JP2012503791A - 信号処理方法及び装置 - Google Patents

信号処理方法及び装置 Download PDF

Info

Publication number
JP2012503791A
JP2012503791A JP2011528941A JP2011528941A JP2012503791A JP 2012503791 A JP2012503791 A JP 2012503791A JP 2011528941 A JP2011528941 A JP 2011528941A JP 2011528941 A JP2011528941 A JP 2011528941A JP 2012503791 A JP2012503791 A JP 2012503791A
Authority
JP
Japan
Prior art keywords
inter
phase difference
channel
difference value
channel phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011528941A
Other languages
English (en)
Other versions
JP5426680B2 (ja
Inventor
クク リ,ヒュン
ヨン ユン,スン
スー キム,ドン
ヒュン リム,ジェ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Priority claimed from PCT/KR2009/005497 external-priority patent/WO2010036059A2/en
Publication of JP2012503791A publication Critical patent/JP2012503791A/ja
Application granted granted Critical
Publication of JP5426680B2 publication Critical patent/JP5426680B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/02Systems employing more than two channels, e.g. quadraphonic of the matrix type, i.e. in which input signals are combined algebraically, e.g. after having been phase shifted with respect to each other

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Stereophonic System (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

【課題】復号されたオーディオ信号の音質を向上させる信号処理方法及び装置を提供すること。
【解決手段】本発明の信号処理方法及び装置によれば、チャネル間位相差符号化フラグ及びチャネル間位相差モードフラグに基づいて、チャネル間位相差値を用いることによって、チャネル間レベル差値及びチャネル間相関値では復元し難い残響を復元し、音像の定位を正確にすることができる。
【選択図】図9

