なって動くため,問題を含むことがある。例えば胸郭が正確に重ね合わされた放射線画像は,肺の軟組織の細部については異なることがある。肺組織(特に内部)は,胸郭に緩やかに結合しているだけである。
更なる画像処理技法は,いったん放射線画像が重ね合わされると,画像間の差を表す「残差」画像を生成することができる。残差画像は,一つの画像をもう一つの画像から減算することによって形成してもよい。完全に正規化され,重ね合わされた残差画像においては,形態学及び組織種別双方に関して二つの画像が同一である部分は,完全に減算される。一方,形態学及び/又は吸収特性が異なるときは,これは残差画像において極めて明らかである。二つの画像間の差は,暗い特徴又は明るい特徴として現れ,時間を経過して撮影された画像間の差を示す。したがって,放射線写真内の重要な特徴が正確に重ね合わされ,正規化されていないときは,問題が生じる。
放射線画像の位置を揃え,重ね合わせる既存の技法は,骨組織と軟組織とを分離することを処理するのに失敗し,通常は軟組織の変化を明確に描くことができない。
本発明の実施形態は,放射線画像の剛性位置揃え及び多重尺度の反復する非剛性重ね合わせを行う方法を含み,変形物が生成され,その後,得られた画像の階層に適用され,該階層において各画像は,骨,筋肉又は肺柔組織のような組織種別を除いてほかのすべてを抑圧する。残差画像は,同時にほかのものを抑圧しつつ,関係する特徴の被視認性を強化するために,多重尺度分解から得られる情報を優先的に重み付けしてもよいし,省略してもよい。
本発明の種々の実施形態は,方法,装置,システム,及び/又は方法を実行するためのプロセッサ実行可能命令を含む計算機可読記憶媒体であってよい。さらに,このような方法は,制限するものではないが例えば,画像処理装置,汎用プロセッサ又は計算機,などの自動化した処理装置によって実行してもよいことが想定されることに注意されたい。
本発明の実施形態の概要を示すフローチャートである。 本発明のいくつかの実施形態による前処理の更なる詳細を示すフローチャートである。 本発明の種々の実施例による粗位置揃えの更なる詳細を示すフローチャートである。 現在の画像と前の画像との間の傾きを,胸郭分割領域によって測定する方法を更に示す図である。 本発明の種々の実施例による粗重ね合わせの更なる詳細を示すフローチャートである。 現在の骨画像及び前の骨画像を用いて,粗重ね合わせを達成する方法を更に示す図である。 本発明の実施形態による詳細位置揃え処理におけるオプチカルフローを示す図である。 粗位置揃えによって得られる残差画像の例を示す図である。 粗重ね合わせ後に得られる残差画像の例を示す図である。 詳細位置揃え後に得られる残差画像の例を示す図である。 骨及び軟組織双方を含む,重ね合わされた「完全な」現在の画像と前の画像との残差画像の例を示す図である。 骨を抑圧し,重ね合わせた現在の画像と前の画像との対応する残差画像の例を示す図である。 骨を抑圧し,重ね合わせた現在の画像と前の画像との残差画像の例であって,本発明のいくつかの実施形態において使用されることがある,分解ピラミッドからの無関係な情報を省いた図である。 本発明のいくつかの実施形態において使用されることがある,後処理の混合処理のフローチャートである。 本発明の実施形態のすべて又は一部を実現することができるシステムの概念的ブロック図ある。
図1は,本発明の実施形態の概要を示すフローチャートである。本発明の実施形態は,患者の前の放射線画像102及びその患者の現在の放射線画像104から始めてもよい。この二つの放射線画像は,同一又は同じ装置を用い,患者と装置との位置揃えが可能な限り同じであるように注意を払って取得されたものであるが,描画された内部組織の方向及び位置が異なることがしばしばある。
本発明の実施形態は,前の画像及び/又は現在の画像の前処理(ステップ106)に進んでもよい。本発明のいくつかの実施形態によれば,前処理は図2に示す更なる詳細に従って進められる。各入力画像202はまず,例えば二つの画像が,単位長当たり画素数の点で均一な標本化関数と,画素当たりビット数の点で均一なビット深度と,均一な画像コントラストと,減少させたノイズレベルと,を有するように正規化してもよい(ステップ204)。このように,正規化は,二つの画像が正しく位置揃えされた場合,一つの画像を他の画像から画素単位で減算したとき,同一の特徴が本質的に「打ち消される」ように,均一な特性を有する画像を提供することができる。
正規化の後,画像の分割領域について前処理を続けてもよい(ステップ206)。分割は,例えば後続の処理のために,二つの画像内の肺,胸郭又はほかの組織の輪郭を描く(delineate)ことであってよい。後で説明するように,前処理の際に骨抑圧も行ってよい(ステップ208)。そして前処理はステップ210で終了し,前処理された画像が後続の処理で利用可能になる。
前処理ステップ106の出力もまた,例えば,ここに参照する2008年10月6日出願の"Feature Based Neural Network Regression for Feature Suppression"と題する米国特許出願第12/246,130号に部分的に提示されている,Riverain Medical Group, LLCが開発したSoftView(登録商標)システムによって生成されるような,骨抑圧された前の画像112及び骨抑圧された現在の画像114を含んでよい。或いは,骨抑圧画像は,例えば画像の重ね合わせ(ステップ110)の後のような,処理の後段で生成してもよい。骨画像は軟組織を抑圧したものであって,次に説明するように画像の粗重ね合わせにおいて用いるために生成してもよい。
