JP2012516944A5 - - Google Patents

Download PDF

Info

Publication number
JP2012516944A5
JP2012516944A5 JP2011548602A JP2011548602A JP2012516944A5 JP 2012516944 A5 JP2012516944 A5 JP 2012516944A5 JP 2011548602 A JP2011548602 A JP 2011548602A JP 2011548602 A JP2011548602 A JP 2011548602A JP 2012516944 A5 JP2012516944 A5 JP 2012516944A5
Authority
JP
Japan
Prior art keywords
product
temperature
vapor
contacting
process chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011548602A
Other languages
Japanese (ja)
Other versions
JP5615297B2 (en
JP2012516944A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/EP2010/000684 external-priority patent/WO2010089110A1/en
Publication of JP2012516944A publication Critical patent/JP2012516944A/en
Publication of JP2012516944A5 publication Critical patent/JP2012516944A5/ja
Application granted granted Critical
Publication of JP5615297B2 publication Critical patent/JP5615297B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

還元ガスを接触するプロセスにおいて、200℃以上の製品温度が、十分に早い還元速度を確実にするために要求される。例えば、この工程は、大気圧で、N2/H2混合物中で、静的条件で実施されうる。前記還元は、低い圧力、例えば100〜1000Paで、早い流れのガス条件下でも実施されうる。加圧下は、H2が炉から逃げないことを保証するために有用であり、過剰圧力は、還元速度を高める。350〜550℃の製品温度が好ましい。 In the process of contacting the reducing gas, a product temperature of 200 ° C. or higher is required to ensure a sufficiently fast reduction rate. For example, this process can be carried out in static conditions in an N 2 / H 2 mixture at atmospheric pressure. Said reduction can also be carried out at low pressure, for example 100-1000 Pa, even under fast flow gas conditions. Under pressure is useful to ensure that the H 2 from escaping from the furnace, excess pressure increases the reduction rate. A product temperature of 350-550 ° C is preferred.

Znの蒸着が縮合ではなく、むしろ反応性蒸着であることが考えられる。Zn蒸気は、直接表面Feと反応し、それによってZn−Fe金属間を形成する。Zn−Fe相は、典型的に予見される操作温度で固体である。また、Znは、安定な化合物で捕捉されている。これは、製品の表面上での滴加水の危険がないことを意味する。比較的長い滞留時間及び製品及びその表面の高い温度によって、Fe及びZnは、Znに曝されている間金属間層を介して移動する傾向がある。合金層の厚さが増加するために、Feの相を介した分散は減速し、Zn蒸気に対する表面の低減した反応性をもたらす。この効果は、全ての被覆されるべき部分の均一な厚さを有する層の成長を提供する。100μmまでの層が成長されうる。 It is conceivable that the deposition of Zn is not condensation but rather reactive deposition. The Zn vapor directly reacts with the surface Fe, thereby forming a Zn—Fe metal interface. The Zn-Fe phase is solid at the operating temperatures typically foreseen. Further, Zn is captured in a stable compound. This means that there is no danger of dripping water on the surface of the product. Due to the relatively long residence time and the high temperature of the product and its surface, Fe and Zn tend to migrate through the intermetallic layer during exposure to Zn. As the thickness of the alloy layer increases, dispersion through the Fe phase slows down, resulting in reduced surface reactivity to Zn vapor. This effect provides for the growth of layers having a uniform thickness of all parts to be coated. Layers up to 100 μm can be grown.

このプロセスは、特に、複雑な形状の被覆製品に十分に適している。これに関して、少なくとも1つの凹表面及び/又は全ての軸について可変の断面を有する製品を意味する。かかる製品は、典型的に、10mmより厚い厚さを有する領域を有し、かつ/又は溶接部分の組立からなる。それらは、しばしば、接触可能領域、例えば管の内表面をほとんど有さない。 This process is particularly well suited for complex shaped coated products. In this context, it means a product having a variable cross section about at least one concave surface and / or all axes. Such products typically have areas with a thickness greater than 10 mm and / or consist of assembly of welds. They often have few accessible areas, such as the inner surface of the tube.

