JP2012511130A - Method and apparatus for cooling a hydrocarbon stream - Google Patents

Method and apparatus for cooling a hydrocarbon stream Download PDF

Info

Publication number
JP2012511130A
JP2012511130A JP2011527298A JP2011527298A JP2012511130A JP 2012511130 A JP2012511130 A JP 2012511130A JP 2011527298 A JP2011527298 A JP 2011527298A JP 2011527298 A JP2011527298 A JP 2011527298A JP 2012511130 A JP2012511130 A JP 2012511130A
Authority
JP
Japan
Prior art keywords
refrigerant
flow rate
stream
hydrocarbon
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011527298A
Other languages
Japanese (ja)
Inventor
パウ・テオ・アラース
フレデリック・ヤン・ヴァン・ディユク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of JP2012511130A publication Critical patent/JP2012511130A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0057Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream after expansion of the liquid refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0248Stopping of the process, e.g. defrosting or deriming, maintenance; Back-up mode or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas

Abstract

炭化水素流を冷却する方法及び装置において、冷却すべき炭化水素流45を第一熱交換器50中、第一冷媒流流量FR1を有する1つ以上の冷媒流145b、185bと熱交換して、冷却炭化水素流流量FR2を有する冷却炭化水素流55及び1つ以上の戻り冷媒流105を供給する。第一冷媒流流量FR1及び冷却炭化水素流流量FR2は、第一冷媒流流量FR1用に入力した第一設定点SP1が達成されるまで調節される。第一設定点SP1が第一冷媒流流量FR1より大きければ、第一冷媒流流量FR1を増大する前に炭化水素流流量FR2を増大させ、第一設定点SP1が第一冷媒流流量FR1よりも小さければ、炭化水素流流量FR2を減少する前に第一冷媒流流量FR1を減少させ、炭化水素流流量FR2が減少すれば、第一冷媒流流量FR1を減少させる。
【選択図】図1
In the method and apparatus for cooling a hydrocarbon stream, the hydrocarbon stream 45 to be cooled is heat exchanged in the first heat exchanger 50 with one or more refrigerant streams 145b, 185b having a first refrigerant stream flow rate FR1, A cooled hydrocarbon stream 55 having a cooled hydrocarbon stream flow rate FR2 and one or more return refrigerant streams 105 are provided. The first refrigerant flow rate FR1 and the cooled hydrocarbon flow rate FR2 are adjusted until the first set point SP1 input for the first refrigerant flow rate FR1 is achieved. If the first set point SP1 is greater than the first refrigerant flow rate FR1, the hydrocarbon flow rate FR2 is increased before increasing the first refrigerant flow rate FR1, and the first set point SP1 is greater than the first refrigerant flow rate FR1. If it is smaller, the first refrigerant flow rate FR1 is decreased before the hydrocarbon flow rate FR2 is decreased, and if the hydrocarbon flow rate FR2 is decreased, the first refrigerant flow rate FR1 is decreased.
[Selection] Figure 1

Description

本発明は炭化水素流を冷却する方法及び装置に関する。   The present invention relates to a method and apparatus for cooling a hydrocarbon stream.

このように冷却すべき炭化水素流の重要な例は天然ガス流である。冷却すべき炭化水素流が天然ガス流である場合、液化天然ガス(LNG)流のような液化炭化水素流を製造するため、冷却には炭化水素流の液化が含まれる。   An important example of a hydrocarbon stream to be cooled in this way is a natural gas stream. If the hydrocarbon stream to be cooled is a natural gas stream, the cooling includes liquefaction of the hydrocarbon stream to produce a liquefied hydrocarbon stream, such as a liquefied natural gas (LNG) stream.

天然ガスは有用な燃料供給源であり、また各種炭化水素化合物の供給源でもある。多くの理由から、天然ガスは、天然ガス流の供給源又はその近くの液化天然ガス(LNG)プラントで液化するのが望ましいことが多い。一例として、液体はガスに比べて占有容積が小さい上、高圧で貯蔵する必要がないので、ガスの形態よりも液体としての方が長距離に亘って容易に貯蔵、輸送可能である。   Natural gas is a useful fuel source and also a source of various hydrocarbon compounds. For many reasons, it is often desirable to liquefy natural gas at a liquefied natural gas (LNG) plant at or near the source of the natural gas stream. As an example, since liquid occupies a smaller volume than gas and does not need to be stored at high pressure, liquid can be stored and transported over a longer distance than gas.

主としてメタンを含む天然ガスは、通常、高圧でLNGプラントに入り、極低温で液化するのに好適な精製供給原料を作るため、予備処理される。精製ガスは、熱交換器を用いて複数の冷却段階で処理し、液化が達成するまで漸進的にその温度を低下させる。次いで液体天然ガスは更に、貯蔵及び輸送に好適な最終の大気圧まで冷却、膨張される。   Natural gas, primarily containing methane, is usually pretreated to create a refined feedstock suitable for entering the LNG plant at high pressure and liquefying at cryogenic temperatures. The purified gas is processed in multiple cooling stages using a heat exchanger and gradually reduces its temperature until liquefaction is achieved. The liquid natural gas is then further cooled and expanded to a final atmospheric pressure suitable for storage and transport.

天然ガスは、メタンの他、若干の更に重質の炭化水素及び不純物として、限定されるものではないが、二酸化炭素、硫黄、硫化水素及びその他の硫黄化合物、窒素、ヘリウム、水、その他の非炭化水素酸ガス、エタン、プロパン、ブタン、C+炭化水素及び芳香族炭化水素を含有する。これら及びその他、普通の又は既知の重質炭化水素及び不純物は、通常の既知のメタン液化法、特に最も効率的なメタン液化法を妨害又は邪魔する。炭化水素、特に天然ガスの液化法として最も知られているか、或いは提案されている方法は、液化処理の前に重質炭化水素及び不純物の少なくとも大部分の量をできるだけ減らすことに基づいている。 Natural gas includes, but is not limited to, methane as well as some heavier hydrocarbons and impurities such as carbon dioxide, sulfur, hydrogen sulfide and other sulfur compounds, nitrogen, helium, water, and other non-carbons. Contains hydrocarbon acid gas, ethane, propane, butane, C 5 + hydrocarbons and aromatic hydrocarbons. These and other common or known heavy hydrocarbons and impurities interfere with or interfere with the usual known methane liquefaction processes, particularly the most efficient methane liquefaction processes. The best known or proposed method for liquefaction of hydrocarbons, especially natural gas, is based on reducing as much as possible the amount of heavy hydrocarbons and at least the majority of impurities prior to liquefaction.

メタンより重質の炭化水素、通常、エタンは一般に天然ガス流から天然ガス液体(NGL)として凝縮、回収される。メタンは、通常、高圧スクラブ(scrub)塔においてNGLから分離され、次いで、このNGLは、製品流自体として、或いは液化用に例えば冷媒の成分として使用される有価の炭化水素製品を得るため、多数の専用の蒸留塔で精留される。   A hydrocarbon heavier than methane, usually ethane, is generally condensed and recovered as a natural gas liquid (NGL) from a natural gas stream. Methane is usually separated from NGL in a high pressure scrub column, which is then used to obtain valuable hydrocarbon products that are used as product streams themselves or as components of refrigerants for liquefaction, for example. It is rectified in a dedicated distillation tower.

一方、スクラブ塔からのメタンは、LNGを得るため、引続き液化される。
米国特許出願第2003/0046953号には、操作員は複数冷媒のうちの1つの冷媒の流量の設定点及び重質混合冷媒の流量と軽質混合冷媒の流量との比を操作できることから、利用可能な動力を冷凍サイクルの駆動に連続的に最大限利用できるLNG生産量の制御方法を開示している。
On the other hand, methane from the scrub column is continuously liquefied to obtain LNG.
US patent application 2003/0046953 is available because the operator can manipulate the set point of the flow rate of one of the multiple refrigerants and the ratio of the flow rate of the heavy and light mixed refrigerants Discloses a method for controlling the amount of LNG produced, which can continuously use maximum power to drive the refrigeration cycle.

前記方法は、熱交換器がその最低温度限界未満に過冷却されるのを防止できないか、或いは温度が急激に降下した場合、熱交換器に生じる過剰な機械的応力(熱衝撃)を回避できない。これが起こると、熱交換器で漏れが進展する可能性がある。本発明はこの問題及び炭化水素流の冷却に関連した他の問題の対処法を探求する。   The method cannot prevent the heat exchanger from being supercooled below its minimum temperature limit, or cannot avoid excessive mechanical stress (thermal shock) that occurs in the heat exchanger if the temperature drops rapidly. . When this happens, leakage can develop in the heat exchanger. The present invention seeks to address this problem and other problems associated with hydrocarbon stream cooling.

第一の局面では、本発明は、
(a)炭化水素流を用意する工程、
(b)炭化水素流を第一熱交換器中で冷媒流流量(stream flow rate)を有する1つ以上の冷媒流と熱交換して、炭化水素流流量(stream flow rate)を有する炭化水素流及び1つ以上の戻り冷媒流を供給する工程、
(c)冷媒流流量用の第一設定点を入力する工程、及び
(d)該設定点が達成されるまで、冷媒流流量及び炭化水素流流量を調節する工程、
を少なくとも含む熱交換器での炭化水素流の冷却方法において、(1)第一設定点が冷媒流流量よりも大きい場合は、冷媒流流量を増大する前に炭化水素流流量を増大させ、(2)第一設定点が冷媒流流量よりも小さい場合は、炭化水素流流量を減少する前に冷媒流流量を減少させ、(3)炭化水素流流量が減少する場合は、冷媒流流量を減少させる該方法を提供する。
In the first aspect, the present invention provides:
(A) providing a hydrocarbon stream;
(B) A hydrocarbon stream having a hydrocarbon flow rate by exchanging heat between the hydrocarbon stream and one or more refrigerant streams having a stream flow rate in the first heat exchanger. And supplying one or more return refrigerant streams;
(C) inputting a first set point for the refrigerant flow rate, and (d) adjusting the refrigerant flow rate and the hydrocarbon flow rate until the set point is achieved,
(1) If the first set point is greater than the refrigerant flow rate, increase the hydrocarbon flow rate before increasing the refrigerant flow rate, 2) If the first set point is smaller than the refrigerant flow rate, decrease the refrigerant flow rate before decreasing the hydrocarbon flow rate; (3) If the hydrocarbon flow rate decreases, decrease the refrigerant flow rate The method is provided.

