JP2012256509A - Method for manufacturing nonaqueous secondary battery - Google Patents

Method for manufacturing nonaqueous secondary battery Download PDF

Info

Publication number
JP2012256509A
JP2012256509A JP2011128720A JP2011128720A JP2012256509A JP 2012256509 A JP2012256509 A JP 2012256509A JP 2011128720 A JP2011128720 A JP 2011128720A JP 2011128720 A JP2011128720 A JP 2011128720A JP 2012256509 A JP2012256509 A JP 2012256509A
Authority
JP
Japan
Prior art keywords
electrode mixture
positive electrode
active material
material particles
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011128720A
Other languages
Japanese (ja)
Inventor
Masahiro Morita
昌宏 森田
Shozo Fujiwara
昌三 藤原
Naoyuki Wada
直之 和田
Tatsuya Hashimoto
達也 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011128720A priority Critical patent/JP2012256509A/en
Publication of JP2012256509A publication Critical patent/JP2012256509A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method for stably manufacturing a nonaqueous secondary battery capable of exhibiting excellent performance under different operating conditions.SOLUTION: The method for manufacturing a nonaqueous secondary battery comprises the steps of: (A) preparing an electrode body in which at least one of electrodes comprises an active material layer containing active material particles and conductive material particles; and (B) building a nonaqueous secondary battery by installing the electrode body and a nonaqueous electrolyte in a battery case. The step (A) comprises the steps of: preparing an electrode mixture liquid (dispersions) in which the active material particles and the conductive material particles are dispersed in a liquid phase, and determining the state of dispersion of the electrode mixture liquid by measuring at least one of the particle size distribution, the zeta potential, and the electrical conductivity; and forming the active material layer using only the electrode mixture liquid whose determined state of dispersion satisfies a predetermined acceptance requirement.

Description

本発明は、リチウムイオン二次電池その他の非水二次電池の製造方法に関する。   The present invention relates to a method for producing a lithium ion secondary battery and other non-aqueous secondary batteries.

リチウムイオン二次電池その他の非水二次電池は、車両搭載用電源あるいはパソコンや携帯端末等の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、車両搭載用高出力電源として好ましく用いられるものとして期待されている。非水二次電池に関する技術文献として特許文献1,2が挙げられる。   Lithium ion secondary batteries and other non-aqueous secondary batteries are becoming increasingly important as power sources for vehicles or as power sources for personal computers and portable terminals. In particular, a lithium ion secondary battery that is lightweight and obtains a high energy density is expected to be preferably used as a high-output power source mounted on a vehicle. Patent documents 1 and 2 are mentioned as technical literature about a nonaqueous secondary battery.

特開2007−335175号公報JP 2007-335175 A 特開2009−224099号公報JP 2009-224099 A

通常、非水二次電池は、その用途に応じて温度、充放電レート等の使用条件に幅がある。このため、より厳しい使用条件でも高性能を発揮する電池の要請が高まるにつれて、従来の製造方法では、所定の使用条件下において所望の特性を示す電池を安定して(製造ロット間の性能バラツキ等を抑えて)製造することはできるが、より厳しい使用条件では電池の性能バラツキが大きくなる、という事態が生じるようになってきた。したがって、より高い電池性能を発揮し得、かつ穏やかな条件のみならずより厳しい条件でも良好な性能を発揮し得る電池を安定して製造する方法が提供されれば有益である。   Usually, non-aqueous secondary batteries have various usage conditions such as temperature and charge / discharge rate according to their applications. For this reason, as the demand for batteries that exhibit high performance even under more severe usage conditions increases, the conventional manufacturing method stably stabilizes batteries that exhibit desired characteristics under predetermined usage conditions (such as performance variations between production lots). However, there has been a situation in which battery performance varies greatly under more severe use conditions. Therefore, it would be beneficial to provide a method for stably producing a battery that can exhibit higher battery performance and that can exhibit better performance not only under mild conditions but also under severe conditions.

そこで本発明は、異なる使用条件下でも良好な性能を発揮し得る非水二次電池を安定して製造する方法を提供することを一つの目的とする。   Therefore, an object of the present invention is to provide a method for stably producing a non-aqueous secondary battery that can exhibit good performance even under different use conditions.

ここに開示される技術によると、非水二次電池の製造方法が提供される。その方法は、
(A)少なくとも一方の電極が活物質粒子と導電材粒子とを含む活物質層を備えた電極体を用意する工程;および、(B)上記電極体と非水電解質とを電池容器に収容して非水二次電池を構築する工程;を包含する。上記(A)工程は、(i)上記少なくとも一方の電極形成用として、活物質粒子および導電材粒子が液相に分散した電極合材液(分散液)を用意すること;および(ii)その電極合材液の分散状態を把握すること;により実施される。上記(A)工程の(ii)において、上記電極合材液の分散状態は、該電極合材液について、粒度分布、ゼータ電位、および導電率(電気伝導度)の少なくとも一つを測定することにより把握される。当該製造方法は、上記(A)工程の(ii)において把握された電極合材液の分散状態が予め設定した合格条件を満たす場合には当該電極合材液を次工程に送り、該合格条件を満たさない場合には該電極合材液を次工程から外すこと;および、この次工程に送られた電極合材液を用いて上記活物質層を形成すること;をさらに包含する。
According to the technology disclosed herein, a method for manufacturing a non-aqueous secondary battery is provided. The method is
(A) preparing an electrode body provided with an active material layer in which at least one electrode includes active material particles and conductive material particles; and (B) housing the electrode body and the non-aqueous electrolyte in a battery container. And constructing a non-aqueous secondary battery. The step (A) comprises (i) preparing an electrode mixture liquid (dispersion) in which active material particles and conductive material particles are dispersed in a liquid phase for forming at least one of the electrodes; and (ii) It is carried out by grasping the dispersion state of the electrode mixture liquid. In (ii) of the above step (A), the dispersion state of the electrode mixture liquid is to measure at least one of particle size distribution, zeta potential, and conductivity (electrical conductivity) for the electrode mixture liquid. It is grasped by. The manufacturing method sends the electrode mixture liquid to the next step when the dispersion state of the electrode mixture liquid grasped in (ii) of the step (A) satisfies a preset acceptance condition, and the acceptance condition In the case where the above condition is not satisfied, the method further includes removing the electrode mixture solution from the next step; and forming the active material layer using the electrode mixture solution sent to the next step.

ここに開示される方法によると、電極合材液中の導電材粒子の分散状態を把握し、合格基準の電極合材液のみを次工程で用いるので、より厳しい使用条件(低温(例えば−15℃程度)、急速放電(例えば3C程度)、高温(例えば40℃程度)での充放電サイクル等)においても一定基準以上の性能(容量、容量維持率等)を発揮し得る非水二次電池を製造することができる。   According to the method disclosed here, the dispersion state of the conductive material particles in the electrode mixture liquid is grasped, and only the acceptance standard electrode mixture liquid is used in the next step. Therefore, more severe use conditions (low temperature (for example, −15 Non-aqueous secondary battery capable of exhibiting performance (capacity, capacity retention rate, etc.) above a certain standard even in rapid discharge (for example, about 3C), high temperature (for example, charge / discharge cycle at about 40 ° C), etc. Can be manufactured.

なお、本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、リチウム二次電池等のいわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する用語である。また、「非水二次電池」とは、非水電解質(典型的には、非水溶媒中に支持塩(支持電解質)を含む電解質)を備えた電池をいう。常温(例えば25℃)で液状を呈する非水電解質(すなわち非水電解液)を備えた非水二次電池が好ましい。また、「リチウム二次電池」とは、電解質イオンとしてリチウムイオンを利用し、正負極間のリチウムイオンの移動により充放電する二次電池をいう。一般にリチウムイオン電池と称される二次電池は、本明細書におけるリチウム二次電池に包含される典型例である。また、電極活物質とは、電荷担体となる化学種(リチウム二次電池ではリチウムイオン)を可逆的に吸蔵および放出し得る材料をいう。   In the present specification, the “secondary battery” refers to a general power storage device that can be repeatedly charged and discharged, and is a term including a so-called storage battery such as a lithium secondary battery and a power storage element such as an electric double layer capacitor. The “non-aqueous secondary battery” refers to a battery provided with a non-aqueous electrolyte (typically, an electrolyte containing a supporting salt (supporting electrolyte) in a non-aqueous solvent). A non-aqueous secondary battery including a non-aqueous electrolyte (that is, a non-aqueous electrolyte solution) that exhibits a liquid state at normal temperature (for example, 25 ° C.) is preferable. The “lithium secondary battery” refers to a secondary battery that uses lithium ions as electrolyte ions and is charged and discharged by the movement of lithium ions between the positive and negative electrodes. A secondary battery generally referred to as a lithium ion battery is a typical example included in the lithium secondary battery in this specification. The electrode active material refers to a material that can reversibly occlude and release chemical species (lithium ions in a lithium secondary battery) serving as a charge carrier.

一態様では、上記電極合材液の固形分の合計量(全固形成分量)を100質量%として、上記導電材粒子の含有量は0.5〜10質量%程度(より好ましくは、6〜8質量%程度)であることが好ましい。かかる態様によると、上記活物質層中の活物質含有量を高くすることができるので、厳しい使用条件でも性能バラツキが少なく、且つより高容量の電池が実現され得る。かかる電池は、例えば、車両に搭載される駆動電源等の用途に好適である。   In one aspect, the total amount of solids in the electrode mixture solution (total solid component amount) is 100% by mass, and the content of the conductive material particles is about 0.5 to 10% by mass (more preferably, 6 to 6%). It is preferably about 8% by mass). According to this aspect, since the active material content in the active material layer can be increased, a battery with less performance variation and a higher capacity can be realized even under severe use conditions. Such a battery is suitable for uses such as a drive power source mounted on a vehicle, for example.

他の一態様では、上記活物質粒子の平均サイズは、光学顕微鏡により測定される複数の該活物質粒子の直径の算術平均値(数平均粒径)として、5μm〜20μm程度であることが好ましい。かかる態様では、ここに開示される製造方法を採用することが特に有意義であり、より厳しい使用条件でも一定以上の性能を発揮し得る非水二次電池が実現され得る。   In another aspect, the average size of the active material particles is preferably about 5 μm to 20 μm as an arithmetic average value (number average particle size) of the diameters of the plurality of active material particles measured by an optical microscope. . In such an aspect, it is particularly meaningful to employ the manufacturing method disclosed herein, and a non-aqueous secondary battery that can exhibit a certain level of performance even under more severe use conditions can be realized.

他の一態様では、上記導電材粒子は、複数の一次粒子が連なった構造を有する炭素粒子であることが好ましい。その炭素粒子の平均サイズは、光学顕微鏡により測定される複数の該炭素粒子の長さの算術平均値(数平均粒径)として、0.1μm〜4.0μmであることが好ましい。かかる態様では、ここに開示される製造方法を採用することが特に有意義である。   In another aspect, the conductive material particles are preferably carbon particles having a structure in which a plurality of primary particles are connected. The average size of the carbon particles is preferably 0.1 μm to 4.0 μm as an arithmetic average value (number average particle size) of the lengths of the plurality of carbon particles measured by an optical microscope. In such an embodiment, it is particularly meaningful to employ the manufacturing method disclosed herein.

他の一態様では、上記粒度分布は、動的光散乱法によって測定することが好ましい。その測定された粒度分布においては、0.1μm以上1.0μm未満の範囲の最大頻度(%)をV1MAX、粒径1.0μm以上4.0μm未満の範囲の最大頻度(%)をV2MAXとして、V1MAXに対するV2MAXの比(V2MAX/V1MAX)が所定の数値範囲内にあることを前記合格条件とすることが好ましい。一態様では、上記V2MAX/V1MAXが0.2〜20の範囲にあることを上記合格条件とすることがより好ましい。かかる態様によると、より厳しい使用条件でも一定以上の性能を発揮し得る非水二次電池が実現され得る。 In another aspect, the particle size distribution is preferably measured by a dynamic light scattering method. In the measured particle size distribution, the maximum frequency (%) in the range of 0.1 μm or more and less than 1.0 μm is V 1MAX , and the maximum frequency (%) in the range of the particle size of 1.0 μm or more and less than 4.0 μm is V 2MAX. as, it is preferable that the ratio of V 2MAX for V 1MAX (V 2MAX / V 1MAX ) is to the pass condition that is within a predetermined numerical range. In one aspect, it is more preferable that the above-mentioned pass condition is that V 2MAX / V 1MAX is in the range of 0.2 to 20. According to such an embodiment, a non-aqueous secondary battery that can exhibit a certain level of performance even under more severe use conditions can be realized.

他の一態様では、上記ゼータ電位が−5mV〜−10mVの範囲にあることを上記合格条件とすることが好ましい。かかる態様によると、より厳しい使用条件でも一定以上の性能を発揮し得る非水二次電池が実現され得る。   In another aspect, the pass condition is preferably such that the zeta potential is in the range of −5 mV to −10 mV. According to such an embodiment, a non-aqueous secondary battery that can exhibit a certain level of performance even under more severe use conditions can be realized.

他の一態様では、上記導電率が1×10−4〜5×10−4S/mの範囲にあることを上記合格条件とすることが好ましい。かかる態様によると、より厳しい使用条件でも一定以上の性能を発揮し得る非水二次電池が実現され得る。 In another aspect, it is preferable that the electrical conductivity is in the range of 1 × 10 −4 to 5 × 10 −4 S / m as the pass condition. According to such an embodiment, a non-aqueous secondary battery that can exhibit a certain level of performance even under more severe use conditions can be realized.