前処理の後,本発明の実施形態は二つの画像の粗位置揃えを続けてもよい(ステップ108)。粗位置揃え(ステップ108)は,後続の重ね合わせステップ110,120がより効果的であるように,二つの画像の間のずれ(移動)及び/又は傾き(回転)を補正し,及び/又は画像を概略位置揃えするために用いてもよい。粗位置揃え(ステップ108)の実施形態は,前の画像及び現在の画像が既に放射線写真処理によって得られる一定の許容誤差内,例えば垂直位置揃えが36mm以内,に入っていることを仮定してもよい。粗位置揃え(ステップ108)は,前の画像及び現在の画像の低解像度版,例えば画素解像度が画素当たり3mmの画像を用いてもよい。さらに,粗位置揃え(ステップ108)の実施形態は,剛性座標軸変換を計算するためにアフィン変換を用いて実現してもよい。
図3に示されているように,粗位置揃え(ステップ108)の実施形態は302及び304から始め,患者の傾きの低解像度推定を生成してもよい(ステップ306)。患者の傾きを測定する一例示方法が図4に示されている。前処理(ステップ106)から得られるような,各画像の胸郭分割領域402,404が,胸郭の正中線412,414を計算するために分析される。例示技法は,ここに参照する2008年10月16日出願の米国特許出願第12/252,615号に見出すことができる。各正中線の端点,すなわち頂点を使って,二つの画像の間の相対傾斜を測定することができる。
本発明の一実施形態においては,前の画像が現在の画像と同じ傾きになるように調整することによって,二つの画像間の傾きを補正することができる。次に,二つの画像間の位置ずれ(translation offset)の推定が生成される(ステップ308)。ずれを測定する一つの方法は,例えば二つの画像間の階調相関を測定することである。相関を制限するために胸郭分割領域を用いてもよく,分割領域(図4のクロスハッチした部分)内に入る階調特徴だけを用いることができる。このことは,胸郭外の特徴から相関への無関係な寄与を無くすことに役立つ。
本発明の一実施形態においては,位置ずれの補正は現在の画像に前の画像を位置揃えすることによって達成され(ステップ310),粗位置揃えは312で終了する。粗傾斜調整及び粗位置調整双方を,前の画像に大局的に適用してもよく,画像内の局所効果は検討しなくてもよい。本発明の一実施形態においては,粗位置揃えは,互いに約15mm以内の局所効果をもたらす。
粗位置揃え(ステップ108)が完了した後,粗重ね合わせ(ステップ110)を実行してもよい。粗重ね合わせ(ステップ110)において,特定の点近くの画像について,局所相関が計算され,局所弾性変形が適用される。
本発明の一実施形態においては,粗重ね合わせが,現在の画像及び前の画像から導出された,軟組織特徴が抑圧された骨画像を用いて実行される(ステップ110)。別の実施形態においては,粗重ね合わせ(ステップ110)において,骨特徴が抑圧された軟組織画像を用いて,局所領域間の相関を計算してもよい。このような骨画像及び/又は軟組織画像はハードウェアによって導出したものでもよいし,及び/又はソフトウェアによって導出したものでもよい。
図5及び6に更に示す本発明の実施形態においては,粗重ね合わせ(ステップ110)はステップ502で開始し,現在の画像及び前の画像の局所相関を計算してもよい(ステップ504)。現在の画像及び前の画像は,それぞれ図6の円又は正方形で描かれた局所領域に分割される。各局所領域内で中心点について相関が測定される(ステップ504)。図6の矢印で表される,各中心点の変位が計算される(ステップ506)。(矢印の長さは,説明のために誇張して示されている。)
本発明の実施形態において,結び付ける(correlate)画像は生階調画像であってもよいし,コントラストが強調された画像であってもよいし,重要な組織要素を結び付けるために相関を偏移させるようにフィルタされた画像であってもよい。また,本発明の実施形態においては,十分に高い相関を示す任意の変位(例えば,所定の最小許容相関値と比較することによって判定することができる)にならない局所領域は,隣接領域から変位値を継承してもよい。欠落した変位値は,既知の隣接値から内挿又は外挿してもよい。
本発明の実施形態において,局所領域を象徴する点は,例えばDifference of Gaussianフィルタのピークのような顕著な特徴の位置によって決定してもよい。一つの実施形態においては,局所領域は,分割された肺領域の周囲の追加点によって補完された領域の等間隔格子によって決定してもよい。均一格子を補完するとき,2点が互いに近すぎるときはいつでも,一つの点を除去してもよく,2点のうち一つが肺周囲点であるときは,肺周囲点を優先してもよい。
本発明のいくつかの実施形態においては,相関を用いて局所変位の候補を決定してもよい。しかし,相関領域の最大ピークに加えて,十分に強い非最大ピークも考慮してよい。変位の選択は,例えば候補位置の近隣の残差階調誤差,期待される位置からの距離,及び/又は相関値自体の識別関数を用いて決定してもよい。
整合処理(coherency)(変位ベクトルの一貫性)を変位に適用してもよく(ステップ508),前の画像の局所弾性変形(ステップ510)を実行してもよい。整合処理(ステップ508)は,隣接領域が同様に変位しているかどうかを確かめることによって,画像の滑らかな変形を維持するために用いることができる処理である。整合処理(ステップ508)は,画像の一つの部分が他の部分にかぶさることを防止することができる。また,整合処理は隣接点間で生じる伸張の量を制限することができる。
粗位置揃え(ステップ108)及び粗重ね合わせ(ステップ110)が行われると,粗位置揃え(ステップ108)及び粗重ね合わせ(ステップ110)から得られる変形を,前処理(ステップ106)の際に生成された元の「骨が抑圧された」画像又は軟組織画像112,114に適用してもよい。同一の画像を反復して変形させることは,各ステップにおける階調補間のために損失のある処理になることがある。したがって,変形は原画像に対して累積されることがある。
