JP2012500902A5 - - Google Patents

Download PDF

Info

Publication number
JP2012500902A5
JP2012500902A5 JP2011524530A JP2011524530A JP2012500902A5 JP 2012500902 A5 JP2012500902 A5 JP 2012500902A5 JP 2011524530 A JP2011524530 A JP 2011524530A JP 2011524530 A JP2011524530 A JP 2011524530A JP 2012500902 A5 JP2012500902 A5 JP 2012500902A5
Authority
JP
Japan
Prior art keywords
agglomerates
zinc
particle size
furnace
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011524530A
Other languages
Japanese (ja)
Other versions
JP5380536B2 (en
JP2012500902A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/IN2009/000472 external-priority patent/WO2010023691A1/en
Publication of JP2012500902A publication Critical patent/JP2012500902A/en
Publication of JP2012500902A5 publication Critical patent/JP2012500902A5/ja
Application granted granted Critical
Publication of JP5380536B2 publication Critical patent/JP5380536B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (18)

鉄鋼を製造するための高亜鉛含有鉄鉱石を処理するための改善された方法において、
平均粒度が35〜70μmの鉄酸化物と平均粒度が25〜60μmの炭素質材料と平均粒度が45〜85μmのフラックスとの混合物を含んでなる凝集塊を生成して、有機結合材と無機結合材との組合せ及び水分を用いて8〜15mmの粒度の凝集塊を形成し、前記凝集塊の所望の特性を達成する工程と、
炉中で前記凝集塊の脱亜鉛及び金属化を行う工程と、
前記の還元された凝集塊を熱装入条件及び冷装入条件で融解して溶銑を形成し、粗鋼を製造する工程と、
従来の亜鉛抽出プロセスを実施することによって、前記炉の廃ガス流から亜鉛有価物を回収する工程と、
を含んでなる、上記方法。
In an improved method for treating high zinc content iron ore to produce steel,
An agglomerate comprising a mixture of an iron oxide having an average particle size of 35 to 70 μm, a carbonaceous material having an average particle size of 25 to 60 μm, and a flux having an average particle size of 45 to 85 μm is generated, and an organic binder and an inorganic bond are produced. Forming agglomerates with a particle size of 8-15 mm using the combination with the material and moisture to achieve the desired properties of the agglomerates;
Dezincing and metallizing the agglomerates in a furnace;
Melting the reduced agglomerates under hot charging conditions and cold charging conditions to form hot metal, and producing crude steel;
Recovering valuable zinc from the waste gas stream of the furnace by performing a conventional zinc extraction process;
Comprising the above method.
前記凝集塊の前記所望の特性が、6〜8の範囲の湿式滴数と、10〜15の範囲の乾式滴数と、1.5kg/ペレットの未焼成圧潰強度と、15kg/ペレットの乾燥圧潰強度とを含んでなる、請求項1に記載の方法。   The desired properties of the agglomerates include wet drop number in the range of 6-8, dry drop number in the range of 10-15, unfired crush strength of 1.5 kg / pellet, and dry crush of 15 kg / pellet. The method of claim 1, comprising: strength. 前記の脱亜鉛及び金属化を行う工程は、
80℃〜150℃の温度で水分蒸発を行う間、凝集塊の間隙率(一次間隙)を連続的に調整する工程と、
130℃〜300℃の間の温度で前記有機結合材を蒸発させて、第2の間隙を作る工程と、
前記炭素質材料を、500℃〜1200℃の間の温度の還元状態で消耗させて三次間隙を作る工程と、
を含んでなる、請求項1に記載の方法。
The steps of dezincing and metallization are as follows:
A step of continuously adjusting the porosity of the agglomerates (primary gap) during the water evaporation at a temperature of 80 ° C. to 150 ° C .;
Evaporating the organic binder at a temperature between 130 ° C. and 300 ° C. to create a second gap;
Depleting the carbonaceous material in a reduced state at a temperature between 500 ° C. and 1200 ° C. to create a tertiary gap;
The method of claim 1 comprising:
前記の脱亜鉛及び金属化を行う工程は、
前記凝集塊を形成する前記諸成分の平均粒度を選択することによって、ガス生成物の迅速な運搬を行うための間隙チャネルを提供する工程
を更に含んでなる、請求項1又は3に記載の方法。
The steps of dezincing and metallization are as follows:
4. The method of claim 1 or 3 , further comprising providing a gap channel for rapid delivery of gas products by selecting an average particle size of the components that form the agglomerates. .
前記の脱亜鉛及び金属化を行う工程は、
前記間隙チャネルの閉塞が回避されるように、前記の形成されたスラグの粘度を、前記フラックスの組合せによって制御する工程であって、前記ガス生成物が円滑に放出されるのを可能にする工程
を更に含んでなる、請求項1に記載の方法。
The steps of dezincing and metallization are as follows:
Controlling the viscosity of the formed slag by the combination of fluxes so as to avoid clogging of the gap channel, allowing the gas product to be released smoothly. The method of claim 1, further comprising:
前記炉は、回転炉床炉、非シャフト炉及び多炉床炉のタイプから選ばれる、請求項1に記載の方法。   The method of claim 1, wherein the furnace is selected from the types of rotary hearth furnaces, non-shaft furnaces and multi-hearth furnaces. 前記鉄酸化物が、鉄鉱石由来の0.01〜1%の範囲の高亜鉛濃度を含有する鉄鉱石と、電気アーク炉ダストと、工場廃棄物とそれらの組合せである、請求項1に記載の方法。   The iron oxide is iron ore containing a high zinc concentration in the range of 0.01 to 1% derived from iron ore, electric arc furnace dust, factory waste, and combinations thereof. the method of. 前記炭素質材料が、無煙炭、歴青炭、粘結炭、ペトコール、粉コークス、他の炭素質材料及びそれらの組合せを含んでなる、請求項1に記載の方法。   The method of claim 1, wherein the carbonaceous material comprises anthracite, bituminous coal, caking coal, petcoal, coke breeze, other carbonaceous materials, and combinations thereof. 前記結合材は、無機結合材、有機結合材、及びそれらの組合せを含み、しかも、前記無機結合材は、0.5〜2%の間の投与量で用いられ、前記有機結合材は、1〜5%の間の投与量で用いられる、請求項1に記載の方法。   The binder includes an inorganic binder, an organic binder, and a combination thereof, and the inorganic binder is used at a dose of 0.5 to 2%. The method of claim 1, wherein the method is used at a dose between ˜5%. 前記有機結合材は、デキストリン、セルロース、デンプン、小麦粉、及びそれらの組合せ、モノアクリレート、ポリアクリレート、及びアクリルアミド、及びそれらの組合せ、グアールガムのようなガムを含む、請求項1又は9に記載の方法。 10. The method of claim 1 or 9 , wherein the organic binder comprises dextrin, cellulose, starch, flour, and combinations thereof, monoacrylates, polyacrylates, and acrylamides, and combinations thereof, gums such as guar gum. . 前記無機結合材が、ベントナイト、コロイドシリカ、膨潤粘土、及びそれらの組合せ、セメント、ナトリウム、ケイ酸塩を含む、請求項1又は9に記載の方法。 The method according to claim 1 or 9 , wherein the inorganic binder comprises bentonite, colloidal silica, swollen clay, and combinations thereof, cement, sodium, silicate. 前記凝集塊を生成する工程は、
供給材料(鉄鉱石、石炭、結合材及びフラックス)を調製して、表面積を含めて所要の粒度及び粒度分布を達成する工程と、
前記供給材料の微粉を調合して混合し、予備湿潤化を行って、凝集化のために必要な混合を達成する工程と、
所望の水分レベル及びプロセスパラメータを有する皿形及びドラム型の造粒機又はブリケット製造機で前記凝集塊を調製して、前記凝集塊の望ましい特性及び品質を達成する工程と、
110〜300℃の温度範囲で前記凝集塊を乾燥させて、前記水分を除去し、一次間隙を形成する工程と、
を含んでなる、請求項1に記載の方法。
The step of generating the agglomerates includes
Preparing feed materials (iron ore, coal, binder and flux) to achieve the required particle size and particle size distribution, including surface area;
Formulating and mixing said feed fines, pre-wetting to achieve the necessary mixing for agglomeration;
Preparing the agglomerates in a dish and drum granulator or briquette maker having the desired moisture level and process parameters to achieve the desired properties and quality of the agglomerates;
Drying the agglomerates in a temperature range of 110 to 300 ° C. to remove the moisture and forming a primary gap;
The method of claim 1 comprising:
前記の脱亜鉛及び金属化は、様々な温度が様々な帯域で維持される炉の中で行われ、それによって、初期段階で前記有機結合材を除去して、相互連結された間隙チャネルを形成し、次いで、より高い温度で亜鉛を還元し蒸発させる、請求項1〜5のいずれか1項に記載の方法。   The dezincification and metallization is performed in a furnace where different temperatures are maintained in different zones, thereby removing the organic binder in the initial stage to form interconnected gap channels. And then reducing and evaporating the zinc at a higher temperature. 前記フラックスは、前記スラグ中の前記Feの損失を最小限に抑える、請求項1〜5のいずれか1項に記載の方法。   The method of any one of claims 1-5, wherein the flux minimizes the loss of the Fe in the slag. 前記フラックスは、CaO、MgO及びSiOの酸化物、並びに、それらの化合物を含んでなる、請求項1、12及び14のいずれか1項に記載の方法。 The flux, CaO, oxides of MgO and SiO 2, as well, comprises those compounds, method of any one of claims 1, 12 and 14. 前記亜鉛有価物は、前記廃ガスの温度を900℃未満に低下させることによって、且つ、前記廃ガスのCO/CO比を、導入空気によって調整することによって、前記炉の廃ガス流から分離される、請求項1に記載の方法。 The zinc valuables are separated from the waste gas stream of the furnace by lowering the temperature of the waste gas below 900 ° C. and adjusting the CO / CO 2 ratio of the waste gas with the introduced air. The method of claim 1, wherein: 前記の分離された亜鉛有価物は、廃ガス流から回収される前記生成物中の亜鉛濃度を高めるように、炉中で処理され、しかも、前記廃ガス流から回収される前記化合物は、40%を超える亜鉛含有量を有し、且つ、従来のプロセスによって亜鉛を抽出するのに適合している、請求項16に記載の方法。   The separated zinc valuables are treated in a furnace to increase the zinc concentration in the product recovered from the waste gas stream, and the compound recovered from the waste gas stream is 40 17. A method according to claim 16, having a zinc content greater than% and being adapted to extract zinc by conventional processes. 鉄鋼を製造するための、高亜鉛含有鉄鉱石を処理するための改善された方法であって、添付図面に関連して本明細書に実質的に記述され且つ例示される方法。   An improved method for processing high zinc content iron ore for manufacturing steel, substantially as described and exemplified herein with reference to the accompanying drawings.
JP2011524530A 2008-08-30 2009-08-28 A method of separating iron from iron ore containing high-concentration zinc and extracting iron and valuable materials Expired - Fee Related JP5380536B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN1142KO2008 2008-08-30
IN1142/KOL/08 2008-08-30
PCT/IN2009/000472 WO2010023691A1 (en) 2008-08-30 2009-08-28 Method for separation of zinc and extraction of iron values from iron ores with high concentration of zinc