第二の局面では、本発明は、
・炭化水素流用第一入口、冷却炭化水素流用第一出口、1つ以上の冷媒流用の1つ以上の第二出口及び戻り冷媒流用第二出口を有する第一熱交換器、
・1つ以上の冷媒流の冷媒流流量に比例する信号を測定して、高選別器に送信される冷媒流量信号を供給するために、冷媒バルブを操作して冷媒流の流量を制御する冷媒流量制御器、
・炭化水素流の炭化水素流流量に比例する信号を測定して、低選別器に送信される炭化水素流量信号を供給するために、炭化水素バルブを操作して炭化水素流の流量を制御する炭化水素流量(flow)制御器、
・設定点を入力して低選別器及び高選別器に送信される設定点信号を供給するための流量(flow)設定器、
・最低の設定点信号及び炭化水素流流量信号を冷媒流量制御器に送信する低選別器、及び
・最高の設定点信号及び冷媒流流量信号を炭化水素流量制御器に送信する高選別器、
を少なくとも備える熱交換器の操作用装置を提供する。
In a second aspect, the present invention provides:
A first heat exchanger having a first inlet for hydrocarbon stream, a first outlet for cooled hydrocarbon stream, one or more second outlets for one or more refrigerant streams, and a second outlet for return refrigerant streams;
A refrigerant that controls the flow rate of the refrigerant flow by operating a refrigerant valve to measure a signal proportional to the refrigerant flow rate of one or more refrigerant flows and to supply a refrigerant flow signal that is transmitted to the high sorter Flow controller,
Control the hydrocarbon stream flow by operating a hydrocarbon valve to measure a signal proportional to the hydrocarbon stream flow rate of the hydrocarbon stream and provide a hydrocarbon flow signal sent to the low sorter A hydrocarbon flow controller,
A flow rate setter for inputting set points and supplying set point signals to be sent to the low and high sorters;
A low selector that transmits the lowest set point signal and hydrocarbon flow rate signal to the refrigerant flow controller, and a high selector that transmits the highest set point signal and refrigerant flow rate signal to the hydrocarbon flow controller,
An apparatus for operating a heat exchanger is provided.

本発明の一実施形態を実施するための手段を備えた炭化水素流冷却装置の概略系統図である。1 is a schematic system diagram of a hydrocarbon flow cooling device provided with means for carrying out an embodiment of the present invention. 本発明の一実施形態での炭化水素流の冷却方法の制御系統を示す図である。It is a figure which shows the control system of the cooling method of the hydrocarbon stream in one Embodiment of this invention. 本発明の別の実施形態での炭化水素流の冷却方法の制御系統を示す図である。It is a figure which shows the control system of the cooling method of the hydrocarbon stream in another embodiment of this invention.

ここで説明するように、熱交換器の過冷却は、冷媒流流量及び炭化水素流流量を以下の方法に従って設定点が達成されるまで調節することにより防止できる。
(1)第一設定点が冷媒流流量よりも大きい場合は、冷媒流流量を増大する前に炭化水素流流量を増大させる。
(2)第一設定点が冷媒流流量よりも小さい場合は、炭化水素流流量を減少する前に冷媒流流量を減少させる。
(3)炭化水素流流量が減少する場合は、冷媒流流量を減少させる。
As described herein, heat exchanger subcooling can be prevented by adjusting the refrigerant flow rate and hydrocarbon flow rate until the set point is achieved according to the following method.
(1) If the first set point is greater than the refrigerant flow rate, increase the hydrocarbon flow rate before increasing the refrigerant flow rate.
(2) If the first set point is smaller than the refrigerant flow rate, reduce the refrigerant flow rate before reducing the hydrocarbon flow rate.
(3) When the hydrocarbon flow rate decreases, the refrigerant flow rate is decreased.

このようにして、炭化水素流中には常に、冷媒流の冷媒から冷気(cold)を受取るのに十分な炭化水素があり、これにより熱交換器の過冷却を防止する。
これらの工程は、第一設定点を供給後、自動的に、即ち、人の介入なしに、或いは最小限の介入で、例えば完全自動化制御システムで行なうことが好ましい。
In this way, there is always enough hydrocarbon in the hydrocarbon stream to receive cold from the refrigerant in the refrigerant stream, thereby preventing overcooling of the heat exchanger.
These steps are preferably performed automatically after supply of the first set point, ie without human intervention or with minimal intervention, for example with a fully automated control system.

図1は炭化水素流45の冷却用、好ましくは液化用の装置を提供する。炭化水素流は、冷却すべきいかなる好適なガス流であってもよいが、通常は天然ガス又は石油層から得られる天然ガス流である。代替品として、天然ガス流はフィッシャー・トロプシュ法のような合成源を含む他の供給源から得てもよい。   FIG. 1 provides an apparatus for cooling, preferably liquefying, hydrocarbon stream 45. The hydrocarbon stream may be any suitable gas stream to be cooled, but is usually a natural gas stream obtained from natural gas or a petroleum reservoir. As an alternative, the natural gas stream may be obtained from other sources including synthetic sources such as the Fischer-Tropsch process.

通常、天然ガス流はほぼメタンで構成される。このような原料流はメタンを好ましくは60モル%以上、更に好ましくは80モル%以上含有する。   Usually, the natural gas stream consists mostly of methane. Such a feed stream preferably contains methane at 60 mol% or more, more preferably 80 mol% or more.

供給源によっては天然ガスは、各種量の、エタン、プロパン、ブタン及びペンタンのようなメタンより重質の炭化水素や若干の芳香族炭化水素を含有する。この組成は、炭化水素流の種類及び場所により変化する。天然ガスはHO、N、CO、HS及びその他の硫黄化合物等の非炭化水素を含有してもよい。 Depending on the source, natural gas contains various amounts of hydrocarbons heavier than methane such as ethane, propane, butane and pentane and some aromatic hydrocarbons. This composition varies with the type and location of the hydrocarbon stream. Natural gas may contain non-hydrocarbons such as H 2 O, N 2 , CO 2 , H 2 S and other sulfur compounds.

必要ならば、天然ガスを含む炭化水素流は使用前に予備処理してよい。このような予備処理は、CO及びHSのような不所望成分の除去、或いは予備冷却又は予備加圧のような他の工程を含んでよい。これらの工程は当業者には周知なので、ここでは更に説明しない。 If necessary, the hydrocarbon stream containing natural gas may be pretreated before use. Such pretreatment may include removal of unwanted components such as CO 2 and H 2 S, or other steps such as precooling or prepressurization. These steps are well known to those skilled in the art and will not be further described here.

天然ガスはメタンの他、各種量のエタン、プロパン及び更に重質の炭化水素を含有する。その組成は、ガスの種類及び場所に依存して変化する。メタンより重質の炭化水素は、一般に幾つかの理由、例えばメタン液化プラントの部品を閉塞する可能性がある、メタンの液化温度よりも高い凍結温度を有するC+炭化水素の場合のように、種々の程度まで天然ガスから除去される。C2〜4炭化水素は、液化石油ガス(LPG)の供給源として使用できる。 In addition to methane, natural gas contains various amounts of ethane, propane and heavier hydrocarbons. Its composition varies depending on the type and location of the gas. Hydrocarbons heavier than methane generally can clog parts of the methane liquefaction plant for several reasons, such as in the case of C 5 + hydrocarbons having a freezing temperature higher than the methane liquefaction temperature. It is removed from natural gas to various degrees. C2-4 hydrocarbons can be used as a source of liquefied petroleum gas (LPG).

したがって、炭化水素流45は、限定されるものではないが、硫黄、硫黄化合物、二酸化炭素、水及びC+炭化水素を含む1種以上の化合物又は物質を減少及び/又は除去するために部分的に、実質的に又は全体的に処理した組成物という。 Accordingly, the hydrocarbon stream 45 is partly used to reduce and / or remove one or more compounds or substances including, but not limited to, sulfur, sulfur compounds, carbon dioxide, water and C 2 + hydrocarbons. In particular, the composition is treated substantially or entirely.

炭化水素流が天然ガスを含有すれば、炭化水素流は予備処理して、メタンより重質の炭化水素、及び限定されるものではないが、酸ガスを含む、二酸化炭素、窒素、ヘリウム、水、硫黄及び硫黄化合物のような不純物を分離したものでもよい。   If the hydrocarbon stream contains natural gas, the hydrocarbon stream is pre-treated to make hydrocarbons heavier than methane, and including but not limited to acid gas, carbon dioxide, nitrogen, helium, water In addition, impurities such as sulfur and sulfur compounds may be separated.

炭化水素流45は、予備冷却段階で予備冷却して、炭化水素流の温度を低下させたものでもよい。予備冷却段階で冷却を行なうことは当業者に知られている。予備冷却は液化方法又は分離方法の一部であってよい。炭化水素流45を供給するための炭化水素原料流の冷却は、原料流を0℃未満、例えば−10℃〜−70℃の範囲の温度に低下させて冷却初期炭化水素流を供給する工程を含んでよい。   The hydrocarbon stream 45 may be precooled in a precooling stage to reduce the temperature of the hydrocarbon stream. It is known to those skilled in the art to perform the cooling in the precooling stage. Precooling may be part of the liquefaction process or separation process. The cooling of the hydrocarbon feed stream to supply the hydrocarbon stream 45 comprises the step of supplying the cooled initial hydrocarbon stream by lowering the feed stream to a temperature below 0 ° C, for example in the range of -10 ° C to -70 ° C. May include.

この冷却炭化水素原料流は、当該技術分野で公知の方法に従って、通常、周囲圧力を超える圧力で操作する、凝縮物安定化塔のような分離器に通すことができる。凝縮物安定化塔は、好ましくは0℃未満の温度を有する混合炭化水素塔頂流及び重質凝縮物流を供給する。混合炭化水素塔頂流は、冷却炭化水素原料流に比べてメタンに富む流れである。   This cooled hydrocarbon feed stream can be passed through a separator, such as a condensate stabilization column, which typically operates at pressures above ambient pressure, according to methods known in the art. The condensate stabilization column provides a mixed hydrocarbon overhead stream and a heavy condensate stream, preferably having a temperature below 0 ° C. The mixed hydrocarbon tower top stream is a stream rich in methane compared to the cooled hydrocarbon feed stream.