Description

本発明は、入力された信号の位相を偏移(shift)させた信号を利用し、該位相の偏移した信号のチャネル間位相差値を用いることによって、信号の音質を向上させ、入力された信号をより完壁に復元することができる信号処理方法及び装置に関するものである。
一般に、モノ信号からステレオ信号を生成するためにデコリレータを用いて信号を符号化することができる。
また、信号処理装置においてチャネル間レベル差値及びチャネル間相関値を用いて信号を符号化することができる。
音声信号をデコリレータを用いて生成する場合、デコリレータはチャネル信号間に存在する位相差又は遅延差を正確に再生できないという問題点がある。
また、チャネル間レベル差値及びチャネル間相関値を用いて信号を符号化する場合、入力信号のチャネル間位相差を復元して反映することができず、正確な音像の定位(localization)を行い難いうえに、入力信号の残響(reverberation)も復元できないという問題点がある。
本発明は、上記の問題点を解決するために案出されたもので、その目的は、復号されたオーディオ信号又は音声信号の位相を、チャネル間位相差値及び位相移動フラグを用いて復元及び偏移することによって、音質を向上させ、原音に近づかせることができる信号処理方法及び装置を提供することにある。
本発明は、下記のような効果及び利点を提供する。
第一に、本発明の信号処理方法及び装置は、位相偏移フラグに基づいて、復号されたオーディオ信号又は音声信号の位相を偏移させることで、復号時にデコリレータによっては効率的に再生し難い位相差又は遅延差を効率的に再生することができるという効果を有する。
第二に、本発明の信号処理方法及び装置は、チャネル間位相差符号化フラグ及びチャネル間位相差モードフラグに基づいて、チャネル間位相差値を用いることで、チャネル間レベル差値及びチャネル間相関値によっては復元し難い残響を復元し、音像の定位を正確にすることができる。
第三に、本発明の信号処理方法及び装置は、フレームごとにチャネル間位相差値を用いているか否かを示すチャネル間位相差モードフラグを受信することによって、必要に応じてチャネル間位相差値を用いて信号を復号することができる。
第四に、本発明の信号処理方法及び装置は、先行する(previous)パラメータタイムスロットのチャネル間位相差値を用いて現在のパラメータタイムスロットのチャネル間位相差値を修正(平滑化(smoothing))することで、チャネル間位相差値の差によって一時的に生じうる雑音を除去できるという効果を有する。
第五に、本発明の信号処理方法及び装置は、一定条件を満たす場合にのみチャネル間位相差値を伝送することによって符号化効率を向上させ、原音に近い信号として復号することができる。
第六に、本発明の信号処理方法及び装置は、エンコーダで測定されたチャネル間位相差値をチャネル間レベル差値に変換して伝送することによって、チャネル間位相差値の伝送を許容しない既存の信号処理装置及び方法を用いる場合にも、残響を強化し、音像の定位が原音に近い信号として復元できるという効果(後方互換性)を有する。
本発明の一実施例による信号処理方法の概念を示す概念図である。 本発明の一実施例による信号処理装置を示すブロック図である。 信号における位相と時間との関係を示すグラフである。 図2におけるIPD値測定部及びIPD値取得部を具体的に示すブロック図である。 本発明のほかの実施例による信号処理装置を示すブロック図である。 本発明の更にほかの実施例による信号処理装置を示すブロック図である。 従来のパラメータタイムスロットを示す概念図である。 本発明の更にほかの実施例によってチャネル間位相差値を修正(平滑化)する方法を示す概略図である。 図8における本発明の更にほかの実施例に係る信号処理装置を示すブロック図である。 本発明の更にほかの実施例による信号処理方法及び装置が解決しようとする問題点を示す概念図である。 本発明の更にほかの実施例による信号処理装置を示すブロック図である。 本発明の更にほかの実施例による信号処理装置を示すブロック図である。 本発明の更にほかの実施例によってグローバルフレームチャネル間位相差値(global frame IPD)が用いられる概念を示す概念図である。 本発明の更にほかの実施例による信号処理装置を示すブロック図である。 本発明の更にほかの実施例による信号処理装置を示すブロック図である。 本発明の更にほかの実施例による信号処理装置を示すブロック図である。 本発明の更にほかの実施例による信号処理装置を示すブロック図である。 本発明の更にほかの実施例によるIPD符号化フラグ取得部、IPDモードフラグ取得部、IPD値取得部及びアップミキシング部が具現されている製品の概略的な構成を示す図である。 本発明の更にほかの実施例によるIPD符号化フラグ取得部、IPDモードフラグ取得部、IPD値取得部及びアップミキシング部が具現されている製品間の関係を示す図である。 本発明の更にほかの一実施例によるIPD符号化フラグ取得部、IPDモードフラグ取得部、IPD値取得部及びアップミキシング部が具現されている放送信号復号装置の概略的な構成を示す図である。
以下、添付の図面を参照しつつ、本発明の好適な実施例について詳細に説明する。これに先立ち、本明細書及び請求の範囲に使われた用語や単語は通常的または辞典的な意味に限定して解釈してはならず、発明者は自身の発明を最善の方法で説明するために用語の概念を適宜定義することができるという原則に立って、本発明の技術的思想に符合する意味と概念として解釈すべきであるということを明らかにしておきたい。したがって、本明細書に記載された実施例及び図面に示す構成は本発明の最も好適な一実施例に過ぎないもので、本発明の技術的思想を全部代弁するものではないので、本出願時点においてそれらを代替できる種々の均等物及び変形例が存在しうるということが理解されるであろう。
特に、本発明でいう符号化とは、符号化及び復号の両方を含む概念として理解すべきである。
また、本明細書でいう情報とは、値、パラメータ、係数、要素などを総称する用語で、場合によって異なる意味として解釈されるが、本発明はこれに限定されない。そして、本明細書で信号の一例としてステレオ信号を挙げて説明するが、これに限定されず、3以上の複数のチャネルを有する複数チャネル信号とすることもできる。
図1は、本発明の一実施例による信号処理方法の概念を示す概念図であり、空間情報のビットストリームを示している。図1を参照すると、空間情報は、ヘッダ及び複数個のフレームに区分することができる。ここで、空間情報は、入力信号である複数チャネル信号の属性を表す情報であり、複数チャネルのうちの2チャネル間のレベル差を表すチャネル間レベル差値、2チャネル間の相関度を表すチャネル間相関値、及び2チャネル間の位相差を表すチャネル間位相差値を含むことができる。これらは、デコーダで、複数チャネル信号をダウンミックスして生成されたダウンミックス信号をアップミックスして復元するのに用いることができる。
空間情報のヘッダは、全フレーム中にチャネル間位相差値を用いるフレームがあるか否かを示すチャネル間位相差符号化フラグ(bsPhaseCoding)を含む。すなわち、チャネル間位相差符号化フラグがヘッダに含まれることによって、空間情報の全フレームにおいてチャネル間位相差値が用いられるか否かを判断することができる。チャネル間位相差符号化フラグの意味を、下記の表1に示す。
Figure 2012503791
また、空間情報は、フレームでチャネル間位相差値が用いられているか否かを示すチャネル間位相差モードフラグ(bsPhaseMode)をフレームごとに含む。チャネル間位相差モードフラグは、チャネル間位相差符号化フラグが1である場合、すなわち、チャネル間位相差符号化フラグが、空間情報にIPD符号化が用いられることを示す場合にのみ、フレームに含まれる。チャネル間位相差モードフラグ(bsPhaseMode)の具体的な意味は、下記の表2の通りである。
Figure 2012503791
再び図1を参照すると、フレーム2のチャネル間位相差モードフラグが1であれば(bsPhaseMode=1)、フレーム2にチャネル間位相差値(IPD)として0でない値が含まれ、フレーム3のチャネル間位相差モードフラグが0であれば(bsPhaseMode=0)、フレーム3にチャネル間位相差値(IPD)として0の値が含まれる。
したがって、チャネル間位相差符号化フラグ及びチャネル間位相差モードフラグに基づいてチャネル間位相差値を取得し、これをダウンミックス信号に適用して複数チャネル信号にアップミックスすることができる。
図2は、本発明の一実施例による信号処理装置を示すブロック図である。図2を参照すると、信号処理装置200は、ダウンミキシング部210、空間情報生成部220、情報取得部230及びアップミキシング部240を含む。
ダウンミキシング部210は、複数チャネル信号を入力してダウンミックス信号(DMX)を生成することができる。複数チャネル信号は、3以上のチャネルを有する信号であってもよいし、モノ又はステレオチャネルを有する信号であってもよい。ダウンミキシング部210は、複数チャネル信号をダウンミックスすることで、複数チャネル信号のチャネル数よりも少ない数のチャネルを有するダウンミックス信号を生成することができる。
空間情報生成部220は、図1で説明したとおり、ダウンミックス信号を後でデコーダでアップミックスするための空間情報を生成し、該空間情報は複数チャネル信号の属性を示すことができる。空間情報は、上述のように、チャネル間レベル差値、チャネル間相関値及びチャネル間位相差値などを含むことができるが、ここでは、図2の空間情報生成部220を参照してチャネル間位相差値について具体的に説明する。
空間情報生成部220は、IPD利用決定部221、IPD値測定部222、IPDモードフラグ生成部223、及びIPD符号化フラグ生成部224を含む。IPD利用決定部221は、空間情報にチャネル間の位相差(IPD)値を含めるか否かを決定でき、特に、複数チャネル信号の特性、チャネル間位相差値とチャネル間レベル差値との比率に基づいて、チャネル間位相差値を含めるか否かを決定することができる。
例えば、複数チャネル信号が音声信号である場合、チャネル間位相差値を空間情報に含めると決定することができる。その詳細は後述する。
IPD値測定部222は、IPD利用決定部221が、チャネル間位相差値を用いると決定した場合、空間情報生成部200に入力された複数チャネル信号から2チャネル間の位相差を測定する。該測定された位相差は、位相及び/又は角度であってもよいし、時間差であってもよいし、角度又は時間差に対応するインデックス値であってもよい。信号において位相と時間差は密接な関係を有するが、これについての詳細は、図3を参照して後述する。
IPDモードフラグ生成部223は、図1を参照して上述したチャネル間位相差モードフラグ(bsPhaseMode)を生成する。すなわち、チャネル間位相差値がフレームで用いられているか否かを示し、ここで、フレームは、チャネル間位相差値が含まれている現在フレーム(current frame)でありうる。したがって、チャネル間位相差モードフラグはフレーム別に可変的に存在することができる。特に、チャネル間位相差符号化フラグが、チャネル間位相差値が空間情報の全フレームで用いられないことを示す場合は、フレームにチャネル間位相差モードフラグを含めなくてもよい。チャネル間位相差モードフラグは0又は1の値を有することができる。
IPDコーディングフラグ生成部224は、図1で説明したようなチャネル間位相差符号化フラグ(bsPhaseCoding)を生成する。すなわち、IPD符号化が空間情報で用いられているか否かを示すIPD符号化フラグが生成されるため、図1に示すような区分された空間情報の少なくとも一つのフレームでチャネル間位相差値を用いる場合、チャネル間位相差符号化フラグが1を表すことは当然である。
情報取得部230は、空間情報生成部220から空間情報を入力する。この空間情報は、チャネル間の位相差(IPD)値のほかに、チャネル間位相差符号化フラグ(bsPhaseCoding)及びチャネル間位相差モードフラグ(bsPhaseMode)を含むことができる。情報取得部230は、IPD符号化フラグ取得部231、IPDモードフラグ取得部232及びIPD値取得部233を含む。IPD符号化フラグ取得部231は、空間情報のヘッダから、空間情報の全フレームのうち少なくとも一つのフレームでチャネル間位相差値が用いられているか否かを示すチャネル間位相差符号化フラグを取得する。このチャネル間位相差符号化フラグの意味は、上記の表1の通りである。
