JP2012255720A - Plane development method of cell - Google Patents

Plane development method of cell Download PDF

Info

Publication number
JP2012255720A
JP2012255720A JP2011129027A JP2011129027A JP2012255720A JP 2012255720 A JP2012255720 A JP 2012255720A JP 2011129027 A JP2011129027 A JP 2011129027A JP 2011129027 A JP2011129027 A JP 2011129027A JP 2012255720 A JP2012255720 A JP 2012255720A
Authority
JP
Japan
Prior art keywords
filter
moisture
solution
solution supply
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011129027A
Other languages
Japanese (ja)
Other versions
JP5659960B2 (en
Inventor
Jungo Araki
淳吾 荒木
Hidetaka Ninomiya
英隆 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2011129027A priority Critical patent/JP5659960B2/en
Publication of JP2012255720A publication Critical patent/JP2012255720A/en
Application granted granted Critical
Publication of JP5659960B2 publication Critical patent/JP5659960B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a development method capable of densely aggregating biological materials on a filter without impairing lateral capillary force for clumping the biological materials together, even when a solvent contains salt such as physiological saline in which particulate biological materials such as cells or the like are dispersed and suspended, and a development device applied in the method.SOLUTION: A development method of biological materials includes: a solution supplying step for using a solution supplying mechanism to supply a solution (hereinafter called "sample solution") containing particulate biological materials, on one surface (hereinafter called "front surface") of a filter through which water content in the sample solution permeates but the biological materials do not permeate; and a water content exhausting step for using a water content exhausting mechanism to exhaust from the other surface (hereinafter called "reverse surface") of the filter, the water content in the sample solution supplied onto the front surface of the filter, while acting a force towards one end in a plane direction of the filter.

Description

本発明は、粒子状の生体関連物質の展開方法およびその方法に用いる展開装置に関する。より詳細には、細胞等をフィルタ上に単層最密充填することができる粒子状の生体関連物質の展開方法およびその方法に用いる展開装置に関する。   The present invention relates to a method for developing a particulate biological material and a developing device used in the method. More specifically, the present invention relates to a method for developing a particulate bio-related substance that can close-pack cells and the like on a single layer, and a developing device used in the method.

現代医学において、細胞の形態から得られる多くの情報は、病気の予防・診断・治療等を行う上で極めて重要な役割を担っている。これら細胞診は剥離細胞診や擦過細胞診の他に、より積極的に病巣の細胞を採取する穿刺細胞診等がある。   In modern medicine, much information obtained from cell morphology plays an extremely important role in the prevention, diagnosis and treatment of diseases. These cytology include exfoliation cytology and abrasion cytology, as well as puncture cytology that more actively collects lesion cells.

これら細胞診は、擦過・穿刺等により細胞を採取した後、スライドガラス上に主に塗沫法(手技)・オートスミア法(遠心力を利用し、スライドガラス上に検体を付着させる)等によって塗沫面をつくる。そして、この塗沫された検体を染色バット等の容器に収納されたアルコール・染色液・蒸留水等の各溶液中に浸漬し、検体の染色を行った後、封入剤およびカバーガラスを被せる等の一連の操作を行ってプレパラート(標本)を作製し、それを顕微鏡等で鏡検し病変の診断を行うものである。   In these cytodiagnosis, cells are collected by rubbing, puncturing, etc., and then applied to the slide glass mainly by the smearing method (procedure) or the auto smear method (using a centrifugal force to attach the specimen on the slide glass). Create a splash surface. Then, the smeared specimen is immersed in each solution such as alcohol, staining liquid, and distilled water stored in a container such as a staining vat, and after the specimen is stained, the mounting medium and the cover glass are covered. A preparation (specimen) is prepared by performing a series of operations described above, and it is microscopically examined with a microscope or the like to diagnose a lesion.

特許文献1には、図16に示す捕捉染色装置において、無数の微細直孔を有するメンブレンフィルター(1)で、細胞等の検体を含んだ溶液を濾過して該検体を該メンブレンフィルター(1)上に捕捉した後、各種溶液を該メンブレンフィルター(1)上に順に注入するとともに濾過する捕捉染色方法が開示されている。   In Patent Document 1, in the capture staining apparatus shown in FIG. 16, a membrane filter (1) having countless fine straight holes is used to filter a solution containing a specimen such as a cell, and the specimen is removed from the membrane filter (1). A capture staining method is disclosed in which various solutions are sequentially injected onto the membrane filter (1) and filtered after being captured on the top.