ここで使用される“混合炭化水素流”は、メタン(C)と、エタン(C)、プロパン(C)、ブタン(C)及びC+炭化水素を含む群から選ばれた1種以上の炭化水素5モル%以上とを含む流れに関する。通常、混合炭化水素流8中のメタンの割合は30〜50モル%であり、エタン及びプロパンからなる重要な画分は各々、例えば5〜10モル%である。 As used herein, the “mixed hydrocarbon stream” was selected from the group comprising methane (C 1 ) and ethane (C 2 ), propane (C 3 ), butane (C 4 ) and C 5 + hydrocarbons. Relates to a stream comprising at least 5 mol% of one or more hydrocarbons. Usually, the proportion of methane in the mixed hydrocarbon stream 8 is 30-50 mol%, and the important fractions consisting of ethane and propane are each, for example, 5-10 mol%.

NGL回収では、LNGプラントでの液化のように、更に冷却するため、混合炭化水素流中のメタンを回収すると共に、少なくともC+流と、任意にC流、C流、C流及びC+流の1種以上とを供給することが望ましい。 In NGL recovery, as in liquefaction at an LNG plant, for further cooling, methane in the mixed hydrocarbon stream is recovered and at least a C 2 + stream and optionally a C 2 stream, a C 3 stream, a C 4 stream. And at least one of the C 5 + streams.

混合炭化水素の少なくとも画分、通常、全部はNGL回収システムに通される。NGL回収システムは、混合炭化水素流を普通、低圧、例えば20〜35バールの範囲で少なくともC流と、1種以上のC+流とに分離するため蒸留塔のような1種以上の気液分離器を有する。好適な第一気液分離器は、メタンに富む塔頂流と、C+炭化水素に富む、塔底又は塔底に近い1種以上の液体流とを供給するために設計された“脱メタン器”である。 At least a fraction, usually all, of the mixed hydrocarbon is passed through an NGL recovery system. NGL recovery system, a mixed hydrocarbon stream typically low pressure, for example at least C 1 stream in the range of 20 to 35 bar, such as one or more of the distillation column for separating one or more C 2 + stream Prefecture It has a gas-liquid separator. A preferred first gas-liquid separator is a “degasser” designed to provide a methane-rich top stream and one or more liquid streams rich in C 2 + hydrocarbons or near the bottom. It is a “methane unit”.

混合炭化水素流8は、通常、40〜70バールの高圧の初期炭化水素流から供給されるので、第一気液分離器に導入する前に例えば温度を低下させるため、膨張させる必要があるかも知れない。   Since the mixed hydrocarbon stream 8 is typically fed from a high pressure initial hydrocarbon stream of 40-70 bar, it may need to be expanded before it is introduced into the first gas-liquid separator, for example to reduce the temperature. I don't know.

第一気液分離器は、液体相及び蒸気相を分離して、C塔頂流(ここでは引続き炭化水素流45として使用)及びC+塔底流を供給するため適合される。C塔頂流(これは炭化水素流45である)は、C+炭化水素をなお少量(<10モル%)含有してもよいが、好ましくはメタンが>80モル%、更に好ましくは95モル%である。C+塔底流50は、エタン及びこれより重質の炭化水素が>90モル%又は>95モル%である可能性があり、また引続き分留でき、或いは当該技術分野で公知の方法に従って使用できる。 The first gas-liquid separator is adapted to separate the liquid and vapor phases to provide a C 1 overhead stream (herein used subsequently as hydrocarbon stream 45) and a C 2 + bottom stream. The C 1 overhead stream (which is the hydrocarbon stream 45) may still contain small amounts of C 2 + hydrocarbons (<10 mol%), but preferably methane is> 80 mol%, more preferably 95 mol%. C 2 + bottoms stream 50 are likely to be ethane and this heavier hydrocarbons> 90 mol% or> 95 mol%, also continue be fractionated, or used according to methods known in the art it can.

天然ガスのような炭化水素流の冷却、好ましくは液化概略図を図1に示す。炭化水素流45は、第一熱交換器50を有する主冷却段1を通って、液化天然ガスとなり得る冷却、好ましくは液化炭化水素流55を供給する。   A cooling, preferably liquefaction schematic, of a hydrocarbon stream such as natural gas is shown in FIG. The hydrocarbon stream 45 passes through a main cooling stage 1 having a first heat exchanger 50 to provide a cooling, preferably a liquefied hydrocarbon stream 55, which can be liquefied natural gas.

主冷却段1は1つ以上の、好ましくは極低温の、第一熱交換器50を備える。第一熱交換器50はプレートフィン型又はシェルチューブ型熱交換器、更に好ましくは多管式(kettle)熱交換器であってよい。第一熱交換器50はシェル側51を有する。シェル側51には3つの管束53、57、59が配列できる。主冷却段1は更に冷媒圧縮器110、好適な冷媒駆動機120、冷媒冷却器130及び分離器140を備えた冷媒回路100を有する。   The main cooling stage 1 comprises one or more, preferably cryogenic, first heat exchangers 50. The first heat exchanger 50 may be a plate fin type or shell tube type heat exchanger, more preferably a multi-tube heat exchanger. The first heat exchanger 50 has a shell side 51. Three tube bundles 53, 57, 59 can be arranged on the shell side 51. The main cooling stage 1 further comprises a refrigerant circuit 100 comprising a refrigerant compressor 110, a suitable refrigerant driver 120, a refrigerant cooler 130 and a separator 140.

主冷却段1では、炭化水素流45及び冷媒流に対し種々の配置が可能である。このような配置は当該技術分野で公知である。これらの配置は、任意に異なる圧力レベルで、任意に図示の極低温熱交換器のような1つの容器内に、1つ以上の熱交換器50を含むことができる。   In the main cooling stage 1, various arrangements are possible for the hydrocarbon stream 45 and the refrigerant stream. Such an arrangement is known in the art. These arrangements can include one or more heat exchangers 50, optionally in different pressure levels, and optionally in one vessel, such as the illustrated cryogenic heat exchanger.

図1に示す実施形態では、炭化水素流45は第一熱交換器50内の第一管束53に通される。第一熱交換器50は、炭化水素流45の温度を低下させて、冷却、好ましくは液化、炭化水素流55、例えばLNG流を供給する。冷却炭化水素流の温度は約−90℃以下、好ましくは約−120℃以下が可能である。   In the embodiment shown in FIG. 1, the hydrocarbon stream 45 is passed through the first tube bundle 53 in the first heat exchanger 50. The first heat exchanger 50 lowers the temperature of the hydrocarbon stream 45 to provide cooling, preferably liquefaction, hydrocarbon stream 55, for example an LNG stream. The temperature of the cooled hydrocarbon stream can be about -90 ° C or less, preferably about -120 ° C or less.

液化炭化水素流55は、任意に膨張タービン(図示せず)を前に置いた、流量制御バルブとして冷却炭化水素バルブ60のような膨張装置に通して、冷却炭化水素流55の流量を制御することができる。冷却炭化水素バルブ60は、例えばLNG流をほぼ大気圧で保存するために、冷却炭化水素流55の圧力を下げることができる。   The liquefied hydrocarbon stream 55 is passed through an expansion device, such as a cooled hydrocarbon valve 60, as a flow control valve, optionally preceded by an expansion turbine (not shown) to control the flow rate of the cooled hydrocarbon stream 55. be able to. The cooled hydrocarbon valve 60 can reduce the pressure of the cooled hydrocarbon stream 55, for example, to store the LNG stream at approximately atmospheric pressure.

1つ以上の冷媒流145b、185bは、第一熱交換器50内で炭化水素流45から熱を除去するために使用される。冷媒流、好ましくは混合冷媒流は冷媒回路100内で循環される。図1は閉鎖冷媒サイクルを示す。   One or more refrigerant streams 145 b, 185 b are used to remove heat from the hydrocarbon stream 45 in the first heat exchanger 50. A refrigerant stream, preferably a mixed refrigerant stream, is circulated in the refrigerant circuit 100. FIG. 1 shows a closed refrigerant cycle.

本発明の一実施形態では、冷媒回路100用の混合冷媒は、エタン及びエチレン又はそれらの混合物よりなる群から選ばれた化合物>30モル%と、プロパン及びプロピレン又はそれらの混合物よりなる群から選ばれた化合物>30モル%とを含有する。一般に第二の冷媒は窒素、メタン、エタン、エチレン、プロパン、プロピレン、ブタン、ペンタン等の2種以上を含む成分のいかなる好適な混合物であってもよい。   In one embodiment of the present invention, the refrigerant mixture for the refrigerant circuit 100 is selected from the group consisting of> 30 mol% of a compound selected from the group consisting of ethane and ethylene or a mixture thereof, and a group consisting of propane and propylene or a mixture thereof. Containing> 30 mol% of the resulting compound. In general, the second refrigerant may be any suitable mixture of components including two or more of nitrogen, methane, ethane, ethylene, propane, propylene, butane, pentane, and the like.

ガス状冷媒は、第一熱交換器50のシェル側51から戻り冷媒流105として引き出され、冷媒圧縮器110で圧縮されて圧縮冷媒流115を供給する。冷媒圧縮器は好適な冷媒圧縮器駆動機120により駆動される。   The gaseous refrigerant is withdrawn from the shell side 51 of the first heat exchanger 50 as a return refrigerant stream 105 and is compressed by the refrigerant compressor 110 to provide a compressed refrigerant stream 115. The refrigerant compressor is driven by a suitable refrigerant compressor driver 120.

圧縮冷媒流115は空気冷却器のような冷却器130に通され、ここで圧縮熱は、第一熱交換器50内で吸収された熱と一緒に除去され、こうして混合冷媒は部分的に凝縮されて冷却圧縮冷媒流135を供給する。圧縮冷媒流115の冷却及び部分凝縮は1つ以上の熱交換器中で行なってもよい。   The compressed refrigerant stream 115 is passed through a cooler 130, such as an air cooler, where the heat of compression is removed along with the heat absorbed in the first heat exchanger 50, thus the mixed refrigerant is partially condensed. Is supplied with a cooled compressed refrigerant stream 135. Cooling and partial condensation of the compressed refrigerant stream 115 may occur in one or more heat exchangers.

冷却圧縮冷媒流135は分離器140に通され、1つ以上の画分に分割される。図1は、冷却圧縮冷媒流135が流入冷媒流143と第二流入冷媒流147との2画分に分割することを示す。好ましくは分離器140は、冷却圧縮冷媒流135を塔底重質混合冷媒(HMR)143と塔頂軽質混合冷媒(LMR)147とに分割することを示している。分離器140が気液分離器であれば、HMR画分は、液体生成物の可能性があり、LMR画分は蒸気生成物の可能性がある。   The cooled compressed refrigerant stream 135 is passed through a separator 140 and divided into one or more fractions. FIG. 1 shows that the cooled compressed refrigerant stream 135 is divided into two fractions, an incoming refrigerant stream 143 and a second incoming refrigerant stream 147. Preferably, the separator 140 indicates that the cooled compressed refrigerant stream 135 is split into a bottom heavy mixed refrigerant (HMR) 143 and a top light mixed refrigerant (LMR) 147. If the separator 140 is a gas-liquid separator, the HMR fraction may be a liquid product and the LMR fraction may be a vapor product.