画像間の位置揃えを改善するために,二つの画像フレーム間のオプチカルフロー推定のために開発された方法を含む,種々の計算技法を用いてもよい。よくある方法の一つはLucas‐Kanade法であり,この方法は画像を小さなウィンドウに分解し,各ウィンドウ内ではフローが一定であると仮定する(「局所一定フロー」)。この方法は更に,画像内の物体の輝度は,画像間で本質的に一定であると仮定する。
画像重ね合わせに適用したとき,Lucas‐Kanade法は反復して適用してもよい。画像はまず尺度空間「ピラミッド」に分解され,この方法がピラミッドの粗成分に適用される。次に,粗レベルの結果が,ピラミッドの次に細かい尺度にこのアルゴリズムを適用するための推定値として用いられる。
粗重ね合わせ(ステップ110)に続いて,骨を抑圧した(又は軟組織の)画像に詳細重ね合わせが行われる(ステップ120)。相関に基づく方法及び当業において既知の「オプチカルフロー」法を含むいくつかの技法を,詳細重ね合わせのために用いてもよい。上述のとおり,そして図7に示すように,本発明の一実施形態は,Lucas‐Kanadeオプチカルフロー法を利用する。本発明の実施例は,粗重ね合わせ(ステップ110)よりも密に配置された特定点の周囲の局所相関を利用してもよい。
請求項7に示されたオプチカルフロー法はステップ702で始まり,画像を「ピラミッド」に多重尺度分解する(ステップ704)。ここでピラミッドの各レベルは,特定尺度,すなわち空間周波数範囲における画像の情報を表す。ピラミッドの第1レベルは,最低空間周波数を表してもよい。変位推定は,例えばゼロで初期化してもよい(ステップ706)。空間グラジエント行列“G”は,このピラミッドレベルに対して計算される(ステップ708)。画像差分が推定される(ステップ710)。ミスマッチベクトル“b”が計算される(ステップ714)。変位が解決される(ステップ716)。変位は次のピラミッドレベル(より詳細な空間成分を有する)に伝ぱ(播)する(ステップ720)。最高空間周波数を有するピラミッドレベルに達すると(ステップ718),この方法は終了する(ステップ722)。
画像の詳細重ね合わせ(ステップ120)の後,骨を抑圧した現在の画像と前の画像との減算(ステップ122)を用いて残差画像130が生成される。残差画像130は本質的に,二つの重ね合わせた画像の一つを他方から画素単位に減算することによって得られる差分であってよい。残差画像130は,検査のために表示してもよいし,印刷してもよい。
図8は,粗位置揃え(ステップ108)によって得られる残差画像の例を示している。個々の肋骨はよく位置が揃っていないが,輪郭化した胸郭はよく位置が揃っていることに注意されたい。図9は,粗重ね合わせ(ステップ110)の後に得られる残差画像の例を示している。ここで,輪郭化した胸郭及び個々の肋骨双方はよく位置が揃っており,軟組織,特に右下の横隔膜及び結節は位置が揃っていない。図10は,詳細重ね合わせ(ステップ120)の後に得られる残差画像の例を示している。今度は,肋骨間の軟組織が「よりきれい」であり,横隔膜及び結節はよく位置が揃っていることが分かる。
図11は,骨及び軟組織双方を含む,重ね合わされた「完全な」現在の画像と前の画像との残差画像の例である。軟組織を重ね合わせると,肋骨がずれることが分かる。図12は,Riverain Medical Group, LLCが開発したSoftView(登録商標)によって生成された,骨を抑圧し,重ね合わせた現在の画像と前の画像との対応する残差画像の例である。
後処理(ステップ122)は,残差画像の更なる処理を付加することができる。例えば,多重尺度分解の各層を優先的に重み付けし,又は残差画像から省いて,ユーザに表示する画像を改善してもよい。完全な残差画像はノイズ及び無関係なレベルの詳細を含む。図13の例に見られるように最終残差画像からレベルを省くことによって,画像の解釈を支援してもよい。
後処理(ステップ122)はまた,位置ずれを起こすことが分かっている領域の詳細を抑圧することを含んでもよい。重ね合わせモデルの制約によって大きな誤差を有する領域をユーザに示すのではなく,これらの領域の詳細は抑圧してもよく,正しく重ね合わせられている確度が高い領域,したがって残差が解剖学的,臨床的に関係のある変化に関して意味があるという確度がより高い領域を強調してもよい。例えば,本発明の実施形態は,肺の頂点領域,すなわち非常に複雑で見落としがちであるが,一方で不相応な数の癌を含むことが知られている領域においてよく機能することが示された。
表示画像の形成において,強調された残差画像を現在の画像と混合してもよい。これに関する実施形態が図14に示されている。よく重ね合わされた画像にはほとんど組織が提示されないため,このような混合は,内科医が見慣れている参照フレームに残差画像の肺領域を置くことができる。現在の画像に分割された処理範囲を混合することによって,重ね合わせ処理において除去されないフラッシュタグ及び隣接の解剖学的組織などのために胸部外に存在する可能性がある歪みによる残差が除去される。図14に示すように,本発明の実施形態においては,残差画像142を現在の画像141に混合するステップは,現在の画像141の前処理(ステップ143)で始めてもよい。この前処理(ステップ143)において,現在の画像は局所傾向が補正され,ダイナミックレンジが圧縮されて,輝度が画像全体を通じてより均一に分布するようになる。傾向補正は,例えばウェーブレット分解を用い,そして再構成画像からより大きな尺度を除外することによって達成される。画像内のある高周波スペックルを除去するために,より小さな尺度も除外してよい。そして画像のダイナミックレンジが削減され,例えば0.5にセンタリングされる。このことは,当該領域において予期される残差値に不透明領域を揃える働きをする。さらに,分割された胸部領域の不透明領域の下部不透明領域における一条(swath)の画素を用いて,現在の画像の不透明領域と,残差画像の不透明領域との間のずれを計算してもよい。現在の画像の輝度をこのずれだけ偏移させて,各領域の中央値を等しいか,ほぼ等しくしてもよい。