Claims (7)

以下、
− 加熱手段、ガスを導入及び抜き出すための手段、及び被覆されるべき製品のための出入り口を備えたプロセスチャンバーを有する、密閉可能な炉を提供する工程、
− 前記プロセスチャンバー被覆されるべき製品を取り入れる工程、
− プロセスチャンバー中で200〜650℃の温度で前記製品と還元ガスとを接触させて、表面の酸化を取り除く工程、
− ガスをプロセスチャンバーから1000Pa未満の残圧まで抜き出す工程、
− プロセスチャンバー中で225〜650℃の温度で前記製品と金属Zn蒸気とを接触させて、該製品をZn−Fe金属間層で被覆する工程、
− 被覆した製品をプロセスチャンバーから取り出す工程
を含む、鉄又は鋼鉄製品を、Zn−Fe金属間層で被覆するための方法であって、該製品と金属Zn蒸気とを接触する工程において、該製品の温度が、Zn蒸気の露点と同じであるか、又は露点よりも高いことを特徴とする、方法。
Less than,
Providing a sealable furnace having a process chamber with heating means, means for introducing and withdrawing gas, and an inlet and outlet for the product to be coated;
- the step of introducing the product to be coated in the process chamber,
-Contacting said product with a reducing gas at a temperature of 200-650 ° C in a process chamber to remove surface oxidation;
-Extracting the gas from the process chamber to a residual pressure of less than 1000 Pa,
-Contacting the product with a metallic Zn vapor at a temperature of 225-650 ° C in a process chamber to coat the product with a Zn-Fe intermetallic layer;
-A method for coating an iron or steel product with a Zn-Fe intermetallic layer comprising the step of removing the coated product from the process chamber , wherein the product and the metal Zn vapor are contacted; The temperature of is the same as or higher than the dew point of Zn vapor.
前記製品と金属Zn蒸気とを接触する工程において、該製品の温度が、Zn蒸気の温度と同じ、又はその温度よりも高いことを特徴とする、請求項1に記載の方法。   The method according to claim 1, wherein in the step of contacting the product with metallic Zn vapor, the temperature of the product is equal to or higher than the temperature of Zn vapor. 還元ガスと接触する工程において、H2含有ガスを使用することを特徴とする、請求項1又は2に記載の方法。 In the step of contacting with the reducing gas, and wherein to Rukoto use of H 2 containing gas, the method according to claim 1 or 2. 前記HSaid H 22 含有ガスが、NThe contained gas is N 22 /H/ H 22 混合物であることを特徴とする、請求項3に記載の方法。4. A method according to claim 3, characterized in that it is a mixture. 還元ガスと接触する工程において、前記製品が、350〜550℃の温度であることを特徴とする、請求項1からまでのいずれか1項に記載の方法。 In the step of contacting with the reducing gas, the product, characterized in that it is a temperature of 350 to 550 ° C., the method according to any one of claims 1 to 4. 金属Zn蒸気と接触する工程において、前記製品が、350〜550℃の温度であることを特徴とする、請求項1からまでのいずれか1項に記載の方法。 In the step of contacting the metal Zn vapor, the product is characterized by a temperature of 350 to 550 ° C., the method according to any one of claims 1 to 5. 前記被覆した製品を取り出す工程後に、該製品がペイントされる、請求項1からまでのいずれか1項に記載の方法。 After the step of taking out the products the coating, the product is painted, the method according to any one of claims 1 to 6.
JP2011548602A 2009-02-04 2010-02-04 Method for coating discrete products having an alloy layer based on zinc Expired - Fee Related JP5615297B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EPPCT/EP2009/000750 2009-02-04
EPPCT/EP2009/000750 2009-02-04
PCT/EP2010/000684 WO2010089110A1 (en) 2009-02-04 2010-02-04 Process for coating discrete articles with a zinc-based alloyed layer

Publications (3)

Publication Number Publication Date
JP2012516944A JP2012516944A (en) 2012-07-26
JP2012516944A5 true JP2012516944A5 (en) 2014-04-17
JP5615297B2 JP5615297B2 (en) 2014-10-29

Family

ID=41202691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011548602A Expired - Fee Related JP5615297B2 (en) 2009-02-04 2010-02-04 Method for coating discrete products having an alloy layer based on zinc

Country Status (10)

Country Link
US (2) US8895106B2 (en)
JP (1) JP5615297B2 (en)
KR (1) KR101618914B1 (en)
CN (2) CN105401121A (en)
AU (1) AU2010211277B2 (en)
BR (1) BRPI1008814A2 (en)
CA (1) CA2751432C (en)
EA (1) EA019686B1 (en)
WO (1) WO2010089110A1 (en)
ZA (1) ZA201105716B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9623632B2 (en) * 2009-02-04 2017-04-18 Umicore Process for coating discrete articles with a zinc-based alloyed layer and articles obtained therefrom
US9956576B2 (en) 2014-04-22 2018-05-01 Metokote Corporation Zinc rich coating process
US9700829B1 (en) * 2016-02-29 2017-07-11 Savannah River Nuclear Solutions, Llc Method of capturing or trapping zinc using zinc getter materials
DE102021133090A1 (en) 2021-12-14 2023-06-15 Thyssenkrupp Steel Europe Ag Process for the production of a flat steel product with cathodic protection against corrosion, plant for the production of a flat steel product provided with cathodic protection against corrosion and use