IPDモードフラグ取得部232は、チャネル間位相差符号化フラグに基づいて、空間情報のフレームから、チャネル間位相差値がフレームで用いられているか否かを示すチャネル間位相差モードフラグ(bsPhaseMode)を取得する。特に、チャネル間位相差符号化フラグがチャネル間位相差値が用いられていることを示す場合(bsPhaseCoding=1)にIPDモードフラグ取得部232はチャネル間位相差モードフラグを取得することができる。
IPD値取得部233は、チャネル間位相差モードフラグに基づいて、空間情報からチャネル間位相差値を取得することができる。このチャネル間位相差値はパラメータ帯域別に存在することができる。本明細書でいうパラメータ帯域とは、同じチャネル間位相差値が含まれる少なくとも一つの副帯域(sub−band)のことをいうが、これについては図7及び図8を参照して後述する。
アップミキシング部240は、情報取得部230から取得されたチャネル間位相差値を、ダウンミキシング部210から入力されたダウンミックス信号に適用して、複数チャネル信号を生成することができる。ここで、アップミックスとは、ダウンミックス信号のチャネルよりも多い数のチャネル信号を生成するためにアップミキシングマトリクスを適用することを指し、アップミックスされた信号とは、アップミキシングマトリクスが適用された信号のことを指す。したがって、複数チャネル信号は、ダウンミックス信号よりも多い数のチャネルを有する信号である。また、アップミックスされた信号は、アップミキシングマトリクスが適用された信号自体を指すこともでき、アップミキシングマトリクスが適用されることによって複数のチャネルを有するように生成されたQMF領域信号であってもよいし、QMF領域信号が時間領域上の信号に変換された最終信号であってもよい。
このように、本発明の信号処理装置及び方法は、チャネル間位相差符号化フラグ及びチャネル間位相差モードフラグに基づいて、チャネル間位相差値を用いることによって、チャネル間レベル差値及びチャネル間相関値では復元し難い残響を復元し、音像の定位を正確にすることができるという効果を有する。
図3は、信号における位相と時間との関係を示すグラフである。図3の左グラフは、信号を位相−振幅領域上に示すものである。(a)信号は、位相変化なく入力された信号であり、(b)信号は、(a)信号よりπ/2だけ位相の遅れた信号を示す。
一方、図3の右グラフは、信号を時間−振幅領域上に示すもので、左グラフの(a)及び(b)信号に対応する(a)'及び(b)'信号を示す。すなわち、(a)信号よりπ/2だけ位相の遅れた信号である(b)信号は、時間では(a)'信号より33ms遅れて入力された信号である(b)'信号と同一に示すことができる。このように、信号において位相−時間は密接な関係を有し、これらは互いに対応する値に変換して用いる場合にも同一の効果を奏する。
図4は、図2のIPD値測定部及びIPD値取得部を具体的に示すブロック図である。IPD測定部410は、IPD値測定部411、IPD量子化部412及び量子化モードフラグ生成部413を含む。IPD値測定部411は、入力された複数チャネル信号からチャネル間位相差情報を測定する。上述のように、チャネル間位相差値は、位相角であってもよいし、時間遅延値であってもよいし、これらに対応するインデックス値であってもよい。
IPD量子化部412は、IPD値測定部411で測定されたチャネル間位相差値を量子化する。IPD量子化部412は、量子化間隔によってチャネル間位相差値をそれぞれ異なる方法で量子化できる細部構造をさらに含むことができる。例えば、第1量子化部(図示せず)では、細かい量子化間隔(細かい間隔)を用いてチャネル間位相差値を量子化でき、第2量子化部(図示せず)では、粗い量子化間隔(粗い間隔)を用いてチャネル間位相差値を量子化することができる。
また、IPD量子化モードフラグ生成部413は、チャネル間位相差値を量子化する方式を示す量子化モードフラグ(quant_mode_flag)を生成することができる。量子化モードフラグは、詳細には、細かい間隔又は粗い間隔を用いてチャネル間位相差値が量子化されているか否かを示すことができる。
チャネル間位相差値取得部(IPD値取得部)420は、IPD量子化モードフラグ取得部421、第1逆量子化部422、第2逆量子化部423及び逆量子化IPD値取得部424を含む。
まず、量子化モードフラグ取得部421は、エンコーダから受信した空間情報から、チャネル間位相差値に適用された量子化方式を示す量子化モードフラグ(quant_mode_flag)を取得する。この量子化モードフラグの意味を、下記の表3に示す。
Figure 2012503791
第1逆量子化部422は、量子化フラグが0の場合(IPD_quant_flag=0)、チャネル間位相差値を受信して粗い間隔でチャネル間位相差値を逆量子化する。一方、第2逆量子化部423は、量子化フラグが1の場合(IPD_quant_flag=1)、チャネル間位相差値を受信して細かい間隔でチャネル間位相差値を逆量子化する。次に、逆量子化IPD値取得部424は、第1逆量子化部422又は第2逆量子化部423から、逆量子化されたチャネル間位相差値を取得することができる。
図5は、位相偏移フラグを用いて複数チャネル信号の位相復元を補償する信号処理装置500を示す図である。信号処理装置500は、グローバル帯域IPD値決定部510、信号修正部520、ダウンミキシング部530、空間情報生成部540、空間情報取得部550、アップミキシング部560及び位相偏移部570を含む。
グローバル帯域IPD値決定部510は、まず、複数チャネル信号を受信する。この複数チャネル信号は、一つ以上のチャネルの位相が一致していない信号であってもよいし、ステレオ信号又は3以上のチャネルを有する信号であってもよい。グローバル帯域IPD値決定部510は、入力された複数チャネル信号の位相を一致させるために偏移される位相の度合いを示す位相偏移フラグを複数チャネル信号から決定する。
この位相偏移フラグは、複数チャネル信号の位相が偏移したということを示すフラグ情報であってもよいし、フラグ情報に加えて、位相が偏移された情報、位相が偏移されるチャネル信号、位相偏移が起きる周波数帯域、及び位相偏移に対応する時間情報などの、位相偏移と関連した情報をさらに含んでもよい。
まず、位相偏移フラグがフラグ情報のみを示す場合、複数チャネル信号は、固定された値を用いて位相を偏移させることができる。例えば、複数チャネル信号がステレオ信号である場合、ステレオ信号のうち、右チャネルの位相をπ/2だけ減少させたり、左チャネルの位相を π/2だけ増加させたりすることによって、左及び右チャネルが直交するように位相を偏移させて当該複数チャネル信号を生成することができる。また、π/2の位相偏移に限定されず、左及び右チャネルが直交するように位相を偏移させて、複数チャネル信号を生成することもできる。
ここで、偏移される位相は、複数チャネル信号の全周波数帯域に同一に適用することができる。また、複数チャネル信号のうちの一つ以上のチャネルの位相がπ/2だけ修正されるという情報、特に、修正される位相、又は直交するように偏移される位相に関する情報は別に伝送されず、後でデコーダ端で既に設定された情報を用いることができるが、これに限定されない。
このようにして、複数のパラメータ帯域にそれぞれチャネル間位相差値を伝送する場合に比べて情報伝送量を減少させることができ、パラメータ帯域ごとにそれぞれチャネル間位相差値を適用する場合に生じうる位相差の問題を防止することができる。
一方、位相偏移フラグは、フラグ情報の他に、位相偏移に関する詳細情報をさらに含むことができる。詳細情報は、位相の偏移情報、位相が偏移されるチャネル信号に関する情報、位相偏移が起きる周波数帯域及び時間情報などを含むことができる。
また、位相偏移フラグは、フレーム別に複数チャネル信号の位相が偏移される度合を可変的に示すことができ、この位相偏移フラグがフラグ情報のみを含む場合には、フレーム別に位相が偏移されたか否かを示すことができる。また、位相偏移フラグがフラグ情報、及び偏移された位相に関する詳細情報を含む場合、詳細情報は副帯域又はパラメータ帯域別に位相の偏移度合を可変的に示すことができ、一定の時間範囲ごとに、例えば、フレーム又はタイムスロットなど、可変的に該当の時間における位相の偏移度合を示すことができる。
また、位相偏移フラグは、図1乃至図4で説明したチャネル間位相差値と並列に用いることができる。
信号修正部520は、位相偏移フラグ及び複数チャネル信号を受信する。この複数チャネル信号は、位相偏移フラグを用いて一つ以上のチャネルの位相を修正することによって位相の偏移された複数チャネル信号として生成することができる。上述のように、本明細書では、位相が一致していない複数チャネル信号の位相を一致(in−phase)させるように複数チャネル信号の位相を修正し、これに関する位相偏移フラグを生成する方法について述べたが、位相の一致する複数チャネル信号に含まれた少なくとも一つのチャネルの位相を故意に偏移させることで位相が一致していない(out−phase)信号とし、これに関する位相偏移フラグを生成することも可能である。
ダウンミキシング部530は、位相が偏移された複数チャネル信号を受信してダウンミックスすることでダウンミックス信号を生成する。この複数チャネル信号は、ステレオ信号に限定されず、3以上のチャネルを有する信号にすることもできる。複数チャネル信号がステレオ信号である場合、ダウンミックス信号はモノ信号であってよく、複数チャネル信号が3以上のチャネルを有する信号である場合、ダウンミックス信号はステレオ信号、又は複数チャネル信号のチャネル数よりも小さい数のチャネルを有する信号であってよい。
空間情報生成部540は、位相が偏移された複数チャネル信号を受信して複数チャネル信号の属性を示す空間情報を生成することができる。空間情報は、デコーダでダウンミックス信号を、位相が偏移された複数チャネル信号にアップミックスするのに用いるもので、チャネル間レベル差情報、チャネル間相関値及びチャネル予測係数を含むことができる。したがって、本発明の空間情報生成部540で生成された空間情報は、位相が偏移されていない複数チャネル信号から生成された空間情報と同一でない場合もある。
また、ビットストリーム生成部(図示せず)は、空間情報及び位相偏移フラグを含む一つのビットストリームを生成することもでき、ダウンミックス信号、空間情報及び位相偏移フラグを含む一つのビットストリームを生成することもできる。
情報取得部550は、ビットストリームから、ダウンミックス信号をアップミックスするための空間情報及び位相偏移フラグを取得する。
アップミキシング部560は、図2のアップミキシング部240と同一の構成及び機能を果たす。アップミックスされた複数チャネル信号は、アップミキシングマトリクスが適用されてアップミックスされた信号であってもよいし、アップミックスされてQMF領域上に生成された信号であってもよいし、時間領域上の信号として最終出力された信号であってもよい。また、アップミキシング部560でアップミックスされた信号は、信号修正部520で位相が偏移された複数チャネル信号であってもよい。
位相偏移部570は、空間情報取得部550からの位相偏移フラグ、及びアップミキシング部560からの位相偏移された複数チャネル信号を受信する。その後、位相が偏移された複数チャネル信号に位相偏移フラグを適用することで、複数チャネル信号の偏移された位相を復元させる。
この位相偏移フラグは、上述のように、複数チャネル信号の少なくとも一つのチャネルの位相が偏移したか否かを示すフラグ情報のみを含むことができ、位相偏移と関連した詳細情報を更に含むことができる。フラグ情報のみを含む場合、位相偏移部570は、フラグ情報に基づいて、アップミックスされた複数チャネル信号の位相を偏移させるか否かを決定し、固定された値を用いて複数チャネル信号の少なくとも一つのチャネルの位相を偏移させることができる。このとき、固定された値は、デコーダで既に設定された値を利用し、別途にエンコーダで測定して伝送しなくてもよく、例えば、複数チャネル信号の一つ以上のチャネルをπ/2だけ増加させたり減少させたりすることができる。この場合、π/2は複数チャネル信号の全周波数帯域に同一に適用することができる。また、位相偏移フラグはフレーム別に決定することができるので、複数チャネル信号の位相が偏移する度合又は位相が偏移されたか否かを、フレームごとに可変的に示すことができる。