二つの画像の混合の準備ができると,それらは一緒に混合される(ステップ144)。混合ステップ144は,混合ステップ144が行われる距離を規定することから始めてもよい。一つの例示実施例においては,その距離は10mmであるが,本発明はこれに限定されない。また一つの実施形態においては,距離変換を用いて分割された肺の端からの距離を測定してもよい。そしてガウス型指数関数をその範囲に渡って計算して各画像の相対重みを決定してもよい。そして二つの画像を各画素位置における相対重みに従って各画素において平均して,混合画像145を形成してもよい。
本発明の種々の実施形態は,ハードウェア,ソフトウェア及び/又はファームウェアを含んでもよい。図15は,本発明の実施形態の種々の形態及び/又は部分を実現するために用いることができる例示システムを示す。このような計算システムは1又は複数のプロセッサ152を含んでもよく,プロセッサは1又は複数のシステムメモリ151に接続されていてもよい。このようなシステムメモリ151は,例えばRAM,ROM又はほかの類似の計算機可読記憶媒体を含んでもよく,システムメモリ151は例えば,基本入出力システム(BIOS)と,オペレーティングシステムと,プロセッサ152によって実行される命令/ソフトウェアと,などを組み込むために用いてもよい。このシステムはまた,追加のRAM,ROM,ハードウェアディスクドライブ,又は計算機可読記憶媒体のような更なるメモリ153を含んでもよい。プロセッサ152はまた,少なくとも一つの入出力(I/O)インタフェース154,並びに種々の記憶媒体,及び/又は例えば計算機から通信網を介してソフトウェアをダウンロードすることによってソフトウェアコードを取得できる,1又は複数の通信網へのコネクション(例えば通信インタフェース及び/又はモデム)を含んでもよい。さらに,別のデバイス/媒体もまた,図15に示したシステムと結合及び/又は相互作用することができる。
上記は,本発明の特定の実施形態の詳細な説明である。当業者であれば,開示した実施形態からのかい離が本発明の範囲内であって,明白な修正が可能であることを想到するであろう。本出願人は,本発明が,開示されたものと同一の機能を実行する,当業において既知の代替の実現方法も含むことを意図している。本明細書は,本発明に与えられる保護の全範囲を不当に狭めるように解釈しないことが望ましい。

Claims (33)

  1. 画像重ね合わせの方法であって,
    自動化処理装置によって,粗く位置揃えされた画像を得るために少なくとも二つの画像の粗位置揃えを行うステップと,
    粗く重ね合わされた画像を得るために,前記粗く位置揃えされた画像の粗重ね合わせを行うステップと,
    詳細に重ね合わせされた画像を得るために,前記粗く重ね合わされた画像の詳細重ね合わせを行うステップと,
    残差画像を得るために,前記詳細に重ね合わされた画像を互いに減算するステップと,
    を有する方法。
  2. 正規化及び分割からなるグループから選択した少なくとも一つの操作を行うために,前記画像の少なくとも一つを前処理するステップを更に有する請求項1に記載の方法。
  3. 前記前処理するステップは,骨を抑圧した画像を得るステップを更に有する,請求項2に記載の方法。
  4. 前記粗位置揃えは,
    傾きを推定するステップと,
    位置ずれを推定するステップと,
    前記傾き及び前記位置ずれに基づいて,前記画像を位置揃えするステップと,
    を有する,請求項1に記載の方法。
  5. 画像分割を用いて,前記粗位置揃えが前記画像内の1又は複数の重要な領域に基づくように制約するステップを更に有する請求項4に記載の方法。
  6. 前記粗重ね合わせは,
    画像間の局所相関を計算するステップと,
    前記局所相関に基づいて,1又は複数の変位を計算するステップと,
    を有する,請求項1に記載の方法。
  7. 前記1又は複数の変位を計算するステップは,
    所定の値未満の局所相関を検出するステップと,
    少なくとも一つの隣接変位値の変位値に基づいて,前記局所相関によって表される位置の変位値を決定するステップと,
    を有する,請求項6に記載の方法。
  8. 前記粗重ね合わせは,
    変位整合処理を適用するステップと,
    少なくとも一つの局所弾性変形を行うステップと,
    を更に有する,請求項6に記載の方法。
  9. 前記粗重ね合わせは,識別関数を用いて1又は複数の変位を計算するために,1又は複数の位置を選択するステップを更に有する,請求項6に記載の方法。
  10. 前記詳細重ね合わせは,オプチカルフロー法及び相関に基づく方法からなるグループから選択した少なくとも一つの操作を行うステップを有する,請求項6に記載の方法。
  11. 前記粗重ね合わせは,
    変位整合処理を適用するステップと,
    少なくとも一つの局所弾性変形を行うステップと,
    を更に有する,請求項10に記載の方法。
  12. 前記粗重ね合わせは,識別関数を用いて1又は複数の変位を計算するために,1又は複数の位置を選択するステップを更に有する,請求項10に記載の方法。
  13. 前記残差画像を表示用に改善するために,前記残差画像を後処理するステップを更に有する請求項1に記載の方法。