第一又は重質の混合冷媒になり得る流入冷媒流143は、第一熱交換器50内の第二管束57に通され、ここで過冷却できる。第二又は軽質の混合冷媒になり得る流入第二冷媒流147は、第一熱交換器50内の第三管束59に通され、ここで液化も過冷却もできる。   The incoming refrigerant stream 143, which can be a first or heavy mixed refrigerant, is passed through the second tube bundle 57 in the first heat exchanger 50 where it can be supercooled. The incoming second refrigerant stream 147, which can be a second or light mixed refrigerant, is passed through a third tube bundle 59 in the first heat exchanger 50 where it can be liquefied and subcooled.

第一又は重質混合冷媒は、冷却冷媒流145として第二管束57を出る。冷却冷媒流145は冷媒膨張器150内で膨張され、膨張冷媒流145aを供給する。冷媒膨張器150は、好適な冷媒膨張器駆動機160で駆動できる。膨張冷媒流145aは、膨張冷媒流145aの流量を制御できる冷媒バルブ170に通して、制御流として冷媒流145bを供給できる。冷媒流145bは第二入口176経由で第一熱交換器50のシェル側51に通して第一管束53中の炭化水素流45を冷却できる。   The first or heavy mixed refrigerant exits the second tube bundle 57 as a cooling refrigerant stream 145. The cooling refrigerant stream 145 is expanded in the refrigerant expander 150 to provide an expanded refrigerant stream 145a. The refrigerant expander 150 can be driven by a suitable refrigerant expander driver 160. The expanded refrigerant flow 145a can be passed through a refrigerant valve 170 that can control the flow rate of the expanded refrigerant flow 145a to supply the refrigerant flow 145b as a control flow. The refrigerant stream 145 b can pass through the second inlet 176 to the shell side 51 of the first heat exchanger 50 to cool the hydrocarbon stream 45 in the first tube bundle 53.

同様に、第二又は軽質混合冷媒は冷却第二冷媒流185として第三管束59を出る。冷却第二冷媒流185は第二冷媒膨張器190内で膨張されて膨張第二冷媒流185aを供給する。第二冷媒膨張器190は、好適な第二冷媒膨張器駆動機200で駆動できる。膨張第二冷媒流185aは、膨張冷却冷媒流185aの流量を制御できる第二冷媒バルブ210に通して、制御流として第二冷媒流185bを供給できる。第二冷媒流185bは第三入口216経由で第一熱交換器50のシェル側51に通して第一管束53中の炭化水素流45を冷却できる。   Similarly, the second or light mixed refrigerant exits third tube bundle 59 as cooled second refrigerant stream 185. The cooled second refrigerant stream 185 is expanded in the second refrigerant expander 190 to provide an expanded second refrigerant stream 185a. The second refrigerant expander 190 can be driven by a suitable second refrigerant expander driver 200. The expanded second refrigerant stream 185a can be passed through a second refrigerant valve 210 that can control the flow rate of the expanded cooling refrigerant stream 185a to supply the second refrigerant stream 185b as a control flow. The second refrigerant stream 185 b can pass through the third inlet 216 to the shell side 51 of the first heat exchanger 50 to cool the hydrocarbon stream 45 in the first tube bundle 53.

炭化水素流45の冷却法は以下の方法で制御される。
冷媒流145の流量に相当する冷媒流流量FR1は冷媒流量制御器FC1(340)により測定される。図1は、冷却冷媒流145の流量FR1を測定するために配置された冷媒流量制御器340を示す。しかし、流量制御器340が炭化水素流を冷却するため第一熱交換器50のシェル側51に通される冷媒の流量FR1、例えば炭化水素流45を冷却するため第二入口176経由で第一熱交換器50のシェル側51に通される冷媒流145bの流量FR1に比例する信号を供給する限り、冷媒流制御器340は、流れ143、145、145a、145bのいずれの流量も測定するために置くことができる。
The cooling method of the hydrocarbon stream 45 is controlled by the following method.
The refrigerant flow rate FR1 corresponding to the flow rate of the refrigerant flow 145 is measured by the refrigerant flow rate controller FC1 (340). FIG. 1 shows a refrigerant flow controller 340 arranged to measure the flow rate FR1 of the cooling refrigerant flow 145. However, the flow rate controller 340 cools the hydrocarbon stream first through the second inlet 176 to cool the refrigerant flow rate FR1, which passes through the shell side 51 of the first heat exchanger 50, for example, the hydrocarbon stream 45. As long as a signal proportional to the flow rate FR1 of the refrigerant flow 145b passed through the shell side 51 of the heat exchanger 50 is supplied, the refrigerant flow controller 340 measures any flow of the flows 143, 145, 145a, 145b. Can be put in.

冷却炭化水素流55の流量に相当する炭化水素流流量FR2は炭化水素流量制御器FC2(350)により測定される。図1は、冷却炭化水素流55の流量FR2を測定するために配置された冷却炭化水素流量制御器350を示す。しかし、流量制御器350が第一熱交換器50を通る炭化水素流の流量FR2に比例する信号を供給する限り、炭化水素流量測定器350は、炭化水素流45又は他のいずれの炭化水素流の流量FR2も測定するために置くことができる。   The hydrocarbon flow rate FR2 corresponding to the flow rate of the cooled hydrocarbon stream 55 is measured by the hydrocarbon flow rate controller FC2 (350). FIG. 1 shows a cooled hydrocarbon flow controller 350 arranged to measure the flow rate FR2 of the cooled hydrocarbon stream 55. However, as long as the flow controller 350 provides a signal that is proportional to the flow rate FR2 of the hydrocarbon stream through the first heat exchanger 50, the hydrocarbon flow meter 350 may be the hydrocarbon stream 45 or any other hydrocarbon stream. The flow rate FR2 can also be set to measure.

流れ流量の測定は当該技術分野に公知のいかなる好適な装置、ユニット又はデバイスで行なってもよい。非限定的な例として、オリフィス板、ベンチュリ管、ノズル流量計、可変面積メーター、パイロット管、熱量計、タービンメーター、コリオリ(coriolis)メーター、超音波ドップラーメーター及び渦(vortex)メーターが挙げられる。   The flow rate measurement may be performed with any suitable apparatus, unit or device known in the art. Non-limiting examples include orifice plates, venturi tubes, nozzle flow meters, variable area meters, pilot tubes, calorimeters, turbine meters, Coriolis meters, ultrasonic Doppler meters and vortex meters.

流量制御器も流れの流量(flow)を制御する手段、好ましくは空気圧又は水圧で、或いは電気的に作動するバルブのようなバルブの操作を制御する。   The flow controller also controls the operation of a valve, such as a valve that controls the flow of the flow, preferably pneumatically or hydraulically, or electrically.

冷媒流流量FR1に対しては第一設定点SP1が選択され、流量設定器HC(300)に入力される。第一設定点SP1は、冷媒流流量FR1に関して(in terms of)用意(provide)されるが、第一熱交換器50からの冷却炭化水素流55、好ましくはLNG流の所望流出量(output)に相当する。   For the refrigerant flow rate FR1, the first set point SP1 is selected and input to the flow rate setter HC (300). The first set point SP1 is provisioned with respect to the refrigerant flow rate FR1, but the desired output of the cooled hydrocarbon stream 55, preferably the LNG stream, from the first heat exchanger 50. It corresponds to.

冷媒からの冷却能力(duty)が冷却すべき炭化水素に必要な冷却能力よりも多く供給されると、第一熱交換器50の過冷却が起こる可能性がある。第一熱交換器50の過冷却を防止するため、冷媒流流量FR1及び炭化水素流流量FR2は、以下の交差限定的(cross−limiting)制御方法に従って調節される。   If the cooling capacity (duty) from the refrigerant is supplied more than the cooling capacity required for the hydrocarbon to be cooled, the first heat exchanger 50 may be overcooled. In order to prevent overcooling of the first heat exchanger 50, the refrigerant flow rate FR1 and the hydrocarbon flow rate FR2 are adjusted according to the following cross-limiting control method.

冷媒流流量についての第一設定点SP1が冷媒流流量FR1測定値よりも大きい場合、即ち、第一熱交換器50の冷却炭化水素流出量を増大する必要がある場合は、冷媒流流量FR1を増大する前に、炭化水素流流量FR2を増大する。   When the first set point SP1 for the refrigerant flow rate is larger than the measured value of the refrigerant flow rate FR1, that is, when it is necessary to increase the cooling hydrocarbon outflow amount of the first heat exchanger 50, the refrigerant flow rate FR1 is set. Before increasing, the hydrocarbon stream flow rate FR2 is increased.

炭化水素流流量FR2が増大後、冷媒流流量FR1が増大する限り、第一熱交換器50の過冷却は防止できる。しかし、炭化水素流の過冷却を防止するには、炭化水素流流量FR2の増大と冷媒流流量FR1の増大との間の時間はシステムの応答時間を考慮してできるだけ短くすべきである。   As long as the refrigerant flow rate FR1 increases after the hydrocarbon flow rate FR2 increases, overcooling of the first heat exchanger 50 can be prevented. However, to prevent overcooling of the hydrocarbon stream, the time between the increase of the hydrocarbon stream flow rate FR2 and the increase of the refrigerant stream flow rate FR1 should be as short as possible taking into account the response time of the system.

冷媒流流量についての第一設定点SP1が冷媒流流量FR1測定値よりも小さい場合、即ち、第一熱交換器50の冷却炭化水素流出量を減少する必要がある場合は、炭化水素流流量FR2を減少する前に、冷媒流流量FR1を減少する。   When the first set point SP1 for the refrigerant flow rate is smaller than the measured value of the refrigerant flow rate FR1, that is, when it is necessary to reduce the cooling hydrocarbon outflow amount of the first heat exchanger 50, the hydrocarbon flow rate FR2 Before reducing the refrigerant flow, the refrigerant flow rate FR1 is reduced.

