JP2012256486A - Solid battery - Google Patents

Solid battery Download PDF

Info

Publication number
JP2012256486A
JP2012256486A JP2011128313A JP2011128313A JP2012256486A JP 2012256486 A JP2012256486 A JP 2012256486A JP 2011128313 A JP2011128313 A JP 2011128313A JP 2011128313 A JP2011128313 A JP 2011128313A JP 2012256486 A JP2012256486 A JP 2012256486A
Authority
JP
Japan
Prior art keywords
electrode material
active material
battery
solid
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011128313A
Other languages
Japanese (ja)
Inventor
Akihiko Murata
明彦 村田
Masatake Fujishima
正剛 藤嶋
Masahiro Iwasaki
正博 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011128313A priority Critical patent/JP2012256486A/en
Publication of JP2012256486A publication Critical patent/JP2012256486A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid battery capable of realizing high capacity without needing a complicate manufacturing process.SOLUTION: The solid battery is arranged so that a fibrous electrode material has a surface which contains an active material of either positive or negative electrode on a circumference thereof, solid electrolyte layers are stacked on the circumference of the surface containing the active material except an edge part of the electrode material, and a compresses powder electrode material layer different from the electrode having the active material is filled in and stacked on a gap part formed by the solid electrolyte layers adjacent to each other and the solid electrolyte layer.

Description

本発明は、新規な固体電池に関し、さらに詳しくは特定構造を有することによって高容量化が可能である固体電池に関する。   The present invention relates to a novel solid state battery, and more particularly to a solid state battery capable of increasing the capacity by having a specific structure.

近年、高電圧および高エネルギー密度を有する電池としてリチウム電池が実用化されている。リチウム電池の用途が広い分野に拡大していることおよび高性能の要求から、リチウム電池の更なる性能向上のために種々の研究が行われている。
その中で、従来用いられてきた非水電解液系のリチウム電池に比べて燃えやすい電解液を用いないため安全性が高くセルの形状の自由度が高く構造の自由度が増し補器の数を減らすことができる等の多くの利点を有し得ることから、固体電池の実用化が期待されている。
In recent years, lithium batteries have been put into practical use as batteries having high voltage and high energy density. Due to the expansion of the use of lithium batteries in a wide range of fields and the demand for high performance, various studies have been conducted to further improve the performance of lithium batteries.
Among them, the use of non-flammable electrolytes compared to the conventional non-aqueous electrolyte type lithium batteries eliminates the need for flammable electrolytes, so the safety is high, the degree of freedom of the cell shape is high, the degree of freedom of the structure is increased, and the number of auxiliary devices Therefore, it is expected that the solid state battery will be put to practical use.

しかし、固体電池の実用化が実現するためには、高容量・高出力を与え得る固体電解質の創出および/又は高電極利用効率を実現し得る電極を創出することなどの様々な改良が必要である。
この固体電池の高容量・高出力を実現し得る技術の1つとして、電池の構造に関して電解質層を可能な限り薄くする試みがなされているが、微短絡などの問題が発生し、期待される薄膜化はなされていない。また、正極合材および負極合材を薄くして正極合材と負極合材との間の最大距離を小さくする試み(薄膜電池)もなされているが、出力は向上するがエネルギー密度が大幅に低下することになり、いずれも満足のいく結果が得られていない。
この高容量・高出力の必要性は固体電池に限らず電解液を用いる二次電池においても共通の課題であり、電池の構造を変えることによる電池の高容量・高出力化の試みがなされている。
However, in order to realize the practical application of solid state batteries, various improvements such as the creation of a solid electrolyte capable of providing high capacity and high output and / or the creation of electrodes capable of realizing high electrode utilization efficiency are required. is there.
As one of the technologies capable of realizing the high capacity and high output of this solid battery, an attempt has been made to make the electrolyte layer as thin as possible with respect to the structure of the battery. Thinning has not been done. In addition, attempts have been made to reduce the maximum distance between the positive electrode mixture and the negative electrode mixture by thinning the positive electrode mixture and the negative electrode mixture (thin film battery), but the output is improved but the energy density is greatly increased. In both cases, satisfactory results have not been obtained.
This need for high capacity and high output is a common issue not only for solid state batteries but also for secondary batteries that use electrolyte, and attempts have been made to increase the capacity and output of batteries by changing the structure of the battery. Yes.

例えば、特許文献1に、電子伝導性のある繊維状物質の表面に電池活物質層を形成し、その上を電子伝導性が無くイオン伝導性のある物質で被覆し、さらに対極活物質層を形成し、その上に電子伝導性のある金属材料層を形成してなり、中心部の金属繊維と外周の金属材料層から、それぞれ端子を取り出したものを素電池とし、この素電池を束状で並べるか織物状とし正極端子と負極端子を取り付けてなる充放電可能な電池が記載されている。具体例として、正極がニッケル繊維であり負極の金属材料層を電槽に接続して電槽を負極端子とする電池が示されている。   For example, in Patent Document 1, a battery active material layer is formed on the surface of a fibrous material having electron conductivity, and the active material layer is further coated with a material having no electron conductivity and ion conductivity. Formed, and a metal material layer having electron conductivity is formed thereon, and a unit cell is formed by extracting terminals from the metal fiber in the center and the metal material layer on the outer periphery, and the unit cell is bundled A battery capable of being charged and discharged is described, which is arranged in a fabric or is made into a woven shape and is attached with a positive electrode terminal and a negative electrode terminal. As a specific example, a battery in which the positive electrode is nickel fiber, the metal material layer of the negative electrode is connected to the battery case, and the battery case is the negative electrode terminal is shown.

特開2010−073533号公報JP 2010-073533 A

しかし、前記公報に記載の電池は、中心部の金属繊維と外周の金属材料層を形成する際に金属材料層を活物質層の上に均一に形成することが必要であるが、金属材料を均一厚さにコーティングする具体的な技術は示されていない。
従って、本発明の目的は、前記の複雑な製造工程を必要とせず、正極材と負極材とを近接した間隔で高密度に配置することができ高容量化が可能である固体電池を提供することである。
However, in the battery described in the publication, it is necessary to form the metal material layer uniformly on the active material layer when forming the metal fiber in the center and the metal material layer in the outer periphery. No specific technique for coating to a uniform thickness is shown.
Therefore, an object of the present invention is to provide a solid state battery that does not require the complicated manufacturing process described above, and can arrange the positive electrode material and the negative electrode material at high density at close intervals, and can increase the capacity. That is.

本発明者らは、前記目的を達成するために鋭意検討を行った結果、液相、固相法で活物質と電解質とを均一に分散させ、その接触面積を最大化させることによりイオンパスをつくり、且つ、すべての活物質あるいは導電体が確実に接触し電子パスを形成する組織を作ることは、従来公知の固体電池では極めて困難であることを見出し、さらに検討を行った結果、本発明を完成した。
本発明は、織られた繊維状の電極材の周囲に正又は負のいずれかの極の活物質を含む面を有し、前記電極材の端部を除いて前記活物質を含む面の周囲に固体電解質層が積層され、互いに隣接する固体電解質層によって形成される空隙部および固体電解質層上に前記活物質とは異なる極の圧粉状電極材料層が充填、積層されてなる固体電池に関する。
As a result of intensive studies to achieve the above object, the present inventors have created an ion path by uniformly dispersing the active material and the electrolyte by the liquid phase and solid phase methods and maximizing the contact area. In addition, it has been found that it is extremely difficult for a conventionally known solid state battery to make a structure in which all active materials or conductors are in reliable contact with each other to form an electron path. completed.
The present invention has a surface containing a positive or negative electrode active material around a woven fibrous electrode material, and the periphery of the surface containing the active material except for an end of the electrode material The present invention relates to a solid battery in which a solid electrolyte layer is laminated, and a space formed by adjacent solid electrolyte layers and a powdered electrode material layer having a polarity different from that of the active material are filled and laminated on the solid electrolyte layer .

本発明によれば、製造する際に困難を伴う工程を必要とせず、高容量化が可能である固体電池を得ることができる。   According to the present invention, it is possible to obtain a solid battery capable of increasing the capacity without requiring a process that involves difficulty in manufacturing.