  14. 前記後処理するステップは,位置ずれになるか,臨床的に重要でない残差を含むことが分かっている前記残差画像の領域の詳細を抑圧するステップを有する,請求項13に記載の方法。
  15. 前記後処理するステップは,前記残差画像を該残差画像が導出された画像と混合するステップを有する,請求項13に記載の方法。
  16. ソフトウェア命令であって,処理装置によって実行すると,該処理装置に前記粗位置揃えと,前記粗重ね合わせと,前記詳細重ね合わせと,前記減算とを実行させるソフトウェア命令をダウンロードするステップを更に有する請求項1に記載の方法。
  17. 前記残差画像を表示するステップと,前記残差画像を印刷するステップとからなるグループから選択した少なくとも一つの操作を更に有する請求項1に記載の方法。
  18. ソフトウェア命令を含む計算機可読記憶媒体であって,該ソフトウェア命令は処理装置によって実行されると,前記処理装置に,
    粗く位置揃えされた画像を得るために,少なくとも二つの画像の粗位置揃えを行うステップと,
    粗く重ね合わされた画像を得るために,前記粗く位置揃えされた画像の粗重ね合わせを行うステップと,
    詳細に重ね合わせされた画像を得るために,前記粗く重ね合わされた画像の詳細重ね合わせを行うステップと,
    残差画像を得るために,前記詳細に重ね合わされた画像を互いに減算するステップと,
    を有する画像重ね合わせの方法を実現させる,記憶媒体。
  19. 前記方法は,正規化及び分割からなるグループから選択した少なくとも一つの操作を行うために,前記画像の少なくとも一つを前処理するステップを更に有する,請求項18に記載の記憶媒体。
  20. 前記前処理するステップは,骨を抑圧した画像を得るステップを更に有する,請求項19に記載の記憶媒体。
  21. 前記粗位置揃えは,
    傾きを推定するステップと,
    位置ずれを推定するステップと,
    前記傾き及び前記位置ずれに基づいて,前記画像を位置揃えするステップと,
    を有する,請求項18に記載の記憶媒体。
  22. 前記方法は,画像分割を用いて,前記粗位置揃えが前記画像内の1又は複数の重要な領域に基づくように制約するステップを更に有する,請求項21に記載の記憶媒体。
  23. 前記粗重ね合わせは,
    画像間の局所相関を計算するステップと,
    前記局所相関に基づいて,1又は複数の変位を計算するステップと,
    を有する,請求項18に記載の記憶媒体。
  24. 前記1又は複数の変位を計算するステップは,
    所定の値未満の局所相関を検出するステップと,
    少なくとも一つの隣接変位値の変位値に基づいて,前記局所相関によって表される位置の変位値を決定するステップと,
    を有する,請求項23に記載の記憶媒体。
  25. 前記粗重ね合わせは,
    変位整合処理を適用するステップと,
    少なくとも一つの局所弾性変形を行うステップと,
    を更に有する,請求項23に記載の記憶媒体。
  26. 前記粗重ね合わせは,識別関数を用いて1又は複数の変位を計算するために,1又は複数の位置を選択するステップを更に有する,請求項23に記載の記憶媒体。
  27. 前記詳細重ね合わせは,オプチカルフロー法及び相関に基づく方法からなるグループから選択した少なくとも一つの操作を行うステップを有する,請求項18に記載の記憶媒体。
  28. 前記粗重ね合わせは,
    変位整合処理を適用するステップと,
    少なくとも一つの局所弾性変形を行うステップと,
    を更に有する,請求項27に記載の記憶媒体。
  29. 前記粗重ね合わせは,識別関数を用いて1又は複数の変位を計算するために,1又は複数の位置を選択するステップを更に有する,請求項27に記載の記憶媒体。
  30. 前記方法は,前記残差画像を表示用に改善するために,前記残差画像を後処理するステップを更に有する,請求項18に記載の記憶媒体。
  31. 前記後処理するステップは,位置ずれになるか,臨床的に重要でない残差を含むことが分かっている前記残差画像の領域の詳細を抑圧するステップを有する,請求項30に記載の記憶媒体。
  32. 前記後処理するステップは,前記残差画像を該残差画像が導出された画像と混合するステップを有する,請求項30に記載の記憶媒体。
  33. 前記方法は,前記残差画像を表示するステップと,前記残差画像を印刷するステップとからなるグループから選択した少なくとも一つの操作を更に有する,請求項18に記載の記憶媒体。
JP2012505870A 2009-04-17 2009-05-13 胸部x線写真の重ね合わせ,減算及び表示 Pending JP2012523889A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/425,681 US20100266188A1 (en) 2009-04-17 2009-04-17 Chest x-ray registration, subtraction and display
US12/425,681 2009-04-17
PCT/US2009/043743 WO2010120317A1 (en) 2009-04-17 2009-05-13 Chest x-ray registration, subtraction and display

Publications (1)

Publication Number Publication Date
JP2012523889A true JP2012523889A (ja) 2012-10-11

Family

ID=42981008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012505870A Pending JP2012523889A (ja) 2009-04-17 2009-05-13 胸部x線写真の重ね合わせ,減算及び表示