冷媒流流量FR1が減少後、炭化水素流流量FR2が減少する限り、第一熱交換器50の過冷却は防止できる。しかし、炭化水素流の過冷却を防止するには、冷媒流流量FR1の減少と炭化水素流流量FR2の減少との間の時間はシステムの応答時間を考慮してできるだけ短くすべきである。   As long as the hydrocarbon flow rate FR2 decreases after the refrigerant flow rate FR1 decreases, overcooling of the first heat exchanger 50 can be prevented. However, to prevent overcooling of the hydrocarbon stream, the time between the decrease in the refrigerant flow rate FR1 and the decrease in the hydrocarbon flow rate FR2 should be as short as possible taking into account the response time of the system.

例えば冷却炭化水素流55の使用装置が操作から撤回されるか、或いは炭化水素流45の供給装置が操作から撤回される外出事件(tripping event)中、炭化水素流流量FR2が減少する場合は、冷媒流流量FR1も減少すべきである。   For example, if the hydrocarbon stream flow rate FR2 decreases during a tripping event in which the equipment using the cooled hydrocarbon stream 55 is withdrawn from operation or the feed apparatus for the hydrocarbon stream 45 is withdrawn from operation, The refrigerant flow rate FR1 should also be reduced.

冷媒流流量FR1は炭化水素流流量FR2に比例して調節することが好ましく、こうして冷却炭化水素流55に対し一定温度が維持される。   The refrigerant flow rate FR1 is preferably adjusted in proportion to the hydrocarbon flow rate FR2, so that a constant temperature is maintained for the cooled hydrocarbon stream 55.

冷媒流量制御器340は、冷媒流バルブ170を操作して、冷媒流の流量FR1を制御できる。代りの実施形態(図示せず)では、流れ143又は145のいずれかに制御バルブが存在すれば、この制御バルブが冷媒を第一熱交換器50のシェル側51に流動させている限り、この制御バルブの存在により冷媒流流量FR1は制御できる。   The refrigerant flow controller 340 can control the refrigerant flow rate FR1 by operating the refrigerant flow valve 170. In an alternative embodiment (not shown), if there is a control valve in either flow 143 or 145, this control valve will allow this to flow to the shell side 51 of the first heat exchanger 50 as long as this control valve is flowing. The refrigerant flow rate FR1 can be controlled by the presence of the control valve.

同様に、冷却炭化水素流量制御器FC2は、冷却炭化水素バルブ60を操作して、冷却炭化水素流55の流量(及びこれにより炭化水素流45の流量)を制御できる。代りの実施形態(図示せず)では、炭化水素流45中の制御バルブの存在により冷却炭化水素流55の流量は制御できる。   Similarly, the cooled hydrocarbon flow rate controller FC2 can operate the cooled hydrocarbon valve 60 to control the flow rate of the cooled hydrocarbon stream 55 (and thereby the flow rate of the hydrocarbon stream 45). In an alternative embodiment (not shown), the flow rate of the cooled hydrocarbon stream 55 can be controlled by the presence of a control valve in the hydrocarbon stream 45.

いかなる第二冷媒流の流量FR3も制御する必要があることは図1のシステムから明らかであろう。図1は、第二冷媒流185bの流量FR3を制御するために、第二冷媒流量バルブ210を操作する第二冷媒流量制御器FC3(360)を示す。第二冷媒流量バルブ210は、第二冷媒膨張器190の後に示したが、第一熱交換器50のシェル側51への第二冷媒の流量を制御できる限り、147又は185のような他の第二冷媒中に置くことができる。   It will be apparent from the system of FIG. 1 that any second refrigerant flow flow rate FR3 needs to be controlled. FIG. 1 shows a second refrigerant flow controller FC3 (360) that operates the second refrigerant flow valve 210 to control the flow rate FR3 of the second refrigerant flow 185b. Although the second refrigerant flow valve 210 is shown after the second refrigerant expander 190, other refrigerants such as 147 or 185 may be used as long as the flow of the second refrigerant to the shell side 51 of the first heat exchanger 50 can be controlled. It can be placed in the second refrigerant.

第二冷媒流185bの流量FR3は、冷媒流FR1の流量と比べ、これに比例して調節される。冷媒制御器330は、第一冷媒流量制御器FC1に供給された指示に基づいて、第二冷媒流量バルブ210の位置を調節するために使用できる。システムが正確な冷却能力を第一熱交換器50に確実に供給するために、第二冷媒流量制御器FC3は第二冷媒流流量FR3を測定する。   The flow rate FR3 of the second refrigerant flow 185b is adjusted in proportion to the flow rate of the refrigerant flow FR1. The refrigerant controller 330 can be used to adjust the position of the second refrigerant flow valve 210 based on the instruction supplied to the first refrigerant flow controller FC1. In order to ensure that the system provides accurate cooling capacity to the first heat exchanger 50, the second refrigerant flow controller FC3 measures the second refrigerant flow rate FR3.

ここで説明した方法に使用できる交差限定的制御システムは自動的にできる。図1は、それぞれ流量制御バルブ170、60、210の操作時の流量制御器FC1(340)、FC2(350)、FC3(360)を示す。第一冷媒流の流量(FR1)についての第一設定点SP1が流量設定器HC(300)に入力される。流量設定器300は第一設定点SP1の入力を受信し、これを低選別器310及び高選別器320に送信する。   A cross-restricted control system that can be used in the method described herein can be automatic. FIG. 1 shows the flow controllers FC1 (340), FC2 (350), and FC3 (360) when operating the flow control valves 170, 60, and 210, respectively. A first set point SP1 for the flow rate (FR1) of the first refrigerant flow is input to the flow rate setter HC (300). The flow rate setting device 300 receives the input of the first set point SP1 and transmits it to the low selector 310 and the high selector 320.

低選別器310は、冷却炭化水素流流量制御器350からの信号として冷却炭化水素流流量を受信する。高選別器320は、冷媒流流量制御器FC1からの信号として冷媒流流量を受信する。   Low sorter 310 receives the cooled hydrocarbon stream flow rate as a signal from cooled hydrocarbon stream flow controller 350. The high selector 320 receives the refrigerant flow rate as a signal from the refrigerant flow rate controller FC1.

高及び低選別器310、320の性質及び操作については図2を参照して更に詳細に検討する。図2は、ここで説明した炭化水素の冷却方法についての制御系統図を示す。図1について説明した主冷却段1はこの実施形態と併用できる。簡略化のため、図1から冷却炭化水素流55及び対応する制御バルブ60、並びに冷却冷媒流45、冷媒圧縮器150、圧縮冷媒流145a、制御バルブ170及び冷媒流145bのみを図2に示した。しかし、図1の他の特徴も存在してよい。   The nature and operation of the high and low sorters 310, 320 will be discussed in more detail with reference to FIG. FIG. 2 shows a control system diagram for the hydrocarbon cooling method described here. The main cooling stage 1 described with reference to FIG. 1 can be used in combination with this embodiment. For the sake of simplicity, only the cooled hydrocarbon stream 55 and the corresponding control valve 60 from FIG. 1 and only the cooling refrigerant stream 45, the refrigerant compressor 150, the compressed refrigerant stream 145a, the control valve 170 and the refrigerant stream 145b are shown in FIG. . However, other features of FIG. 1 may also exist.

冷媒流流量FR1についての第一設定点SP1が流量設定器HC(300)に入力される。流量設定器HCは設定点信号SPSを発生し、この設定点信号は低選別器310及び高選別器320に伝送される。   The first set point SP1 for the refrigerant flow rate FR1 is input to the flow rate setter HC (300). The flow rate setter HC generates a set point signal SPS, which is transmitted to the low and high sorters 310 and 320.

冷媒流量制御器340は、冷媒流145bの流量FR1に比例する炭化水素流量信号FS2を発生する。冷媒流量信号FS1は高選別器320に伝送される。高選別器320は流量設定器300から第一設定点信号SPSも受信する。
冷媒流量制御器340は冷媒流バルブ170を操作して、冷媒流145bの流量を制御する。
The refrigerant flow controller 340 generates a hydrocarbon flow signal FS2 that is proportional to the flow rate FR1 of the refrigerant flow 145b. The refrigerant flow signal FS1 is transmitted to the high sorter 320. High sorter 320 also receives first set point signal SPS from flow rate setter 300.
The refrigerant flow controller 340 operates the refrigerant flow valve 170 to control the flow rate of the refrigerant flow 145b.

炭化水素流量制御器350は冷却炭化水素流55の流量FR2に比例する冷媒流量信号FS1を発生する。炭化水素流量信号FS2は低選別器310に伝送される。低選別器310は流量設定器300から第一設定点信号SPSも受信する。
冷却炭化水素流量制御器350は冷却炭化水素流バルブ60を操作して、冷却炭化水素流55の流量を制御する。
The hydrocarbon flow controller 350 generates a refrigerant flow signal FS1 that is proportional to the flow rate FR2 of the cooled hydrocarbon stream 55. The hydrocarbon flow signal FS2 is transmitted to the low sorter 310. The low selector 310 also receives a first set point signal SPS from the flow rate setter 300.
The cooled hydrocarbon flow controller 350 operates the cooled hydrocarbon flow valve 60 to control the flow rate of the cooled hydrocarbon stream 55.

低選別器310は最低の設定点信号SPS及び炭化水素流量信号FS2を第一冷媒流量制御器340に通すためにプログラムされる。この方法では第一設定点SPSの上昇により、炭化水素流の流量FR2が増大した後、冷媒流の流量FR1が増大するだけである。   The low sorter 310 is programmed to pass the lowest set point signal SPS and hydrocarbon flow signal FS2 to the first refrigerant flow controller 340. In this method, the increase in the first set point SPS only increases the flow rate FR1 of the refrigerant flow after the flow rate FR2 of the hydrocarbon flow increases.

高選別器320は最高の設定点信号SPS及び冷媒流量信号FS1を炭化水素流量制御器350に通すためにプログラムされる。この方法では設定点SPSの低下により、冷媒流の流量FR1が減少した後、炭化水素流の流量FR2が減少するだけである。   High sorter 320 is programmed to pass the highest set point signal SPS and refrigerant flow signal FS1 to hydrocarbon flow controller 350. In this method, the flow rate FR2 of the hydrocarbon stream only decreases after the flow rate FR1 of the refrigerant stream decreases due to the decrease of the set point SPS.

こうして、炭化水素流の流量FR2と冷媒流FR1との間に交差限定的制御があるため、第一熱交換器50の過冷却が防止される炭化水素流の冷却方法が提供される。   Thus, since there is a cross-limiting control between the flow rate FR2 of the hydrocarbon stream and the refrigerant stream FR1, a hydrocarbon stream cooling method is provided in which overcooling of the first heat exchanger 50 is prevented.