ここに開示されるいずれかの方法により製造された非水二次電池は、より厳しい使用条件(低温急速放電時、高温での充放電サイクル等)においても、より高い性能を安定して実現し得る。したがって、例えば、車両に搭載される電源として好適である。したがって、ここに開示される非水二次電池(典型的にはリチウムイオン二次電池)は、ハイブリッド自動車、電気自動車のような電動機を備える自動車等の車両に搭載されるモータ用の電源(典型的には駆動電源)として好適に使用され得る。   A non-aqueous secondary battery manufactured by any of the methods disclosed herein stably realizes higher performance even under severer usage conditions (low temperature rapid discharge, high temperature charge / discharge cycle, etc.). obtain. Therefore, for example, it is suitable as a power source mounted on a vehicle. Accordingly, a non-aqueous secondary battery (typically a lithium ion secondary battery) disclosed herein is a power source (typically) for a motor mounted on a vehicle such as a hybrid vehicle or an automobile equipped with an electric motor such as an electric vehicle. In particular, it can be suitably used as a drive power source.

一実施形態に係る非水二次電池の外形を模式的に示す斜視図である。It is a perspective view which shows typically the external shape of the non-aqueous secondary battery which concerns on one Embodiment. 図1におけるII−II線断面図である。It is the II-II sectional view taken on the line in FIG. 本発明の非水二次電池を備えた車両(自動車)を模式的に示す側面図である。It is a side view which shows typically the vehicle (automobile) provided with the non-aqueous secondary battery of this invention. 18650型非水二次電池の外形を模式的に示す斜視図である。It is a perspective view which shows typically the external shape of a 18650 type non-aqueous secondary battery. 例1に係る正極合材液につき、動的光散乱法によって測定された粒度分布のチャートである。4 is a particle size distribution chart measured by a dynamic light scattering method for the positive electrode mixture liquid according to Example 1. 例2に係る正極合材液につき、動的光散乱法によって測定された粒度分布のチャートである。5 is a particle size distribution chart measured by a dynamic light scattering method for the positive electrode mixture liquid according to Example 2. 例3に係る正極合材液につき、動的光散乱法によって測定された粒度分布のチャートである。5 is a particle size distribution chart measured by a dynamic light scattering method for the positive electrode mixture liquid according to Example 3. 例4に係る正極合材液につき、動的光散乱法によって測定された粒度分布のチャートである。5 is a particle size distribution chart measured by a dynamic light scattering method for the positive electrode mixture liquid according to Example 4. 例5に係る正極合材液につき、動的光散乱法によって測定された粒度分布のチャートである。10 is a chart of particle size distribution measured by a dynamic light scattering method for the positive electrode mixture liquid according to Example 5. 例6に係る正極合材液につき、動的光散乱法によって測定された粒度分布のチャートである。10 is a chart of particle size distribution measured by a dynamic light scattering method for the positive electrode mixture liquid according to Example 6. 例7に係る正極合材液につき、動的光散乱法によって測定された粒度分布のチャートである。10 is a chart of particle size distribution measured by a dynamic light scattering method for the positive electrode mixture liquid according to Example 7. 例8に係る正極合材液につき、動的光散乱法によって測定された粒度分布のチャートである。10 is a chart of particle size distribution measured by a dynamic light scattering method for the positive electrode mixture liquid according to Example 8. 例9に係る正極合材液につき、動的光散乱法によって測定された粒度分布のチャートである。10 is a particle size distribution chart measured by a dynamic light scattering method for the positive electrode mixture liquid according to Example 9.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略または簡略化することがある。各図における寸法関係(長さ、幅、厚さ等)は、実際の寸法関係を反映するものではない。   Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field. Moreover, in the following drawings, the same code | symbol is attached | subjected to the member and site | part which show | plays the same effect | action, and the overlapping description may be abbreviate | omitted or simplified. The dimensional relationship (length, width, thickness, etc.) in each figure does not reflect the actual dimensional relationship.

ここに開示される技術は、集電体に電極活物質層が保持された形態の電極を備える各種の非水二次電池に広く適用され得る。ここに開示される方法を採用することにより、より厳しい使用条件においても一定以上の容量を発揮・維持し得る非水二次電池を製造することができる。すなわち、ここに開示される方法を採用して製造された非水二次電池は、ロット間の性能バラツキが少なく、より厳しい条件下でも高性能を維持したまま使用可能なものであり得る。以下、主として、正極が導電材を含む構成のリチウムイオン二次電池を例として本発明をより詳く説明するが、本発明の適用対象をかかる電極または電池に限定する意図ではない。   The technology disclosed herein can be widely applied to various nonaqueous secondary batteries including an electrode in a form in which an electrode active material layer is held on a current collector. By employing the method disclosed herein, it is possible to manufacture a non-aqueous secondary battery that can exhibit and maintain a certain capacity or more even under more severe use conditions. That is, the non-aqueous secondary battery manufactured by adopting the method disclosed herein has little performance variation between lots and can be used while maintaining high performance even under more severe conditions. Hereinafter, the present invention will be described in more detail mainly using a lithium ion secondary battery having a configuration in which the positive electrode includes a conductive material, but the application target of the present invention is not intended to be limited to such an electrode or battery.

導電材粒子としては、例えば、複数の一次粒子が連なった構造(数珠状)の炭素材料(炭素粒子)を好ましく使用し得る。かかる構造を有する炭素材料の一例として、アセチレンブラックが挙げられる。該導電材粒子の平均サイズは、複数の導電材粒子の長さ(一次粒子が連なった構造の導電材粒子では、その連なりに添った長さ)を光学顕微鏡により測定し、それらの長さ測定結果の算術平均値(数平均粒径)として、0.1μm〜4.0μm程度であることが好ましい。導電材粒子の平均サイズが大きすぎると、正極活物質層の導電性にムラが生じる場合がある。
一次粒子が連なった構造の導電材粒子は、数珠が伸びた状態で正極活物質粒子間に分散されることにより、電気抵抗の増加を抑制しつつ、該活物質粒子間を効率よく電気的に接続することができるので、より少ない使用量でも該活物質層に優れた導電性を付与することができる。その一方、数珠状の構造はからまったり丸まったりしやすく、また比表面積が大きく濡れにくいので、上記のような伸びた状態でムラなく分散させることは困難となりがちである。また、正極活物質層形成成分を固着させるために結着剤を用いる場合、正極合材液を調製する段階で導電材が結着剤に吸着してダマになってしまいやすいため、良好な分散状態を実現することがより困難になる。かかる構造の導電材粒子を用いる場合、ここに開示される技術を適用することは、良好な分散状態の正極合材液のみを次工程(正極の作製)に送ることが可能となるので特に有意義である。
正極活物質層に含まれる導電材の量は、0.5〜10質量%程度とすることが好ましい。このように導電材量を比較的少なくし得ることは、相対的に正極活物質層に含まれる正極活物質の量をより多くすることができるので、体積当たりの電池容量を高める上でも有利である。
As the conductive material particles, for example, a carbon material (carbon particles) having a structure in which a plurality of primary particles are linked (beaded) can be preferably used. An example of the carbon material having such a structure is acetylene black. The average size of the conductive material particles is determined by measuring the length of a plurality of conductive material particles (in the case of conductive material particles having a structure in which primary particles are connected) by measuring with an optical microscope. The arithmetic average value (number average particle diameter) of the result is preferably about 0.1 μm to 4.0 μm. When the average size of the conductive material particles is too large, the conductivity of the positive electrode active material layer may be uneven.
Conductive material particles having a structure in which primary particles are connected are dispersed between the positive electrode active material particles in a state where the beads are extended, so that an increase in electric resistance is suppressed and the active material particles are efficiently and electrically connected between the active material particles. Since they can be connected, excellent conductivity can be imparted to the active material layer even with a smaller amount of use. On the other hand, the bead-like structure tends to get tangled and rounded, and has a large specific surface area and is difficult to wet. Therefore, it tends to be difficult to disperse evenly in the stretched state as described above. In addition, when a binder is used to fix the positive electrode active material layer forming component, the conductive material is likely to be adsorbed on the binder at the stage of preparing the positive electrode mixture solution, so that the dispersion is good. It becomes more difficult to realize the state. In the case of using conductive material particles having such a structure, it is particularly meaningful to apply the technology disclosed herein because only the positive electrode mixture liquid in a good dispersion state can be sent to the next step (preparation of the positive electrode). It is.
The amount of the conductive material contained in the positive electrode active material layer is preferably about 0.5 to 10% by mass. Since the amount of the conductive material can be relatively reduced in this manner, the amount of the positive electrode active material contained in the positive electrode active material layer can be relatively increased, which is advantageous in increasing the battery capacity per volume. is there.

正極活物質としては、リチウムを吸蔵および放出可能な化合物が用いられ、一般的なリチウムイオン二次電池において使用される各種正極活物質の一種または二種以上を使用することができる。例えば、層状構造やスピネル構造のリチウム含有酸化物を好ましく使用することができる。より具体的には、リチウムニッケル酸化物、リチウムコバルト酸化物、リチウムマンガン酸化物の、リチウムと少なくとも一種の遷移金属とを含有する酸化物が例示される。   As the positive electrode active material, a compound capable of inserting and extracting lithium is used, and one or more of various positive electrode active materials used in a general lithium ion secondary battery can be used. For example, a lithium-containing oxide having a layered structure or a spinel structure can be preferably used. More specifically, an oxide containing lithium and at least one transition metal, such as lithium nickel oxide, lithium cobalt oxide, and lithium manganese oxide, is exemplified.

ここで、リチウムニッケル酸化物とは、リチウム(Li)とニッケル(Ni)とを構成金属元素とする酸化物のほか、リチウムおよびニッケル以外に他の少なくとも一種の金属元素(すなわち、LiとNi以外の遷移金属元素および/または典型金属元素)を、原子数換算でニッケルと同程度またはニッケルよりも少ない割合で構成金属元素として含む酸化物をも包含する意味である。上記LiおよびNi以外の金属元素は、例えば、コバルト(Co),アルミニウム(Al),マンガン(Mn),クロム(Cr),鉄(Fe),バナジウム(V),マグネシウム(Mg),チタン(Ti),ジルコニウム(Zr),ニオブ(Nb),モリブデン(Mo),タングステン(W),銅(Cu),亜鉛(Zn),ガリウム(Ga),インジウム(In),スズ(Sn),ランタン(La)およびセリウム(Ce)からなる群から選択される一種または二種以上の金属元素であり得る。なお、リチウムコバルト酸化物およびリチウムマンガン酸化物についても同様の意味である。特に好ましい正極活物質として、Ni,Co,Mnを含むリチウム酸化物(例えば、Ni,CoおよびMnの三元素を原子数換算で概ね同量づつ含むリチウム酸化物)が例示される。
また、一般式がLiMPO(MはCo、Ni、Mn、Feのうちの少なくとも一種以上の元素;例えばLiFePO、LiMnPO)で表記されるオリビン型リン酸リチウムを上記正極活物質として用いてもよい。
Here, the lithium nickel oxide is an oxide having lithium (Li) and nickel (Ni) as constituent metal elements, and at least one other metal element other than lithium and nickel (that is, other than Li and Ni) The transition metal element and / or the typical metal element) is also meant to include an oxide containing the constituent metal element at a ratio equivalent to or less than nickel in terms of the number of atoms. Examples of the metal element other than Li and Ni include, for example, cobalt (Co), aluminum (Al), manganese (Mn), chromium (Cr), iron (Fe), vanadium (V), magnesium (Mg), and titanium (Ti ), Zirconium (Zr), niobium (Nb), molybdenum (Mo), tungsten (W), copper (Cu), zinc (Zn), gallium (Ga), indium (In), tin (Sn), lanthanum (La) And one or more metal elements selected from the group consisting of cerium (Ce). The same meaning is applied to lithium cobalt oxide and lithium manganese oxide. As a particularly preferable positive electrode active material, a lithium oxide containing Ni, Co, and Mn (for example, a lithium oxide containing approximately the same amount of three elements of Ni, Co, and Mn in terms of the number of atoms) is exemplified.
Further, an olivine type lithium phosphate represented by the general formula LiMPO 4 (M is at least one element of Co, Ni, Mn, and Fe; for example, LiFePO 4 , LiMnPO 4 ) is used as the positive electrode active material. Also good.

好適には、これら正極活物質を粒子状に調製したものを用いる。該正極活物質粒子の平均サイズは、光学顕微鏡により測定される複数の該活物質粒子の直径の算術平均値として5μm〜20μm程度であることが好ましい。かかるサイズの活物質粒子を用い、且つ導電材粒子の平均サイズを上記の好ましい範囲とすることにより、正極活物質粒子間の空隙に、該活物質粒子よりもサイズの小さい導電材粒子が好適に分散し得る。また、かかる態様では、活物質粒子の粒径分布と導電材粒子の粒度分布が実質的に重複しないので、後述する方法により粒度分布を測定することで、導電材粒子の分散状態に特に着目して正極合材液の分散状態を把握することが容易となり得る。
正極活物質層に含まれる正極活物質の量は、例えば、50〜95質量%程度(好ましくは75〜95質量%程度)とすることができる。
Preferably, a positive electrode active material prepared in the form of particles is used. The average size of the positive electrode active material particles is preferably about 5 μm to 20 μm as an arithmetic average value of the diameters of the plurality of active material particles measured by an optical microscope. By using the active material particles having such a size and setting the average size of the conductive material particles within the above preferable range, the conductive material particles having a size smaller than that of the active material particles are preferably used in the gaps between the positive electrode active material particles. Can be dispersed. Further, in this aspect, since the particle size distribution of the active material particles and the particle size distribution of the conductive material particles do not substantially overlap, the particle size distribution is measured by a method described later to pay particular attention to the dispersed state of the conductive material particles. Thus, it can be easy to grasp the dispersion state of the positive electrode mixture liquid.
The amount of the positive electrode active material contained in the positive electrode active material layer can be, for example, about 50 to 95% by mass (preferably about 75 to 95% by mass).