図6は、位相偏移フラグを用いて複数チャネル信号の位相復元を補償する本発明のほかの実施例である信号処理装置600を示す図である。図6を参照すると、信号処理装置600は、ダウンミキシング部610、空間情報生成部620、信号修正部630、グローバル帯域IPD値取得部640、位相偏移部650及びアップミキシング部660を含む。
ダウンミキシング部610は、入力された複数チャネル信号をダウンミックスしてダウンミックス信号DMXを生成する。ここで、複数チャネル信号は、位相が偏移されていない入力されたままの信号である。
空間情報生成部620は、入力された複数チャネル信号の属性を表す空間情報を生成することができる。この空間情報は、図5の空間情報と同一の構成及び機能を有するものであり、ただし、位相が偏移されていない複数チャネル信号から生成されるという点が、図5の空間情報と異なる。一方、空間情報生成部620は、グローバル帯域IPD値決定部621を含み、グローバル帯域IPD値決定部621は、図5のグローバル帯域IPD値決定部と同一の構成及び機能を有するので、その詳細説明は省略する。
信号修正部630は、グローバル帯域IPD値決定部621から出力された位相偏移フラグに基づいて、ダウンミキシング部610から出力されたダウンミックス信号の少なくとも一つのチャネルの位相を修正し、位相の修正されたダウンミックス信号DMX’を生成することができる。
次に、グローバル帯域IPD値取得部640は、位相偏移フラグを取得し、位相偏移部650は、位相偏移フラグに基づいて、入力された修正ダウンミックス信号MDX’の少なくとも一つのチャネルの位相を偏移させて復元することによって、ダウンミックス信号DMXとして復元することができる。この時、位相偏移部650で位相が偏移されたダウンミックス信号DMXは、信号修正部630に入力される信号DMXと同一であってもよい。
アップミキシング部660は、空間情報生成部620からの空間情報、及び位相偏移部650からのダウンミックス信号DMXを受信して複数チャネル信号を復号することができる。
一方、本発明の信号処理方法及び装置は、チャネル間位相差値が変動する点で一時的に発生する雑音を除去するために種々の方法を行うが、これについては図7乃至図9を参照して説明する。
まず、図7は、パラメータタイムスロットを示す概念図である。信号は、時間−周波数領域で示すことができる。図7を参照すると、1フレームのN個のタイムスロットのうちの2個のタイムスロット(タイムスロット2、タイムスロット4)に、パラメータセットが適用される。そして、信号の全周波数範囲は5個のパラメータ帯域に分割される。したがって、時間軸の単位はタイムスロットとし、周波数軸の単位はパラメータ帯域(pb)とすることができ、パラメータ帯域は、同一のチャネル間位相差値が含まれる少なくとも一つの周波数領域上の副帯域とすることができる。また、タイムスロットのうち、パラメータセットが適用されるように、つまり、チャネル間位相差値が適用されるように定義されたタイムスロットをパラメータタイムスロットと称する。
図8は、本発明の更にほかの実施例によってチャネル間位相差値を修正(平滑化)する方法を示す概略図である。図8を参照すると、左下段のグラフは、パラメータタイムスロットのうちの2番目のパラメータ帯域に含まれたチャネル間位相差値を示すグラフである。パラメータタイムスロット[0]に適用されるチャネル間位相差値は10゜で、パラメータタイムスロット[1]に適用されるチャネル間位相差値は60゜でありうる。このようにチャネル間位相差値が大きく変動する点では予想せぬ雑音が発生することがある。したがって、本発明の信号処理方法及び装置は、先行するパラメータタイムスロットに適用されるチャネル間位相差値を用いて、現在のパラメータタイムスロットに適用されるチャネル間位相差値を平滑化することによって、雑音を除去できるという効果を奏する。
再び図8を参照すると、現在のパラメータタイムスロットをパラメータタイムスロット[1]とすれば、先行するパラメータタイムスロットはパラメータタイムスロット[0]になりうる。図8の右下段のグラフに示すように、現在のパラメータタイムスロットに適用されるチャネル間位相差値(60゜)を、先行するパラメータタイムスロットに適用されるチャネル間位相差値(10゜)を用いて平滑化することができ、よって、平滑化して修正された現在のパラメータタイムスロットのチャネル間位相差値は、60゜よりも小さい値を有することができる。
その後、現在及び/又は先行するパラメータタイムスロットに適用される平滑化されたチャネル間位相差値を補間及び/又は複製することによって、パラメータセットが適用されるように定義されていないタイムスロット、例えば、タイムスロット1、タイムスロット3、…、タイムスロットNに適用されるチャネル間位相差値を取得することができる。
図9は、図8の本発明の更にほかの実施例に係る信号処理装置を示すブロック図である。図9におけるダウンミキシング部910、IPD利用決定部921、IPD値測定部922、IPDモードフラグ生成部923、IPD符号化フラグ生成部924、IPD符号化フラグ取得部931、IPDモードフラグ取得部932、IPD値取得部933、アップミキシング部940は、図2におけるダウンミキシング部210、IPD利用決定部221、IPD値測定部222、IPDモードフラグ生成部223、IPD符号化フラグ生成部224、IPD符号化フラグ取得部231、IPDモードフラグ取得部232、IPD値取得部233及びアップミキシング部240と同一の構成及び機能を有するので、その詳細な説明は省略する。
情報取得部930は、IPD値平滑化部934を更に含むことができる。IPD値平滑化部934は、先行するパラメータタイムスロットに適用されるチャネル間位相差値を用いて、現在のパラメータタイムスロットに適用されるチャネル間位相差値を修正することができる。これによって、現在のパラメータタイムスロットに適用されるチャネル間位相差値が、先行するパラメータタイムスロットに適用されるチャネル間位相差値と大きな相違を有する場合、生じうる雑音を防止することができる。
また、IPD値平滑化部934は、現在のパラメータタイムスロットに適用されるチャネル間位相差値から、複数チャネルのうちの2チャネル間の角度を表す位相角度を生成することができ、この位相角度を、先行するパラメータタイムスロットの位相角度を用いて修正することができる。該修正された位相角度は、後でアップミキシング部640に出力される。修正された位相角度はアップミキシング部640でダウンミックス信号に適用されて複数チャネル信号を生成することができる。
以下では、一般に、チャネル間位相差値を利用せず、チャネル間レベル差及びチャネル間相関値を用いて信号を符号化する場合、発生する問題点を解決するための本発明の様々な実施例について説明する。
図10は、本発明のさらに他の実施例による信号処理方法及び装置が解決しようとする問題点を示す概念図である。
多くの信号符号化装置では、特に、3GPP及びMPEGで規格化されたEAAC+又はHE AAC Plus及びUSACで使用するPSでは、チャネル間位相差値を利用せず、チャネル間レベル差値及びチャネル間相関情報のみを空間情報として用いている。これは、チャネル間位相差値を生成する上で生じうる位相ラッピング現象とチャネル間位相差値を合成する上で発生する音質の低下のためである。
しかし、チャネル間位相差値を利用せずに複数チャネル信号を符号化する場合、音像定位において深刻な問題が生じることがある。換言すると、2以上のマイクを互いに隣接して配置して録音した信号のように、チャネル間レベル差値を主に用いて符号化した信号では問題が生じないが、2以上のマイクを互いに離して配置して録音した信号は、チャネル間位相差値を用いないと、複数チャネル信号の復号時に正確な音像定位が不可能になるという問題につながる。
図10(a)は、チャネル間位相差値のみ存在するステレオ信号を、チャネル間位相差値なしで復号する場合の結果を示す。図10(a)を参照すると、原信号はチャネル間位相差値のみで形成された信号である(IPD=30゜)。しかし、チャネル間レベル差値及びチャネル間相関値のみを用いて復号すると、有効な空間情報(IPD値)がないため、復号された信号(合成信号)の音像は、原信号によらずステレオ信号の中央に位置することになる。この場合、チャネル間相関値が音像定位に影響を及ぼすが、チャネル間位相差値なしでは正確な音像定位が不可能である。
一方、図10(b)は、チャネル間位相差値及びチャネル間レベル差値が混在するステレオ信号を、チャネル間位相差値なしで復号する場合の結果を示す。図10(b)を参照すると、ステレオ信号の音像定位は、チャネル間位相差値から決定される調節角度とチャネル間レベル差値から決定される調節角度との線形的な和として決定される。原ステレオ信号が、図10(b)に示すように、左側信号が右側信号に比べて、8dBだけさらに大きい値を有し、0.5msだけさらに速い場合、8dBのレベル差は、音像を中央から左側へ20゜(−20゜)移動させることができ、0.5msの時間差(−10゜のチャネル間位相差値と同一)は、音像を左に10゜(−10゜)移動させることができるという特徴を有する。したがって、原ステレオ信号は、−30゜位置に存在するようになる。しかし、チャネル間位相差値を用いないで信号を復号すると、復号された信号の音像は−20゜に位置するため、正確な音像の定位が不可能である。
したがって、本発明の更にほかの実施例による信号処理方法及び装置は、音像定位における問題を解決するために種々の方法を更に提供する。
図11及び図12は、本発明の更にほかの実施例による信号処理方法及び装置を示すブロック図である。
第一に、複数チャネル信号のチャネル間位相差情報及びチャネル間レベル差値との比率に基づいて、一定条件を満たす場合にのみチャネル間位相差情報を利用することができる。図11に示すように、信号処理装置1100は、ダウンミキシング部1110、空間情報生成部1120、情報取得部1130及びアップミキシング部1140を含む。
ダウンミキシング部1110及びアップミキシング部1140は、図2におけるダウンミキシング部210及びアップミキシング部240と同一の構成及び機能を有する。空間情報生成部1120は、ILD値測定部1121、IPD値測定部1122、情報決定部1123及びIPDフラグ生成部1124を含む。ILD値測定部1121及びIPD値測定部1122は、複数チャネル信号からチャネル間レベル差値及びチャネル間位相差値を測定する。このチャネル間レベル差値及びチャネル間位相差値は、パラメータ帯域別に測定することができる。
情報決定部1123は、測定されたチャネル間レベル差値及びチャネル間位相差値を用いて、信号がどれくらい音像定位されるか計算し、チャネル間レベル差値とチャネル間位相差値が全体音像定位においてどれくらいの比率を占めるか計算して、チャネル間位相差値の比率がより高い場合にのみチャネル間位相差値を用いるように決定する。例えば、測定されたチャネル間位相差値が+20゜に対応し、測定されたチャネル間レベル差値が4dBと、+10゜位相偏移させる値に対応する場合、全体音像定位(20゜+10゜=30゜)においてチャネル間位相差値及びチャネル間レベル差値が寄与する度合は、それぞれ20/30、10/30になりうる。この場合、チャネル間位相差値が相対的に重要性が大きいといえるので、情報決定部1123は、チャネル間位相差値を更に用いると決定することができる。
IPDフラグ生成部1124は、情報決定部1123でチャネル間位相差値を更に用いると決定すれば、チャネル間位相差値が用いられることを示すチャネル間位相差値フラグを生成することができる。
一方、情報取得部1130は、IPDフラグ取得部1131及びIPD値取得部1132を含むことができ、IPDフラグ取得部1131は、チャネル間位相差値フラグを取得して空間情報にチャネル間位相差値が含まれているか否かを判断する。チャネル間位相差値フラグが1の場合、IPD値取得部1132が活性化されて空間情報からチャネル間位相差値を取得する。その後、アップミキシング部1140は、チャネル間位相差値を含む空間情報を用いて、ダウンミックス信号をアップミックスすることで複数チャネル信号を復号し、チャネル間位相差値を用いない場合に比べて、複数チャネル信号の正確な音像定位が可能になる。また、一定条件を満たす場合にのみチャネル間位相差値を伝送することによって符号化効率を高めることもできる。
第二に、チャネル間位相差値は、等価のチャネル間レベル差値に置き替えることもでき、その逆も可能である。この場合、音像定位に必要なチャネル間位相差値及びチャネル間レベル差値は周波数によって変わることがあるので、周波数帯域別に定義されたデータベースを参照する。