図3は、ここで説明した炭化水素の冷却方法についての制御系統図を示す。この方法では重質混合冷媒流のような冷媒流145bと冷却炭化水素流55の流量FR2との比を調節すれば、冷却炭化水素流55の温度TC2は維持できる。図1及び図2の実施形態ではこの比を調節する手段がなく、したがってこの手段は固定されていたことは明らかであろう。   FIG. 3 shows a control system diagram for the hydrocarbon cooling method described here. In this method, the temperature TC2 of the cooled hydrocarbon stream 55 can be maintained by adjusting the ratio of the refrigerant stream 145b, such as the heavy mixed refrigerant stream, to the flow rate FR2 of the cooled hydrocarbon stream 55. It will be apparent that there is no means to adjust this ratio in the embodiment of FIGS. 1 and 2, and thus this means was fixed.

冷却炭化水素流55は温度制御器TC2(370)を備えている。温度制御器370は冷却炭化水素流55の温度を測定し、この温度に比例する信号TS2を伝送する。   The cooled hydrocarbon stream 55 is provided with a temperature controller TC2 (370). The temperature controller 370 measures the temperature of the cooled hydrocarbon stream 55 and transmits a signal TS2 proportional to this temperature.

冷却炭化水素流の温度TC2は、温度設定点TSPを温度制御器370に供給すれば調節できる。冷却炭化水素流55の温度TC2は、冷媒流流量FR1に比べて冷却炭化水素流55の流量FR2を減少させれば低下できる。同様に、冷却炭化水素流の温度TC2は、一定の冷媒流流量FR1に比べて冷却炭化水素流55の流量FR2を増大させれば上昇できる。   The temperature TC 2 of the cooled hydrocarbon stream can be adjusted by supplying a temperature set point TSP to the temperature controller 370. The temperature TC2 of the cooled hydrocarbon stream 55 can be lowered by reducing the flow rate FR2 of the cooled hydrocarbon stream 55 compared to the refrigerant flow rate FR1. Similarly, the temperature TC2 of the cooled hydrocarbon stream can be increased by increasing the flow rate FR2 of the cooled hydrocarbon stream 55 compared to the constant refrigerant flow rate FR1.

温度制御器370からの信号TS2は、高選別器320から冷却炭化水素流制御器FC2への信号を変調して、変調しない信号に比べて冷却炭化水素流55の流量を増大するか又は減少することができる。しかし、冷却炭化水素流流量制御器FC2から低選別器310への信号に対して行なった変調は、高選別器320からの信号に対して行なった変調の逆であり、その結果、低選別器310に到達する冷却炭化水素流流量信号FS2は、冷却炭化水素流温度制御器TC2により変調されなかった場合に起こる炭化水素流量制御器FC2からの信号に相当する。この方法では、低選別器310の操作、したがって、また冷媒流量制御器FC1は冷却炭化水素流温度制御器TC2により影響を受けない。   The signal TS2 from the temperature controller 370 modulates the signal from the high selector 320 to the cooled hydrocarbon stream controller FC2 to increase or decrease the flow rate of the cooled hydrocarbon stream 55 compared to the unmodulated signal. be able to. However, the modulation performed on the signal from the cooled hydrocarbon flow rate controller FC2 to the low selector 310 is the inverse of the modulation performed on the signal from the high selector 320, resulting in a low selector. The cooled hydrocarbon flow rate signal FS2 reaching 310 corresponds to the signal from the hydrocarbon flow rate controller FC2 that occurs when not modulated by the cooled hydrocarbon flow temperature controller TC2. In this way, the operation of the low selector 310 and thus also the refrigerant flow controller FC1 is not affected by the cooled hydrocarbon flow temperature controller TC2.

図3は、温度制御器370からの信号TS2が高選別器320からの信号を変調できる一方法を示す。このシステムは冷却炭化水素流(LNG):冷媒流(HMR)の特定流量比を有し、この比は特定の温度で冷却炭化水素流55を供給する。図3ではこの比はLNG/HMRとして示した。冷却炭化水素流55の温度を調節可能にするには、冷却炭化水素流:冷媒流の流量比は、この所定比とは変えなければならない。温度制御器370の信号TS2から誘導されるパラメーターbは、高選別器320からの信号を尺度化する(scale)のに使用できる。   FIG. 3 shows one way in which the signal TS2 from the temperature controller 370 can modulate the signal from the high selector 320. The system has a specific flow ratio of cooled hydrocarbon stream (LNG): refrigerant stream (HMR), which provides the cooled hydrocarbon stream 55 at a specific temperature. In FIG. 3, this ratio is shown as LNG / HMR. In order to be able to adjust the temperature of the cooled hydrocarbon stream 55, the flow ratio of the cooled hydrocarbon stream: refrigerant stream must be changed from this predetermined ratio. The parameter b derived from the signal TS2 of the temperature controller 370 can be used to scale the signal from the high selector 320.

例えば炭化水素流量制御器350に供給された信号から誘導されるパラメーターcは、高選別器320の信号、冷却炭化水素流量LNG:冷媒流量HMRの比、即ち、LNG/HMR、及び温度制御器370の信号から誘導されたパラメーターbから求められる尺度化ファクター(b/100)から誘導されるパラメーターaの関数として求められる。パラメーターbが100を超え、例えば>100〜150の範囲であれば、炭化水素流量制御器350に供給される信号のパラメーターcは、これに従って増大する。   For example, the parameter c derived from the signal supplied to the hydrocarbon flow controller 350 includes the high selector 320 signal, the ratio of cooled hydrocarbon flow LNG: refrigerant flow HMR, ie, LNG / HMR, and temperature controller 370. As a function of parameter a derived from a scaling factor (b / 100) derived from parameter b derived from If the parameter b exceeds 100, for example in the range> 100 to 150, the parameter c of the signal supplied to the hydrocarbon flow controller 350 increases accordingly.

同様に、低選別器310に供給された信号から誘導されるパラメーターeは、炭化水素流量制御器350の信号、冷媒流量HMR:冷却炭化水素流量LNGの比、即ち、HMR/LNG、及び温度制御器370の信号から誘導されたパラメーターbから求められる尺度化ファクター(b/100)の逆、即ち、(100/b)から誘導されるパラメーターdの関数として求められる。   Similarly, the parameter e derived from the signal supplied to the low selector 310 includes the hydrocarbon flow controller 350 signal, the refrigerant flow rate HMR: the ratio of the cooled hydrocarbon flow rate LNG, ie HMR / LNG, and temperature control. The inverse of the scaling factor (b / 100) determined from the parameter b derived from the signal of the device 370, i.e. as a function of the parameter d derived from (100 / b).

いかなる第二冷媒流FR3の流量もHMR:LMRの比のような冷媒:第二冷媒の比を維持するため、冷媒流の流量FR1に比例して変化できる。別の実施形態では、図3は冷媒膨張器150をバイパスする冷媒バイパス流225を示す。冷媒バイパス流225は冷媒パイパスバルブ230により制御されて、制御冷媒バイパス流225aを供給する。制御冷媒バイパス流225aは冷媒流145bと配合されて、配合冷媒流245を供給できる。冷媒パイパスバルブ230は、冷媒流量制御器340からの信号により操作でき、冷却冷媒流145に対し冷媒膨張器150をバイパスさせることができる。
当業者ならば本発明が添付した特許請求の範囲を逸脱することなく多くの方法で変形可能であることを容易に理解している。
The flow rate of any second refrigerant flow FR3 can vary in proportion to the flow rate FR1 of the refrigerant flow in order to maintain a refrigerant: second refrigerant ratio, such as a HMR: LMR ratio. In another embodiment, FIG. 3 shows a refrigerant bypass stream 225 that bypasses the refrigerant expander 150. The refrigerant bypass flow 225 is controlled by the refrigerant bypass valve 230 to supply a controlled refrigerant bypass flow 225a. Control refrigerant bypass stream 225a can be blended with refrigerant stream 145b to provide blended refrigerant stream 245. The refrigerant bypass valve 230 can be operated by a signal from the refrigerant flow controller 340 and can bypass the refrigerant expander 150 with respect to the cooling refrigerant flow 145.
Those skilled in the art will readily appreciate that the present invention can be modified in many ways without departing from the scope of the appended claims.

1 主冷却段
45 炭化水素流
50 第一熱交換器
51 シェル側
53 第一管束
55 冷却又は液化炭化水素流
57 第二管束
59 第三管束
60 冷却炭化水素バルブ
100 冷媒回路
105 戻り冷媒流
110 冷媒圧縮器
115 圧縮冷媒流
120 冷媒圧縮器駆動機
130 冷媒冷却器
135 冷却圧縮冷媒流
140 分離器
143 流入冷媒流又は塔底重質混合冷媒(HMR)
145 冷却冷媒流
145a 膨張冷媒流
145b 冷媒流
147 第二冷媒流、第二流入冷媒流又は塔頂軽質混合冷媒(LMR)
150 冷媒膨張器
160 冷媒膨張器駆動機
170 冷媒流バルブ
176 第二入口
185 冷却第二冷媒流
185a 膨張第二冷媒流
185b 第二冷媒流
190 第二冷媒膨張器
200 第二冷媒膨張器駆動機
210 第二冷媒流バルブ
216 第三入口
225 冷媒バイパス流
225a 制御冷媒バイパス流
230 冷媒パイパスバルブ
245 配合冷媒流
300 流量設定器
310 低選別器
320 高選別器
330 冷媒制御器
340 冷媒流量制御器
350 炭化水素流量制御器
360 第二冷媒流量制御器
370 温度制御器
FC1 冷媒流量(制御器)
FC2 炭化水素流量(制御器)
FC3 第二冷媒流量(制御器)
FR1 冷媒流流量
FR2 炭化水素流流量
FR3 第二冷媒流流量
FS1 冷媒流量信号
FS2 冷却炭化水素流量信号
HC 流量設定器
SP1 第一設定点
SPS 第一設定点信号
TC2 冷却炭化水素流の温度又は温度制御器
TS2 温度信号
TSP 温度設定点
L−Sel 低選別器
H−Sel 高選別器
LNG/HMR=冷却炭化水素流:冷媒流の流量比
HMR/LMR=塔底重質混合冷媒:塔頂軽質混合冷媒(第二冷媒)の比
1 main cooling stage 45 hydrocarbon stream 50 first heat exchanger 51 shell side 53 first tube bundle 55 cooling or liquefied hydrocarbon stream 57 second tube bundle 59 third tube bundle 60 cooling hydrocarbon valve 100 refrigerant circuit 105 return refrigerant stream 110 refrigerant Compressor 115 Compressed refrigerant stream 120 Refrigerant compressor driver 130 Refrigerant cooler 135 Cooled compressed refrigerant stream 140 Separator 143 Incoming refrigerant stream or tower bottom heavy mixed refrigerant (HMR)
145 Cooling refrigerant stream 145a Expanded refrigerant stream 145b Refrigerant stream 147 Second refrigerant stream, second incoming refrigerant stream or tower top light mixed refrigerant (LMR)
150 refrigerant expander 160 refrigerant expander driver 170 refrigerant flow valve 176 second inlet 185 cooling second refrigerant flow 185a expanded second refrigerant flow 185b second refrigerant flow 190 second refrigerant expander 200 second refrigerant expander driver 210 Second refrigerant flow valve 216 Third inlet 225 Refrigerant bypass flow 225a Control refrigerant bypass flow 230 Refrigerant bypass valve 245 Blended refrigerant flow 300 Flow setter 310 Low sorter 320 High sorter 330 Refrigerant controller 340 Refrigerant flow controller 350 Hydrocarbon Flow controller 360 Second refrigerant flow controller 370 Temperature controller FC1 Refrigerant flow (controller)
FC2 Hydrocarbon flow rate (controller)
FC3 Second refrigerant flow rate (controller)
FR1 Refrigerant flow rate FR2 Hydrocarbon flow rate FR3 Second refrigerant flow rate FS1 Refrigerant flow rate signal FS2 Cooling hydrocarbon flow rate signal HC Flow rate setter SP1 First set point SPS First set point signal TC2 Temperature or temperature control of cooled hydrocarbon flow Vessel TS2 temperature signal TSP temperature set point L-Sel low sorter H-Sel high sorter LNG / HMR = cooling hydrocarbon flow: flow rate ratio of refrigerant flow HMR / LMR = column bottom heavy mixed refrigerant: column top light mixed refrigerant (Second refrigerant) ratio