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465141A (en) * 1977-11-04 1979-05-25 Kawasaki Steel Co Rust preventing treatment of cold rolling steel plate
JPS5834167A (en) 1981-08-25 1983-02-28 Nippon Kokan Kk <Nkk> Treatment for fe-zn alloying of zinc hot dipped steel plate
JPS5983765A (en) 1982-11-05 1984-05-15 Nisshin Steel Co Ltd Manufacture of vacuum deposited galvanized steel sheet efficient in adhesion of plated metal
JPS61253382A (en) * 1985-04-30 1986-11-11 Mitsubishi Heavy Ind Ltd Plating method for forming two layers of zn and al
JPH0660396B2 (en) 1986-06-24 1994-08-10 日新製鋼株式会社 Method for producing alloyed vapor-deposited zinc plated steel strip
JPS6417853A (en) 1987-07-14 1989-01-20 Kobe Steel Ltd Zinc alloy plated product having excellent exfoliation resistance of coated film
US5002837A (en) 1988-07-06 1991-03-26 Kabushiki Kaisha Kobe Seiko Sho Zn-Mg alloy vapor deposition plated metals of high corrosion resistance, as well as method of producing them
JPH02194162A (en) 1988-10-13 1990-07-31 Kobe Steel Ltd Production of zn-mg alloy plated metallic material
JPH02232361A (en) * 1989-03-06 1990-09-14 Furukawa Electric Co Ltd:The Surface reforming method
JPH08134632A (en) * 1994-11-11 1996-05-28 Nisshin Steel Co Ltd Production of zinc-magnesium alloy plated steel sheet
JPH09111438A (en) * 1995-10-18 1997-04-28 Nisshin Steel Co Ltd Zinc-magnesium alloy plated steel sheet excellent in corrosion resistance in edge face and its production
TW359688B (en) * 1995-02-28 1999-06-01 Nisshin Steel Co Ltd High anticorrosion Zn-Mg series-plated steel sheet and method of manufacture it
JPH09143682A (en) 1995-11-22 1997-06-03 Nisshin Steel Co Ltd Zinc-magnesium vapor deposition method using multiple duct and vapor deposition equipment
LU88730A1 (en) * 1996-03-20 1997-02-21 Laminoir De Dudelange S A Method for coating a steel substrate with a layer of alloyed zinc
EP1423553A4 (en) * 2001-08-01 2008-12-17 Danieli Technology Inc Metal vapor coating
CN201024207Y (en) * 2007-02-07 2008-02-20 冯伟年 Closed steel wire galvanizing device

Similar Documents

Publication Publication Date Title
Chikada et al. Microstructure control and deuterium permeability of erbium oxide coating on ferritic/martensitic steels by metal-organic decomposition
JPS5924184B2 (en) protective coating
Sun et al. Influence of siliconizing on the oxidation behavior of plasma sprayed MoSi2 coating for niobium based alloy
Wu et al. Preparation of yttrium oxide coating by MOCVD as tritium permeation barrier
JP2012516944A5 (en)
CN109234701B (en) Device and method for chemical vapor deposition of rhenium layer
Wang et al. Corrosion behavior of cold sprayed titanium protective coating on 1Cr13 substrate in seawater
He et al. Influence of microstructure on the hydrogen permeation of alumina coatings
Boulesteix et al. Oxidation performance of repaired aluminide coatings on austenitic steel substrates
WO2010086151A8 (en) Zinc diffusion coating method
CN103866256A (en) Preparation method of metal oxide-porous nano films (MO-PNFs)
US20190352184A1 (en) A process for producing graphene, a graphene and a substrate thereof
EP2309019A3 (en) Method of deposition of metallic coatings using atomized spray
Zhang et al. Nano-crystalline coating to improve cyclic oxidation resistance of 304 stainless steel
Kepa et al. Intermetallic formation of Al-Fe and Al-Ni phases by ultrafast slurry aluminization (flash aluminizing)
CN105745351B (en) Method for depositing anti-corrosive coating
US9333727B2 (en) Sponge-iron alloying
Zhu et al. Design and properties of FeAl/Al2O3/TiO2 composite tritium-resistant coating prepared through pack cementation and sol–gel method
CA2973135C (en) Method for applying a metal protective coating to a surface of a steel product
CN105401147B (en) A kind of high temperature anti-corrosion coating of salic diffusion barrier and preparation method thereof
Jihong et al. Surface characterization of CVD tungsten coating on molybdenum substrate
JP2014502038A5 (en)
Xiang et al. Effects of pack composition on the formation of aluminide coatings on alloy steels at 650 C
JP5615297B2 (en) Method for coating discrete products having an alloy layer based on zinc
John et al. A kinetic model for iron aluminide coatings by low-pressure chemical vapor deposition: Part I. Deposition kinetics