上記正極合材液は、必要に応じて結着剤を含有してもよい。結着剤としては、各種ポリマーから適宜選択して用いることができる。一種のみを単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
例えば、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシプロピルメチルセルロースフタレート(HPMCP)、ポリビニルアルコール(PVA)等の、水溶性ポリマー;ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重含体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、エチレン−テトラフルオロエチレン共重合体(ETFE)等のフッ素系樹脂、酢酸ビニル共重合体、スチレンブタジエンブロック共重合体(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)、ゴム類(アラビアゴム等)等の、水分散性ポリマー;ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)、ポリエチレンオキサイド(PEO)、ポリプロピレンオキサイド(PPO)、ポリエチレンオキサイド−プロピレンオキサイド共重合体(PEO−PPO)等の、油溶性ポリマー;等が挙げられる。
正極活物質層に含まれる結着剤の量は、活物質および導電材の種類や量に応じて適宜選択すればよい。
The positive electrode mixture liquid may contain a binder as necessary. As a binder, it can select from various polymers suitably and can be used. Only one kind may be used alone, or two or more kinds may be used in combination.
For example, water-soluble polymers such as carboxymethylcellulose (CMC), methylcellulose (MC), cellulose acetate phthalate (CAP), hydroxypropylmethylcellulose (HPMC), hydroxypropylmethylcellulose phthalate (HPMCP), polyvinyl alcohol (PVA); Fluorine such as fluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), etc. Resin, vinyl acetate copolymer, styrene butadiene block copolymer (SBR), acrylic acid-modified SBR resin (SBR latex), rubbers (such as gum arabic), Dispersible polymers; oil-soluble polymers such as polyvinylidene fluoride (PVDF), polyvinylidene chloride (PVDC), polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene oxide-propylene oxide copolymer (PEO-PPO); Etc.
What is necessary is just to select the quantity of the binder contained in a positive electrode active material layer suitably according to the kind and quantity of an active material and a electrically conductive material.

これら正極用材料を分散させる液相(分散媒)は、該正極用材料の種類に応じて適宜選択すればよく、一般的なリチウムイオン二次電池の正極を作製する際に従来用いられる分散媒を一種または二種以上使用することができる。例えば、N−メチル−2−ピロリドン(NMP)を好ましく使用することができる。   The liquid phase (dispersion medium) in which these positive electrode materials are dispersed may be appropriately selected according to the type of the positive electrode material, and a dispersion medium conventionally used when producing a positive electrode of a general lithium ion secondary battery. Can be used alone or in combination. For example, N-methyl-2-pyrrolidone (NMP) can be preferably used.

ここに開示される技術では、上記正極用材料が上記分散媒に分散した正極合材液を調製する。かかる正極合材液の調製は、適宜の方法で行うことができる。例えば、導電材と必要に応じて用いられる結着剤とを分散媒に予備分散させた後に正極活物質を後添加する方法;正極合材液の固形分成分(正極活物質、導電材、必要に応じて用いられる結着剤その他の正極活物質層形成成分)を少量の分散媒で固練りしたものに、さらに分散媒を加えて所望の固形分濃度に希釈する方法;攪拌機(プライミクス株式会社製の商品名「フィルミックス」シリーズ等)を用いて攪拌する方法;等を採用することができる。   In the technique disclosed herein, a positive electrode mixture liquid in which the positive electrode material is dispersed in the dispersion medium is prepared. The positive electrode mixture solution can be prepared by an appropriate method. For example, a method in which a conductive material and a binder used as needed are pre-dispersed in a dispersion medium and then a positive electrode active material is added afterwards; a solid component of a positive electrode mixture liquid (positive electrode active material, conductive material, necessary A binder or other positive electrode active material layer forming component) used in accordance with the amount of the mixture and kneading with a small amount of dispersion medium, and further adding the dispersion medium to dilute to a desired solid content concentration; Stirrer (Primix Co., Ltd.) And the like.

正極活物質を後添加する方法は、比較的分散しにくい導電材を予備分散工程で十分な量(固練りよりも多い量)の分散媒によく分散させてから、正極活物質を乾式で後添加することにより、固形分濃度を高く設定しても導電材の分散状態が良好な正極合材液を得やすい点で好ましい。固練りした後希釈する方法には、固練りの段階で適宜剪断応力をかけて予備分散させた後、希釈により所望の固形分濃度とすることができるという利点がある。この方法では、例えば、固練時の固形分濃度を65〜75%程度、希釈後の固形分濃度を50〜55%程度とすることが適当である。攪拌機を用いる方法には、攪拌ペラの先端部だけにペーストが接触するようにして局所的に剪断応力をかけることで、効率よく攪拌することができ、所望の分散状態および固形分濃度を実現することができるという利点がある。
正極合材液の調製には、これら以外の方法を採用してもよい。ここに開示される製造方法では、所望の分散状態が実現され得る合格条件を設定しているので、その合格条件を満たすよう分散条件の諸パラメータ(攪拌の速度、時間、温度等)を調整することにより本発明を実施することができるので、正極合材液の調製方法は特に限定されない。
The positive electrode active material is added after the conductive material, which is relatively difficult to disperse, is sufficiently dispersed in a sufficient amount of dispersion medium (a larger amount than the kneading) in the preliminary dispersion step, and then the positive electrode active material is dry-processed. Addition is preferable in that it is easy to obtain a positive electrode mixture liquid in which the conductive material is well dispersed even if the solid content concentration is set high. The method of diluting after solidifying has the advantage that a desired solid content concentration can be obtained by dilution after preliminarily dispersing by applying appropriate shear stress at the stage of solidifying. In this method, for example, it is appropriate that the solid content concentration at the time of solidification is about 65 to 75% and the solid content concentration after dilution is about 50 to 55%. In the method using a stirrer, by applying a shear stress locally so that the paste contacts only the tip of the stirring blade, the stirring can be performed efficiently, and a desired dispersion state and solid content concentration are realized. There is an advantage that you can.
Methods other than these may be employed for preparing the positive electrode mixture solution. In the manufacturing method disclosed herein, since acceptable conditions that can realize a desired dispersion state are set, various parameters of the dispersion conditions (stirring speed, time, temperature, etc.) are adjusted to satisfy the acceptable conditions. Therefore, the method for preparing the positive electrode mixture liquid is not particularly limited.

電極合材液の分散状態は、該合材液サンプルについて、粒度分布、ゼータ電位、および導電率のうち少なくとも一つ測定することによって把握することができる。   The dispersion state of the electrode mixture liquid can be grasped by measuring at least one of the particle size distribution, zeta potential, and conductivity of the mixture liquid sample.

電極合材液の粒度分布は、例えば、光子相関法を適用した動的光散乱法により好ましく測定することができる。かかる原理に基づく測定機器であって所望の分解能を有する(少なくとも、測定範囲が粒径0.1μm〜4.0μmを含む)ものを、特に制限なく使用することができる。例えば、マイクロトラック社(米国)の型式「UPA−150EX」、もしくはその相当品を用いることができる。   The particle size distribution of the electrode mixture liquid can be preferably measured by, for example, a dynamic light scattering method to which a photon correlation method is applied. A measuring instrument based on this principle and having a desired resolution (at least the measurement range includes a particle size of 0.1 μm to 4.0 μm) can be used without particular limitation. For example, the model “UPA-150EX” manufactured by Microtrack (USA) or its equivalent can be used.

上記正極合材液の分散状態を把握するための指標として粒度分布を採用する場合は、粒径(μm)に対する頻度(%)(体積基準)をプロットした粒径分布チャートにおいて、0.1μm以上1.0μm未満の範囲(第1粒径範囲)の最大頻度(%)をV1MAX、1.0μm以上4.0μm未満の範囲(第2粒径範囲)の最大頻度(%)をV2MAXとしたとき、V1MAXに対するV2MAXの比(V2MAX/V1MAX)の値が所定の範囲内にあることを、正極合材液の合格条件として設定することができる。合格範囲は、調製条件(攪拌時間、速度等)の異なる複数の正極合材液サンプルについて測定されたV2MAX/V1MAXと、対応する正極合材液を用いてなる電池の性能との相関性に基づき決定することができる。例えば、所定の速度で攪拌時間を異ならせた正極合材液を用意し、各正極合材液サンプルのV2MAX/V1MAXと、対応する正極合材液を用いてなる電池の性能とを照らし合わせることにより、V2MAX/V1MAXの好ましい範囲(合格範囲)を規定することができる。さらには、合格範囲の正極合材液の調製時に採用した攪拌条件(この例においては、上記所定の攪拌速度と合格範囲のV2MAX/V1MAXに対応する攪拌時間の範囲)を次回からの正極合材液調製に適用することにより、合格基準の正極合材液を効率よく調製することができる。好ましい一態様では、例えば、V2MAX/V1MAXが0.2〜20程度の範囲にあることを合格条件とすることができる。上記合格条件(V2MAX/V1MAXの範囲)の上限を15としてもよく、10としてもよく、あるいは5としてもよい。また、上記合格条件の下限を0.5としてもよく、あるいは1としてもよい。例えば、V2MAX/V1MAXが0.5〜10(典型的には1〜5)程度の範囲にあることを合格条件として設定してもよい。なお、第1粒径範囲または第2粒径範囲において最大頻度がはっきりとしたピークとして検出されない場合(該当範囲において上昇カーブまたは下降カーブのみが現れた場合)、最大頻度としては、該当粒径範囲内の測定点における頻度の最大値(すなわち、該範囲における上昇カーブの最大頻度(すなわち、該範囲内におけるカーブの終点)または下降カーブの最大頻度(すなわち、該範囲内におけるカーブの起点))を採用するものとする。 When the particle size distribution is adopted as an index for grasping the dispersion state of the positive electrode mixture liquid, in the particle size distribution chart in which the frequency (%) (volume basis) with respect to the particle size (μm) is plotted, 0.1 μm or more The maximum frequency (%) in the range less than 1.0 μm (first particle size range) is V 1MAX , and the maximum frequency (%) in the range from 1.0 μm to less than 4.0 μm (second particle size range) is V 2MAX . when, that the value of the ratio of V 2MAX for V 1MAX (V 2MAX / V 1MAX ) is within a predetermined range can be set as a pass condition for positive electrode material liquid. The acceptable range is a correlation between V 2MAX / V 1MAX measured for a plurality of positive electrode mixture liquid samples with different preparation conditions (stirring time, speed, etc.) and the performance of the battery using the corresponding positive electrode mixture liquid. Can be determined based on For example, positive electrode mixture liquids with different stirring times at a predetermined speed are prepared, and the V 2MAX / V 1MAX of each positive electrode mixture liquid sample and the performance of the battery using the corresponding positive electrode mixture liquid are illuminated. By combining them, a preferable range (acceptable range) of V 2MAX / V 1MAX can be defined. Furthermore, the stirring conditions employed when preparing the positive electrode mixture solution in the acceptable range (in this example, the predetermined stirring speed and the stirring time range corresponding to V 2MAX / V 1MAX in the acceptable range) are determined from the next positive electrode. By applying it to the preparation of the composite material liquid, it is possible to efficiently prepare the acceptance-standard positive electrode composite liquid. In a preferable embodiment, for example, it can be set as a pass condition that V 2MAX / V 1MAX is in the range of about 0.2 to 20. The upper limit of the pass condition (the range of V 2MAX / V 1MAX ) may be 15, 10 or 5. Further, the lower limit of the pass condition may be 0.5 or 1. For example, it may be set as a passing condition that V 2MAX / V 1MAX is in a range of about 0.5 to 10 (typically 1 to 5). When the maximum frequency is not detected as a clear peak in the first particle size range or the second particle size range (when only an ascending curve or a descending curve appears in the corresponding range), the maximum frequency is the corresponding particle size range. The maximum frequency (ie, the maximum frequency of the rising curve in the range (ie, the end point of the curve in the range) or the maximum frequency of the falling curve (ie, the starting point of the curve in the range)) Shall be adopted.

液体中に分散する粒子のゼータ電位は、該粒子の表面電荷の影響を受けない領域(該粒子から十分に離れた電気的に中性の領域)の電位をゼロとして、粒子周辺に存在するイオンに影響を及ぼす限界の界面(該イオンを引き連れて移動可能な境界面;すべり面)における電位として定義される。   The zeta potential of a particle dispersed in a liquid is defined as ions existing in the vicinity of the particle, with the potential in a region not affected by the surface charge of the particle (an electrically neutral region sufficiently away from the particle) being zero. It is defined as the potential at the boundary interface (the boundary surface that can move with the ions; slip surface) that affects the surface.