Publications (3)

Publication Number Publication Date
JP2012500902A JP2012500902A (en) 2012-01-12
JP2012500902A5 true JP2012500902A5 (en) 2012-07-05
JP5380536B2 JP5380536B2 (en) 2014-01-08

Family

ID=41720893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011524530A Expired - Fee Related JP5380536B2 (en) 2008-08-30 2009-08-28 A method of separating iron from iron ore containing high-concentration zinc and extracting iron and valuable materials

Country Status (4)

Country Link
JP (1) JP5380536B2 (en)
KR (1) KR101619169B1 (en)
CN (1) CN101970699B (en)
WO (1) WO2010023691A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012149635A1 (en) * 2011-05-04 2012-11-08 Wei-Kao Lu Process of the production and refining of low-carbon dri (direct reduced iron)
JP5770118B2 (en) * 2012-02-02 2015-08-26 新日鐵住金株式会社 Method for producing reduced iron
JP5820344B2 (en) * 2012-07-05 2015-11-24 株式会社神戸製鋼所 Method for producing reduced product
KR101291403B1 (en) * 2012-09-05 2013-07-30 한호재 Mineralization pellet, its manufacturing method, additives pellet and manufacturing method of pig iron using the sames
JP6098499B2 (en) * 2013-12-20 2017-03-22 住友金属鉱山株式会社 Method for producing zinc oxide ore
CN106086399A (en) * 2016-07-21 2016-11-09 北京神雾环境能源科技集团股份有限公司 A kind of copper ashes carbonaceous pelletizing molding compound binding agent
GB201813370D0 (en) * 2018-08-16 2018-10-03 Binding Solutions Ltd Binder formulation
CN112458279B (en) * 2020-11-03 2021-11-05 北京科技大学 Integrated process method of multi-hearth furnace and rotary hearth furnace
CN114395697A (en) * 2022-01-04 2022-04-26 中冶南方工程技术有限公司 Method for reducing carbon emission in reduction dezincification process
PL441677A1 (en) * 2022-07-08 2024-01-15 Dobrzyński Michał P.P.H.U Stilmar Method of recovering metals from metallurgical waste