しかしながら、この方法では、メンブレンフィルター上に細胞が何層にも重なって凝集するため、鏡検する際、目的とする細胞を見落とす虞がある。   However, in this method, cells overlap and accumulate on the membrane filter, and there is a possibility that the target cells may be overlooked when performing microscopic examination.

特開平2−129531号公報Japanese Patent Laid-Open No. 2-129531

本発明は、細胞等の粒子状の生体関連物質が分散・懸濁している生理食塩水などの塩を含む溶媒であっても、該生体関連物質どうしを凝集させる横毛管力を弱めることなく、フィルタ上に該生体関連物質が多層積層されることを抑制しつつ、密に凝集させることができる展開方法およびその方法で用いる展開装置を提供することを目的としている。   The present invention is a solvent containing salts such as physiological saline in which particulate biological substances such as cells are dispersed and suspended, without weakening the lateral capillary force that aggregates the biological substances, An object of the present invention is to provide a developing method and a developing device used in the method, which can be densely agglomerated while suppressing multilayering of the biological substance on the filter.

本発明者らは、上記の問題を解決すべく鋭意研究した結果、塩を含有する水分を、フィルタを介して水分吸収部材に吸収させることによって、横毛管力が妨げられずに細胞等の粒子状の生体関連物質がフィルタの表面上で凝集することを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have absorbed moisture containing salt through a filter into a moisture absorbing member, thereby preventing particles such as cells without disturbing the transverse capillary force. The present invention has been completed by finding that the living body-related substance in the form of agglomerates on the surface of the filter.

すなわち、本発明の粒子状の生体関連物質の展開方法は、溶液供給機構を用いて、粒子状の生体関連物質を含有する溶液(以下「試料溶液」と呼ぶ。)を、試料溶液中の水分は透過するが該生体関連物質は透過しないフィルタの一方の面(以下「表面」と呼ぶ。)上に供給する溶液供給工程;および、水分排出機構を用いて、該フィルタの表面上に供給された試料溶液中の水分を、該フィルタの平面方向の一端に向かう力を作用させながら、該フィルタの他方の面(以下「裏面」と呼ぶ。)から排出する水分排出工程を含むことを特徴とする。   That is, in the method for developing a particulate biological material according to the present invention, a solution containing the particulate biological material (hereinafter referred to as “sample solution”) is converted into moisture in the sample solution using a solution supply mechanism. Supplying a solution on one side of the filter (hereinafter referred to as “surface”) that does not permeate the biological material, but is supplied onto the surface of the filter by using a moisture discharge mechanism. A moisture discharge step of discharging moisture in the sample solution from the other surface of the filter (hereinafter referred to as “back surface”) while applying a force toward one end in the planar direction of the filter. To do.

上記水分排出機構は、水分排出部材として、上記フィルタの裏面に当接させた水分吸収部材、および/または、水分吸引装置に連通する吸引口を備えることが好ましい。
上記溶液供給機構が備える溶液供給部材、および/または、上記水分排出機構が備える水分排出部材を、上記フィルタの面に平行な方向において、該フィルタに対して相対的に移動させる態様であってもよい。
It is preferable that the moisture discharging mechanism includes a moisture absorbing member brought into contact with the back surface of the filter and / or a suction port communicating with the moisture suction device as the moisture discharging member.
Even if the solution supply member provided in the solution supply mechanism and / or the water discharge member provided in the water discharge mechanism is moved relative to the filter in a direction parallel to the surface of the filter. Good.

上記溶液供給機構が備える溶液供給部材を、その先端が上記フィルタの表面には接触しないが該フィルタの表面に供給された試料溶液に接触した状態で、試料溶液を供給しながら、該フィルタの面に平行な方向において、該フィルタに対して相対的に移動させる態様であってもよい。   While supplying the sample solution in a state where the tip of the solution supply member provided in the solution supply mechanism is not in contact with the surface of the filter but in contact with the sample solution supplied to the surface of the filter, the surface of the filter In a direction parallel to the filter, the filter may be moved relative to the filter.

上記フィルタを傾斜させることによって、該フィルタの表面に供給された試料溶液を重力に従って展開させるか、または、該フィルタの表面の片側に試料溶液が貯留した状態にさせる態様であってもよい。   The sample solution supplied to the surface of the filter may be developed according to gravity by inclining the filter, or the sample solution may be stored on one side of the surface of the filter.