電極合材液のゼータ電位の測定は、例えば、市販のゼータ電位測定機器を用いて実施すればよい。例えば、Dispersion Technology社(米国)(日本取扱:日本ルフト社)製)、型式「DT−1200」もしくはその相当品を好ましく使用することができる。典型的には、上記正極合材液サンプルを入れたセルを光学顕微鏡で拡大して直流を印加し、測定対象の導電材粒子を選択し、該導電材粒子の電気泳動移動度(移動速度)を測定する。かかる測定を異なる5〜6個の導電材粒子に対して行い、移動速度の算術平均を求める。得られた算術平均値をHenryの式によりゼータ電位に換算する。測定条件は適宜設定すればよく、多少条件が異なっても所望の測定条件に換算することが可能だが、典型的には、25℃程度の室温で実施することが好ましい。ここに開示される技術において、ゼータ電位の測定は、正極合材液の調製直後に実施してもよく、あるいは調製後1〜3日経過した時点で実施してもよい。   The measurement of the zeta potential of the electrode mixture solution may be performed using, for example, a commercially available zeta potential measuring instrument. For example, Dispersion Technology (USA) (manufactured in Japan: Nippon Luft), model “DT-1200” or an equivalent thereof can be preferably used. Typically, the cell containing the positive electrode mixture liquid sample is expanded with an optical microscope, a direct current is applied, the conductive material particles to be measured are selected, and the electrophoretic mobility (movement speed) of the conductive material particles Measure. This measurement is performed on 5 to 6 different conductive material particles, and the arithmetic average of the moving speed is obtained. The obtained arithmetic average value is converted into a zeta potential by the Henry equation. The measurement conditions may be set as appropriate and can be converted to the desired measurement conditions even if the conditions are somewhat different, but it is typically preferable to carry out at a room temperature of about 25 ° C. In the technology disclosed herein, the zeta potential may be measured immediately after the preparation of the positive electrode mixture solution, or may be performed after 1 to 3 days have elapsed since the preparation.

上記正極合材液の分散状態を把握するための指標としてゼータ電位を採用する場合は、ゼータ電位が所定の範囲にあることを合格条件として設定することができる。合格範囲は、調製条件(攪拌時間、速度等)の異なる複数の正極合材液サンプルについて測定されたゼータ電位と対応する正極合材液を用いてなる電池の性能との相関性に基づき決定することができる。例えば、所定の速度で攪拌時間を異ならせた正極合材液を用意し、各正極合材液サンプルのゼータ電位と、対応する正極合材液を用いてなる電池の性能とを照らし合わせることでゼータ電位の好ましい範囲(合格範囲)を規定することができる。さらには、合格範囲の正極合材液の調製時に採用した攪拌条件を次回からの正極合材液調製に適用することにより、合格基準の正極合材液を効率よく調製することができる。好ましい一態様では、例えば、ゼータ電位が−10mV〜−5mV程度の範囲にあることを合格条件として設定することができる。   When the zeta potential is adopted as an index for grasping the dispersion state of the positive electrode mixture liquid, it can be set as a passing condition that the zeta potential is in a predetermined range. The acceptable range is determined based on the correlation between the zeta potential measured for a plurality of positive electrode mixture liquid samples with different preparation conditions (stirring time, speed, etc.) and the performance of the battery using the corresponding positive electrode mixture liquid. be able to. For example, by preparing positive electrode mixture liquids with different stirring times at a predetermined speed, and comparing the zeta potential of each positive electrode mixture liquid sample with the performance of the battery using the corresponding positive electrode mixture liquid A preferable range (acceptable range) of the zeta potential can be defined. Furthermore, by applying the stirring conditions employed in the preparation of the positive electrode mixture liquid in the acceptable range to the subsequent preparation of the positive electrode mixture liquid, an acceptable reference positive electrode mixture liquid can be efficiently prepared. In a preferred embodiment, for example, it can be set as a pass condition that the zeta potential is in the range of about −10 mV to −5 mV.

電極合材液の導電率は、例えば、市販の導電率計(例えば、電極式によるものを好ましく採用し得る。)を用いて測定することができる。典型的には、導電率が既知の標準液を体積の決まったセルに入れて抵抗値を測定し、セル定数を求めた上で、測定対象の正極合材液の抵抗値を同じ体積のセルを用いて測定することで導電率を算出ことができる。抵抗値の測定には、二重円筒管電流測定、交流インピーダンス法等を採用することが好ましい。例えば、25℃程度の常温において、二重円筒管電流測定では周波数1〜10Hz程度のSine波を印加し、交流インピーダンス法では周波数1kHz程度の交流を印加して測定するとよい。   The conductivity of the electrode mixture solution can be measured using, for example, a commercially available conductivity meter (for example, an electrode type can be preferably used). Typically, a standard solution with a known conductivity is placed in a cell with a fixed volume, the resistance value is measured, the cell constant is obtained, and then the resistance value of the positive electrode mixture liquid to be measured is the same volume cell. The conductivity can be calculated by measuring using. For measuring the resistance value, it is preferable to employ a double cylindrical tube current measurement, an AC impedance method, or the like. For example, at a room temperature of about 25 ° C., a sine wave having a frequency of about 1 to 10 Hz may be applied in a double cylindrical tube current measurement, and an alternating current having a frequency of about 1 kHz may be applied in an AC impedance method.

上記正極合材液の分散状態を把握するための指標として導電率を採用する場合は、導電率が所定の範囲にあることを合格条件として設定することができる。合格範囲は、調製条件(攪拌時間、速度等)の異なる複数の正極合材液サンプルについて測定された導電率と対応する正極合材液を用いてなる電池の性能との相関性に基づき決定することができる。例えば、所定の速度で攪拌時間を異ならせた正極合材液を用意し、各正極合材液サンプルの導電率と、対応する正極合材液を用いてなる電池の性能とを照らし合わせることで、導電率の好ましい範囲(合格範囲)を規定することができる。さらには、合格範囲の正極合材液の調製時に採用した攪拌条件を次回からの正極合材液調製に適用することにより合格基準の正極合材液を効率よく調製することができる。好ましい一態様では、例えば、導電率が1×10−4〜5×10−4S/m程度の範囲にあることを合格条件として設定することができる。 When the conductivity is adopted as an index for grasping the dispersion state of the positive electrode mixture liquid, it can be set as a passing condition that the conductivity is in a predetermined range. The acceptable range is determined based on the correlation between the conductivity measured for a plurality of positive electrode mixture liquid samples with different preparation conditions (stirring time, speed, etc.) and the performance of the battery using the corresponding positive electrode mixture liquid. be able to. For example, by preparing a positive electrode mixture liquid with different stirring times at a predetermined speed, and comparing the conductivity of each positive electrode mixture liquid sample with the performance of the battery using the corresponding positive electrode mixture liquid The preferable range (acceptable range) of electrical conductivity can be specified. Furthermore, the acceptance-standard positive electrode mixture liquid can be efficiently prepared by applying the stirring conditions employed in the preparation of the positive electrode mixture liquid in the acceptable range to the subsequent preparation of the positive electrode mixture liquid. In a preferred embodiment, for example, it can be set as a pass condition that the conductivity is in the range of about 1 × 10 −4 to 5 × 10 −4 S / m.

以下、図面を参照しつつ、ここに開示される技術の適用対象たるリチウムイオン二次電池について、電極体と非水電解液とが角型形状の電池ケースに収容された態様のリチウムイオン二次電池を例にして更に詳しく説明するが、本発明の適用対象をかかる実施形態に限定することを意図したものではない。すなわち、本発明に係るリチウムイオン二次電池その他の非水二次電池の形状は特に限定されず、その電池ケース、電極体等は、用途や容量に応じて、素材、形状、大きさ等を適宜選択することができる。例えば、電池ケースの形状は、直方体状、扁平形状、円筒形状等であり得る。なお、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略又は簡略化することがある。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。   Hereinafter, with reference to the drawings, for a lithium ion secondary battery to which the technology disclosed herein is applied, a lithium ion secondary battery in which an electrode body and a non-aqueous electrolyte are housed in a rectangular battery case The battery will be described in more detail as an example, but the application target of the present invention is not intended to be limited to such an embodiment. That is, the shape of the lithium ion secondary battery and other non-aqueous secondary batteries according to the present invention is not particularly limited, and the battery case, electrode body, etc. are made of materials, shapes, sizes, etc. according to the application and capacity. It can be selected appropriately. For example, the shape of the battery case may be a rectangular parallelepiped shape, a flat shape, a cylindrical shape, or the like. In addition, in the following drawings, the same code | symbol is attached | subjected to the member and site | part which show | plays the same effect | action, and the overlapping description may be abbreviate | omitted or simplified. In addition, the dimensional relationships (length, width, thickness, etc.) in each drawing do not reflect actual dimensional relationships.

本実施形態に係るリチウムイオン二次電池100は、図1,2に示されるように、捲回電極体20が、非水電解液90とともに、該電極体20の形状に対応した扁平な箱状の電池ケース10に収容された構成を有する、ケース10の開口部12は蓋体14により塞がれている。蓋体14には、外部接続用の正極端子38および負極端子48が、それら端子の一部が蓋体14の表面側に突出するように設けられている。   As shown in FIGS. 1 and 2, in the lithium ion secondary battery 100 according to the present embodiment, the wound electrode body 20 together with the nonaqueous electrolytic solution 90 has a flat box shape corresponding to the shape of the electrode body 20. The opening 12 of the case 10 having a configuration accommodated in the battery case 10 is closed by a lid 14. The lid body 14 is provided with a positive terminal 38 and a negative terminal 48 for external connection so that a part of the terminals protrudes to the surface side of the lid body 14.

上記電極体20は、長尺シート状の正極集電体32の表面に正極活物質層34が形成された正極シート30と、長尺シート状の負極集電体42の表面に負極活物質層44が形成された負極シート40とを、2枚の長尺シート状のセパレータ50と共に重ね合わせて捲回し、得られた捲回体を側面方向から押圧して拉げさせることによって扁平形状に成形されている。かかる構成の電池100は、例えば、ケース10の開口部12から電極体20を内部に収容し、該ケース10の開口部12に蓋体14を取り付けた後、蓋体14に設けられた電解液注入孔(図示せず)から電解液90を注入し、次いで上記注入孔を塞ぐことによって構築することができる。   The electrode body 20 includes a positive electrode sheet 30 in which a positive electrode active material layer 34 is formed on the surface of a long sheet-like positive electrode current collector 32, and a negative electrode active material layer on the surface of a long sheet-like negative electrode current collector 42. The negative electrode sheet 40 on which the electrode 44 is formed is rolled up with two long sheet-like separators 50, and the obtained wound body is pressed from the side direction and ablated to form a flat shape. Has been. In the battery 100 having such a configuration, for example, the electrode body 20 is accommodated in the opening 10 of the case 10, the lid body 14 is attached to the opening 12 of the case 10, and then the electrolyte provided in the lid body 14. It can be constructed by injecting an electrolytic solution 90 from an injection hole (not shown) and then closing the injection hole.

上記正極シート30の長手方向に沿う一方の端部は、正極集電体32が露出している。すなわち、該端部には、正極活物質層34が形成されていないか、形成後に除去されている。同様に、捲回される負極シート40の長手方向に沿う一方の端部は、負極集電体42が露出している。そして、正極集電体32の該露出端部に正極端子38が、負極集電体42の該露出端部には負極端子48がそれぞれ接合され、上記扁平形状に形成された捲回電極体20の正極シート30または負極シート40と電気的に接続されている。正負極端子38,48と正負極集電体32,42とは、例えば超音波溶接、抵抗溶接等によりそれぞれ接合することができる。   The positive electrode current collector 32 is exposed at one end portion along the longitudinal direction of the positive electrode sheet 30. That is, the positive electrode active material layer 34 is not formed at the end, or is removed after the formation. Similarly, the negative electrode current collector 42 is exposed at one end portion along the longitudinal direction of the wound negative electrode sheet 40. Then, the positive electrode terminal 38 is joined to the exposed end portion of the positive electrode current collector 32, and the negative electrode terminal 48 is joined to the exposed end portion of the negative electrode current collector 42, respectively. The positive electrode sheet 30 or the negative electrode sheet 40 is electrically connected. The positive and negative terminals 38 and 48 and the positive and negative current collectors 32 and 42 can be joined by, for example, ultrasonic welding, resistance welding, or the like.

上記正極活物質層34は、例えば、予め設定した合格条件を満たす正極合材液を正極集電体32に付与し、該合材液を乾燥させることにより好ましく作製することができる。   The positive electrode active material layer 34 can be preferably produced, for example, by applying a positive electrode mixture liquid satisfying a preset acceptance condition to the positive electrode current collector 32 and drying the mixture liquid.

正極集電体32には、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、アルミニウムまたはアルミニウムを主成分とする合金を用いることができる。正極集電体32の形状は、リチウムイオン二次電池の形状等に応じて異なり得るため、特に制限はなく、棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。本実施形態のように捲回電極体20を備えるリチウムイオン二次電池100では、例えば、厚みが10μm〜30μm程度のアルミニウムシートを正極集電体32として好ましく使用し得る。   For the positive electrode current collector 32, a conductive member made of a metal having good conductivity is preferably used. For example, aluminum or an alloy containing aluminum as a main component can be used. The shape of the positive electrode current collector 32 may vary depending on the shape of the lithium ion secondary battery, and is not particularly limited, and may be various forms such as a rod shape, a plate shape, a sheet shape, a foil shape, and a mesh shape. . In the lithium ion secondary battery 100 including the wound electrode body 20 as in the present embodiment, for example, an aluminum sheet having a thickness of about 10 μm to 30 μm can be preferably used as the positive electrode current collector 32.

また、上記負極活物質層44は、例えば、負極活物質を、結着剤(バインダ)等ともに適当な溶媒に分散させたペーストまたはスラリー状の組成物(負極合材液)を負極集電体42に付与し、該組成物を乾燥させることにより好ましく作製することができる。   The negative electrode active material layer 44 is made of, for example, a negative electrode current collector made of a paste or slurry composition (negative electrode mixture liquid) in which a negative electrode active material is dispersed in an appropriate solvent together with a binder or the like. It can preferably be prepared by applying to 42 and drying the composition.