図1は、本発明の第1の実施態様の固体電池の平面と一部断面とを示す模式図である。FIG. 1 is a schematic view showing a plane and a partial cross section of the solid state battery of the first embodiment of the present invention. 図2Aは、本発明の第1の実施態様の固体電池を製造する工程における工程(1)を示す工程品の模式図である。FIG. 2A is a schematic diagram of a process product showing a process (1) in the process of manufacturing the solid state battery of the first embodiment of the present invention. 図2Bは、本発明の第1の実施態様の固体電池を製造する工程における工程(2)を示す工程品の一部断面の模式図である。FIG. 2B is a schematic diagram of a partial cross section of a process product showing a process (2) in the process of manufacturing the solid state battery of the first embodiment of the present invention. 図2Cは、本発明の第1の実施態様の固体電池を製造する工程における工程(3)を示す工程品の平面と正面断面と一部拡大横断面の模式図である。FIG. 2C is a schematic diagram of a plane, a front cross-section, and a partially enlarged cross-section of a process product showing a process (3) in the process of manufacturing the solid state battery of the first embodiment of the present invention. 図2Dは、本発明の第1の実施態様の固体電池を製造する工程における工程(4)を示す工程品の平面と一部断面の模式図である。FIG. 2D is a schematic diagram of a plan and partial cross section of a process product showing a process (4) in the process of manufacturing the solid state battery of the first embodiment of the present invention. 図2Eは、本発明の第1の実施態様の固体電池を製造する工程における工程(5)を示す工程品の平面と一部断面の模式図である。FIG. 2E is a schematic plan view and a partial cross-sectional view of a process product showing a process (5) in the process of manufacturing the solid state battery of the first embodiment of the present invention. 図3は、本発明の第2の実施態様の固体電池の平面と一部断面とを示す模式図である。FIG. 3 is a schematic view showing a plane and a partial cross section of the solid state battery according to the second embodiment of the present invention. 図4は、本発明の第1の実施態様の1枚の固体電池を積層し、両端部に正極集電体をおよび負極集電体が取り付けられ積層型の固体電池の状態を示す平面と断面の模式図である。FIG. 4 is a plan view and a cross section showing a state of a stacked solid battery in which one solid battery according to the first embodiment of the present invention is stacked and a positive electrode current collector and a negative electrode current collector are attached to both ends. FIG. 図5は、従来の一般的なリチウムイオン電池を示す模式図である。FIG. 5 is a schematic view showing a conventional general lithium ion battery. 図6は、従来の薄膜電池を示す模式図である。FIG. 6 is a schematic view showing a conventional thin film battery. 図7は、公知の立体形状の電極を用いた固体電池の模式図である。FIG. 7 is a schematic diagram of a solid state battery using a known three-dimensional electrode. 図8は、本発明の固体電池と従来の平板小型電池とを比較するためのシミュレーションに用いた本発明の第2の実施態様の固体電池の寸法を示す模式図である。FIG. 8 is a schematic diagram showing the dimensions of the solid state battery of the second embodiment of the present invention used in a simulation for comparing the solid state battery of the present invention with a conventional flat plate small battery. 図9は、本発明の第2の実施態様の固体電池と従来の平板小型電池との面積、体積、厚さについてシミュレーションによる比較結果を示す表である。FIG. 9 is a table showing comparison results by simulation of the area, volume, and thickness of the solid state battery of the second embodiment of the present invention and the conventional flat small battery. 図10は、本発明の第2の実施態様の固体電池の各部材の寸法を説明するための模式図である。FIG. 10 is a schematic diagram for explaining the dimensions of each member of the solid state battery according to the second embodiment of the present invention. 図11は、本発明の第2の実施態様の固体電池の電子伝導性およびイオン伝導性を検討するための固体電池における各部材の関係を示す模式図である。FIG. 11 is a schematic diagram showing the relationship of each member in the solid state battery for studying the electronic conductivity and ion conductivity of the solid state battery of the second embodiment of the present invention. 図12は、従来の平板小型電池の電子伝導性およびイオン伝導性を検討するための平板小型電池における各部材の関係を示す模式図である。FIG. 12 is a schematic diagram showing the relationship of each member in a flat small battery for studying the electronic conductivity and ion conductivity of a conventional flat small battery. 図13は、本発明の第2の実施態様の固体電池と従来の平板小型電池とを比較するためシミュレーションに用いた固体電池の寸法を示す模式図である。FIG. 13 is a schematic diagram showing dimensions of a solid state battery used for simulation in order to compare the solid state battery of the second embodiment of the present invention with a conventional flat small battery. 図14は、本発明の第2の実施態様の固体電池と従来の平板小型電池とを比較するためシミュレーションに用いた固体電池の寸法を示す模式図である。FIG. 14 is a schematic diagram showing dimensions of a solid state battery used for simulation in order to compare the solid state battery of the second embodiment of the present invention with a conventional flat plate small battery.

特に、本発明において、以下の実施態様を挙げることができる。
1)前記織られた繊維状の電極材が負極活物質を含むカーボンからなり、前記圧粉状電極材料が圧粉状正極材料層である前記固体電池。
2)前記織られた繊維状の電極材が織られた繊維状の導電体の周囲に正極活物質層が積層されてなるものであり、前記圧粉状電極材料が圧粉状負極材料である前記固体電池。
3)前記織られた繊維状の導電体が、周囲に正極活物質層が積層されたカーボン又はアルミニウム製繊維である前記固体電池。
4)前記圧粉状電極材料層の片面に集電体層が積層されてなる前記固体電池。
5)前記織られた繊維状の電極材が、電極材からなる織布を加圧して平面化したシートである前記固体電池。
6)前記織られた繊維状の電極材が、縦糸と横糸として織られた面に平行な断面が四角形状である空隙部を有する前記固体電池。
7)前記織られた繊維状の電極材の端部、および前記圧粉状電極材料層の少なくとも片面に積層された集電体層の端部が、それぞれの集電体に接続されてなる前記固体電池。
In particular, in the present invention, the following embodiments can be mentioned.
1) The solid battery in which the woven fibrous electrode material is made of carbon containing a negative electrode active material, and the dusty electrode material is a dusty cathode material layer.
2) A positive electrode active material layer is laminated around a fibrous conductor in which the woven fibrous electrode material is woven, and the dusty electrode material is a dusty negative electrode material. The solid state battery.
3) The solid battery, wherein the woven fibrous conductor is a carbon or aluminum fiber around which a positive electrode active material layer is laminated.
4) The said solid battery by which a collector layer is laminated | stacked on the single side | surface of the said powder-like electrode material layer.
5) The solid battery, wherein the woven fibrous electrode material is a sheet obtained by pressing and flattening a woven fabric made of an electrode material.
6) The said solid battery which has the space | gap part in which the cross section parallel to the surface woven by the said woven fibrous electrode material as a warp and a weft is a square shape.
7) The end portion of the woven fibrous electrode material and the end portion of the current collector layer laminated on at least one surface of the dusty electrode material layer are connected to the respective current collectors. Solid battery.

本発明の固体電池によれば、織られた繊維状の電極材の周囲に正又は負のいずれかの極の活物質を含む面を有し、前記電極材の端部を除いて前記活物質を含む面の周囲に固体電解質層が積層され、互いに隣接する固体電解質層によって形成される空隙部および固体電解質層上に前記活物質とは異なる極の圧粉状電極材料層が充填、積層されてなることにより、製造する際に困難を伴う工程を必要とせず、高容量化が可能である。   According to the solid battery of the present invention, the active material has a surface containing a positive or negative electrode active material around a woven fibrous electrode material, except for an end of the electrode material. A solid electrolyte layer is laminated around the surface including the solid electrolyte layer, and a gap formed by the solid electrolyte layers adjacent to each other and a powdered electrode material layer of an electrode different from the active material are filled and laminated on the solid electrolyte layer As a result, it is possible to increase the capacity without requiring a process with difficulty in manufacturing.