上記溶液供給機構が備える溶液供給部材の上記フィルタに対する相対的な移動および/または傾斜により、試料溶液が該フィルタ表面に展開される軌跡と、上記水分排出機構が備える水分排出部材のフィルタに対する相対的な移動による軌跡とが略同一であることが好ましい。   The relative movement and / or inclination of the solution supply member provided in the solution supply mechanism with respect to the filter causes the sample solution to be developed on the surface of the filter, and the relative relationship between the moisture discharge member provided in the moisture discharge mechanism with respect to the filter. It is preferable that the trajectory due to a simple movement is substantially the same.

上記フィルタを基板に重ねた状態で、上記溶液供給工程において、該フィルタの表面の一端に試料溶液を供給し、上記水分排出工程において、該フィルタの他端より順次該フィルタを該基板から離間して行き、該基板上に水分を吸着または保持させることによって水分を排出する態様であってもよい。   In the solution supplying step, the sample solution is supplied to one end of the surface of the filter in a state where the filter is overlaid on the substrate, and in the moisture discharging step, the filter is sequentially separated from the substrate from the other end of the filter. Alternatively, the moisture may be discharged by adsorbing or holding the moisture on the substrate.

試料溶液の単位時間当りの供給量は、水分の単位時間当りの排出量と同じか、または多いことが好ましい。
溶液供給工程と水分排出工程とを同時並行して行ってもよい。
The supply amount of the sample solution per unit time is preferably the same as or larger than the amount of water discharged per unit time.
You may perform a solution supply process and a water | moisture-content discharge | release process simultaneously in parallel.

上記生体関連物質は、細胞であることが好ましい。
また、本発明の展開装置は、溶液供給機構および水分排出機構;フィルタを配置するフィルタ配置部;該フィルタ配置部の上方および下方にそれぞれ溶液供給機構または水分排出機構を保持する治具;ならびに、溶液供給機構および/または水分排出機構をフィルタ面に平行な方向に相対的に移動させ、かつ移動速度を調整することができる移動機構を備え、該治具が、該治具に溶液供給機構または水分排出機構を保持させた状態で、溶液供給機構および水分排出機構とフィルタ配置部との距離を調整できる、上記展開方法に用いることを特徴とする。
The biological substance is preferably a cell.
Further, the developing device of the present invention includes a solution supply mechanism and a water discharge mechanism; a filter arrangement portion for arranging a filter; a jig for holding the solution supply mechanism or the water discharge mechanism above and below the filter arrangement portion; and A moving mechanism capable of relatively moving the solution supply mechanism and / or the moisture discharging mechanism in a direction parallel to the filter surface and adjusting the moving speed, and the jig is attached to the jig with the solution supply mechanism or It is characterized by being used in the above-described developing method, in which the distance between the solution supply mechanism and the water discharge mechanism and the filter arrangement portion can be adjusted in a state where the water discharge mechanism is held.

本発明の、粒子状の生体関連物質の展開方法によれば、例えば血球細胞等を、フィルタ表面上に多層積層されることを抑制しつつ、密に凝集させて展開することができる。そして、展開することができる面積は、例えばスライドグラス等の小面積に限定されず、所望する大面積にも適用することができる。すなわち、細胞等からなる膜を大量に連続して製造することができる。   According to the method for developing a particulate biological material of the present invention, for example, blood cells can be densely aggregated and developed while suppressing multilayer lamination of the filter surface. And the area which can be expand | deployed is not limited to small areas, such as a slide glass, for example, It can apply also to the desired large area. That is, it is possible to continuously produce a large amount of a membrane made of cells or the like.

また、粒子状の生体関連物質が細胞である場合、通常、溶媒は生理食塩水であり、溶媒を蒸発させると、塩が析出し横毛管力の妨げとなるが、本発明の展開方法は生理食塩水等の溶媒を速やかに排出できるので、このような問題も解決できるものである。   In addition, when the particulate biological material is a cell, the solvent is usually physiological saline. When the solvent is evaporated, the salt precipitates and hinders the lateral capillary force. Since a solvent such as saline can be quickly discharged, such a problem can be solved.