図12は、チャネル間位相差値を等価のチャネル間レベル差値に変更して用いる信号処理装置1200を示す。信号処理装置1200は、ILD値測定部1210、IPD値測定部1220、情報決定部1230、IPD値変換部1240及びILD値修正部1250を含む。
ILD値測定部1210、IPD値測定部1220及び情報決定部1230は、図11におけるILD値測定部1121、IPD値測定部1122及び情報決定部1130と同一の構成及び機能を有するので、その詳細な説明は省略する。情報決定部1130でチャネル間位相差値を用いると決定した場合、測定されたチャネル間位相差値はIPD値変換部1240に入力される。
IPD値変換部1240は、データベースを用いて、該当の周波数帯域で測定されたチャネル間位相差値を等価のチャネル間レベル差値ILD'に変換させる。次に、ILD値修正部1250は、ILD値測定部1210から入力されたチャネル間レベル差値ILDに、チャネル間位相差値が変換されたチャネル間レベル差値ILD'を加えて、修正されたチャネル間レベル差値ILD''を計算する。
このように、チャネル間位相差値を等価のチャネル間レベル差値に変換して用いる場合、3GPP及びMPEGで用いるHE AAC Plus、又はUSAC標準で用いるPS等を含め、チャネル間位相差値の受信を許容しない既存の信号処理装置及び方法を利用する場合にもチャネル間位相差値を反映することができ、残響及び音像定位が向上した信号として復号することができる。
第三に、チャネル間位相差値を連続する少なくとも一つのフレームに共通に適用することによって、正確な音像定位を実現するとともに符号化効率を高めることができる。本明細書では、連続する数個のフレームで用いられるチャネル間位相差値を、グローバルフレームチャネル間位相差値(global frame IPD value)と称する。図13は、本発明の更にほかの実施例によってグローバルフレームチャネル間位相差値が用いられる概念を示す概念図である。図13を参照すると、数字0〜13はそれぞれフレームを表し、影付きフレームは、チャネル間位相差値を用いるフレームであり、そうでないフレームは、チャネル間位相差値が用いられないフレームである。これらは、本明細書で説明したチャネル間位相差モードフラグ(bsPhaseMode)に基づいて決定することができる。
図13に示すように、フレーム1〜3及びフレーム8〜12のみがチャネル間位相差値を用いる場合、チャネル間位相差値をフレームごとに伝送せずに、代表値を計算してチャネル間位相差値を適用するように決定された連続フレームに同一に適用し、連続するフレームのうちの最初のフレームにのみグローバルフレームチャネル間位相差値を含み、毎フレームは、グローバルフレームチャネル間位相差値が用いられているか否かを示すグローバルフレームチャネル間位相差フラグを含むことができる。グローバルフレームチャネル間位相差フラグの意味は、下記の表4の通りである。
Figure 2012503791
例えば、グローバルフレームチャネル間位相差フラグに基づいて、フレーム0は、グローバルフレームチャネル間位相差値を利用せず、フレーム1はグローバルフレームチャネル間位相差値を用いる。したがって、フレーム1は、グローバルフレームチャネル間位相差値を含み、同一のグローバルフレームチャネル間位相差値は、フレーム1乃至3に適用することができる。同様に、フレーム8は、グローバルフレームチャネル間位相差値を含み、同一のグローバルフレームチャネル間位相差値がフレーム8乃至12に適用することができる。
図14は、図13のグローバルフレームチャネル間位相差値を用いる本発明の実施例による信号符号化装置1400を示す図である。図14を参照すると、信号符号化装置1400は、先行フレームグローバルフレームIPD値受信部1410、グローバルフレームIPD値計算部1420、グローバルフレームIPDフラグ生成部1430、グローバルフレームIPDフラグ取得部1440、グローバルフレームIPD値取得部1450、アップミキシング部1460を含む。
先行フレームグローバルフレームIPD値受信部1410は、先行フレームのグローバルフレームチャネル間位相差値を受信する。例えば、現在フレームがグローバルフレームチャネル間位相差値を含む1番目のフレームである場合には、受信された先行フレームのグローバルフレームチャネル間位相差値が存在しない。一方、現在のフレームがグローバルフレームチャネル間位相差値を含む連続するフレームのうち、2番目以降のフレームである場合には、先行フレームからグローバルフレームチャネル間位相差値を受信することができる。
グローバルフレームIPD値計算部1420は、現在のフレームがグローバルフレームチャネル間位相差値を含む1番目のフレームである場合、すなわち、先行フレームのグローバルフレームチャネル間位相差値が存在しない場合、グローバルフレームチャネル間位相差値を計算することができる。現在のフレームのグローバルフレームチャネル間位相差値は、チャネル間位相差値が用いられる連続するフレームのチャネル間位相差値の平均とすることができる。
グローバルフレームIPDフラグ生成部1430は、現在のフレームでグローバルフレームチャネル間位相差値(IPD)を用いているか否かを示すグローバルフレームIPDフラグ(global_frame_IPD_flag)を生成する。
その後、グローバルフレームIPDフラグ取得部1440は、グローバルフレームチャネル間位相差値を取得し、グローバルフレームIPD値取得部1450は、先行フレームグローバルフレームIPD値受信部1410から出力された先行フレームのグローバルフレームチャネル間位相差値又はグローバルフレームIPD値計算部1420から出力された現在のフレームのグローバルフレームチャネル間位相差値を取得することができる。好ましくは、グローバルフレームIPD値取得部1450は、現在のフレームがチャネル間位相差値を適用する連続するフレームのうちの1番目のフレームである場合、先行フレームのグローバルフレームチャネル間位相差値を取得する。現在のフレームが2番目以降のフレームである場合には、計算された現在のフレームのグローバルフレームチャネル間位相差値を取得することができる。
アップミキシング部1460は、ダウンミックス信号にグローバルフレームチャネル間位相差値を適用して複数チャネル信号を生成する。
第四に、復号された複数チャネル信号を、エンコーダに入力された複数チャネル信号と最も類似した残響を有するようにチャネル間相関値を調節することができる。図10(b)を再び参照すると、チャネル間位相差値及びチャネル間相関値を用いて信号を復号する場合、原信号に比べて残響が誇張される問題点が発生する。残響とは、アンビエンスによって信号がより広い空間又はより狭い空間に存在するような効果を指し、本明細書で残響が誇張されるということは、原信号は狭い録音室で録音されたが、復号時に広い講堂で録音されたかのように聞こえることを意味する。
この種の問題点はチャネル間位相差値を伝送しない従来の信号処理方法及び装置で頻繁に発生するが、チャネル間位相差値を伝送する場合にも発生することがある。
図15は、上記問題点を解決するための本発明の更にほかの実施例による信号処理装置1500を示すブロック図である。信号処理装置1500は、ICC値測定部1510、IPD値測定部1520、ILD値測定部1530、情報決定部1540、ICC値修正部1550、IPDモードフラグ生成部1560、IPDモードフラグ取得部1570、IPD値取得部1580、ICC値取得部1590及びアップミキシング部1595を含む。ICC値測定部1510、IPD値測定部1520及びILD値測定部1530は、複数チャネル信号からそれぞれチャネル間相関値、チャネル間位相差値及びチャネル間レベル差値を測定することができる。
情報決定部1540及びIPDモードフラグ生成部1560は、図11における情報決定部1123及びIPDフラグ生成部1124と同一の構成及び機能を有する。また、情報決定部1540は、測定されたチャネル間レベル差値及びチャネル間位相差値が全体音像定位においてどれくらいの比率を占めるか計算し、チャネル間位相差値の比率がより高い場合にのみチャネル間位相差値を用いると決定し、IPDモードフラグ生成部1560は、チャネル間位相差値を用いるか否かを示すチャネル間位相差モードフラグを生成する。
ICC値修正部1550は、情報決定部1540がチャネル間位相差値を用いると決定した場合、ICC値測定部1510から入力されたチャネル間相関値を修正することができる。好ましくは、チャネル間位相差値を用いるパラメータ帯域では、測定されたチャネル間相関値を含まなくてもよい。残響が誇張される問題点を解決するために、チャネル間相関値が表す値の大きさを修正して用いることができる。
IPDモードフラグ取得部1570及びIPD値取得部1580も、図11におけるIPDフラグ取得部1131及びIPD値取得部1132と同一の構成及び機能を有するので、その詳細な説明は省略する。
ICC値取得部1590は、IPDモードフラグ取得部1570でチャネル間位相差フラグがチャネル間位相差値が用いられていることを示す場合、ICC値修正部1550から修正されたチャネル間相関値を受信する。
アップミキシング部1595は、受信したダウンミックス信号に、チャネル間位相差値及び修正されたチャネル間相関値を適用することで、複数チャネル信号を生成することができる。したがって、チャネル間位相差値を用いる信号処理方法及び装置においてチャネル間相関値によって残響が誇張されて信号が歪むことを防止することができる。
第五に、チャネル間位相差値は、単純な音源を有する信号であるほど重要度がより大きいという特徴を利用することができる。
図16は、本発明のさらに他の実施例による信号処理装置1600を示すブロック図である。信号処理装置1600は、入力信号分類部1610、IPD値測定部1620、IPDフラグ生成部1630、IPDフラグ取得部1640、IPD値取得部1650及びアップミキシング部1660を含むことができる。
入力信号分類部1610は、入力信号が音声(speech)のみを含む純音声信号であるか、音楽信号、又は音楽信号と音声信号とが混合された信号であるかを判断する。好ましくは、入力信号分類部1610は、SAD(音響検知器:Sound Activity Detector)又はSMC(音声音楽分類器:Speech and Music Classifier)などを含むことができる。
IPD値測定部1620は、入力信号分類部1610で入力信号を音声信号のみを含む信号と判断する場合にのみ、チャネル間位相差値を測定する。IPDフラグ生成部1630、IPDフラグ取得部1640、IPD値取得部1650及びアップミキシング部1660は、図11におけるIPDフラグ生成部1124、IPDフラグ取得部1131、IPD値取得部1132及びアップミキシング部1140と同一の構成及び機能を有するので、その詳細な説明は省略する。
種々の信号が含まれる音楽信号又は音声信号に音楽信号が混合された混合信号は、チャネル間位相差値を利用しないでも、チャネル間レベル差値及びチャネル間相関値を用いてある程度の音像定位は可能である。しかし、音声信号のような単純な音源の場合は、チャネル間位相差値の重要度が相対的に高いため、チャネル間位相差値なしでは正確な音像定位が不可能である。したがって、入力信号分類部1610で入力信号が音声信号と分類される場合にはチャネル間位相差値を用いることによって、より正確に音像定位された複数チャネル信号として復号することができる。
図17は、本発明の更にほかの実施例による信号処理装置1700を示す図であり、この信号処理装置1700は、複数チャネル符号化部1710、帯域幅拡張信号符号化部1720、オーディオ信号符号化部1730、音声信号符号化部1740、オーディオ信号復号部1750、音声信号復号部1760、帯域幅拡張信号復号部1770及び複数チャネル復号部1780を含む。
まず、複数チャネル符号化部1710において複数チャネル信号をダウンミックスして生成するダウンミックス信号を、以下全帯域ダウンミックス信号と呼び、全帯域ダウンミックス信号から高周波帯域の信号が除去されて低周波帯域のみ存在するダウンミックス信号を、低周波帯域ダウンミックス信号と呼ぶ。
複数チャネル符号化部1710は、複数のチャネルを有する(以下、複数チャネル)信号を受信する。受信した複数チャネル信号をダウンミックスして全帯域ダウンミックス信号を生成する一方、複数チャネル信号に対応する空間情報を生成する。この空間情報は、チャネルレベル差情報、チャネル予測係数、チャネル間相関値及びダウンミックス利得情報などを含むことができる。