Country Status (4)

Country Link
US (1) US20100266188A1 (ja)
JP (1) JP2012523889A (ja)
CN (1) CN102428479A (ja)
WO (1) WO2010120317A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014068876A (ja) * 2012-09-28 2014-04-21 Fujifilm Corp 放射線画像処理装置、放射線画像撮影システム、プログラム及び放射線画像処理方法
JP2015100426A (ja) * 2013-11-22 2015-06-04 コニカミノルタ株式会社 画像表示装置及び画像表示方法
JP2015100424A (ja) * 2013-11-22 2015-06-04 コニカミノルタ株式会社 情報処理装置及び情報処理方法
JP2015100425A (ja) * 2013-11-22 2015-06-04 コニカミノルタ株式会社 情報処理装置及び情報処理方法
JP2018500082A (ja) * 2014-12-16 2018-01-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 対応確率マップ主導の視覚化
JP2019122663A (ja) * 2018-01-18 2019-07-25 国立大学法人名古屋大学 診断支援装置、方法およびプログラム

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8116542B2 (en) * 2008-05-09 2012-02-14 General Electric Company Determining hazard of an aneurysm by change determination
KR101486776B1 (ko) * 2010-07-29 2015-01-29 삼성전자주식회사 영상 처리 방법 및 장치와 이를 채용한 의료영상시스템
US9014454B2 (en) * 2011-05-20 2015-04-21 Varian Medical Systems, Inc. Method and apparatus pertaining to images used for radiation-treatment planning
DE102011080588A1 (de) * 2011-08-08 2013-02-14 Siemens Aktiengesellschaft Verfahren sowie Datenverarbeitungseinrichtung zur 3-D/3-D-Registrierung von Bilddatensätzen der medizinischen Bildgebung
US9836433B1 (en) * 2012-04-02 2017-12-05 Rockwell Collins, Inc. Image processing using multiprocessor discrete wavelet transform
EA024855B1 (ru) 2012-07-10 2016-10-31 Закрытое Акционерное Общество "Импульс" Способ получения субтракционного ангиографического изображения
US9990743B2 (en) * 2014-03-27 2018-06-05 Riverain Technologies Llc Suppression of vascular structures in images
CN104166994B (zh) * 2014-07-29 2017-04-05 沈阳航空航天大学 一种基于训练样本优化的骨骼抑制方法
JP6301277B2 (ja) * 2015-03-20 2018-03-28 富士フイルム株式会社 診断補助画像生成装置および診断補助画像生成方法、並びに、診断補助画像生成プログラム
US10896485B2 (en) 2016-05-04 2021-01-19 Koninklijke Philips N.V. Feature suppression in dark field or phase contrast X-ray imaging
CN110276762A (zh) * 2018-03-15 2019-09-24 北京大学 一种多b值扩散加权腹部磁共振成像的呼吸运动全自动校正方法
WO2020097130A1 (en) * 2018-11-06 2020-05-14 Flir Commercial Systems, Inc. Response normalization for overlapped multi-image applications
CN110322403A (zh) * 2019-06-19 2019-10-11 怀光智能科技(武汉)有限公司 一种基于生成对抗网络的多监督图像超分辨重建方法
JP7451098B2 (ja) * 2019-06-26 2024-03-18 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
CN110533036B (zh) * 2019-08-28 2022-06-07 长城信息股份有限公司 一种票据扫描图像快速倾斜校正方法和系统