負極活物質としては、従来からリチウムイオン二次電池に用いられる物質の一種または二種以上を特に限定なく使用することができる。例えば、好適な負極活物質としてカーボン粒子が挙げられる。少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)が好ましく用いられる。いわゆる黒鉛質のもの(グラファイト)、難黒鉛化炭素質のもの(ハードカーボン)、易黒鉛化炭素質のもの(ソフトカーボン)、これらを組み合わせた構造を有するもののいずれの炭素材料も好適に使用され得る。
上記負極活物質層に含まれる負極活物質の量は特に限定されず、好ましくは90〜99質量%程度、より好ましくは95〜99質量%程度とすることができる。
As the negative electrode active material, one type or two or more types of materials conventionally used in lithium ion secondary batteries can be used without any particular limitation. For example, a carbon particle is mentioned as a suitable negative electrode active material. A particulate carbon material (carbon particles) containing a graphite structure (layered structure) at least partially is preferably used. Any carbon material of a so-called graphitic material (graphite), non-graphitizable carbon material (hard carbon), easily graphitized carbon material (soft carbon), or a combination of these materials is preferably used. obtain.
The amount of the negative electrode active material contained in the negative electrode active material layer is not particularly limited, and is preferably about 90 to 99% by mass, more preferably about 95 to 99% by mass.

結着剤には、上述の正極と同様のものを、一種のみを単独で、または二種以上を組み合わせて用いることができる。結着剤の添加量は、負極活物質の種類や量に応じて適宜選択すればよい。   As the binder, the same positive electrode as that described above can be used alone or in combination of two or more. What is necessary is just to select the addition amount of a binder suitably according to the kind and quantity of a negative electrode active material.

負極集電体42としては、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、銅または銅を主成分とする合金を用いることができる。また、負極集電体42の形状は、リチウムイオン二次電池の形状等に応じて異なり得るため、特に制限はなく、棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。本実施形態のように捲回電極体20を備えるリチウムイオン二次電池100では、例えば、厚みが5μm〜30μm程度の銅製シートを負極集電体42として好ましく使用し得る。   As the negative electrode current collector 42, a conductive member made of a metal having good conductivity is preferably used. For example, copper or an alloy containing copper as a main component can be used. In addition, the shape of the negative electrode current collector 42 may vary depending on the shape of the lithium ion secondary battery and the like, and thus is not particularly limited, and may be various forms such as a rod shape, a plate shape, a sheet shape, a foil shape, and a mesh shape. possible. In the lithium ion secondary battery 100 including the wound electrode body 20 as in the present embodiment, for example, a copper sheet having a thickness of about 5 μm to 30 μm can be preferably used as the negative electrode current collector 42.

また、正極シート30および負極シート40と重ね合わせて使用されるセパレータ50としては、一般的なリチウムイオン二次電池に用いられる各種セパレータを特に制限することなく使用することができる。例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂から成る多孔質フィルムを好適に使用し得る。該フィルムは単層であってもよく多層であってもよい。かかる樹脂フィルムにチタニア(酸化チタン;TiO)、アルミナ、シリカ、マグネシア、ジルコニア、酸化亜鉛、酸化鉄、セリア、イットリア等のセラミックス粒子を一種または二種以上含む無機フィラー層が付与されたものを使用してもよい。セパレータの厚みは適宜選択すればよい。 Moreover, as the separator 50 used by overlapping with the positive electrode sheet 30 and the negative electrode sheet 40, various separators used for a general lithium ion secondary battery can be used without any particular limitation. For example, a porous film made of a polyolefin resin such as polyethylene and polypropylene can be suitably used. The film may be a single layer or a multilayer. A resin film provided with an inorganic filler layer containing one or more ceramic particles such as titania (titanium oxide; TiO 2 ), alumina, silica, magnesia, zirconia, zinc oxide, iron oxide, ceria, and yttria. May be used. The thickness of the separator may be selected as appropriate.

非水電解液90は、適当な電解質を非水溶媒に溶解して調製することができる。電解質としては、一般的なリチウムイオン二次電池に用いられる電解質を特に制限なく使用することができる。例えば、LiPF,LiBF,LiClO,LiAsF,LiCFSO,LiCSO,LiN(CFSO,LiC(CFSO,LiI等から選択される一種または二種以上のリチウム塩を用いることができる。電解液中の電解質の濃度は特に制限されず、例えば従来のリチウムイオン二次電池に用いられる電解液の濃度と同等とすることができる。通常は、支持電解質を凡そ0.1mol/L〜5mol/L(例えば凡そ0.8mol/L〜1.5mol/L)程度の濃度で含有する非水電解液を好ましく使用することができる。 The nonaqueous electrolytic solution 90 can be prepared by dissolving a suitable electrolyte in a nonaqueous solvent. As the electrolyte, an electrolyte used for a general lithium ion secondary battery can be used without particular limitation. For example, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiI, etc. are selected. One or more lithium salts can be used. The concentration of the electrolyte in the electrolytic solution is not particularly limited, and can be, for example, equivalent to the concentration of the electrolytic solution used in a conventional lithium ion secondary battery. Usually, a nonaqueous electrolytic solution containing a supporting electrolyte at a concentration of about 0.1 mol / L to 5 mol / L (for example, about 0.8 mol / L to 1.5 mol / L) can be preferably used.

非水電解液90に用いられる有機溶媒(非水溶媒)としては、カーボネート類、エステル類、エーテル類、ニトリル類、スルホン類、ラクトン類等の非プロトン性溶媒を好ましく用いることができる。例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、1,2−ジメトキシエタン(DME)、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキサン、1,3−ジオキソラン、ジエチレングリコールジメチルエーテル、エチレングリコールジメチルエーテル、アセトニトリル、プロピオニトリル、ニトロメタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、γ−ブチロラクトン(BL)等の、一般にリチウムイオン二次電池に用いられる有機溶媒を、一種のみを単独で、あるいは二種以上を組み合わせて用いることができる。   As the organic solvent (nonaqueous solvent) used for the nonaqueous electrolytic solution 90, aprotic solvents such as carbonates, esters, ethers, nitriles, sulfones, and lactones can be preferably used. For example, ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), 1,2-dimethoxyethane (DME), 1,2-diethoxyethane , Tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, 1,3-dioxolane, diethylene glycol dimethyl ether, ethylene glycol dimethyl ether, acetonitrile, propionitrile, nitromethane, N, N-dimethylformamide, dimethyl sulfoxide, sulfolane, γ-butyrolactone (BL), etc. The organic solvents generally used for lithium ion secondary batteries can be used alone or in combination of two or more.

ここに開示される非水二次電池(典型的にはリチウムイオン二次電池)は、各種用途向けの二次電池として利用可能である。例えば、図3に示すように、自動車等の車両1に搭載される車両駆動用モータ(電動機)の電源として、ここに開示されるいずれかの非水二次電池100を好適に利用することができる。車両1の種類は特に限定されないが、典型的には、ハイブリッド自動車、電気自動車、燃料電池自動車等である。かかる非水二次電池100は、単独で使用されてもよく、直列および/または並列に複数接続されてなる組電池の形態で使用されてもよい。   The non-aqueous secondary battery (typically lithium ion secondary battery) disclosed here can be used as a secondary battery for various applications. For example, as shown in FIG. 3, any non-aqueous secondary battery 100 disclosed herein can be suitably used as a power source for a vehicle driving motor (electric motor) mounted on a vehicle 1 such as an automobile. it can. Although the kind of vehicle 1 is not specifically limited, Typically, they are a hybrid vehicle, an electric vehicle, a fuel cell vehicle, etc. Such non-aqueous secondary battery 100 may be used alone, or may be used in the form of an assembled battery that is connected in series and / or in parallel.

以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。   Several examples relating to the present invention will be described below, but the present invention is not intended to be limited to the specific examples.

<例1>
光学顕微鏡(OLYMPUS社製、型式「BH−2」)により測定した数平均粒径が0.035μmのアセチレンブラック(AB)(電気化学工業株式会社のデンカブラック(登録商標)粉状品)(導電材)と、粉末状PVDF(結着剤)とを、これらの質量比が8:2となるように、N−メチル−2−ピロリドン(NMP)と混合し、浅田鉄工株式会社製の攪拌機、商品名ピコグレンミル、型式「PCM−L」を用い、周速10m/secの条件(第一攪拌条件)で60分間攪拌混合することにより、固形分濃度(NV)が20%の正極用導電材分散液を調製した。この導電材分散液に、正極活物質としてのLiNi1/3Mn/3Co/3(上述した光学顕微鏡観察に基づく数平均粒径が10μmの活物質粒子)を、該分散液10部(固形分基準)当たり90部添加し、プライミクス社製の攪拌機、T.K.ハイビスディスパーミックス(商標)、型式「3D−5」を用いて、プラネタリーミクサー:40rpm、ホモディスパー:2500rpmの条件(第二攪拌条件)で20分間攪拌混合して、NV55%の正極合材液を得た。この正極合材液につき動的光散乱法に準じて測定されたV1MAXは1%であり、V2MAXは20%であった。この正極合材液を、厚さ15μmの長尺状アルミニウム箔の両面に塗付し、乾燥・圧延して、総厚(両正極活物質層および集電箔の厚みの合計)が180μm、正極活物質層密度が3.2g/cmの正極シートを作成した。
<Example 1>
Acetylene black (AB) having a number average particle diameter of 0.035 μm measured by an optical microscope (made by OLYMPUS, model “BH-2”) (DENKA BLACK (registered trademark) powder product of Denki Kagaku Kogyo Co., Ltd.) Material) and powdered PVDF (binder) are mixed with N-methyl-2-pyrrolidone (NMP) so that the mass ratio thereof is 8: 2, and a stirrer manufactured by Asada Tekko Co., Ltd. Conductive material dispersion for positive electrode having a solid content concentration (NV) of 20% by stirring and mixing for 60 minutes under the condition (first stirring condition) at a peripheral speed of 10 m / sec using a product name Pico Glen Mill, model “PCM-L” A liquid was prepared. LiNi 1/3 Mn / 3 Co / 3O 2 (active material particles having a number average particle diameter of 10 μm based on the above-mentioned optical microscope observation) as a positive electrode active material was added to this conductive material dispersion liquid 10 parts of the dispersion liquid. 90 parts are added per (solid content basis), and a stirrer manufactured by Primics Co., Ltd. K. Using a Hibis Disper mix (trademark), model “3D-5”, stirring and mixing for 20 minutes under conditions (second stirring conditions) of planetary mixer: 40 rpm and homodisper: 2500 rpm, a positive electrode mixture solution of NV55% Got. V 1MAX measured according to the dynamic light scattering method for this positive electrode mixture solution was 1%, and V 2MAX was 20%. This positive electrode mixture solution was applied to both sides of a 15 μm thick long aluminum foil, dried and rolled, and the total thickness (the total thickness of both positive electrode active material layers and current collector foil) was 180 μm. A positive electrode sheet having an active material layer density of 3.2 g / cm 3 was prepared.

天然黒鉛粒子とSBRとCMCとを、これらの質量比が98:1:1となるようにイオン交換水と混合して、NV50%の負極合材液を得た。これを、厚さ10μmの長尺状銅箔の両面に塗付し、乾燥・圧延して、総厚が170μm、負極活物質層密度が1.5g/cmの負極シートを作成した。
EC/EMC=3/7(体積比)の混合溶媒にLiPFを濃度が1Mとなるように溶解して非水電解液を調製した。
上記正極シートと負極シートとを、厚さ21μmの長尺状多孔質ポリエチレンシート2枚とともに積層し、その積層体を長手方向に捲回して電極体を得た。得られた捲回電極体を、上記非水電解液とともに円筒型容器(直径18mm、高さ65mmの円筒型)に収容し、該容器を封止して、設計容量が2000mAhの18650型電池200(図4)を構築した。
Natural graphite particles, SBR, and CMC were mixed with ion-exchanged water so that the mass ratio thereof was 98: 1: 1, to obtain a negative electrode mixture solution with an NV of 50%. This was applied to both sides of a long copper foil having a thickness of 10 μm, dried and rolled to prepare a negative electrode sheet having a total thickness of 170 μm and a negative electrode active material layer density of 1.5 g / cm 3 .
A non-aqueous electrolyte was prepared by dissolving LiPF 6 in a mixed solvent of EC / EMC = 3/7 (volume ratio) to a concentration of 1M.
The positive electrode sheet and the negative electrode sheet were laminated together with two long porous polyethylene sheets having a thickness of 21 μm, and the laminate was wound in the longitudinal direction to obtain an electrode body. The obtained wound electrode body is housed in a cylindrical container (cylindrical type having a diameter of 18 mm and a height of 65 mm) together with the non-aqueous electrolyte, the container is sealed, and the 18650 type battery 200 having a design capacity of 2000 mAh. (FIG. 4) was constructed.