本発明の一実施例による複数チャネル符号化部1710は、チャネル間位相差値を用いるか否かを決定してチャネル間位相差値を測定し、フレームでチャネル間位相差値を用いるか否かを示すチャネル間位相差モード情報及び全フレームのうち、チャネル間位相差値を用いるフレームがあるか否かを示すチャネル間位相差コーディング情報を生成してこれらをミックス情報と共に伝送できる。この過程は、図1乃至図4を参照して説明した通りであるから、その具体的な説明は省略する。
一方、複数チャネル符号化部1710には示していないが、図1乃至図4を参照して説明した信号処理装置又は図5乃至図16を参照して説明した本発明の他の実施例による信号処理装置における符号化装置を含むことができる。
帯域幅拡張信号符号化部1720は、全帯域ダウンミックス信号を受信し、この全帯域ダウンミックス信号のうちの高周波帯域の信号に対応する拡張情報を生成することができる。この拡張情報は、後でデコーダ端で高周波帯域の除去された低周波帯域ダウンミックス信号を全帯域ダウンミックス信号に復元するための情報であり、空間情報とともに伝送することができる。
また、ダウンミックス信号は、当該信号の特性に基づいてオーディオ信号符号化方式で符号化されるか、又は、音声信号符号化方式で符号化されるかが決定され、この符号化方式を決定するモード情報が生成される(図示せず)。ここで、オーディオ符号化方式はMDCT(修正離散コサイン変換)を用いるものとすることができるが、本発明はこれに限定されない。音声符号化方式は、AMR−WB(適応複数速度広帯域)標準に従うものとすることができるが、本発明はこれに限定されない。
オーディオ信号符号化部1730は、帯域幅拡張信号符号化部1720から入力された拡張情報及び全帯域ダウンミックス信号を用いて、高周波領域の除去された低周波帯域ダウンミックス信号をオーディオ信号符号化方式によって符号化する。
オーディオ信号符号化方式で符号化される信号は、オーディオ信号であってもよいし、オーディオ信号に音声信号が一部含まれた信号であってもよい。また、オーディオ信号符号化部1730は、周波数領域符号化部とすることができる。
音声信号符号化部1740は、帯域幅拡張信号符号化部1720から入力された拡張情報及び全帯域ダウンミックス信号を用いて、高周波領域の除去された低周波帯域ダウンミックス信号を音声信号符号化方式によって符号化する。
音声信号符号化方式で符号化される信号は、音声信号であってもよいし、音声信号にオーディオ信号が一部含まれた信号であってもよい。また、音声信号符号化部1740は、線形予測符号化(LPC)方式を更に利用することができる。入力信号が時間軸上で高い冗長性を有する場合、過去の信号から現在の信号を予測する線形予測によってモデリングされうるが、この場合、線形予測符号化方式を採用すると符号化効率を上げることができる。一方、音声信号符号化部1740は、時間領域符号化部とすることができる。
オーディオ信号復号部1750は、信号をオーディオ信号符号化方式によって復号する。オーディオ信号復号部1750に入力されて復号される信号は、オーディオ信号であってもよいし、オーディオ信号に音声信号が一部含まれた信号であってもよい。また、オーディオ信号復号部1750は、周波数領域復号部を含むことができ、IMDCT(逆修正離散コサイン変換)を利用することができる。
音声信号復号部1760は、信号を音声信号符号化方式によって復号する。音声信号復号部1760で復号される信号は、音声信号であってもよいし、音声信号にオーディオ信号が一部含まれた信号であってもよい。また、音声信号復号部1760は、時間領域復号部を含むことができ、線形予測符号化方式を更に利用することができる。
帯域幅拡張信号復号部1770は、オーディオ信号復号部1750で復号された信号、又は音声信号復号部1760で復号された信号である低周波帯域ダウンミックス信号及び拡張情報を受信して、符号化時に除去された高周波領域に該当する信号が復元された全帯域ダウンミックス信号を生成する。
この全帯域ダウンミックス信号は、低周波帯域ダウンミックス信号の全部及び拡張情報を用いて生成することもできるが、低周波帯域ダウンミックス信号の一部を用いて生成することもできる。
複数チャネル復号部1780は、全帯域ダウンミックス信号、空間情報、チャネル間位相差値、チャネル間位相差モードフラグ及びチャネル間位相差符号化フラグを受信し、これらの情報を全帯域ダウンミックス信号に適用して複数チャネル信号を生成するが、この過程についての詳細な説明は、図1乃至図4を参照して説明した通りであるから省略する。
このように、本発明の信号処理方法及び装置は、チャネル間位相差値を用いて複数チャネル信号を生成することによって、複数チャネルデコーダが再生し難い位相差又は遅延差を効果的に再生することができる。
図18は、本発明の一実施例によるIPD符号化フラグ取得部1841、IPDモードフラグ取得部1842、IPD値取得部1843及びアップミキシング部1844が具現されている製品の概略的な構成を示す図であり、図19は、本発明の実施例によるIPD符号化フラグ取得部1841、IPDモードフラグ取得部1842、IPD値取得部1843及びアップミキシング部1844が具現されている製品間の関係を示す図である。
図18を参照すると、有線無線通信部1810は、有線無線通信方式を用いてビットストリームを受信する。具体的に、有線無線通信部1810は、有線通信部1811、赤外線通信部1812、ブルトゥース部1813、無線LAN通信部1814のうち一つ以上を含むことができる。
使用者認証部1820は、使用者情報を取り込んで使用者認証を行うもので、指紋認識部1821、虹彩認識部1822、顔認識部1823、及び音声認識部1824のうち一つ以上を含むことができ、それぞれ、指紋、虹彩情報、顔輪郭情報、音声情報を取り込んで使用者情報に変換し、使用者情報と既に登録されている使用者データとが一致するか否かを判断して、使用者認証を行うことができる。
入力部1830は、使用者が種々の命令を入力するための入力装置で、キーパッド部1831、タッチパッド部1832、リモコン部1833のうち一つ以上を含むことができるが、本発明はこれに限定されない。
信号復号部1840は、IPD符号化フラグ取得部1841、IPDモードフラグ取得部1842、IPD値取得部1843及びアップミキシング部1844を含み、これらは、図2において同一の名称を有するユニットと同一の構成及び機能を有するので、その詳細な説明は省略する。
制御部1850は、入力装置から入力信号を受信し、信号復号部1840と出力部1860のプロセス全般を制御する。上述のように、制御部1850に入力部1830から使用者入力、例えば、出力信号の位相偏移のon/off、メタデータの入出力、信号復号部の作用on/offなどが入力される場合、それを用いて信号を復号する。
出力部1860は、信号復号部1840によって生成された出力信号などが出力される構成要素で、信号出力部1861及びディスプレイ部1862を含むことができる。出力信号がオーディオ信号であれば、出力信号は信号出力部1861から出力され、出力信号がビデオ信号であれば、出力信号はディスプレイ部1862から出力される。また、入力部1830にメタデータが入力されると、それをディスプレイ部1862を介して画面に表示する。
図19は、図18に示された製品に該当する端末と端末との関係、端末とサーバとの関係を示す図である。図19(a)を参照すると、第1端末1910及び第2端末1920が有線無線通信を介してデータ又はビットストリームの双方向通信ができることがわかる。ここで、有線無線通信を介して交換されるデータ又はビットストリームは、本発明に係る図1におけるビットストリームの形態であってもよいし、図5乃至図16を参照して説明した本発明の位相偏移フラグ、グローバルフレームチャネル間位相差値などを含むデータであってもよい。図19(b)を参照すると、サーバ1930及び第1端末1940も同様、互いに有線無線通信を行うことができる。
図20は、本発明の一実施例によるIPD符号化フラグ取得部2041、IPDモードフラグ取得部2042、IPD値取得部2043及びアップミキシング部2044を含む複数チャネル復号部が具現されている放送信号復号装置2000の概略的な構成を示す図である。
図20を参照すると、デマルチプレクサ2020は、チューナ2010からTV放送と関連したデータを受信する。これらのデータは、デマルチプレクサ2020で分離され、データデコーダ2030で復号される。一方、デマルチプレクサ2020で分離されたデータは、HDDのような記憶媒体2050に記憶することができる。
デマルチプレクサ2020で分離されたデータは、複数チャネル復号部2041及びビデオ復号部2042を含む信号復号部2040に入力されて、オーディオ信号及びビデオ信号として復号される。信号復号部2040は、本発明の一実施例によるIPD符号化フラグ取得部2041、IPDモードフラグ取得部2042、IPD値取得部2043及びアップミキシング部2044を含み、これらは、図2における同一名称のユニットと同一の構成及び機能を有するので詳細な説明は省略する。信号復号部2040は、受信したチャネル間位相差値などを用いて信号を復号し、ビデオ信号が入力される場合はビデオ信号も復号して出力し、メタデータが生成される場合はそれをテキストの形態として出力する。
出力部2070は、ビデオ信号が復号されて、出力されたビデオ信号とメタデータが生成される場合、出力されたメタデータを画面に表示する。また、出力部2070はスピーカ部(図示せず)を含み、信号復号部2040から出力されるチャネル間位相差値を用いて復号された複数チャネル信号を、出力部2070に含まれたスピーカ部から出力する。また、信号復号部2040で復号されたデータは、HDDのような記憶媒体2050に記憶することができる。
一方、信号復号装置2000は、使用者から情報を受信して該受信したデータを制御できるアプリケーションマネージャ2060をさらに含むことができる。アプリケーションマネージャ2060は、ユーザインタフェースマネージャ2061及びサービスマネージャ2062を含む。ユーザインタフェースマネージャ2061は、使用者から情報を受け取るためのインタフェースを制御する。例えば、出力部2070に表示されるテキストの書体、画面の明るさ、メニュー構成などを制御することができる。一方、サービスマネージャ2062は、信号復号部2040及び出力部2070で放送信号を復号して出力する場合、受信される放送信号を、使用者から入力される情報を用いて制御することができる。例えば、放送チャネルの設定、アラーム機能設定、成人認証機能などを提供することができる。アプリケーションマネージャ2060から出力されるデータは、信号復号部2040のほか、出力部2070にも伝送されて利用可能である。
このように、実際製品に本発明の信号処理装置が含まれることによって、チャネル間レベル差値及びチャネル間相関値のみを用いてアップミックスされた複数チャネル信号を用いる従来の技術に比べて、チャネル間位相差値を用いることによってより音質が向上し、元来の入力信号に類似した複数チャネル信号を聴取することが可能になる。
本発明の適用される復号/符号化方法は、コンピュータで実行可能なプログラムとして製作されて、コンピュータ読み取り可能な記録媒体に記憶されることができ、本発明によるデータ構造を有するマルチメディアデータも、コンピュータ読み取り可能な記録媒体に記憶されることができる。このコンピュータ読み取り可能な記録媒体は、コンピュータシステムで読み取り可能なデータが記憶されるいかなる種類の記憶装置をも含むことができる。コンピュータ読み取り可能な記録媒体の例には、ROM、RAM、CD−ROM、磁気テープ、フロッピー(登録商標)ディスク、光データ記憶装置などがあり、また、搬送波(例えば、インターネットを介した伝送)の形態とすることもできる。また、該符号化方法によって生成されたビットストリームは、コンピュータ読み取り可能な記録媒体に記憶されたり、有線/無線通信網を用いて伝送することができる。
以上では、限定された実施例及び図面に挙げて本発明を説明してきたが、本発明は、これに限定されず、本発明の属する技術の分野における通常の知識を有する者には、本発明の技術思想と添付した特許請求の範囲及びその均等範囲内で様々な修正及び変形は可能であるということが理解される。
本発明は、信号を符号化及び復号するために適用することができる。