以下、図1〜14を参照して本発明の実施の形態を詳説する。
本発明の第1の実施態様の固体電池1は、図1、2A〜2Eに示すように、織られた繊維状の負極材2の周囲に負極活物質を含む面3を有し、前記負極材2の端部5を除いて負極活物質を含む面3の周囲に固体電解質層6が積層されていて、互いに隣接する固体電解質層6によって形成される空隙部7および固体電解質層上に圧粉状正極材料層8が充填、積層され、圧粉状正極材料層8の少なくとも片面に正極集電体層11が積層されていて、前記織られた負極材の端部5および正極集電体層11に負極集電体13、正極集電体14がそれぞれ接続されている。前記正極集電体層11は、図1に示すように、圧粉状正極材料層上および集電用の端部を含めて形成され得る。
前記の第1の実施態様における織られた繊維状の負極材としては、負極活物質のカーボンからなるもの、負極活物質のカーボンと固体電解質との混合物からなるもの、又は織られた繊維状の導電体の周囲に負極活物質層を有するものであり得て、織られた繊維状の負極材の表面は負極活物質を含む面を有する。
また、図1においては、負極集電体13および正極集体14は1つの側から設置されているが、それぞれ2つの側から対として設置され得る。
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS.
A solid battery 1 according to a first embodiment of the present invention has a surface 3 containing a negative electrode active material around a woven fibrous negative electrode material 2, as shown in FIGS. A solid electrolyte layer 6 is laminated around the surface 3 containing the negative electrode active material except for the end portion 5 of the material 2, and pressure is applied to the void 7 formed by the solid electrolyte layers 6 adjacent to each other and the solid electrolyte layer. The powdered positive electrode material layer 8 is filled and laminated, and the positive electrode current collector layer 11 is laminated on at least one surface of the powdery positive electrode material layer 8, and the end portion 5 of the woven negative electrode material and the positive electrode current collector A negative electrode current collector 13 and a positive electrode current collector 14 are connected to the layer 11, respectively. As shown in FIG. 1, the positive electrode current collector layer 11 may be formed on the powdery positive electrode material layer and including an end portion for current collection.
As the woven fibrous negative electrode material in the first embodiment, the negative electrode active material is made of carbon, the negative electrode active material is made of a mixture of carbon and a solid electrolyte, or the woven fibrous negative electrode material. It can have a negative electrode active material layer around the conductor, and the surface of the woven fibrous negative electrode material has a surface containing the negative electrode active material.
In FIG. 1, the negative electrode current collector 13 and the positive electrode current collector 14 are installed from one side, but may be installed as a pair from each of the two sides.

また、本発明の第2の実施態様の固体電池1は、図3に示すように、織られた繊維状の導電体周囲に正極活物質層4’が積層されて正極活物質面4を有し、前記正極活物質層の端部5を除いて正極活物質を含む面4の周囲に固体電解質層6が積層されていて、互いに隣接する固体電解質層6によって形成される空隙部7および固体電解質層上に圧粉状負極材料層9が充填、積層され、圧粉状負極材料層9の少なくとも片面に負極集電体層12が積層されていて、前記織られた導電体の端部5および負極集電体層12に正極集電体14、負極集電体13がそれぞれ接続されている。前記負極集電体層12は、圧粉状正極材料層上および集電用の端部を含めて形成され得る。
前記本発明の第2の実施態様において、織られた繊維状の正極材は、導電体、例えばカーボンあるいはアルミニウム繊維などからなる織られた繊維状のもの、例えば織布の周囲に正極活物質層4’が積層されて、表面に正極活物質を含む面4を有している。
また、図3においては、正極集電体14および負極集体13は、それぞれ1つの側から設置されているが、それぞれ2つの側から対として設置され得る。
Further, as shown in FIG. 3, the solid battery 1 according to the second embodiment of the present invention has a positive electrode active material surface 4 in which a positive electrode active material layer 4 ′ is laminated around a woven fibrous conductor. The solid electrolyte layer 6 is laminated around the surface 4 containing the positive electrode active material except for the end portion 5 of the positive electrode active material layer, and the void 7 and the solid formed by the solid electrolyte layers 6 adjacent to each other. A powdered negative electrode material layer 9 is filled and laminated on the electrolyte layer, and a negative electrode current collector layer 12 is laminated on at least one surface of the powdery negative electrode material layer 9, and the end portion 5 of the woven conductor is formed. The positive electrode current collector 14 and the negative electrode current collector 13 are connected to the negative electrode current collector layer 12. The negative electrode current collector layer 12 may be formed on the powdery positive electrode material layer and including an end portion for current collection.
In the second embodiment of the present invention, the woven fibrous positive electrode material is a woven fibrous material made of a conductor, such as carbon or aluminum fiber, for example, a positive electrode active material layer around a woven fabric. 4 'is laminated | stacked and it has the surface 4 containing a positive electrode active material on the surface.
In FIG. 3, the positive electrode current collector 14 and the negative electrode current collector 13 are each installed from one side, but may be installed as a pair from each of the two sides.

本発明の実施態様の固体電池は、前記の構成を有することにより、1)正極と負極との距離が可能な限り小さくし得る、2)正極および負極の量を従来の電池と同程度とし得てエネルギー密度の低下をなくし得る、従って正極、負極を同等の量を設定し、体積はほぼ同等となり得る、3)正極と負極との最大距離を小さくし、出力密度を大きくし得る、4)Liイオン伝導性の低い固体電解質を使用し得る、5)電解質として固体物質を用いて薄膜コーティングし得る、6)両極からの集電が容易である、7)電極の電子伝導性およびイオン伝導性が十分に保たれ得て、且つ8)製造する際に困難を伴う工程を必要としない、という8つの要件を満足し得る。   The solid battery according to the embodiment of the present invention has the above-described configuration, so that 1) the distance between the positive electrode and the negative electrode can be made as small as possible, and 2) the amount of the positive electrode and the negative electrode can be the same as those of conventional batteries. Therefore, the volume of the positive and negative electrodes can be set to the same level, and the volume can be almost the same. 3) The maximum distance between the positive and negative electrodes can be reduced, and the output density can be increased. 4) A solid electrolyte with low Li ion conductivity can be used, 5) thin film coating can be performed using a solid material as the electrolyte, 6) current collection from both electrodes is easy, and 7) electronic conductivity and ionic conductivity of the electrode. Can be kept sufficiently, and 8) can satisfy the 8 requirements of not requiring difficult steps in manufacturing.

本発明の第1の実施態様の固体電池は、例えば、図2Aに示す負極活物質を含むカーボン繊維の織布を加圧して平面化したシートであり得る、耳つきの織られた繊維状の負極材を用意する工程(1)、図2Bに示す前記のシートの両面から固体電解質層を積層する工程(2)、図2Cに示すシートの両面から正極材料をコーティングし、加圧プレスして互いに隣接する固体電解質層によって形成される空隙部および固体電解質層上に圧粉状正極材料層を充填、積層する工程(3)、および図2Dに示す圧粉状正極材料層の少なくとも片面に正極集電体を積層する工程(4)を含む方法によって得ることができる。
前記の本発明の実施態様の固体電池は、前記図2Dに示す工程(4)に続いて、図2Eに示す織られた負極材の端部および正極集電体に負極集電体13、正極集電体14をそれぞれ取り付ける工程(5)を含み得る。
また、本発明の実施態様の固体電池は、図4に示すように、前記の実施態様の複数枚の固体電池を重ね合わせて、その端部および外側両面に集電体を取り付けることによって積層型の固体電池を得ることができる。
前記の集電体は、導電体、例えばアルミニウム製であり得る。
The solid state battery according to the first embodiment of the present invention may be, for example, a sheet made by pressing and planarizing a carbon fiber woven fabric containing the negative electrode active material shown in FIG. Step (1) of preparing a material, step (2) of laminating a solid electrolyte layer from both sides of the sheet shown in FIG. 2B, coating a positive electrode material from both sides of the sheet shown in FIG. A step (3) of filling and laminating a dusty positive electrode material layer on the voids and solid electrolyte layers formed by the adjacent solid electrolyte layers, and collecting the positive electrode on at least one side of the dusty positive electrode material layer shown in FIG. 2D It can be obtained by a method including the step (4) of laminating electric bodies.
In the solid battery of the embodiment of the present invention, following the step (4) shown in FIG. 2D, the end of the woven negative electrode material and the positive electrode current collector shown in FIG. A step (5) of attaching the current collectors 14 may be included.
Further, as shown in FIG. 4, the solid state battery according to the embodiment of the present invention is a stacked type in which a plurality of solid state batteries according to the above embodiment are overlapped and current collectors are attached to both ends and both outer sides. The solid battery can be obtained.
The current collector may be made of a conductor, such as aluminum.