米国特許出願第2003/0046953号US Patent Application 2003/0046953

Claims (15)

(a)炭化水素流を用意する工程、
(b)炭化水素流を第一熱交換器中で冷媒流流量を有する1つ以上の冷媒流と熱交換して、炭化水素流流量を有する炭化水素流及び1つ以上の戻り冷媒流を供給する工程、
(c)冷媒流流量用の第一設定点を入力する工程、及び
(d)該設定点が達成されるまで、冷媒流流量及び炭化水素流流量を調節する工程、
を少なくとも含む熱交換器での炭化水素流の冷却方法において、(d1)第一設定点が冷媒流流量よりも大きい場合は、冷媒流流量を増大する前に炭化水素流流量を増大させ、(d2)第一設定点が冷媒流流量よりも小さい場合は、炭化水素流流量を減少する前に冷媒流流量を減少させ、(d3)炭化水素流流量が減少する場合は、冷媒流流量を減少させる該方法。
(A) providing a hydrocarbon stream;
(B) heat exchanging the hydrocarbon stream with one or more refrigerant streams having a refrigerant flow rate in a first heat exchanger to provide a hydrocarbon stream having a hydrocarbon flow rate and one or more return refrigerant streams; The process of
(C) inputting a first set point for the refrigerant flow rate, and (d) adjusting the refrigerant flow rate and the hydrocarbon flow rate until the set point is achieved,
(D1) If the first set point is greater than the refrigerant flow rate, the hydrocarbon flow rate is increased before increasing the refrigerant flow rate, d2) If the first set point is smaller than the refrigerant flow rate, decrease the refrigerant flow rate before decreasing the hydrocarbon flow rate, and (d3) decrease the refrigerant flow rate if the hydrocarbon flow rate decreases. The method of letting.
工程(d)での冷媒流流量及び炭化水素流流量の調節工程が自動的である請求項1に記載の方法。   The method according to claim 1, wherein the step of adjusting the refrigerant flow rate and the hydrocarbon flow rate in step (d) is automatic. [冷媒流流量]/[炭化水素流流量]比が、工程(d)中、予備選択されたレベル以下に維持される請求項1又は2に記載の方法。   3. A method according to claim 1 or 2, wherein the ratio of [refrigerant flow] / [hydrocarbon flow] is maintained below a preselected level during step (d). ・冷媒流流量が、冷媒流バルブを操作して冷媒流の流量を制御するための冷媒流制御器であって、高選別器に送信される冷媒流信号を発生する該冷媒流制御器により測定され、
・第一設定点が、低選別器及び高選別器に送信される設定点信号を発生する流量設定器に入力され、
・低選別器が、最低の設定点信号及び炭化水素流量信号を冷媒流量制御器に通し、かつ
・高選別器が、最高の設定点信号及び冷媒流量信号を冷却炭化水素流量制御器に通す、
請求項1〜3のいずれか1項に記載の方法。
The refrigerant flow rate is a refrigerant flow controller for controlling the flow rate of the refrigerant flow by operating the refrigerant flow valve, and is measured by the refrigerant flow controller that generates a refrigerant flow signal transmitted to the high sorter. And
The first set point is input to a flow setter that generates a set point signal that is sent to the low and high sorters,
The low sorter passes the lowest setpoint signal and hydrocarbon flow signal to the refrigerant flow controller, and the high sorter passes the highest setpoint signal and refrigerant flow signal to the cooled hydrocarbon flow controller,
The method according to claim 1.
冷媒流が、重質混合冷媒流及び軽質混合冷媒流を含む群、好ましくは重質混合冷媒流から選ばれる請求項1〜4のいずれか1項に記載の方法。   5. A method according to any one of claims 1 to 4, wherein the refrigerant stream is selected from the group comprising a heavy mixed refrigerant stream and a light mixed refrigerant stream, preferably a heavy mixed refrigerant stream. 工程(b)において、炭化水素流を第一熱交換器中の第二冷媒流流量を有する第二冷媒流と熱交換する工程を更に含む請求項1〜5のいずれか1項に記載の方法。   The method according to any one of claims 1 to 5, further comprising, in step (b), heat exchange of the hydrocarbon stream with a second refrigerant stream having a second refrigerant stream flow rate in the first heat exchanger. . 第二冷媒流流量が、冷媒流流量の一部として測定される請求項6に記載の方法。   The method of claim 6, wherein the second refrigerant flow rate is measured as part of the refrigerant flow rate. ・第二冷媒流バルブを操作し、これにより第二冷媒流の流量を変化させる第二冷媒流制御器、及び
・低選別器から最低の設定点信号及び冷却炭化水素流量信号を受信し、更に冷媒制御器信号を第二冷媒流量制御器に送信することにより、第二冷媒流の流量を冷媒流の流量と比べて調節する冷媒制御器、
を更に含む請求項6又は7に記載の方法。
A second refrigerant flow controller that operates the second refrigerant flow valve, thereby changing the flow rate of the second refrigerant flow, and receives the lowest set point signal and the cooled hydrocarbon flow signal from the low sorter, and A refrigerant controller that adjusts the flow rate of the second refrigerant flow relative to the flow rate of the refrigerant flow by transmitting a refrigerant controller signal to the second refrigerant flow rate controller;
The method according to claim 6 or 7, further comprising:
冷媒流が重質混合冷媒流である場合には第二冷媒流は軽質混合冷媒流であり、或いは冷媒流が軽質混合冷媒流である場合には第二冷媒流は重質混合冷媒流である請求項6〜8のいずれか1項に記載の方法。   The second refrigerant flow is a light mixed refrigerant flow when the refrigerant flow is a heavy mixed refrigerant flow, or the second refrigerant flow is a heavy mixed refrigerant flow when the refrigerant flow is a light mixed refrigerant flow. The method according to any one of claims 6 to 8. (i)第一熱交換器において、流入冷媒流を冷却して冷却冷媒流を供給する工程、
(ii)冷媒膨張器において、該冷却冷媒流を膨張させて、膨張冷媒流を供給する工程、
(iii)該膨張冷媒流を冷媒バルブに通して冷媒流を供給する工程、及び
(iv)該冷媒流を第一熱交換器の第二入口に通す工程、
を更に含む請求項1〜9のいずれか1項に記載の方法。
(I) in the first heat exchanger, cooling the incoming refrigerant flow to supply a cooling refrigerant flow;
(Ii) in the refrigerant expander, expanding the cooling refrigerant flow and supplying the expanded refrigerant flow;
(Iii) supplying the refrigerant stream by passing the expanded refrigerant stream through a refrigerant valve; and (iv) passing the refrigerant stream to a second inlet of the first heat exchanger;
The method according to claim 1, further comprising:
(v)戻り冷媒流を冷媒圧縮器に通して圧縮冷媒流を供給する工程、
(vi)該圧縮冷媒流を冷却器中で冷却して冷却圧縮冷媒流を供給する工程、及び
(vii)該冷却圧縮冷媒流を分離器中で分離して1つ以上の流入冷媒流を供給する工程、
を更に含む請求項10に記載の方法。
(V) passing the return refrigerant stream through a refrigerant compressor to supply the compressed refrigerant stream;
(Vi) cooling the compressed refrigerant stream in a cooler to supply a cooled compressed refrigerant stream; and (vii) separating the cooled compressed refrigerant stream in a separator to supply one or more incoming refrigerant streams. The process of
The method of claim 10, further comprising:
前記冷却圧縮冷媒流の分離工程(vii)が、更に第二流入冷媒流を生成し、前記方法が、
(viii)該第二流入冷媒流を第一熱交換器中で冷却して冷却第二流入冷媒流を供給する工程、
(ix)該冷却第二流入冷媒流を第二冷媒膨張器中で膨張させて膨張第二流入冷媒流を供給する工程、
(x)該膨張第二流入冷媒流を第二冷媒バルブに通して第二冷媒流を供給する工程、及び
(xi)該第二冷媒流を第一熱交換器の第三入口に通す工程、
を更に含む請求項11に記載の方法。
The cooling compressed refrigerant stream separation step (vii) further generates a second incoming refrigerant stream, the method comprising:
(Viii) cooling the second incoming refrigerant stream in a first heat exchanger to provide a cooled second incoming refrigerant stream;
(Ix) expanding the cooled second incoming refrigerant stream in a second refrigerant expander to provide an expanded second incoming refrigerant stream;
(X) passing the expanded second incoming refrigerant stream through a second refrigerant valve to supply a second refrigerant stream; and (xi) passing the second refrigerant stream through a third inlet of the first heat exchanger;
The method of claim 11, further comprising:
炭化水素流が天然ガス流であり、冷却炭化水素流がLNG流である請求項1〜2のいずれか1項に記載の方法。   The process according to any one of claims 1-2, wherein the hydrocarbon stream is a natural gas stream and the cooled hydrocarbon stream is an LNG stream. ・炭化水素流用第一入口、冷却炭化水素流用第一出口、1つ以上の冷媒流用の1つ以上の第二出口及び戻り冷媒流用第二出口を有する第一熱交換器、
・1つ以上の冷媒流の冷媒流流量に比例する信号を測定して、高選別器に送信される冷媒流量信号を供給するために、冷媒バルブを操作して冷媒流の流量を制御する冷媒流量制御器、
・冷却炭化水素流の冷却炭化水素流流量に比例する信号を測定して、低選別器に送信される冷却炭化水素流量信号を供給するために、冷却炭化水素流バルブを操作して冷却炭化水素流の流量を制御する冷却炭化水素流量制御器、
・設定点を入力して低選別器及び高選別器に送信される設定点信号を供給するための流量設定器、
・最低の設定点信号及び冷却炭化水素流流量信号を冷媒流量制御器に送信する低選別器、及び
・最高の設定点信号及び冷却炭化水素流流量信号を冷却炭化水素流量制御器に送信する高選別器、
を少なくとも備える熱交換器の操作用装置。
A first heat exchanger having a first inlet for hydrocarbon stream, a first outlet for cooled hydrocarbon stream, one or more second outlets for one or more refrigerant streams, and a second outlet for return refrigerant streams;
A refrigerant that controls the flow rate of the refrigerant flow by operating a refrigerant valve to measure a signal proportional to the refrigerant flow rate of one or more refrigerant flows and to supply a refrigerant flow signal that is transmitted to the high sorter Flow controller,
• Operate the cooled hydrocarbon stream valve to measure the signal proportional to the cooled hydrocarbon stream flow rate of the cooled hydrocarbon stream and provide a cooled hydrocarbon stream signal that is sent to the low selector. Cooling hydrocarbon flow controller to control the flow rate of the flow,
A flow rate setter for entering set points and supplying set point signals to be sent to the low and high sorters,
A low selector that sends the lowest set point signal and the cooled hydrocarbon flow rate signal to the refrigerant flow controller, and a high that sends the highest set point signal and the cooled hydrocarbon flow rate signal to the cooled hydrocarbon flow controller. Sorter,
An apparatus for operating a heat exchanger comprising at least
・第一熱交換器中の第二冷媒流用の第三入口、
・第二冷媒流バルブを操作して第二冷媒流の流量を変化させる第二冷媒流量制御器、及び
・低選別器から最低の設定点信号及び冷却炭化水素流量信号を受信し、更に冷媒制御器信号を第二冷媒流量制御器に送信することにより、第二冷媒流の流量を冷媒流の流量と比べて調節する冷媒制御器、
を更に備える請求項14に記載の装置。
A third inlet for the second refrigerant flow in the first heat exchanger,
A second refrigerant flow controller that changes the flow rate of the second refrigerant flow by operating the second refrigerant flow valve, and a minimum set point signal and a cooled hydrocarbon flow signal received from the low sorter, and further refrigerant control A refrigerant controller that adjusts the flow rate of the second refrigerant flow relative to the flow rate of the refrigerant flow by transmitting a vessel signal to the second refrigerant flow rate controller,
15. The apparatus of claim 14, further comprising:
JP2011527298A 2008-09-19 2009-09-11 Method and apparatus for cooling a hydrocarbon stream Pending JP2012511130A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08164727.3 2008-09-19
EP08164727 2008-09-19
PCT/EP2009/061793 WO2010031737A2 (en) 2008-09-19 2009-09-11 Method of cooling a hydrocarbon stream and an apparatus therefor