Claims (10)

  1. 複数チャネル信号から生成されたダウンミックス信号と、該ダウンミックス信号をアップミックスするために前記複数チャネル信号の属性を表す空間情報とを受信する段階と、
    前記空間情報のヘッダから、チャネル間位相差値が前記空間情報で用いられているか否かを示すチャネル間位相差符号化フラグを取得する段階と、
    前記チャネル間位相差符号化フラグに基づいて、前記空間情報のフレームから、前記チャネル間位相差値が前記空間情報のフレームで用いられているか否かを示すチャネル間位相差モードフラグを取得する段階と、
    前記チャネル間位相差モードフラグに基づいて、前記フレーム内のパラメータタイムスロットのパラメータ帯域のチャネル間位相差値を取得する段階と、
    先行するパラメータタイムスロットのチャネル間位相差値を用いて前記チャネル間位相差値を修正することによって、前記チャネル間位相差値を平滑化する段階と、
    前記ダウンミックス信号に前記平滑化されたチャネル間位相差値を適用して、複数チャネル信号としてアップミックスする段階と、を有し、
    前記空間情報は、前記ヘッダ及び複数個の前記フレームに区分され、
    前記チャネル間位相差値は、前記複数チャネル信号のうちの2チャネル間の位相差を表し、
    前記パラメータタイムスロットは、チャネル間位相差値を含むタイムスロットを示し、
    前記パラメータ帯域は、前記チャネル間位相差値を含む周波数領域上の少なくとも一つの副帯域である、信号処理方法。
  2. 前記チャンネル間位相差値を用いて、前記複数チャネル信号のうちの2チャネル間の角度を表す位相角度を生成する段階と、
    前記先行するパラメータタイムスロットの位相角度を用いて前記位相角度を修正する段階と、
    を更に有する請求項1に記載の信号処理方法。
  3. 前記平滑化されたチャネル間位相差値及び前記チャネル間位相差値を用いて、前記チャネル間位相差値が適用されないタイムスロットのチャネル間位相差値を決定する段階を更に有する請求項1に記載の信号処理方法。
  4. 前記チャネル間位相差値は、該チャネル間位相差値と、前記ダウンミックス信号に含まれた前記複数チャネル信号の2チャネル間のレベル差を表すチャネル間レベル差値との比率が一定値以上である場合に、受信される請求項1に記載の信号処理方法。
  5. 複数チャネル信号から生成されたダウンミックス信号と、前記ダウンミックス信号をアップミックスするために前記複数チャネル信号の属性を表す空間情報とを受信する信号受信部と、
    前記空間情報のヘッダから、チャネル間位相差値が前記空間情報で用いられているか否かを示すチャネル間位相差符号化フラグを取得するチャネル間位相差符号化フラグ取得部と、
    前記チャネル間位相差符号化フラグに基づいて、前記空間情報のフレームから、前記チャネル間位相差値が前記空間情報のフレームで用いられているか否かを示すチャネル間位相差モードフラグを取得する位相差モードフラグ取得部と、
    前記チャネル間位相差モードフラグに基づいて、パラメータタイムスロットのパラメータ帯域のチャネル間位相差値を取得するチャネル間位相差値取得部と、
    先行するパラメータタイムスロットのチャネル間位相差値を用いて前記チャネル間位相差値を修正することによって、前記チャネル間位相差値を平滑化するチャネル間位相差値平滑化部と、
    前記ダウンミックス信号に前記平滑化されたチャネル間位相差値を適用して複数チャネル信号を生成するアップミキシング部と、を備え、
    前記空間情報は、前記ヘッダ及び複数個の前記フレームに区分され、前記チャネル間位相差値は、前記複数チャネル信号のうちの2チャネル間の位相差を表し、前記パラメータタイムスロットは、同一のチャネル間位相差値が適用されるスロットを示し、前記パラメータ帯域は、前記チャネル間位相差値を含む周波数領域上の少なくとも一つの副帯域である、信号処理装置。
  6. 前記チャネル間位相差値平滑化部は、
    前記チャネル間位相差値を用いて、前記複数チャネル信号のうちの2チャネル間の角度を表す位相角度を生成する位相角度生成部と、
    前記先行するパラメータタイムスロットの位相角度を用いて前記位相角度を修正する位相角度修正部と、を備える請求項5に記載の信号処理装置。
  7. 前記平滑化されたチャネル間位相差値及び前記チャネル間位相差値を用いて、前記チャネル間位相差値が適用されないタイムスロットのチャネル間位相差値を決定するチャネル間位相差値補間部を更に備える請求項5に記載の信号処理装置。
  8. 前記チャネル間位相差値は、該チャネル間位相差値と、前記ダウンミックス信号に含まれた前記複数チャネル信号の2チャネル間のレベル差を表すチャネル間レベル差値との比率が一定値以上である場合に、受信される請求項5に記載の信号処理装置。
  9. 複数チャネル信号をダウンミックスしてダウンミックス信号を生成する段階と、
    前記ダウンミックス信号をアップミックスするために前記複数チャネル信号の属性を表す空間情報を生成する段階と、を有し、
    前記空間情報を生成する段階は、
    前記複数チャネル信号の2チャネル間の位相差を表すチャネル間位相差値を測定する段階と、
    前記複数チャネル信号の2チャネル間のレベル差を表すチャネル間レベル差値を測定する段階と、
    前記チャネル間レベル差値と前記チャネル間位相差値との比率が一定値以上である場合に、前記チャネル間位相差値が前記空間情報で用いられることを示すチャネル間位相差符号化フラグを生成する段階と、
    前記チャネル間位相差値がフレームで用いられることを示すチャネル間位相差モードフラグを生成する段階と、
    前記チャネル間位相差値及び前記チャネル間位相差モードフラグを前記空間情報の前記フレームに含め、前記チャネル間位相差符号化フラグを前記空間情報のヘッダに含める段階と、
    を有する信号処理方法。
  10. 複数チャネル信号をダウンミックスしてダウンミックス信号を生成するダウンミキシング部と、
    前記ダウンックス信号をアップミックスするために前記複数チャネル信号の属性を表す空間情報を生成する空間情報生成部と、を備え、
    前記空間情報生成部は、
    前記複数チャネル信号の2チャネル間の位相差を表すチャネル間位相差値を測定するチャネル間位相差値測定部と、
    前記複数チャネル信号の2チャネル間のレベル差を表すチャネル間レベル差値を測定するチャネル間レベル差値測定部と、
    前記チャネル間レベル差値と前記チャネル間位相差値との比率が一定値以上である場合に、前記チャネル間位相差値を用いると決定する情報決定部と、
    前記チャネル間位相差値が前記空間情報で用いられることを示すチャネル間位相差符号化フラグを生成するチャネル間位相差符号化フラグ生成部と、
    前記チャネル間位相差値がフレームで用いられることを示すチャネル間位相差モードフラグを生成するチャネル間位相差モードフラグ生成部と、を備え、
    前記チャネル間位相差値及び前記チャネル間位相差モードフラグは、前記空間情報の前記フレームに含まれ、前記チャネル間位相差符号化フラグは、前記空間情報のヘッダに含まれる、信号処理装置。
JP2011528941A 2008-09-25 2009-09-25 信号処理方法及び装置 Active JP5426680B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US10026208P 2008-09-25 2008-09-25
US61/100,262 2008-09-25
KR10-2009-0090518 2009-09-24
KR1020090090518A KR101108061B1 (ko) 2008-09-25 2009-09-24 신호 처리 방법 및 이의 장치
PCT/KR2009/005497 WO2010036059A2 (en) 2008-09-25 2009-09-25 A method and an apparatus for processing a signal