<例2>
第一攪拌条件での撹拌時間を90分とした以外は例1と同様にして、V1MAXが1%、V2MAXが15%、NVが55%の正極合材液を得た。この正極合材液を用いた点以外は例1と同様にして18650型電池を得た。
<例3>
第一攪拌条件での撹拌時間を120分とした以外は例1と同様にして、V1MAXが5%、V2MAXが10%、NVが55%の正極合材液を得た。この正極合材液を用いた点以外は例1と同様にして18650型電池を構築した。
<例4>
第一攪拌条件での撹拌時間を240分とした以外は例1と同様にして、V1MAXが3%、V2MAXが3%、NVが55%の正極合材液を得た。この正極合材液を用いた点以外は例1と同様にして18650型電池を得た。
<Example 2>
A positive electrode mixture solution having 1% V 1MAX , 15% V 2MAX , and 55% NV was obtained in the same manner as in Example 1 except that the stirring time under the first stirring condition was 90 minutes. An 18650 type battery was obtained in the same manner as in Example 1 except that this positive electrode mixture solution was used.
<Example 3>
A positive electrode mixture solution having 5% V 1MAX , 10% V 2MAX and 55% NV was obtained in the same manner as in Example 1 except that the stirring time under the first stirring condition was 120 minutes. A 18650 type battery was constructed in the same manner as in Example 1 except that this positive electrode mixture solution was used.
<Example 4>
A positive electrode mixture solution having 3% V 1MAX , 3% V 2MAX and 55% NV was obtained in the same manner as in Example 1 except that the stirring time under the first stirring condition was 240 minutes. An 18650 type battery was obtained in the same manner as in Example 1 except that this positive electrode mixture solution was used.

<例5>
第一攪拌条件での撹拌時間を480分とした以外は例1と同様にして、V1MAXが5%、V2MAXが1%、NVが55%の正極合材液を得た。この正極合材液を用いた点以外は例1と同様にして18650型電池を得た。
<例6>
導電材として、算術平均粒子径が約100μmのカーボンブラック粉末(東海カーボン株式会社製、品番「SRF−LS」)を使用した以外は例1と同様にして、V1MAX,V2MAXがいずれも0%(チャート上不検出)、NV55%の正極合材液を得た。この正極合材液を用いた点以外は例1と同様にして18650型電池を得た。
<Example 5>
A positive electrode mixture solution having 5% V 1MAX , 1 % V 2MAX and 55% NV was obtained in the same manner as in Example 1 except that the stirring time under the first stirring condition was 480 minutes. An 18650 type battery was obtained in the same manner as in Example 1 except that this positive electrode mixture solution was used.
<Example 6>
V 1MAX and V 2MAX are both 0 as in Example 1 except that carbon black powder (product number “SRF-LS” manufactured by Tokai Carbon Co., Ltd.) having an arithmetic average particle size of about 100 μm was used as the conductive material. % (Not detected on the chart) and a positive electrode mixture solution of NV55% were obtained. An 18650 type battery was obtained in the same manner as in Example 1 except that this positive electrode mixture solution was used.

<例7>
第一攪拌条件での撹拌時間を45分とした以外は例1と同様にして、V1MAXが1%、V2MAXが23%、NVが55%の正極合材液を得た。この正極合材液を用いた点以外は例1と同様にして18650型電池を得た。
<例8>
第一攪拌条件での撹拌時間を30分とした以外は例1と同様にして、V1MAXが0.5%、V2MAXが25%、NV55%の正極合材液を得た。この正極合材液を用いた点以外は例1と同様にして18650型電池を得た。
<例9>
第一攪拌条件での撹拌時間を960分とした以外は例1と同様にして、V1MAXが11%、V2MAXが2%、NVが55%の正極合材液を得た。この正極合材液を用いた点以外は例1と同様にして18650型電池を得た。
<Example 7>
A positive electrode mixture solution having V 1MAX of 1%, V2MAX of 23% and NV of 55% was obtained in the same manner as in Example 1 except that the stirring time under the first stirring condition was 45 minutes. An 18650 type battery was obtained in the same manner as in Example 1 except that this positive electrode mixture solution was used.
<Example 8>
A positive electrode mixture solution with V 1MAX of 0.5%, V 2MAX of 25% and NV of 55% was obtained in the same manner as in Example 1 except that the stirring time under the first stirring condition was 30 minutes. An 18650 type battery was obtained in the same manner as in Example 1 except that this positive electrode mixture solution was used.
<Example 9>
A positive electrode mixture solution with V 1MAX of 11%, V 2MAX of 2% and NV of 55% was obtained in the same manner as in Example 1 except that the stirring time under the first stirring condition was 960 minutes. An 18650 type battery was obtained in the same manner as in Example 1 except that this positive electrode mixture solution was used.

[粒度分布の測定]
例1〜9に係る各正極合材液サンプルにつき、温度20℃にて、動的光散乱法式の粒度分布測定装置(マイクロトラック社(米国)製、型式「UPA−150EX」)を用い、光子相関法の原理に準じて、粒度分布を測定した。粒径0.1μm〜1.0μmの範囲の最大頻度(%)をV1MAX、粒径1.0μm〜4.0μmの範囲の最大頻度(%)をV2MAXとして、V2MAX/V1MAXを求めた。例1〜例9に係る粒度分布チャートをそれぞれ図5〜図13に示す。
[Measurement of particle size distribution]
For each positive electrode mixture liquid sample according to Examples 1 to 9, using a dynamic light scattering method particle size distribution measuring device (model “UPA-150EX”, model “UPA-150EX”) at a temperature of 20 ° C., photon The particle size distribution was measured according to the principle of the correlation method. Maximum frequency in the range of particle sizes 0.1μm~1.0μm a (%) V 1MAX, the maximum frequency of the range of particle sizes 1.0μm~4.0μm (%) as a V 2MAX, seeking V 2MAX / V 1MAX It was. The particle size distribution charts according to Examples 1 to 9 are shown in FIGS.

各電池に対し、以下の測定および評価試験を行った。それらの結果をV2MAX/V1MAXと併せて表1に示す。
[0.2C放電容量の測定]
各電池を、温度20℃にて、0.7C(1400mA)のレート(1Cは、1時間で満充放電可能な電流値を表す。)で両端子間電圧が4.2Vとなるまで定電流(CC)充電し、該電圧値にて電流値が100mAとなるまで定電圧(CV)充電した。次いで、0.2C(400mA)のレートで両端子間電圧が3.0VとなるまでCC放電させ、そのときの放電容量を0.2C放電容量として測定した。
The following measurements and evaluation tests were performed on each battery. The results are shown in Table 1 together with V 2MAX / V 1MAX .
[Measurement of 0.2C discharge capacity]
Each battery was kept at a constant current until the voltage between both terminals reached 4.2 V at a temperature of 20 ° C. and a rate of 0.7 C (1400 mA) (1 C represents a current value that can be fully charged and discharged in 1 hour). (CC) charging was performed, and constant voltage (CV) charging was performed until the current value reached 100 mA at the voltage value. Next, CC discharge was performed at a rate of 0.2 C (400 mA) until the voltage between both terminals reached 3.0 V, and the discharge capacity at that time was measured as a 0.2 C discharge capacity.

[3C放電容量の測定]
各電池を、温度20℃にて、0.7Cのレートで両端子間電圧が4.2VとなるまでCC充電し、該電圧値にて電流値が100mAとなるまでCV充電した。次いで、各電池を温度−15℃に30分間保持した後、同温度にて、3C(6000mA)のレートで両端子間電圧が3.0VとなるまでCC放電させ、そのときの放電容量を3C放電容量として測定した。0.2C放電容量に対する3C放電容量の百分率(%)を、容量比率として算出した。
[Measurement of 3C discharge capacity]
Each battery was CC charged at a temperature of 20 ° C. at a rate of 0.7 C until the voltage between both terminals reached 4.2 V, and CV charged at the voltage value until the current value reached 100 mA. Next, after each battery was held at a temperature of −15 ° C. for 30 minutes, CC discharge was performed at the same temperature at a rate of 3C (6000 mA) until the voltage between both terminals became 3.0 V, and the discharge capacity at that time was 3C. The discharge capacity was measured. The percentage (%) of the 3C discharge capacity with respect to the 0.2C discharge capacity was calculated as the capacity ratio.

[サイクル特性の評価]
各電池に対し、温度40℃において、両端子間電圧が4.2Vとなるまで1Cのレートで充電する操作と、4.2Vから3.0Vまで1Cのレートで放電させる操作とを1充放電サイクルとして、これを500サイクル繰り返した。1サイクル目および500サイクル目の放電容量を、それぞれ初期容量および最終容量として測定した。初期容量に対する最終容量の百分率を、1C容量維持率(%)として求めた。
[Evaluation of cycle characteristics]
One charge / discharge operation for charging each battery at a temperature of 40 ° C. at a rate of 1 C until the voltage between both terminals reaches 4.2 V and for discharging at a rate of 1 C from 4.2 V to 3.0 V This was repeated 500 cycles as a cycle. The discharge capacities at the first cycle and the 500th cycle were measured as an initial capacity and a final capacity, respectively. The percentage of the final capacity with respect to the initial capacity was determined as 1C capacity maintenance rate (%).

Figure 2012256509
Figure 2012256509

表1に示されるとおり、例1〜9の電池はいずれも、穏やかな放電条件(20℃、0.2C放電)では、測定された0.2C放電容量がいずれも2000mAh以上2010mAh以下と設定容量に適合する数値であり、かつ撹拌条件(ここでは上記第一撹拌条件での撹拌時間)の違いに拘わらず、安定した(バラツキの少ない)性能を示した。しかしながら、より厳しい条件である低温急速放電条件(−15℃、3C放電)では、V2MAX/V1MAXが0.2〜20の範囲にある例1〜5の電池と、この範囲外にある例7〜9の電池とで、性能に有意な差が現れた。より具体的には、V2MAX/V1MAXが0.2〜20の範囲にある例1〜5の電池は、容量比率が90%以上と、かかる厳しい使用条件でも上記穏やかな放電条件のときとそれほど変わらない良好な性能を示した。一方、V2MAX/V1MAXが20を超えた例7,例8の電池およびV2MAX/V1MAXが0.2未満であった例9の電池は、3C放電容量が0.2C放電容量よりも15%以上低かった。また、V1MAXおよびV2MAXがいずれも検出されなかった(すなわち、用いられた導電材の粒度分布において0.1μm〜4μmの範囲の頻度が略ゼロであった)例6の電池は、3C放電容量が0.2C放電容量の4分の1にまで低下した。 As shown in Table 1, the batteries of Examples 1 to 9 all had a measured discharge capacity of 2000 mAh or more and 2010 mAh or less under a mild discharge condition (20 ° C., 0.2 C discharge). And a stable (small variation) performance regardless of the difference in the stirring conditions (here, the stirring time in the first stirring condition). However, under the severer conditions of low temperature rapid discharge (−15 ° C., 3C discharge), the batteries of Examples 1 to 5 in which V 2MAX / V 1MAX is in the range of 0.2 to 20 and examples outside this range There was a significant difference in performance between 7 and 9 batteries. More specifically, the batteries of Examples 1 to 5 in which V 2MAX / V 1MAX is in the range of 0.2 to 20 have a capacity ratio of 90% or more, even under the above mild discharge conditions even under such severe use conditions. It showed good performance that did not change much. On the other hand, the batteries of Example 7 and Example 8 in which V 2MAX / V 1MAX exceeded 20 and the battery of Example 9 in which V 2MAX / V 1MAX was less than 0.2 had a 3C discharge capacity higher than the 0.2C discharge capacity. It was 15% lower. Also, V 1MAX and V 2MAX was detected neither (i.e., 0.1Myuemu~4myuemu range of frequencies was almost zero in the particle size distribution of the used were conductive material) of Example 6 batteries, 3C discharge The capacity was reduced to a quarter of the 0.2C discharge capacity.

1Cでの充放電サイクル試験で算出された容量維持率についても、例1〜5の電池はいずれも90%を超える優れたサイクル特性を示した。一方、例7〜9の電池は、いずれもサイクル後の放電容量が初期容量から18%から最大35%も低下した。例6の電池は、サイクル後の放電容量が初期容量の3分の1もなく、中程度の使用条件でも容量の顕著な低下を引き起こした。   Regarding the capacity retention calculated in the charge / discharge cycle test at 1C, the batteries of Examples 1 to 5 all showed excellent cycle characteristics exceeding 90%. On the other hand, in all the batteries of Examples 7 to 9, the discharge capacity after the cycle decreased from 18% from the initial capacity to a maximum of 35%. The battery of Example 6 had a discharge capacity after cycling that was not one third of the initial capacity, and caused a significant decrease in capacity even under moderate usage conditions.

これらの結果は、下記の例10〜19に係る同様の結果と併せ、穏やかな使用条件ではほとんど性能差がない電池であっても、より厳しい使用条件では、その性能に顕著なバラツキ(例えば、撹拌条件の違いに起因するバラツキ)が起こり得ることを示すものである。また、例1〜9に係る正極合材液について、V2MAX/V1MAXが0.2〜20の範囲にあることを合格条件として設定する(例えば、上記合格条件を満たす正極合材液のみを次工程に送る(典型的には、該正極合材液を正極集電体に塗付する))ことが、より厳しい条件下においても性能差(性能バラツキ)の少ない電池を製造する上で有意義であることを示すものである。 These results are combined with the same results according to Examples 10 to 19 below, and even if the battery has little difference in performance under mild use conditions, the performance varies significantly under severe use conditions (for example, This shows that variation due to the difference in stirring conditions may occur. Moreover, the positive-electrode mixture solution of Example 1~9, V 2MAX / V 1MAX is set as pass condition to be in the range of 0.2 to 20 (e.g., only the pass condition is satisfied positive-electrode mixture solution Sending to the next process (typically, applying the positive electrode mixture liquid to the positive electrode current collector) is significant in producing a battery with little performance difference (performance variation) even under more severe conditions. It shows that it is.