前記の工程(1)における負極材としては、カーボン繊維の織布をプレス加工して、縦糸と横糸との交差部が他の部分と同じ厚さになるように加圧成型して平坦化した織布が挙げられる。 前記の縦糸と横糸とは規則正しいピッチで四角形の空間(空隙部)を形作り得る。前記の平坦化として、平面プレスあるいはロールプレスによって平坦化加圧し得る。また、材料、繊維の線径によっては、加熱加圧を施して平坦化し得る。
前記のようにして得られ、本発明の実施態様において好適に用いられ得る負極活物質を含むカーボン繊維の織布を加圧平坦化したシートは、縦糸と横糸によって形成される四角、線径と隙間(空隙部)とが同じ寸法の場合は正方形の空隙を有し得る。
As the negative electrode material in the above step (1), a carbon fiber woven fabric was pressed and pressure-molded so that the intersecting portion of the warp yarn and the weft yarn had the same thickness as the other portion, and was flattened. Examples include woven fabrics. The warp and weft can form a square space (void) at a regular pitch. As the flattening, flattening and pressing can be performed by a flat press or a roll press. Further, depending on the material and the fiber diameter of the fiber, it can be flattened by applying heat and pressure.
A sheet obtained by pressure flattening a carbon fiber woven fabric containing a negative electrode active material, which can be suitably used in the embodiment of the present invention, obtained as described above, is a square formed by warp and weft, a wire diameter, When the gap (gap part) has the same size, it may have a square gap.

本発明の実施態様におけるカーボン繊維は、負極活物質のカーボンのみあるいは負極活物質と固体電解質との混合物であり得る。
前記の工程(1)における耳つきの織られた繊維状の電極材の耳つき部は、端部に集電体を取り付ける前に除かれるのであれば、切断等によって、工程(1)から工程(2)に進む間に除去してもよく、後の(2)〜(3)の工程の間あるいは工程(3)の後に除いてもよい。
The carbon fiber in the embodiment of the present invention may be only the carbon of the negative electrode active material or a mixture of the negative electrode active material and a solid electrolyte.
If the eared portion of the woven fibrous electrode material in the step (1) is removed before attaching the current collector to the end portion, the steps (1) to ( It may be removed while proceeding to 2), or may be removed during the subsequent steps (2) to (3) or after step (3).

前記工程(2)において、負極集電部となる端部を除いて負極材の負極活物質を含む面の周囲に固体電解質材料をスパッタリング法、蒸着法又はゾルゲル法などの任意のコーティング技術によって固体電解質層を積層し得る。
前記の工程(2)において、固体電解質材料をスパッタリング又は蒸着して、格子状に成型されたカーボン繊維の周囲に固体電解質薄膜を積層することが好適である。
In the step (2), a solid electrolyte material is solidified by an arbitrary coating technique such as a sputtering method, a vapor deposition method or a sol-gel method around the surface including the negative electrode active material of the negative electrode material except for an end portion which becomes a negative electrode current collecting portion. An electrolyte layer can be laminated.
In the above step (2), it is preferable to deposit a solid electrolyte thin film around the carbon fibers formed in a lattice shape by sputtering or vapor-depositing a solid electrolyte material.

前記工程(3)において、格子状の空間である空隙部を含む固体電解質層の両面に正極材料をゾルゲル法、塗工などの工法でコーティングすることによって圧粉状正極材料層を形成し得る。前記の方法において、通常は、乾燥後、プレス加圧あるいはCIP法で加圧して正極材料の充填率を高める。
前記工程(4)において、圧粉状正極材料層の少なくとも片面に、集電用材料、例えばアルミニウムあるいはカーボンなどをスパッタリングあるいは蒸着して集電体層の薄膜を形成し得る。
In the step (3), the powdery positive electrode material layer can be formed by coating the positive electrode material on both surfaces of the solid electrolyte layer including the voids which are lattice-like spaces by a method such as sol-gel method or coating. In the above-mentioned method, usually, after drying, pressurization or pressurization by the CIP method is performed to increase the filling rate of the positive electrode material.
In the step (4), a thin film of the current collector layer can be formed by sputtering or vapor-depositing a current collecting material such as aluminum or carbon on at least one surface of the powdery positive electrode material layer.

また、本発明の第2の実施態様の固体電池は、織られた繊維状の導電体の周囲に正極活物質層が積層された織布を加圧して平面化した正極材を用意する工程(1)、シートの両面から正極活物質層の端部を除き固体電解質をコーティングして正極活物質面の周囲に電解質層を積層する工程(2)、シートの両面から負極材料をコーティングし、加圧プレスして互いに隣接する固体電解質層によって形成される空隙部および固体電解質層上に圧粉状負極材料を充填、積層する工程(3)、および図4に示すように、前記導電体の端部および外側両面に集電体を取り付ける工程(4)を含む方法によって得ることができる。   The solid state battery according to the second embodiment of the present invention includes a step of preparing a positive electrode material obtained by pressing and flattening a woven fabric in which a positive electrode active material layer is laminated around a woven fibrous conductor ( 1) Step (2) of coating the solid electrolyte by removing the edge of the cathode active material layer from both sides of the sheet and laminating the electrolyte layer around the cathode active material surface, coating the anode material from both sides of the sheet, Step (3) of filling and laminating a powdery negative electrode material on the voids and solid electrolyte layers formed by pressure pressing and adjoining each other, and as shown in FIG. Can be obtained by a method including a step (4) of attaching a current collector to both the outer surface and the outer surface.

従来の一般的な平板状のリチウムイオン電池は、図5の左側の図に示すように、正極合材層(例えば、60μmの厚さ)と電解質層(例えば、60μmの厚さ)と負極合材層(例えば、70μmの厚さ)とが積層されてなるものであり、絶縁性の確保という電解質層の役割を担保し得る範囲で電解質層を薄くして、図5の右側の図に示すように、各層の厚さを60μm、20μ以下さらに2μmおよび70μmとし得るが、正極と負極との最大距離はほとんど低減せず、高出力化が困難である。   As shown in the diagram on the left side of FIG. 5, a conventional flat plate lithium ion battery includes a positive electrode mixture layer (eg, 60 μm thick), an electrolyte layer (eg, 60 μm thick), and a negative electrode composite. A material layer (for example, a thickness of 70 μm) is laminated, and the electrolyte layer is thinned within a range that can ensure the role of the electrolyte layer for ensuring insulation, and is shown in the right side of FIG. Thus, the thickness of each layer can be 60 μm, 20 μm or less, 2 μm, and 70 μm, but the maximum distance between the positive electrode and the negative electrode is hardly reduced, and it is difficult to increase the output.

一方、従来の薄膜電池は、図6に示すように、各層の厚さが5μm、2μmおよび5μmからなるものであり、出力密度は向上するが、エネルギー密度が大きく低下する。
このように、従来の平板状のリチウムイオン電池および薄膜電池は、高い出力と大きなエネルギー量とを併せ持つことが非常に困難であるという問題点を有している。
On the other hand, as shown in FIG. 6, in the conventional thin film battery, the thickness of each layer is 5 μm, 2 μm, and 5 μm, and the output density is improved, but the energy density is greatly reduced.
Thus, the conventional flat lithium ion battery and thin film battery have a problem that it is very difficult to have both a high output and a large amount of energy.