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870509A (en) * 1973-05-14 1975-03-11 Ferro Carb Agglomeration Method of disposing of particulate scrap iron
AU489386B2 (en) * 1973-09-24 1975-03-27 Michigan Technological University Treatment of zinc rich steel mill dusts for reuse in steel making processes
CA1033575A (en) * 1973-12-19 1978-06-27 John E. Allen Treatment of steel mill waste dusts containing zinc
JP2803501B2 (en) * 1992-11-11 1998-09-24 日本鋼管株式会社 Recovery method of zinc in dust
JPH06330198A (en) * 1993-05-18 1994-11-29 Nkk Corp Method for recovering zinc in dust
JP3043325B2 (en) * 1997-12-18 2000-05-22 株式会社神戸製鋼所 Method for producing reduced iron pellets and reduced iron pellets produced by this method
JP2005089794A (en) 2003-09-16 2005-04-07 Nippon Steel Corp Method for effectively utilizing iron-making dust as resource
JP4391841B2 (en) 2004-02-05 2009-12-24 三菱日立製鉄機械株式会社 Manufacturing method of reduced iron molding
JP4328256B2 (en) * 2004-04-08 2009-09-09 新日本製鐵株式会社 Exhaust gas treatment apparatus and exhaust gas treatment method for rotary hearth type reduction furnace
CN1851009A (en) * 2006-05-19 2006-10-25 云南冶金集团总公司 Method for converting refractory complex lead-zinc oxide ore by low-temporature sul furization
EP2190623A4 (en) * 2007-09-04 2012-04-18 Cardero Resource Corp Direct processing of metallic ore concentrates into ferroalloys
TWI426133B (en) * 2008-05-30 2014-02-11 Jfe Steel Corp Production method of pig iron
CN102089448A (en) * 2008-07-11 2011-06-08 株式会社神户制钢所 Briquette manufacturing method, reductive metal manufacturing method, and zinc or lead separation method

Similar Documents

Publication Publication Date Title
JP2012500902A5 (en)
JP5975093B2 (en) Nickel oxide ore smelting method
JP7147409B2 (en) Method for smelting oxide ore
JP6314781B2 (en) Nickel oxide ore smelting method
JP5380536B2 (en) A method of separating iron from iron ore containing high-concentration zinc and extracting iron and valuable materials
JP5958576B1 (en) Saprolite ore smelting method
AU2015297792B2 (en) Method for smelting nickel oxide ore
WO2017183666A1 (en) Method for smelting oxide ore
JP2012062505A (en) Method for manufacturing agglomerate
JP6447429B2 (en) Nickel oxide ore smelting method
AU2015293371B2 (en) Method for smelting nickel oxide ore and method for charging pellets
JP2018178219A (en) Method for smelting oxide ore
JP6900699B2 (en) Nickel oxide ore smelting method
WO2009145348A1 (en) Method for manufacturing pig iron
JP6477349B2 (en) Nickel oxide ore smelting method
JP2023019428A (en) Smelting method for nickel oxide ore
JP2014159622A (en) Method of producing reduced iron
JP6428528B2 (en) Nickel oxide ore smelting method
JP7552324B2 (en) Method for smelting nickel oxide ore
JP2011179090A (en) Method for producing granulated iron
JP6455359B2 (en) Nickel oxide ore smelting method
JPS60224721A (en) Manufacture of crude zinc oxide briquette
JPH027376B2 (en)
JP2011132578A (en) Method for producing granular iron using ore