<例10>
第一攪拌条件での撹拌時間を120分とした以外は例1と同様にして、後述する方法により測定された導電材のゼータ電位が−7.5mVの正極合材液を得た。この正極合材液を用いた点以外は例1と同様にして18650型電池を得た。
<例11>
第一攪拌条件での撹拌時間を60分とした以外は例1と同様にして、ゼータ電位が−5.0mVの正極合材液を得た。この正極合材液を用いた点以外は例1と同様にして18650型電池を得た。
<例12>
第一攪拌条件での撹拌時間を480分とした以外は例1と同様にして、ゼータ電位が−10.0mVの正極合材液を得た。この正極合材液を用いた点以外は例1と同様にして18650型電池を得た。
<Example 10>
A positive electrode mixture solution having a zeta potential of −7.5 mV of the conductive material measured by the method described later was obtained in the same manner as in Example 1 except that the stirring time under the first stirring condition was 120 minutes. An 18650 type battery was obtained in the same manner as in Example 1 except that this positive electrode mixture solution was used.
<Example 11>
A positive electrode mixture solution having a zeta potential of −5.0 mV was obtained in the same manner as in Example 1 except that the stirring time under the first stirring condition was 60 minutes. An 18650 type battery was obtained in the same manner as in Example 1 except that this positive electrode mixture solution was used.
<Example 12>
A positive electrode mixture solution having a zeta potential of -10.0 mV was obtained in the same manner as in Example 1 except that the stirring time under the first stirring condition was 480 minutes. An 18650 type battery was obtained in the same manner as in Example 1 except that this positive electrode mixture solution was used.

<例13>
第一攪拌条件での撹拌時間を30分とした以外は例1と同様にして、ゼータ電位が−3.5mVの正極合材液を得た。この正極合材液を用いた点以外は例1と同様にして18650型電池を得た。
<例14>
第一攪拌条件での撹拌時間を960分とした以外は例1と同様にして、ゼータ電位が−12.0mVの正極合材液を得た。この正極合材液を用いた点以外は例1と同様にして18650型電池を得た。
<Example 13>
A positive electrode mixture solution having a zeta potential of −3.5 mV was obtained in the same manner as in Example 1 except that the stirring time under the first stirring condition was 30 minutes. An 18650 type battery was obtained in the same manner as in Example 1 except that this positive electrode mixture solution was used.
<Example 14>
A positive electrode mixture solution having a zeta potential of -12.0 mV was obtained in the same manner as in Example 1 except that the stirring time under the first stirring condition was 960 minutes. An 18650 type battery was obtained in the same manner as in Example 1 except that this positive electrode mixture solution was used.

[ゼータ電位の測定]
例10〜14に係る各正極合材液サンプルにつき、温度25℃にて、ゼータ電位測定装置(Dispersion Technology社(米国)(日本取扱:日本ルフト社)製)、型式「DT−1200」)を用い、コロイド振動電流法によってゼータ電位(mV)を求めた。
[Measurement of zeta potential]
For each positive electrode mixture liquid sample according to Examples 10 to 14, at a temperature of 25 ° C., a zeta potential measurement device (available from Dispersion Technology (USA) (Japan handling: Nippon Luft)), model “DT-1200”) The zeta potential (mV) was determined by the colloid oscillating current method.

例10〜14に係る各電池につき、上記と同様の方法にて、0.2C放電容量、3C放電容量、容量比率、容量維持率を測定した。それらの結果を、導電材のゼータ電位と併せて表2に示す。   About each battery which concerns on Examples 10-14, 0.2C discharge capacity, 3C discharge capacity, capacity | capacitance ratio, and capacity | capacitance maintenance factor were measured by the method similar to the above. The results are shown in Table 2 together with the zeta potential of the conductive material.

Figure 2012256509
Figure 2012256509

表2に示されるとおり、例10〜14の電池はいずれも、穏やかな放電条件(20℃、0.2C放電)では、測定された0.2C放電容量が2000mAh以上2010mAh以下と設定容量に適合する値であり、かつ撹拌条件の違いに拘わらず安定した(バラツキの少ない)性能を示した。しかしながら、低温急速放電条件(−15℃、3C放電)では、ゼータ電位が−10mV〜−5mVの範囲にある例10〜12の電池と、この範囲外にある例13、例14の電池とで、性能に有意な差が現れた。より具体的には、ゼータ電位が−10mV〜−5mVの範囲にある例10〜12の電池は、容量比率が90%を超え、かかる厳しい使用条件でも上記穏やかな放電条件のときとそれほど変わらない良好な性能を示した。一方、ゼータ電位が−5mVよりも大きい例13の電池は、3C放電容量が0.2C放電容量より20%近く低下した。また、ゼータ電位が−10mVよりも小さい例14の電池では、3C放電容量が0.2C放電容量の4分の3以下にまで低下した。1Cでの充放電サイクル試験で算出された容量維持率についても、例10〜12の電池はいずれも90%を超える優れたサイクル特性を示した。一方、例13、例14の電池は、いずれもサイクル後の放電容量が初期容量から15%以上低下した。   As shown in Table 2, all of the batteries of Examples 10 to 14 are suitable for the set capacity with a measured 0.2 C discharge capacity of 2000 mAh to 2010 mAh under mild discharge conditions (20 ° C., 0.2 C discharge). And showed stable (small variation) performance regardless of the stirring conditions. However, under low temperature rapid discharge conditions (−15 ° C., 3C discharge), the batteries of Examples 10 to 12 in which the zeta potential is in the range of −10 mV to −5 mV and the batteries of Examples 13 and 14 outside this range are used. A significant difference in performance appeared. More specifically, the batteries of Examples 10 to 12 whose zeta potential is in the range of −10 mV to −5 mV have a capacity ratio exceeding 90%, and even under such severe use conditions, the batteries are not so different from those under the mild discharge conditions. It showed good performance. On the other hand, in the battery of Example 13 having a zeta potential greater than −5 mV, the 3C discharge capacity decreased nearly 20% from the 0.2C discharge capacity. Further, in the battery of Example 14 whose zeta potential was smaller than −10 mV, the 3C discharge capacity decreased to 3/4 or less of the 0.2C discharge capacity. Regarding the capacity retention calculated in the charge / discharge cycle test at 1C, the batteries of Examples 10 to 12 all showed excellent cycle characteristics exceeding 90%. On the other hand, in each of the batteries of Examples 13 and 14, the discharge capacity after the cycle decreased by 15% or more from the initial capacity.

これらの結果は、これらの例に係る正極合材液について、ゼータ電位が−10mV〜−5mVの範囲にあることを合格条件として設定することが、より厳しい条件下においても性能差(性能バラツキ)の少ない電池を製造する上で有意義であることを示すものである。
例10、例13に係る正極合材液サンプルにつき、例1〜9に係る正極合材液サンプルと同様にして粒度分布を測定し、同様にV2MAX/V1MAXを求めた。その結果、例10に係るサンプルはV2MAX/V1MAXが0.5〜10(より詳しくは1〜5)の範囲にあることが確認された。一方、例13に係るサンプルはV2MAX/V1MAX=0.2〜20の合格条件を満たさないことが確認された。
These results show that the positive electrode mixture liquids according to these examples have a zeta potential in the range of −10 mV to −5 mV as a pass condition, and performance differences (performance variations) even under more severe conditions. This indicates that it is significant in manufacturing a battery with a small amount of.
For the positive electrode mixture liquid samples according to Examples 10 and 13, the particle size distribution was measured in the same manner as in the positive electrode mixture liquid samples according to Examples 1 to 9, and V 2MAX / V 1MAX was similarly obtained. As a result, it was confirmed that the sample according to Example 10 had V 2MAX / V 1MAX in the range of 0.5 to 10 (more specifically, 1 to 5). On the other hand, it was confirmed that the sample according to Example 13 did not satisfy the pass condition of V 2MAX / V 1MAX = 0.2-20.

<例15>
第一攪拌条件での撹拌時間を120分とした以外は例1と同様にして、電気伝導度が3×10−4S/mの正極合材液を得た。この正極合材液を用いた点以外は例1と同様にして18650型電池を得た。
<例16>
第一攪拌条件での撹拌時間を480分とした以外は例1と同様にして、電気伝導度が1×10−4S/mの正極合材液を得た。この正極合材液を用いた点以外は例1と同様にして18650型電池を得た。
<例17>
第一攪拌条件での撹拌時間を60分とした以外は例1と同様にして、電気伝導度が5×10−4S/mの正極合材液を得た。この正極合材液を用いた点以外は例1と同様にして18650型電池を得た。
<Example 15>
A positive electrode mixture solution having an electric conductivity of 3 × 10 −4 S / m was obtained in the same manner as in Example 1 except that the stirring time under the first stirring condition was 120 minutes. An 18650 type battery was obtained in the same manner as in Example 1 except that this positive electrode mixture solution was used.
<Example 16>
A positive electrode mixture solution having an electric conductivity of 1 × 10 −4 S / m was obtained in the same manner as in Example 1 except that the stirring time under the first stirring condition was 480 minutes. An 18650 type battery was obtained in the same manner as in Example 1 except that this positive electrode mixture solution was used.
<Example 17>
A positive electrode mixture solution having an electric conductivity of 5 × 10 −4 S / m was obtained in the same manner as in Example 1 except that the stirring time under the first stirring condition was 60 minutes. An 18650 type battery was obtained in the same manner as in Example 1 except that this positive electrode mixture solution was used.

<例18>
第一攪拌条件での撹拌時間を960分とした以外は例1と同様にして、電気伝導度が0.5×10−4S/mの正極合材液を得た。この正極合材液を用いた点以外は例1と同様にして18650型電池を得た。
<例19>
第一攪拌条件での撹拌時間を30分とした以外は例1と同様にして、電気伝導度が7×10−4S/mの正極合材液を得た。この正極合材液を用いた点以外は例1と同様にして18650型電池を得た。
<Example 18>
A positive electrode mixture solution having an electric conductivity of 0.5 × 10 −4 S / m was obtained in the same manner as in Example 1 except that the stirring time under the first stirring condition was 960 minutes. An 18650 type battery was obtained in the same manner as in Example 1 except that this positive electrode mixture solution was used.
<Example 19>
A positive electrode mixture solution having an electric conductivity of 7 × 10 −4 S / m was obtained in the same manner as in Example 1 except that the stirring time under the first stirring condition was 30 minutes. An 18650 type battery was obtained in the same manner as in Example 1 except that this positive electrode mixture solution was used.

[導電率]
例15〜19に係る各正極合材液サンプルにつき、温度25℃にて、導電率計(日本ルフト社から入手可能な導電率計、型式「DT−700」)を用い、二重円筒管電流測定(周波数1〜10HzのSine波)によって測定した抵抗値(mΩ)から導電率(S/m)を求めた。
[conductivity]
For each positive electrode mixture liquid sample according to Examples 15 to 19, at a temperature of 25 ° C., a conductivity meter (conductivity meter available from Nippon Luft Co., model “DT-700”) was used, and a double cylindrical tube current was used. The conductivity (S / m) was determined from the resistance value (mΩ) measured by measurement (Sine wave having a frequency of 1 to 10 Hz).

例15〜19に係る各電池につき、上記と同様の方法にて、0.2C放電容量、3C放電容量、容量比率、容量維持率を測定した。それらの結果を、導電材のゼータ電位と併せて表3に示す。   About each battery which concerns on Examples 15-19, 0.2C discharge capacity, 3C discharge capacity, a capacity | capacitance ratio, and a capacity | capacitance maintenance factor were measured by the method similar to the above. The results are shown in Table 3 together with the zeta potential of the conductive material.

Figure 2012256509
Figure 2012256509

表3に示されるとおり、例15〜19の電池はいずれも、穏やかな放電条件(20℃、0.2C放電)では、測定された0.2C放電容量が2000mAh以上2010mAhと設定容量に適合する値であり、かつ撹拌条件(ここでは上記第二撹拌条件での撹拌時間)の違いに拘わらず、安定した(バラツキの少ない)性能を示した。しかしながら、低温急速放電条件(−15℃、3C放電)では、正極合材液について測定された導電率が1×10−4〜5×10−4S/mの範囲にある例15〜17の電池と、上記範囲外にある例18、19の電池とでは、性能に有意な差が現れた。より具体的には、導電率が1×10−4〜5×10−4S/mの範囲にある例15〜17の電池は、容量比率が90%を超え、かかる厳しい使用条件でも上記穏やかな放電条件のときとそれほど変わらない良好な性能を示した。一方、導電率が1×10−4S/mよりも小さい例18の電池および導電率が5×10−4S/mよりも大きい例19の電池は、3C放電容量が0.2C放電容量より20%またはそれ以上低下した。1Cでの充放電サイクル試験で算出された容量維持率についても、例15〜17の電池はいずれも90%を超える優れたサイクル特性を示した。一方、例18、例19の電池は、いずれもサイクル後の放電容量が初期容量から20%程度またはそれ以上低下した。 As shown in Table 3, all of the batteries of Examples 15 to 19 meet the set capacity of 2000 mAh or more and 2010 mAh in the measured 0.2C discharge capacity under mild discharge conditions (20 ° C., 0.2C discharge). It was a value, and stable (small variation) performance was exhibited regardless of the difference in the stirring conditions (here, the stirring time in the second stirring condition). However, in low temperature rapid discharge conditions (−15 ° C., 3C discharge), the conductivity measured for the positive electrode mixture solution is in the range of 1 × 10 −4 to 5 × 10 −4 S / m. There was a significant difference in performance between the battery and the batteries of Examples 18 and 19 outside the above range. More specifically, the batteries of Examples 15 to 17 having a conductivity in the range of 1 × 10 −4 to 5 × 10 −4 S / m have a capacity ratio exceeding 90%, and the above-mentioned mild conditions It showed good performance that was not so different from that under the various discharge conditions. On the other hand, the battery of Example 18 having a conductivity lower than 1 × 10 −4 S / m and the battery of Example 19 having a conductivity higher than 5 × 10 −4 S / m have a 3C discharge capacity of 0.2C discharge capacity. 20% or more. Regarding the capacity retention calculated in the charge / discharge cycle test at 1C, the batteries of Examples 15 to 17 all showed excellent cycle characteristics exceeding 90%. On the other hand, in both the batteries of Examples 18 and 19, the discharge capacity after the cycle was reduced by about 20% or more from the initial capacity.