Publications (2)

Publication Number Publication Date
JP2012503791A true JP2012503791A (ja) 2012-02-09
JP5426680B2 JP5426680B2 (ja) 2014-02-26

Family

ID=42213076

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011528941A Active JP5426680B2 (ja) 2008-09-25 2009-09-25 信号処理方法及び装置
JP2011528942A Active JP5480274B2 (ja) 2008-09-25 2009-09-25 信号処理方法及び装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2011528942A Active JP5480274B2 (ja) 2008-09-25 2009-09-25 信号処理方法及び装置

Country Status (4)

Country Link
JP (2) JP5426680B2 (ja)
KR (3) KR101108061B1 (ja)
CN (2) CN102165520B (ja)
ES (1) ES2547232T3 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012512438A (ja) * 2009-04-08 2012-05-31 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 位相値平滑化を用いてダウンミックスオーディオ信号をアップミックスする装置、方法、およびコンピュータプログラム
JP2014509754A (ja) * 2011-03-18 2014-04-21 フラウンホーファーゲゼルシャフト ツール フォルデルング デル アンゲヴァンテン フォルシユング エー.フアー. 柔軟なコンフィギュレーション機能性を有するオーディオエンコーダおよびデコーダ
JP2015518578A (ja) * 2012-04-05 2015-07-02 ホアウェイ・テクノロジーズ・カンパニー・リミテッド パラメトリック空間オーディオ符号化および復号化のための方法、パラメトリック空間オーディオ符号器およびパラメトリック空間オーディオ復号器
JP2021121853A (ja) * 2017-04-12 2021-08-26 華為技術有限公司Huawei Technologies Co., Ltd. マルチチャネル信号符号化方法、マルチチャネル信号復号方法、エンコーダ、およびデコーダ

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102446507B (zh) * 2011-09-27 2013-04-17 华为技术有限公司 一种下混信号生成、还原的方法和装置
CN103534753B (zh) * 2012-04-05 2015-05-27 华为技术有限公司 用于信道间差估计的方法和空间音频编码装置
EP2790419A1 (en) 2013-04-12 2014-10-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for center signal scaling and stereophonic enhancement based on a signal-to-downmix ratio
EP2830047A1 (en) * 2013-07-22 2015-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for low delay object metadata coding
SG11201602628TA (en) * 2013-10-21 2016-05-30 Dolby Int Ab Decorrelator structure for parametric reconstruction of audio signals
CN104681029B (zh) * 2013-11-29 2018-06-05 华为技术有限公司 立体声相位参数的编码方法及装置
CN107452387B (zh) 2016-05-31 2019-11-12 华为技术有限公司 一种声道间相位差参数的提取方法及装置
CN109215668B (zh) 2017-06-30 2021-01-05 华为技术有限公司 一种声道间相位差参数的编码方法及装置
CN110556118B (zh) * 2018-05-31 2022-05-10 华为技术有限公司 立体声信号的编码方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005523479A (ja) * 2002-04-22 2005-08-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ パラメータによるマルチチャンネルオーディオ表示
WO2006003813A1 (ja) * 2004-07-02 2006-01-12 Matsushita Electric Industrial Co., Ltd. オーディオ符号化及び復号化装置
JP2007526522A (ja) * 2004-03-01 2007-09-13 ドルビー・ラボラトリーズ・ライセンシング・コーポレーション マルチチャンネルオーディオコーディング
US20070244706A1 (en) * 2004-05-19 2007-10-18 Matsushita Electric Industrial Co., Ltd. Audio Signal Encoder and Audio Signal Decoder
JP2007531913A (ja) * 2004-04-05 2007-11-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ マルチチャンネル・エンコーダ
WO2008039038A1 (en) * 2006-09-29 2008-04-03 Electronics And Telecommunications Research Institute Apparatus and method for coding and decoding multi-object audio signal with various channel
JP2008527431A (ja) * 2005-01-10 2008-07-24 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 空間音声のパラメトリック符号化のためのコンパクトなサイド情報

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208869A (ja) * 2001-01-09 2002-07-26 Sony Corp マルチバンド無線信号送受信装置
SE0202159D0 (sv) 2001-07-10 2002-07-09 Coding Technologies Sweden Ab Efficientand scalable parametric stereo coding for low bitrate applications
EP1927266B1 (en) * 2005-09-13 2014-05-14 Koninklijke Philips N.V. Audio coding
KR100917845B1 (ko) * 2006-12-04 2009-09-18 한국전자통신연구원 상호상관을 이용한 다채널 오디오 신호 복호화 장치 및 그방법
EP2144229A1 (en) * 2008-07-11 2010-01-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Efficient use of phase information in audio encoding and decoding

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005523479A (ja) * 2002-04-22 2005-08-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ パラメータによるマルチチャンネルオーディオ表示
JP2007526522A (ja) * 2004-03-01 2007-09-13 ドルビー・ラボラトリーズ・ライセンシング・コーポレーション マルチチャンネルオーディオコーディング
JP2007531913A (ja) * 2004-04-05 2007-11-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ マルチチャンネル・エンコーダ
US20070244706A1 (en) * 2004-05-19 2007-10-18 Matsushita Electric Industrial Co., Ltd. Audio Signal Encoder and Audio Signal Decoder
WO2006003813A1 (ja) * 2004-07-02 2006-01-12 Matsushita Electric Industrial Co., Ltd. オーディオ符号化及び復号化装置
JP2008527431A (ja) * 2005-01-10 2008-07-24 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 空間音声のパラメトリック符号化のためのコンパクトなサイド情報
WO2008039038A1 (en) * 2006-09-29 2008-04-03 Electronics And Telecommunications Research Institute Apparatus and method for coding and decoding multi-object audio signal with various channel
JP2010521002A (ja) * 2006-09-29 2010-06-17 韓國電子通信研究院 多様なチャネルから構成されたマルチオブジェクトオーディオ信号の符号化および復号化装置、並びにその方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012050640; SAMSUDIN ET AL: 'A Stereo to Mono Dowmixing Scheme for MPEG-4 Parametric Stereo Encoder' ACOUSTICS, SPEECH AND SIGNAL PROCESSING, 2006. ICASSP 2006 PROCEEDINGS *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012512438A (ja) * 2009-04-08 2012-05-31 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 位相値平滑化を用いてダウンミックスオーディオ信号をアップミックスする装置、方法、およびコンピュータプログラム
US9053700B2 (en) 2009-04-08 2015-06-09 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus, method and computer program for upmixing a downmix audio signal using a phase value smoothing
JP2014509754A (ja) * 2011-03-18 2014-04-21 フラウンホーファーゲゼルシャフト ツール フォルデルング デル アンゲヴァンテン フォルシユング エー.フアー. 柔軟なコンフィギュレーション機能性を有するオーディオエンコーダおよびデコーダ
JP2014512020A (ja) * 2011-03-18 2014-05-19 フラウンホーファーゲゼルシャフト ツール フォルデルング デル アンゲヴァンテン フォルシユング エー.フアー. オーディオコンテントを表すビットストリームのフレームにおけるフレーム要素位置決め
US9524722B2 (en) 2011-03-18 2016-12-20 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Frame element length transmission in audio coding
US9773503B2 (en) 2011-03-18 2017-09-26 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio encoder and decoder having a flexible configuration functionality
US9779737B2 (en) 2011-03-18 2017-10-03 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Frame element positioning in frames of a bitstream representing audio content
JP2015518578A (ja) * 2012-04-05 2015-07-02 ホアウェイ・テクノロジーズ・カンパニー・リミテッド パラメトリック空間オーディオ符号化および復号化のための方法、パラメトリック空間オーディオ符号器およびパラメトリック空間オーディオ復号器
US9324329B2 (en) 2012-04-05 2016-04-26 Huawei Technologies Co., Ltd. Method for parametric spatial audio coding and decoding, parametric spatial audio coder and parametric spatial audio decoder
JP2021121853A (ja) * 2017-04-12 2021-08-26 華為技術有限公司Huawei Technologies Co., Ltd. マルチチャネル信号符号化方法、マルチチャネル信号復号方法、エンコーダ、およびデコーダ
JP7106711B2 (ja) 2017-04-12 2022-07-26 華為技術有限公司 マルチチャネル信号符号化方法、マルチチャネル信号復号方法、エンコーダ、およびデコーダ
US11832087B2 (en) 2017-04-12 2023-11-28 Huawei Technologies Co., Ltd. Multi-channel signal encoding method, multi-channel signal decoding method, encoder, and decoder

Also Published As

Publication number Publication date
KR20100035120A (ko) 2010-04-02
JP5480274B2 (ja) 2014-04-23
CN102165519A (zh) 2011-08-24
CN102165520A (zh) 2011-08-24
KR20100035122A (ko) 2010-04-02
KR101108061B1 (ko) 2012-01-25
JP2012503792A (ja) 2012-02-09
CN102165520B (zh) 2012-11-28
KR101108060B1 (ko) 2012-01-25
KR20100035121A (ko) 2010-04-02
ES2547232T3 (es) 2015-10-02
JP5426680B2 (ja) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5426680B2 (ja) 信号処理方法及び装置
US10861468B2 (en) Apparatus and method for encoding or decoding a multi-channel signal using a broadband alignment parameter and a plurality of narrowband alignment parameters
JP4934427B2 (ja) 音声信号復号化装置及び音声信号符号化装置
RU2763374C2 (ru) Способ и система с использованием разности долговременных корреляций между левым и правым каналами для понижающего микширования во временной области стереофонического звукового сигнала в первичный и вторичный каналы
US8258849B2 (en) Method and an apparatus for processing a signal
JP5554830B2 (ja) ダウンミックス信号表現に基づいたアップミックス信号表現の供給のための一つ以上の調整されたパラメータを供給するための装置、オブジェクト関連のパラメトリック情報を用いたオーディオ信号デコーダ、オーディオ信号トランスコーダ、オーディオ信号エンコーダ、オーディオビットストリーム、方法およびコンピュータ・プログラム
RU2551797C2 (ru) Способы и устройства кодирования и декодирования объектно-ориентированных аудиосигналов
US8060042B2 (en) Method and an apparatus for processing an audio signal
US8346379B2 (en) Method and an apparatus for processing a signal
US10818304B2 (en) Phase coherence control for harmonic signals in perceptual audio codecs
JP2013511053A (ja) ダウンミックス信号表現に基づいてアップミックス信号表現を生成するための装置、マルチチャネルオーディオ信号を表現するビットストリームを生成するための装置、歪制御信号化を用いる方法、コンピュータプログラム及びビットストリーム
US8346380B2 (en) Method and an apparatus for processing a signal
RU2455708C2 (ru) Способы и устройства кодирования и декодирования объектно-ориентированных аудиосигналов
KR20090122143A (ko) 오디오 신호 처리 방법 및 장치
Brandenburg Parametric Coding of High-Quality Audio

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5426680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250