Publications (1)

Publication Number Publication Date
JP2012511130A true JP2012511130A (en) 2012-05-17

Family

ID=40626875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011527298A Pending JP2012511130A (en) 2008-09-19 2009-09-11 Method and apparatus for cooling a hydrocarbon stream

Country Status (11)

Country Link
US (1) US20110168377A1 (en)
EP (1) EP2324310A2 (en)
JP (1) JP2012511130A (en)
KR (1) KR20110061615A (en)
CN (1) CN102265104B (en)
AP (1) AP2011005585A0 (en)
BR (1) BRPI0918663A2 (en)
CA (1) CA2735884C (en)
MY (1) MY161121A (en)
RU (1) RU2525048C2 (en)
WO (1) WO2010031737A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9527008B2 (en) * 2012-07-26 2016-12-27 Uop Llc Apparatus for measurement and calculation of dew point for fractionation column overheads
CN103148673B (en) * 2013-01-27 2015-01-07 南京瑞柯徕姆环保科技有限公司 Natural gas isobaric liquefaction device
US11428463B2 (en) * 2013-03-15 2022-08-30 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US9696074B2 (en) 2014-01-03 2017-07-04 Woodward, Inc. Controlling refrigeration compression systems
US11874055B2 (en) * 2014-03-04 2024-01-16 Conocophillips Company Refrigerant supply to a cooling facility
DE102014012316A1 (en) * 2014-08-19 2016-02-25 Linde Aktiengesellschaft Process for cooling a hydrocarbon-rich fraction
RU2747919C2 (en) * 2019-03-06 2021-05-17 Андрей Владиславович Курочкин Lng production installation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123506A (en) * 1992-10-07 1994-05-06 Kobe Steel Ltd Precooling device for refrigeration load arranged in liquefying refrigerating plant
JP2003532047A (en) * 2000-04-25 2003-10-28 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Product control of liquefied natural gas product streams
JP2004003724A (en) * 2002-05-31 2004-01-08 Jfe Steel Kk Cooling method of cryogenic equipment
JP2009533642A (en) * 2006-04-07 2009-09-17 ハムワージー・ガス・システムズ・エイ・エス Method and apparatus for preheating boil-off gas to ambient temperature prior to compression in a reliquefaction system
US20100135825A1 (en) * 2008-12-02 2010-06-03 Kellogg Brown & Root Llc Multiple Motors Driving a Single Compressor String

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2074594B1 (en) * 1970-01-08 1973-02-02 Technip Cie
JPS5869320A (en) * 1981-10-21 1983-04-25 Hitachi Ltd Flow rate controlling device
US4809154A (en) * 1986-07-10 1989-02-28 Air Products And Chemicals, Inc. Automated control system for a multicomponent refrigeration system
US5139548A (en) * 1991-07-31 1992-08-18 Air Products And Chemicals, Inc. Gas liquefaction process control system
US5669238A (en) * 1996-03-26 1997-09-23 Phillips Petroleum Company Heat exchanger controls for low temperature fluids
US5724833A (en) * 1996-12-12 1998-03-10 Phillips Petroleum Company Control scheme for cryogenic condensation
US5791160A (en) * 1997-07-24 1998-08-11 Air Products And Chemicals, Inc. Method and apparatus for regulatory control of production and temperature in a mixed refrigerant liquefied natural gas facility
EG22293A (en) * 1997-12-12 2002-12-31 Shell Int Research Process ofliquefying a gaseous methane-rich feed to obtain liquefied natural gas
FR2818365B1 (en) * 2000-12-18 2003-02-07 Technip Cie METHOD FOR REFRIGERATION OF A LIQUEFIED GAS, GASES OBTAINED BY THIS PROCESS, AND INSTALLATION USING THE SAME
US7594414B2 (en) * 2001-05-04 2009-09-29 Battelle Energy Alliance, Llc Apparatus for the liquefaction of natural gas and methods relating to same
US6530240B1 (en) * 2001-12-10 2003-03-11 Gas Technology Institute Control method for mixed refrigerant based natural gas liquefier
TWI314637B (en) * 2003-01-31 2009-09-11 Shell Int Research Process of liquefying a gaseous, methane-rich feed to obtain liquefied natural gas
JP4328278B2 (en) * 2004-09-14 2009-09-09 三菱化学株式会社 Cryogenic control system
US20090025422A1 (en) * 2007-07-25 2009-01-29 Air Products And Chemicals, Inc. Controlling Liquefaction of Natural Gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123506A (en) * 1992-10-07 1994-05-06 Kobe Steel Ltd Precooling device for refrigeration load arranged in liquefying refrigerating plant
JP2003532047A (en) * 2000-04-25 2003-10-28 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Product control of liquefied natural gas product streams
JP2004003724A (en) * 2002-05-31 2004-01-08 Jfe Steel Kk Cooling method of cryogenic equipment
JP2009533642A (en) * 2006-04-07 2009-09-17 ハムワージー・ガス・システムズ・エイ・エス Method and apparatus for preheating boil-off gas to ambient temperature prior to compression in a reliquefaction system
US20100135825A1 (en) * 2008-12-02 2010-06-03 Kellogg Brown & Root Llc Multiple Motors Driving a Single Compressor String

Also Published As

Publication number Publication date
MY161121A (en) 2017-04-14
WO2010031737A2 (en) 2010-03-25
US20110168377A1 (en) 2011-07-14
WO2010031737A3 (en) 2015-02-19
AP2011005585A0 (en) 2011-02-28
CN102265104A (en) 2011-11-30
CA2735884C (en) 2017-01-17
RU2525048C2 (en) 2014-08-10
EP2324310A2 (en) 2011-05-25
CA2735884A1 (en) 2010-03-25
BRPI0918663A2 (en) 2015-12-01
RU2011115190A (en) 2012-10-27
KR20110061615A (en) 2011-06-09
AU2009294697A1 (en) 2010-03-25
CN102265104B (en) 2013-11-06

Similar Documents

Publication Publication Date Title
RU2195611C2 (en) Method for cooling by means of multicomponent cooling agent for liquefying natural gas
JP2012511130A (en) Method and apparatus for cooling a hydrocarbon stream
DK178396B1 (en) Process and apparatus for cooling a hydrocarbon stream
AU2007286291B2 (en) Method and apparatus for cooling a hydrocarbon stream
JP5793146B2 (en) Apparatus and method for cooling and liquefying fluids
CN102612621B (en) Method of handling a boil off gas stream and an apparatus therefor
JP5726184B2 (en) Method and apparatus for producing a cooled hydrocarbon stream
US20090301132A1 (en) Optimized heavies removal system in an lng facility
KR101787335B1 (en) Method of treating a hydrocarbon stream comprising methane, and an apparatus therefor
AU2009294697B2 (en) Method of cooling a hydrocarbon stream and an apparatus therefor
CN102203530A (en) Method and apparatus for cooling and separating a hydrocarbon stream

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140320