一方、これら従来の一般的なリチウムイオン電池および薄膜電池の問題点を改良するために提案された立体形状の固体電池の1つが、図7に示すように、正極と負極とが互いに対峙して固定されている電極を有する固体電池である。
このような立体形状の固体電池は、電極間のピッチが1〜10μm程度であると考えられ、前記の7つの要件を満足している。
しかし、前記の立体形状の固体電池は、正極および負極の両方を先に固定し、固体電解質を狭い電極構造の間に詰め込むことが必要であり、字際に固体電池を製造しようとすると困難を伴うことが想定される。
On the other hand, one of the three-dimensional solid batteries proposed to improve the problems of these conventional general lithium ion batteries and thin film batteries is that the positive electrode and the negative electrode face each other as shown in FIG. It is a solid state battery having a fixed electrode.
Such a solid battery having a three-dimensional shape is considered to have a pitch between electrodes of about 1 to 10 μm, and satisfies the above seven requirements.
However, the solid battery having the three-dimensional shape needs to fix both the positive electrode and the negative electrode first, and pack the solid electrolyte between the narrow electrode structures. It is envisaged.

本発明の実施態様の固体電池は、前述のように前記の7つの要件を満足し、且つ製造する際に困難を伴う工程を必要としない、という8要件を満足し得る。
本発明の第2の実施態様の固体電池に用いられる繊維状の導電体としては、直径又は最大径(断面が円形でない場合の断面内での最大距離)が100nm〜100μmであり、好適には5〜20μm程度であり得る。
また、前記正極活物質層の厚さは、正極活物質のみからなる場合は2〜50μm、特に2〜10μmで、正極活物質と固体電解質とからなる場合は10〜50μmであり得る。
また、第1および第2の実施態様における固体電解質層11の厚さは、2〜50μm、特に2〜20μm程度であり得る。
The solid state battery according to the embodiment of the present invention can satisfy the above-mentioned seven requirements as described above, and can satisfy the eight requirements that a process involving difficulty is not required in manufacturing.
The fibrous conductor used in the solid state battery of the second embodiment of the present invention has a diameter or maximum diameter (maximum distance in a cross section when the cross section is not circular) of 100 nm to 100 μm, preferably It may be about 5 to 20 μm.
The positive electrode active material layer may have a thickness of 2 to 50 μm, particularly 2 to 10 μm when the positive electrode active material alone is formed, and 10 to 50 μm when the positive electrode active material and the solid electrolyte are formed.
In addition, the thickness of the solid electrolyte layer 11 in the first and second embodiments may be about 2 to 50 μm, particularly about 2 to 20 μm.

本発明の前記実施態様における正極用の繊維状導電体としては、SUS製、カーボン製又はアルミニウム製繊維、好適にはカーボン製又はアルミニウム製繊維、特にカーボン製繊維が挙げられる。
また、第2の実施態様における負極用の繊維状導電体としては、銅製、SUS製又はカーボン製繊維、好適には結晶性の低いカーボン製繊維が挙げられる。
Examples of the fibrous conductor for the positive electrode in the embodiment of the present invention include SUS, carbon or aluminum fiber, preferably carbon or aluminum fiber, particularly carbon fiber.
In addition, examples of the fibrous conductor for the negative electrode in the second embodiment include copper, SUS, or carbon fibers, and preferably carbon fibers having low crystallinity.

本発明の実施態様における前記正極活物質層は、正極活物質のみから形成されていてもよく又は正極活物質と固体電解質との混合物から形成されていてもよい。正極活物質と固体電解質との混合物を用いる場合、正極活物質:固体電解質が3:7〜9:1(vol比)であり得る。
また、本発明の他の実施態様における負極活物質層は、負極活物質のみから形成されていてもよく又は負極活物質と固体電解質との混合物から形成されていてもよい。負極活物質と固体電解質との混合物を用いる場合、負極活物質:固体電解質が3:7〜9:1(vol比)であり得る。
In the embodiment of the present invention, the positive electrode active material layer may be formed only from the positive electrode active material, or may be formed from a mixture of the positive electrode active material and the solid electrolyte. When a mixture of a positive electrode active material and a solid electrolyte is used, the ratio of positive electrode active material: solid electrolyte may be 3: 7 to 9: 1 (vol ratio).
In addition, the negative electrode active material layer in another embodiment of the present invention may be formed only from the negative electrode active material or may be formed from a mixture of the negative electrode active material and the solid electrolyte. When using the mixture of a negative electrode active material and a solid electrolyte, negative electrode active material: solid electrolyte may be 3: 7-9: 1 (vol ratio).

前記の正極活物質又は負極活物質としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、ニッケルマンガンコバルト酸リチウム(Li1+xNi1/3Mn1/3Co1/3)、リチウムコバルト酸ニッケル(LiCo0.3Ni0.7)、マンガン酸リチウム(LiMn)、チタン酸リチウム(Li4/3Ti5/3)、リチウムマンガン酸化合物(Li1+xMn2−x−y;M=Al、Mg、Fe、Cr、Co、Ni、Zn)、チタン酸リチウム(LiTiO)、リン酸金属リチウム(LiMPO、M=Fe、Mn、Co、Ni)、酸化バナジウム(V)、酸化モリブデン(MoO)、硫化チタン(TiS)、リチウムコバルト窒化物(LiCoN)、リチウムシリコン窒化物(LiCoN)、リチウム金属、リチウム合金(LiM、M=Sn、Si、Al、Ge、Sb、P)、リチウム貯蔵性金属間化合物(MgxM、M=Sn、Ge、Sb、あるいはXySb、X=In、Cu、Mn)やそれらの誘導体、グラファイト、ハードカーボンなどの炭素材料(C)が挙げられる。ここに、正極活物質と負極活物質には明確な区別はなく、2種類の化合物の充放電電位を比較して貴な電位を示すものを正極に、卑な電位を示すものを負極に用いて任意の電圧の電極を構成し得る。 Examples of the positive electrode active material or the negative electrode active material include lithium cobaltate (Li x CoO 2 ), lithium nickelate (Li x NiO 2 ), and nickel manganese lithium cobaltate (Li 1 + x Ni 1/3 Mn 1/3 Co 1 / 3 O 2 ), nickel nickel cobaltate (LiCo 0.3 Ni 0.7 O 2 ), lithium manganate (Li x Mn 2 O 4 ), lithium titanate (Li 4/3 Ti 5/3 O 4 ) , Lithium manganate compound (Li 1 + x M y Mn 2−xy O 4 ; M = Al, Mg, Fe, Cr, Co, Ni, Zn), lithium titanate (Li x TiO y ), lithium metal phosphate (LiMPO 4, M = Fe, Mn, Co, Ni), vanadium oxide (V 2 O 5), molybdenum oxide (MoO 3), titanium sulfide (TiS ), Lithium cobalt nitride (LiCoN), lithium silicon nitride (LiCoN), lithium metal, lithium alloy (LiM, M = Sn, Si , Al, Ge, Sb, P), lithium storage intermetallic compound (MgxM, M = Sn, Ge, Sb, or XySb, X = In, Cu, Mn) and derivatives thereof, and carbon materials (C) such as graphite and hard carbon. Here, there is no clear distinction between the positive electrode active material and the negative electrode active material, and the positive and negative potentials are compared for the positive electrode and the negative potential is used for the negative electrode by comparing the charge and discharge potentials of the two types of compounds. Thus, an electrode having an arbitrary voltage can be formed.

特に、LiCoO、LiNiO、LiMn、LiNi1/2Mn1/2、LiNi1/3Co1/3Mn1/3、Li[NiLi1/3−2y/3]O(0≦x≦1、0<y<1/2)やこれらのリチウム遷移金属酸化物のリチウム又は遷移金属を他の元素で置換したリチウム遷移金属、例えばLiNiMnCoOが正極活物質として挙げられる。
また、特に、グラファイト、ハードカーボンなどの炭素材料(C)が負極活物質として好適に挙げられる。
In particular, Li x CoO 2 , Li x NiO 2 , Li x Mn 2 O 4 , Li x Ni 1/2 Mn 1/2 O 2 , Li x Ni 1/3 Co 1/3 Mn 1/3 O 2 , Li x [Ni y Li 1 / 3-2y / 3 ] O 3 (0 ≦ x ≦ 1, 0 <y <1/2) and lithium or transition metal of these lithium transition metal oxides were substituted with other elements Lithium transition metals such as LiNiMnCoO 2 can be mentioned as the positive electrode active material.
In particular, carbon materials (C) such as graphite and hard carbon are preferably used as the negative electrode active material.