CN111951309B (zh) * 2020-06-30 2024-01-30 杭州依图医疗技术有限公司 一种淋巴结配准方法及装置、计算机设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737074A (ja) * 1992-11-25 1995-02-07 Arch Dev Corp 時間的に連続する胸部画像間の経時変化を検出する方法及び装置
JPH08103439A (ja) * 1994-10-04 1996-04-23 Konica Corp 画像の位置合わせ処理装置及び画像間処理装置
JP2001259060A (ja) * 2000-03-21 2001-09-25 Sumitomo Heavy Ind Ltd 患者位置ずれ計測方法、装置、及び、これを用いた患者位置決め方法、装置、並びに放射線治療装置
JP2002253539A (ja) * 2001-03-05 2002-09-10 Nippon Telegr & Teleph Corp <Ntt> 医用画像識別システム,医用画像識別処理方法,医用画像識別用プログラムおよびその記録媒体
JP2004343176A (ja) * 2003-05-13 2004-12-02 Canon Inc 画像処理方法
JP2006034952A (ja) * 2004-06-22 2006-02-09 Toshiba Corp X線画像診断装置及びその診断支援方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982915A (en) * 1997-07-25 1999-11-09 Arch Development Corporation Method of detecting interval changes in chest radiographs utilizing temporal subtraction combined with automated initial matching of blurred low resolution images
US6061476A (en) * 1997-11-24 2000-05-09 Cognex Corporation Method and apparatus using image subtraction and dynamic thresholding
US6434265B1 (en) * 1998-09-25 2002-08-13 Apple Computers, Inc. Aligning rectilinear images in 3D through projective registration and calibration
AU2002235939A1 (en) * 2001-03-08 2002-09-19 Universite Joseph Fourier Quantitative analysis, visualization and movement correction in dynamic processes
US7664302B2 (en) * 2003-07-18 2010-02-16 Hologic, Inc. Simultaneous grayscale and geometric registration of images
ATE553456T1 (de) * 2005-02-03 2012-04-15 Bracco Imaging Spa Verfahren und computerprogrammprodukt zur registrierung biomedizinischer bilder mit verminderten objektbewegungsbedingten bildgebungsartefakten
US20070206880A1 (en) * 2005-12-01 2007-09-06 Siemens Corporate Research, Inc. Coupled Bayesian Framework For Dual Energy Image Registration
US20080161687A1 (en) * 2006-12-29 2008-07-03 Suri Jasjit S Repeat biopsy system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737074A (ja) * 1992-11-25 1995-02-07 Arch Dev Corp 時間的に連続する胸部画像間の経時変化を検出する方法及び装置
JPH08103439A (ja) * 1994-10-04 1996-04-23 Konica Corp 画像の位置合わせ処理装置及び画像間処理装置
JP2001259060A (ja) * 2000-03-21 2001-09-25 Sumitomo Heavy Ind Ltd 患者位置ずれ計測方法、装置、及び、これを用いた患者位置決め方法、装置、並びに放射線治療装置
JP2002253539A (ja) * 2001-03-05 2002-09-10 Nippon Telegr & Teleph Corp <Ntt> 医用画像識別システム,医用画像識別処理方法,医用画像識別用プログラムおよびその記録媒体
JP2004343176A (ja) * 2003-05-13 2004-12-02 Canon Inc 画像処理方法
JP2006034952A (ja) * 2004-06-22 2006-02-09 Toshiba Corp X線画像診断装置及びその診断支援方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014068876A (ja) * 2012-09-28 2014-04-21 Fujifilm Corp 放射線画像処理装置、放射線画像撮影システム、プログラム及び放射線画像処理方法