これらの結果は、これらの例に係る正極合材液について、導電率が1×10−4〜5×10−4S/mの範囲にあることを合格条件として設定することが、より厳しい条件下においても性能差(性能バラツキ)の少ない電池を製造する上で有意義であることを示すものである。
例15、例18、例19に係る正極合材液サンプルにつき、例1〜9に係る正極合材液サンプルと同様にして粒度分布を測定し、同様にしてV2MAX/V1MAXを求めた。その結果、例15に係るサンプルはV2MAX/V1MAXが0.5〜10(より詳しくは1〜5)の範囲にあることが確認された。一方、例18、例19に係るサンプルは、いずれも、V2MAX/V1MAX=0.2〜20の合格条件を満たさないことが確認された。
例15、例16、例19に係る正極合材液サンプルにつき、例10〜14に係る正極合材液サンプルと同様にしてゼータ電位(mV)を測定した。その結果、例15、例16に係るサンプルは、いずれも、ゼータ電位が−10mV〜−5mVの範囲にあることが確認された。一方、例19に係るサンプルは、ゼータ電位=−10mV〜−5mVの合格条件を満たさないことが確認された。
These results show that the positive electrode mixture liquids according to these examples are more stringent under the condition that the conductivity is in the range of 1 × 10 −4 to 5 × 10 −4 S / m. This also shows that it is significant in manufacturing a battery with little performance difference (performance variation).
For the positive electrode mixture liquid samples according to Examples 15, 18, and 19, the particle size distribution was measured in the same manner as the positive electrode mixture liquid samples according to Examples 1 to 9, and V 2MAX / V 1MAX was obtained in the same manner. As a result, it was confirmed that the sample according to Example 15 had V 2MAX / V 1MAX in the range of 0.5 to 10 (more specifically, 1 to 5). On the other hand, it was confirmed that the samples according to Example 18 and Example 19 did not satisfy the pass condition of V 2MAX / V 1MAX = 0.2-20.
For the positive electrode mixture liquid samples according to Examples 15, 16, and 19, the zeta potential (mV) was measured in the same manner as the positive electrode mixture liquid samples according to Examples 10 to 14. As a result, it was confirmed that the samples according to Examples 15 and 16 each had a zeta potential in the range of −10 mV to −5 mV. On the other hand, it was confirmed that the sample according to Example 19 did not satisfy the pass condition of zeta potential = −10 mV to −5 mV.

以上、本発明を詳細に説明したが、上記実施形態および実施例は例示にすぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。   As mentioned above, although this invention was demonstrated in detail, the said embodiment and Example are only illustrations and what changed and changed the above-mentioned specific example is contained in the invention disclosed here.

1 車両
20 捲回電極体
30 正極シート
32 正極集電体
34 正極活物質層
38 正極端子
40 負極シート
42 負極集電体
44 負極活物質層
48 負極端子
50 セパレータ
90 非水電解液(非水電解質)
100 非水二次電池
200 18650型二次電池
DESCRIPTION OF SYMBOLS 1 Vehicle 20 Winding electrode body 30 Positive electrode sheet 32 Positive electrode current collector 34 Positive electrode active material layer 38 Positive electrode terminal 40 Negative electrode sheet 42 Negative electrode current collector 44 Negative electrode active material layer 48 Negative electrode terminal 50 Separator 90 Nonaqueous electrolyte (nonaqueous electrolyte) )
100 Nonaqueous secondary battery 200 18650 type secondary battery

Claims (8)

非水二次電池を製造する方法であって:
(A)少なくとも一方の電極が活物質粒子と導電材粒子とを含む活物質層を備えた電極体を用意する工程;および、
(B)前記電極体と非水電解質とを電池容器に収容して非水二次電池を構築する工程;
を包含し、
前記(A)工程は:
(i)前記少なくとも一方の電極形成用として、活物質粒子および導電材粒子が液相に分散した電極合材液を用意すること;および、
(ii)その電極合材液の分散状態を把握すること、ここで前記分散状態の把握は、前記電極合材液について、粒度分布、ゼータ電位、および導電率、の少なくとも一つを測定することにより行われる;
(iii)その把握された分散状態が予め設定した合格条件を満たす場合には前記電極合材液を次工程に送り、該合格条件を満たさない場合には該電極合材液を次工程から外すこと;および、
(iv)前記次工程に送られた電極合材液を用いて前記活物質層を形成すること;
を包含する、非水二次電池製造方法。
A method of manufacturing a non-aqueous secondary battery comprising:
(A) preparing an electrode body provided with an active material layer in which at least one electrode includes active material particles and conductive material particles; and
(B) A step of housing the electrode body and the non-aqueous electrolyte in a battery container to construct a non-aqueous secondary battery;
Including
The step (A) is:
(I) preparing an electrode mixture liquid in which active material particles and conductive material particles are dispersed in a liquid phase for forming the at least one electrode; and
(Ii) grasping the dispersion state of the electrode mixture liquid, wherein the dispersion state is grasped by measuring at least one of a particle size distribution, a zeta potential, and an electrical conductivity of the electrode mixture liquid. Done by
(Iii) When the grasped dispersion state satisfies a preset acceptance condition, the electrode mixture solution is sent to the next step, and when the acceptance condition is not satisfied, the electrode mixture solution is removed from the next step. That; and
(Iv) forming the active material layer using the electrode mixture liquid sent to the next step;
A method for producing a non-aqueous secondary battery.
前記電極合材液に含まれる固形分の合計量を100質量%として、前記導電材粒子の含有量は0.5〜10質量%である、請求項1に記載の方法。   The method according to claim 1, wherein the total amount of solids contained in the electrode mixture solution is 100% by mass, and the content of the conductive material particles is 0.5 to 10% by mass. 前記活物質粒子の平均サイズは、光学顕微鏡により測定される複数の該活物質粒子の直径の算術平均値として5μm〜20μmである、請求項1または2に記載の方法。   The method according to claim 1, wherein the average size of the active material particles is 5 μm to 20 μm as an arithmetic average value of the diameters of the plurality of active material particles measured by an optical microscope. 前記導電材粒子は、複数の一次粒子が連なった構造を有する炭素粒子であり、
該炭素粒子の平均サイズは、光学顕微鏡により測定される複数の該炭素粒子の長さの算術平均値として0.1μm〜4.0μmである、請求項1から3のいずれか一項に記載の方法。
The conductive material particles are carbon particles having a structure in which a plurality of primary particles are linked,
The average size of the carbon particles is 0.1 μm to 4.0 μm as an arithmetic average value of the lengths of the plurality of carbon particles measured by an optical microscope. Method.
前記粒度分布は、動的光散乱法により測定され、
その測定された粒度分布において、0.1μm以上1.0μm未満の範囲の最大頻度(%)をV1MAX、1.0μm以上4.0μm未満の範囲の最大頻度(%)をV2MAXとして、V1MAXに対するV2MAXの比(V2MAX/V1MAX)が所定の数値範囲内にあることを前記合格条件とする、請求項1から4のいずれか一項に記載の方法。
The particle size distribution is measured by a dynamic light scattering method,
In the measured particle size distribution, V 1MAX is the maximum frequency (%) in the range of 0.1 μm or more and less than 1.0 μm, and V 2MAX is the maximum frequency (%) in the range of 1.0 μm or more and less than 4.0 μm. and the pass condition that the ratio of V 2MAX (V 2MAX / V 1MAX ) is within a predetermined numerical range for 1MAX, the method according to any one of claims 1 to 4.
前記V2MAX/V1MAXが0.2〜20の範囲にあることを前記合格条件とする、請求項5に記載の方法。 The method according to claim 5, wherein the passing condition is that V 2MAX / V 1MAX is in a range of 0.2 to 20. 前記ゼータ電位が−5mV〜−10mVの範囲にあることを前記合格条件とする、請求項1から4のいずれか一項に記載の方法。   The method according to claim 1, wherein the pass condition is that the zeta potential is in the range of −5 mV to −10 mV. 前記導電率が1×10−4〜5×10−4S/mの範囲にあることを前記合格条件とする、請求項1から4のいずれか一項に記載の方法。 5. The method according to claim 1, wherein the pass condition is that the conductivity is in a range of 1 × 10 −4 to 5 × 10 −4 S / m.
JP2011128720A 2011-06-08 2011-06-08 Method for manufacturing nonaqueous secondary battery Withdrawn JP2012256509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011128720A JP2012256509A (en) 2011-06-08 2011-06-08 Method for manufacturing nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011128720A JP2012256509A (en) 2011-06-08 2011-06-08 Method for manufacturing nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2012256509A true JP2012256509A (en) 2012-12-27

Family

ID=47527898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011128720A Withdrawn JP2012256509A (en) 2011-06-08 2011-06-08 Method for manufacturing nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2012256509A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013173927A1 (en) * 2012-05-25 2013-11-28 Bathium Canada Inc. Electrode material for lithium electrochemical cells
WO2018168615A1 (en) * 2017-03-13 2018-09-20 日本ゼオン株式会社 Conductive material dispersion liquid for electrochemical element electrodes, slurry composition for electrochemical element electrodes, method for producing same, electrode for electrochemical elements, and electrochemical element
JP6870769B1 (en) * 2020-08-31 2021-05-12 日本ゼオン株式会社 Conductive material dispersion for electrochemical elements, slurry composition for electrochemical element electrodes and manufacturing method thereof, electrodes for electrochemical elements, and electrochemical elements

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013173927A1 (en) * 2012-05-25 2013-11-28 Bathium Canada Inc. Electrode material for lithium electrochemical cells
US9088037B2 (en) 2012-05-25 2015-07-21 Bathium Canada Inc. Electrode material for lithium electrochemical cells
WO2018168615A1 (en) * 2017-03-13 2018-09-20 日本ゼオン株式会社 Conductive material dispersion liquid for electrochemical element electrodes, slurry composition for electrochemical element electrodes, method for producing same, electrode for electrochemical elements, and electrochemical element
JPWO2018168615A1 (en) * 2017-03-13 2020-01-09 日本ゼオン株式会社 Conductive material dispersion for electrochemical device electrode, slurry composition for electrochemical device electrode and method for producing the same, electrode for electrochemical device, and electrochemical device
JP7056642B2 (en) 2017-03-13 2022-04-19 日本ゼオン株式会社 Conductive material dispersion for electrochemical element electrodes, slurry composition for electrochemical element electrodes and their manufacturing methods, electrodes for electrochemical elements, and electrochemical elements
JP6870769B1 (en) * 2020-08-31 2021-05-12 日本ゼオン株式会社 Conductive material dispersion for electrochemical elements, slurry composition for electrochemical element electrodes and manufacturing method thereof, electrodes for electrochemical elements, and electrochemical elements
WO2022045267A1 (en) * 2020-08-31 2022-03-03 日本ゼオン株式会社 Conductive material dispersion liquid for electrochemical element, slurry composition for electrochemical element electrode, method for manufacturing same, electrochemical element electrode, and electrochemical element
JP2022041227A (en) * 2020-08-31 2022-03-11 日本ゼオン株式会社 Conductive material dispersion liquid for electrochemical element, slurry composition for electrochemical element electrode and manufacturing method thereof, electrode for electrochemical element, and electrochemical element

Similar Documents

Publication Publication Date Title
JP5561559B2 (en) Method for manufacturing lithium secondary battery
JP5408509B2 (en) Method for producing non-aqueous electrolyte type lithium ion secondary battery
JP5614600B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP5229598B2 (en) Lithium secondary battery and manufacturing method thereof
JP5081886B2 (en) Non-aqueous electrolyte type lithium ion secondary battery
JP5713198B2 (en) Method for manufacturing lithium secondary battery
JP5787194B2 (en) Power system
JP5590424B2 (en) Lithium ion secondary battery
JP2011054371A (en) Lithium ion secondary battery
JP5828233B2 (en) Lithium ion secondary battery
JP5392585B2 (en) Non-aqueous electrolyte type lithium ion secondary battery
WO2015121731A1 (en) Nonaqueous electrolyte secondary battery
WO2011016112A1 (en) Lithium ion nonaqueous electrolyte secondary battery
WO2011016113A1 (en) Lithium ion nonaqueous electrolyte secondary battery
JP5828347B2 (en) Lithium secondary battery
WO2011108119A1 (en) Lithium secondary battery and separator for use in said battery
JP5517009B2 (en) Lithium ion secondary battery manufacturing method
JP2012064537A (en) Lithium ion secondary battery
JP5472755B2 (en) Non-aqueous electrolyte type lithium ion secondary battery
JP5682793B2 (en) Lithium secondary battery and manufacturing method thereof
JP5812336B2 (en) Secondary battery
JP2012256509A (en) Method for manufacturing nonaqueous secondary battery
JP5708964B2 (en) Lithium secondary battery and manufacturing method thereof
JP5725372B2 (en) Nonaqueous electrolyte secondary battery
JP2011181234A (en) Nonaqueous electrolyte type lithium ion secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902