前記の固体電解質としては、例えばリチウム二次電池の固体電解質材料として用いられ得る材料であれば限定されず、例えばLiO−B−P、LiO−SiO、LiO−B、LiO−B−ZnOなどの酸化物系非晶質固体電解質、LiS−SiS、LiI−LiS−SiS、liI−liS−P、LiI−LiS−B、LiPO−LiS−SiS、LiPO−LiS−SiS、LiPO−LiS−SiS、LiI−LiS−P、LiI−LiPO−P、LiPS、LiS−Pなどの硫化物系非晶質固体電解質、あるいはLiI、LiI−Al、LiN、LiN−LiI−LiOH、Li1.3Al0.3Ti0.7(PO、Li1+x+yTi2−xSi3−y12(A=Al又はGa、0≦x≦0.4、0<y≦0.6)、[(B1/2Li1/21−z]TiO(B=La、Pr、Nd、Sm、C=Sr又はBa、0≦x≦0.5)、LiLaTa12、LiLaZr12、LiBaLaTa12、LiPO(4−3/2w)(w<1)、Li3.6Si0.60.4などの結晶質酸化物や酸窒化物が挙げられる。 The solid electrolyte is not limited as long as it is a material that can be used as a solid electrolyte material of a lithium secondary battery, for example, Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—SiO 2 , Oxide-based amorphous solid electrolytes such as Li 2 O—B 2 O 3 and Li 2 O—B 2 O 3 —ZnO, Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , liI-li 2 S-P 2 S 5, LiI -Li 2 S-B 2 S 3, Li 3 PO 4 -Li 2 S-Si 2 S, Li 3 PO 4 -Li 2 S-SiS 2, LiPO 4 -Li 2 S- SiS, LiI-Li 2 S- P 2 O 5, LiI-Li 3 PO 4 -P 2 S 5, Li 3 PS 4, Li 2 S-P 2 S 5 the sulfide-based amorphous solid electrolytes such as, or LiI, LiI-Al 2 O 3 , L 3 N, Li 3 N-LiI -LiOH, Li 1.3 Al 0.3 Ti 0.7 (PO 4) 3, Li 1 + x + y A x Ti 2-x Si y P 3-y O 12 (A = Al or Ga, 0 ≦ x ≦ 0.4, 0 <y ≦ 0.6), [(B 1/2 Li 1/2 ) 1-z C z ] TiO 3 (B = La, Pr, Nd, Sm, C = Sr or Ba, 0 ≦ x ≦ 0.5), Li 5 La 3 Ta 2 O 12 , Li 7 La 3 Zr 2 O 12 , Li 6 BaLa 2 Ta 2 O 12 , Li 3 PO (4-3 / 2w ) N w (w <1), crystalline oxides such as Li 3.6 Si 0.6 P 0.4 O 4 and oxynitrides.

本発明の前記実施態様における圧粉状負極材料層を与える負極材料としては、負極活物質と固体電解質とが挙げられる。
前記各成分の割合は、負極活物質の100質量部に対して、固体電解質が10〜50質量部が含まれ得る。
Examples of the negative electrode material that provides the powdery negative electrode material layer in the embodiment of the present invention include a negative electrode active material and a solid electrolyte.
The proportion of each component may include 10 to 50 parts by mass of the solid electrolyte with respect to 100 parts by mass of the negative electrode active material.

本発明における圧粉状電極材料層を与える正極材料としては、正極活物質と固体電解質とが挙げられ、正極活物質の低い導電性を補う高導電性材料の粉末(導電材)を混合し得る。前記導電材として種々のカーボンブラック、例えばアセチレンブラック、ファーネスブラック、ケッチェンブラック、グラファイト、および活性炭等の導電性粉末が挙げられる。
前記各成分の割合は、正極又は負極活物質の100質量部に対して、固体電解質が10〜50質量部、導電性粉末が10質量%以下、特に5質量%以下程度含まれ得る。
Examples of the positive electrode material that provides the powdered electrode material layer in the present invention include a positive electrode active material and a solid electrolyte, and a powder (conductive material) of a highly conductive material that supplements the low conductivity of the positive electrode active material can be mixed. . Examples of the conductive material include various carbon blacks, for example, conductive powders such as acetylene black, furnace black, ketjen black, graphite, and activated carbon.
The proportion of each component may be 10 to 50 parts by mass of the solid electrolyte and 10% by mass or less, particularly 5% by mass or less of the conductive powder with respect to 100 parts by mass of the positive electrode or the negative electrode active material.

前記のリチウムイオン伝導体としては、LiTi(POなど、あるいはLiO−B−P、LiO−SiO、LiO−B、LiO−B−ZnOなどの酸化物系非晶質固体電解質、LiI−LiS−P、LiI−LiS−B、LiPO−LiS−SiS、LiPO−LiS−SiS、LiPO−LiS−SiS、LiI−LiS−P、LiI−LiPO−P、LiPS、LiS−Pなどの硫化物系非晶質固体電解質、LiNbO、あるいはLi1.3Al0.3Ti0.7(PO、Li1+x+yTi2−xSi3−y12(A=Al又はGa、0≦x≦0.4、0<y≦0.6)、[(B1/2Li1/21−z]TiO(B=La、Pr、Nd、Sm、C=Sr又はBa、0≦x≦0.5)、LiLaTa12、LiLaZr12、LiBaLaTa12、LiPO(4−3/2w)(w<1)、Li3.6Si0.60.4などの結晶質酸化物や酸窒化物などのニオブ、タンタル、ケイ素、リンおよびホウ素から選ばれる少なくとも1種の元素とリチウムとを含むリチウム含有化合物、LiI、LiI−Al、LiN、LiN−LiI−LiOHなどが挙げられる。 Examples of the lithium ion conductor of the, LiTi 2 (PO 4) 3, etc., or Li 2 O-B 2 O 3 -P 2 O 5, Li 2 O-SiO 2, Li 2 O-B 2 O 3, Li Oxide-based amorphous solid electrolyte such as 2 O—B 2 O 3 —ZnO, LiI—Li 2 S—P 2 S 5 , LiI—Li 2 S—B 2 S 3 , Li 3 PO 4 —Li 2 S -Si 2 S, Li 3 PO 4 -Li 2 S-SiS 2, LiPO 4 -Li 2 S-SiS, LiI-Li 2 S-P 2 O 5, LiI-Li 3 PO 4 -P 2 S 5, Li 3 PS 4 , sulfide-based amorphous solid electrolyte such as Li 2 S—P 2 S 5 , LiNbO 3 , or Li 1.3 Al 0.3 Ti 0.7 (PO 4 ) 3 , Li 1 + x + y A x Ti 2-x Si y P 3- y O 12 A = Al or Ga, 0 ≦ x ≦ 0.4,0 < y ≦ 0.6), [(B 1/2 Li 1/2) 1-z C z] TiO 3 (B = La, Pr, Nd , Sm, C = Sr or Ba, 0 ≦ x ≦ 0.5), Li 5 La 3 Ta 2 O 12 , Li 7 La 3 Zr 2 O 12 , Li 6 BaLa 2 Ta 2 O 12 , Li 3 PO (4 -3 / 2w) N w (w <1), niobium such as crystalline oxide or oxynitride, such as Li 3.6 Si 0.6 P 0.4 O 4 , selected tantalum, silicon, phosphorus and boron And lithium-containing compounds containing at least one kind of element and lithium, LiI, LiI—Al 2 O 3 , LiN 3 , Li 3 N—LiI—LiOH, and the like.

本発明の固体電池は、繊維状の電極材の端部が集電体として用い得て、また所望の枚数の固体電池を積層して積層型の固体電池を形成し得るので、高容量化し得る。   In the solid battery of the present invention, the end of the fibrous electrode material can be used as a current collector, and a stacked solid battery can be formed by stacking a desired number of solid batteries, so that the capacity can be increased. .