JP2015100426A (ja) * 2013-11-22 2015-06-04 コニカミノルタ株式会社 画像表示装置及び画像表示方法
JP2015100424A (ja) * 2013-11-22 2015-06-04 コニカミノルタ株式会社 情報処理装置及び情報処理方法
JP2015100425A (ja) * 2013-11-22 2015-06-04 コニカミノルタ株式会社 情報処理装置及び情報処理方法
JP2018500082A (ja) * 2014-12-16 2018-01-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 対応確率マップ主導の視覚化
JP2019122663A (ja) * 2018-01-18 2019-07-25 国立大学法人名古屋大学 診断支援装置、方法およびプログラム

Also Published As

Publication number Publication date
CN102428479A (zh) 2012-04-25
WO2010120317A1 (en) 2010-10-21
US20100266188A1 (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP2012523889A (ja) 胸部x線写真の重ね合わせ,減算及び表示
JP4718003B2 (ja) 放射線写真におけるインターバル変化を検出する方法
CN112885453B (zh) 用于标识后续医学图像中的病理变化的方法和系统
JP4130661B2 (ja) 時間的に連続する胸部画像間の経時変化を検出する装置
US8682054B2 (en) Method and system for propagation of myocardial infarction from delayed enhanced cardiac imaging to cine magnetic resonance imaging using hybrid image registration
US9962086B2 (en) Medical image data processing apparatus and method for determining the presence of an abnormality
US20070206880A1 (en) Coupled Bayesian Framework For Dual Energy Image Registration
US9361686B2 (en) Method and apparatus for the assessment of medical images
Dougherty et al. Alignment of CT lung volumes with an optical flow method
US20090074276A1 (en) Voxel Matching Technique for Removal of Artifacts in Medical Subtraction Images
US8195269B2 (en) System and method for automatic detection and measurement of malacia in the airways
JP4104054B2 (ja) 画像の位置合わせ装置および画像処理装置
US20060110071A1 (en) Method and system of entropy-based image registration
JP2003512112A (ja) 弾性的照合を用いる対側性および時間的な減法画像のコンピュータ化処理のための方法、システムおよびコンピュータ可読媒体
EP2591459B1 (en) Automatic point-wise validation of respiratory motion estimation
CN106920246A (zh) 在存在金属伪影的情况下用于分割的不确定性图
US8494239B2 (en) Image processing device, method and program
WO2006107801A2 (en) System and method for reducing artifacts in motion corrected dynamic image sequences
CN115861172A (zh) 基于自适应正则化光流模型的室壁运动估计方法及装置
Wen et al. Enhanced coronary calcium visualization and detection from dual energy chest x-rays with sliding organ registration
US9931095B2 (en) Method for segmenting small features in an image volume
Yoshida Local contralateral subtraction based on bilateral symmetry of lung for reduction of false positives in computerized detection of pulmonary nodules
KR100979335B1 (ko) 흉부 ct영상을 이용한 자동 공기 포획 정량화 방법
CN117934371A (zh) 一种基于条件扩散模型的胸部x光图像骨抑制方法
JP2020527992A (ja) 動き補償された心臓弁の再構築

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131015