本発明の実施態様の固体電池は、前述のように前記の7つの要件を満足し、且つ製造する際に困難を伴う工程を必要としないので作製が容易である。
本発明の実施態様の固体電池が、前記の8要件を満足することについて、以下のシミュレーションを含めて検討した結果を示す。
1)要件1について
先ず、要件1)について、本発明の実施態様の固体電池は、電解質層を気相法、例えばスパッタリングや無電解めっきにより、例えば2μm程度の薄膜をコーティングすることにより電解質層の薄膜化により容易に満足し得る。
2)要件2について
As described above, the solid battery according to the embodiment of the present invention satisfies the above seven requirements and does not require a difficult process in manufacturing, so that it can be easily manufactured.
The result of having examined the solid battery of the embodiment of this invention including the following simulations about satisfying said 8 requirements is shown.
1) Regarding Requirement 1 First, as for Requirement 1), the solid battery according to the embodiment of the present invention is obtained by coating the electrolyte layer with a thin film of about 2 μm, for example, by a vapor phase method such as sputtering or electroless plating. It can be easily satisfied by thinning.
2) About requirement 2

前記の要件2)について、図8に示すように、1ユニットについて検討すると、小型電池の面積を1cmとし、小型電池の正極活物質体積=1cmx0.0006(60μm)x50%=3x10−3cmとなる。同等の正極活物質量を得るための繊維長を求めると、1.09x10であり、図8の1ユニットの繊維長(30μm)で繊維全長を割り、ユニット数を算出し、正方形の1辺を算出し、電池の面積を計算し、厚さを乗じて体積を計算すると、図9に示すように、小型電池と比較して体積がほぼ同等になり得る、つまり正極および負極の量を従来の電池と同程度とし得てエネルギー密度の低下をなくし得る、従って正極、負極を同等の量を設定し、体積が小型電池とほぼ同等となり得る。
従って、本発明の実施態様の固体電池は、要件2を満足し得る。
Regarding the above requirement 2), as shown in FIG. 8, when considering one unit, the area of the small battery is 1 cm 2 and the positive electrode active material volume of the small battery = 1 cm 2 × 0.0006 (60 μm) × 50% = 3 × 10 − 3 cm 3 . The fiber length for obtaining an equivalent amount of positive electrode active material is 1.09 × 10 4 , and the total fiber length is divided by the fiber length (30 μm) of one unit in FIG. , Calculating the area of the battery, and multiplying the thickness to calculate the volume, as shown in FIG. Therefore, it is possible to eliminate the decrease in energy density. Therefore, the same amount of the positive electrode and the negative electrode can be set, and the volume can be almost equal to that of the small battery.
Therefore, the solid state battery of the embodiment of the present invention can satisfy the requirement 2.

3)要件3〜5について
本発明の実施態様の固体電池は、図10に示すように、正極活物質層および圧粉状負極材料層の薄膜化により正極の膜厚さが2.5μm、負極の最大膜厚さが3.65μmであり得て正極と負極との最大距離が小さく、出力密度を大きくでき、また、前記固体電解質を用い得るので、要件3〜5を満足し得る。
3) Regarding Requirements 3 to 5 As shown in FIG. 10, the solid battery of the embodiment of the present invention has a positive electrode film thickness of 2.5 μm due to thinning of the positive electrode active material layer and the powdery negative electrode material layer. The maximum thickness can be 3.65 μm, the maximum distance between the positive electrode and the negative electrode is small, the output density can be increased, and the solid electrolyte can be used, so the requirements 3 to 5 can be satisfied.

4)要件6について
本発明の実施態様の固体電池は、図3に示す1枚のシートからなる固体電池を例えば15枚重ねて、その端部および圧粉状負極材料層上の集電体薄膜に集電体を取り付けることによって積層型の固体電池を得ることもできるので、要件6を満足し得る。
4) Regarding Requirement 6 The solid state battery according to the embodiment of the present invention has, for example, 15 stacked solid state batteries made of one sheet shown in FIG. 3, and the current collector thin film on the end portion and the powdery negative electrode material layer. Since a laminated solid battery can be obtained by attaching a current collector to, requirement 6 can be satisfied.

5)要件7について
本発明の実施態様の固体電池の各部材間の構成を示す図11、および従来の小型電池の構成を示す図12に基づいて、電極の電子伝導性とイオン伝導性とが保たれていることの検討を行った。
本発明の実施態様の固体電池の寸法を変えて、固体電池の性能に与える影響について検証を行った。
(1)検証1
本発明の実施態様の固体電池として、図13に模式図を示す検証例1の電池について検証を行った。
従来の小型電池の正極活物質の体積は、作製したサンプルの測定から1cmx0.006x50%=3x10−3cmとした。
5) Regarding Requirement 7 Based on FIG. 11 showing the configuration between the members of the solid state battery of the embodiment of the present invention and FIG. 12 showing the configuration of the conventional small battery, the electronic conductivity and ionic conductivity of the electrode are determined. We examined what was kept.
The dimensions of the solid battery according to the embodiment of the present invention were changed, and the influence on the performance of the solid battery was verified.
(1) Verification 1
As the solid state battery of the embodiment of the present invention, the battery of Verification Example 1 whose schematic diagram is shown in FIG. 13 was verified.
The volume of the positive electrode active material of the conventional small battery was set to 1 cm 2 × 0.006 × 50% = 3 × 10 −3 cm 3 from the measurement of the produced sample.

同等の活物質量を得るための本発明の実施態様の例1の電池の繊維長を求め、電池体積を算出した。
活物質量=πx(8−4)/4xL
L=3x10−3/[πx(8−4)/4]
=7.96x10(cm)
ユニット数=7.96x10÷3.6x10−3=2.2x10
ユニット数/一辺=(2.2x101/2=1.48x10
1ユニットの一辺の長さ=1.48x10x2.4x10−3=3.55(cm)
一枚板電池の場合
電池面積S=(3.55)=12.6cm
電池体積V=12.6x3.2x10−3=0.0403cm
重ね板電池の場合
電池面積S=1cm 厚さt=176μm
電池体積V=1cmx(13枚x12μm+10μm=0.0176cm
結果をまとめて、他の結果とともに表1に示す。
The fiber length of the battery of Example 1 of the embodiment of the present invention for obtaining an equivalent amount of active material was determined, and the battery volume was calculated.
Active material amount = πx (8 2 -4 2 ) / 4xL
L = 3 × 10 −3 / [πx (8 2 −4 2 ) / 4]
= 7.96 × 10 3 (cm)
Number of units = 7.96 × 10 3 ÷ 3.6 × 10 −3 = 2.2 × 10 6
Number of units / one side = (2.2 × 10 6 ) 1/2 = 1.48 × 10 3
The length of one side of one unit = 1.48 × 10 3 × 2.4 × 10 −3 = 3.55 (cm)
In the case of a single plate battery Battery area S = (3.55) 2 = 12.6 cm 2
Battery volume V = 12.6 × 3.2 × 10 −3 = 0.0403 cm 3
In the case of a stacked plate battery: Battery area S = 1 cm 2 Thickness t = 176 μm
Battery volume V = 1 cm 2 x (13 sheets × 12 μm + 10 μm = 0.176 cm 3
The results are summarized and shown in Table 1 together with other results.

(1)検証2
本発明の実施態様の固体電池として、図14に模式図を示す検証例2の電池について検証を行った。
検証1と同様にして、下記の値が得られた。
L=3.98x10(cm)
一枚板電池の場合
電池面積S=9.55cm
電池体積V=0.036cm
重ね板電池の場合
電池面積S=1cm 厚さt=200μm
電池体積V=0.02cm
結果をまとめて、他の結果とともに表1に示す。
(1) Verification 2
As the solid state battery of the embodiment of the present invention, the battery of Verification Example 2 whose schematic diagram is shown in FIG. 14 was verified.
In the same manner as in verification 1, the following values were obtained.
L = 3.98 × 10 3 (cm)
In the case of a single plate battery Battery area S = 9.55 cm 2
Battery volume V = 0.036 cm 3
In the case of a stacked plate battery: Battery area S = 1 cm 2 Thickness t = 200 μm
Battery volume V = 0.02 cm 3
The results are summarized and shown in Table 1 together with other results.

Figure 2012256486
Figure 2012256486

表1から、本発明の実施態様の固体電池は、小型電池と比較して、各部材間の接触面積が大幅に増大していて且つ最大距離が大幅に低減されているので、電極の電子伝導性およびイオン伝導性が十分に保たれているといえ、要件7を満足し得る。
6)要件8について
本発明の実施態様の固体電池は、工程を示す図2A〜2Eから明らかなように、製造する際に複雑な形状の狭い空間に粉末材料を充填するような困難を伴う工程を必要としないので、要件8を満足し得る。
From Table 1, since the solid battery of the embodiment of the present invention has a greatly increased contact area between each member and a greatly reduced maximum distance compared to a small battery, the electron conduction of the electrode Therefore, requirement 7 can be satisfied even though the property and the ionic conductivity are sufficiently maintained.
6) Regarding Requirement 8 As is clear from FIGS. 2A to 2E showing the process, the solid state battery according to the embodiment of the present invention is a process that involves difficulties such as filling a narrow space of a complicated shape with a powder material when manufacturing. Therefore, requirement 8 can be satisfied.

本発明によって、高容量化が可能である固体電池を、製造する際に困難を伴う工程を必要とせずに得ることができる。   According to the present invention, it is possible to obtain a solid state battery capable of increasing the capacity without requiring a process involving difficulty in manufacturing.

1 本発明の実施態様の固体電池
2 負極材
3 負極活物質を含む面
4 正極活物質を含む面
4’ 正極活物質層
5 端部
6 固体電解質層
7 空隙部
8 圧粉状正極材料層
9 圧粉状負極材料層
11 正極集体電体層
12 負極集電体層
13 負極集電体
14 正極集電体
DESCRIPTION OF SYMBOLS 1 Solid battery of embodiment of this invention 2 Negative electrode material 3 The surface containing a negative electrode active material 4 The surface containing a positive electrode active material 4 'Positive electrode active material layer 5 End part 6 Solid electrolyte layer 7 Cavity part 8 Powdered positive electrode material layer 9 Powdered negative electrode material layer
11 Positive current collector layer
12 Negative electrode current collector layer
13 Negative electrode current collector
14 Positive current collector

Claims (8)

織られた繊維状の電極材の周囲に正又は負のいずれかの極の活物質を含む面を有し、前記電極材の端部を除いて前記活物質を含む面の周囲に固体電解質層が積層され、互いに隣接する固体電解質層によって形成される空隙部および固体電解質層上に前記活物質とは異なる極の圧粉状電極材料層が充填、積層されてなる固体電池。   A solid electrolyte layer having a surface containing an active material of either positive or negative pole around the woven fibrous electrode material, and surrounding the surface containing the active material except for an end of the electrode material Is a solid battery in which a gap is formed by solid electrolyte layers adjacent to each other and a powdered electrode material layer having a polarity different from that of the active material is filled and laminated on the solid electrolyte layer. 前記織られた繊維状の電極材が負極活物質を含むカーボンからなり、前記圧粉状電極材料が圧粉状正極材料層である請求項1に記載の固体電池。   The solid battery according to claim 1, wherein the woven fibrous electrode material is made of carbon containing a negative electrode active material, and the dusty electrode material is a dusty positive electrode material layer. 前記織られた繊維状の電極材が織られた繊維状の導電体の周囲に正極活物質層が積層されてなるものであり、前記圧粉状電極材料が圧粉状負極材料である請求項1に記載の固体電池。   A positive electrode active material layer is laminated around a fibrous conductor in which the woven fibrous electrode material is woven, and the dusty electrode material is a dusty negative electrode material. 1. The solid battery according to 1. 前記織られた繊維状の導電体が、周囲に正極活物質層が積層されたカーボン又はアルミニウム製繊維である請求項3に記載の固体電池。   The solid battery according to claim 3, wherein the woven fibrous conductor is a carbon or aluminum fiber having a positive electrode active material layer laminated around it. 前記圧粉状電極材料層の片面に集電体層が積層されてなる請求項1〜4のいずれか1項に記載の固体電池。   The solid battery according to any one of claims 1 to 4, wherein a current collector layer is laminated on one side of the powdery electrode material layer. 前記織られた繊維状の電極材が、電極材からなる織布を加圧して平面化したシートである請求項1〜5のいずれか1項に記載の固体電池。   The solid battery according to any one of claims 1 to 5, wherein the woven fibrous electrode material is a sheet obtained by pressing and flattening a woven fabric made of an electrode material. 前記織られた繊維状の電極材が、縦糸と横糸として織られた面に平行な断面が四角形状である空隙部を有する請求項1〜6のいずれか1項に記載の固体電池。   The solid battery according to any one of claims 1 to 6, wherein the woven fibrous electrode material has a void portion having a quadrangular cross section parallel to a surface woven as warp and weft. 前記織られた繊維状の電極材の端部、および前記圧粉状電極材料層の少なくとも片面に積層された集電体層の端部が、それぞれの集電体に接続されてなる請求項5〜7のいずれか1項に記載の固体電池。   6. An end of the woven fibrous electrode material and an end of a current collector layer laminated on at least one surface of the dusty electrode material layer are connected to each current collector. The solid battery according to any one of -7.
JP2011128313A 2011-06-08 2011-06-08 Solid battery Withdrawn JP2012256486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011128313A JP2012256486A (en) 2011-06-08 2011-06-08 Solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011128313A JP2012256486A (en) 2011-06-08 2011-06-08 Solid battery

Publications (1)

Publication Number Publication Date
JP2012256486A true JP2012256486A (en) 2012-12-27

Family

ID=47527882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011128313A Withdrawn JP2012256486A (en) 2011-06-08 2011-06-08 Solid battery

Country Status (1)

Country Link
JP (1) JP2012256486A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130107241A (en) * 2012-03-21 2013-10-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Power storage device and electric device
US9837684B2 (en) 2015-02-19 2017-12-05 Samsung Electronics Co., Ltd. All solid secondary battery and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130107241A (en) * 2012-03-21 2013-10-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Power storage device and electric device
JP2013225493A (en) * 2012-03-21 2013-10-31 Semiconductor Energy Lab Co Ltd Power storage device and electric apparatus
KR102033793B1 (en) 2012-03-21 2019-10-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Power storage device and electric device
US9837684B2 (en) 2015-02-19 2017-12-05 Samsung Electronics Co., Ltd. All solid secondary battery and method of manufacturing the same

Similar Documents

Publication Publication Date Title
EP2976798B1 (en) Ion-conducting batteries with solid state electrolyte materials
JP5765349B2 (en) All-solid battery and method for manufacturing the same
JP5594379B2 (en) Secondary battery positive electrode, secondary battery positive electrode manufacturing method, and all-solid secondary battery
JP6933590B2 (en) Negative electrode active material pre-doping method, negative electrode manufacturing method, and power storage device manufacturing method
WO2015068268A1 (en) All-solid-state cell, electrode for all-solid-state cell, and method for manufacturing same
JP7128624B2 (en) All-solid secondary battery, laminated all-solid secondary battery, and method for manufacturing all-solid secondary battery
JP6127528B2 (en) Electrode, all-solid-state battery, and manufacturing method thereof
CN108886145B (en) Amorphous phase oxide-based positive electrode active material and preparation method and application thereof
CN108365255B (en) Lithium battery cell, lithium battery and preparation method of lithium battery cell
WO2014170998A1 (en) All-solid-state lithium-ion secondary battery
JP2018181702A (en) Method for manufacturing all-solid lithium ion secondary battery
WO2021125337A1 (en) Solid-state battery
JP2015005421A (en) Electrode body and all-solid-state battery
CN107528043B (en) Battery with a battery cell
KR20240005702A (en) Method and structure for transferring carrier ions from an auxiliary electrode through a pharmaceutical system
JP2018181706A (en) Method for manufacturing all-solid lithium ion secondary battery
WO2023021836A1 (en) Electrode and battery
JP2012256486A (en) Solid battery
JP2012195191A (en) Solid-state battery
JP7248043B2 (en) All-solid battery
WO2021241001A1 (en) Battery
WO2020250981A1 (en) Solid-state battery
JP2022119324A (en) Negative electrode active material layer
JP2019197728A (en) All-solid battery and manufacturing method thereof
WO2023007939A1 (en) Negative electrode material, negative electrode, battery, and method for producing same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902