図1は、本発明の展開方法の、溶液供給機構のみが移動する態様のいくつかを模式的に示した図であり、(a)下部排出および(b)端面排出を示す。FIG. 1 is a diagram schematically showing some of the modes in which only the solution supply mechanism moves in the developing method of the present invention, and shows (a) lower part discharge and (b) end face discharge. 図2は、本発明の展開方法の、水分排出機構のみが移動する態様のいくつかを模式的に示した図であり、(a)傾斜構造,および(b)シャッター構造を示す。FIGS. 2A and 2B are diagrams schematically showing some of the modes in which only the moisture discharging mechanism moves in the developing method of the present invention, and show (a) an inclined structure and (b) a shutter structure. 図3は、本発明の展開方法の、溶液供給機構および水分排出機構がともに移動する態様のいくつかを模式的に示した図であり、(a)下部排出および(b)端面排出を示す。FIG. 3 is a view schematically showing some of the modes in which the solution supply mechanism and the water discharge mechanism move together in the developing method of the present invention, and shows (a) lower discharge and (b) end face discharge. 図4は、本発明の展開方法の、フィルタが移動する態様のいくつかを模式的に示した図であり、(a)下部排出,(b)巻き取り式フィルタ構造,(c)ディスク構造,および(d)ディップ構造を示し、これらは溶液供給機構および水分排出機構がともに移動する態様であるとも換言できる。FIG. 4 is a diagram schematically showing some of the modes in which the filter moves in the developing method of the present invention, in which (a) lower discharge, (b) take-up filter structure, (c) disk structure, And (d) shows a dip structure, which can be said to be a mode in which both the solution supply mechanism and the water discharge mechanism move. 図5は、本発明の展開方法で用いる展開装置(図中、細胞集積部)を含んでなる細胞集積装置の一態様の模式図を示す。FIG. 5 shows a schematic diagram of one embodiment of a cell stacking device including a deploying device (cell stacking unit in the figure) used in the deploying method of the present invention. 図6は、実施例で用いた溶液供給機構の構成(a)および溶液供給機構の斜視図(b)を模式的に示した図である。FIG. 6 is a diagram schematically showing the configuration (a) of the solution supply mechanism and the perspective view (b) of the solution supply mechanism used in the examples. 図7は、実施例1で用いた本発明の展開方法(フィルタおよび溶液供給機構・水分排出機構ともに移動しない態様)を模式的に示した図である。FIG. 7 is a view schematically showing the developing method of the present invention used in Example 1 (a mode in which neither the filter nor the solution supply mechanism / moisture discharge mechanism moves). 図8は、実施例2で用いた本発明の展開方法(溶液供給機構・水分排出機構ともに移動する態様)を模式的に示した図である。FIG. 8 is a diagram schematically showing the developing method of the present invention (a mode in which both the solution supply mechanism and the water discharge mechanism move) used in Example 2. 図9は、実施例3で用いた本発明の展開方法(水分排出機構のみが移動する態様)を模式的に示した図であり、(b)のようにフィルタを水平にした状態で溶液を供給した後、(a)のようにフィルタ全体を傾斜させる。FIG. 9 is a diagram schematically showing the development method of the present invention (a mode in which only the moisture discharging mechanism moves) used in Example 3, and the solution was placed in a state where the filter was leveled as in (b). After feeding, the entire filter is tilted as shown in (a). 図10は、実施例4で用いた本発明の展開方法(溶液供給機構のみが移動する態様)を模式的に示した図である。FIG. 10 is a diagram schematically showing the developing method of the present invention (a mode in which only the solution supply mechanism moves) used in Example 4. 図11は、実施例5で用いた本発明の展開方法(水分排出機構のみが移動する態様)を模式的に示した図であり、図中点線で示すフィルタは剥離可能である。FIG. 11 is a diagram schematically showing the developing method of the present invention (a mode in which only the moisture discharging mechanism moves) used in Example 5, and the filter indicated by the dotted line in the figure is peelable. 図12は、実施例6で用いた本発明の展開方法(水分排出機構のみが移動する態様)を模式的に示した図((a)が斜視図,(b)が縦断面図)であり、(a)に示すようにフィルタがハウジング部材で支えられ、下部端部から水分吸収部材を押し当てることが可能である。FIGS. 12A and 12B are diagrams (a) is a perspective view and (b) is a vertical cross-sectional view schematically showing a deployment method of the present invention (a mode in which only the moisture discharging mechanism moves) used in Example 6. FIG. , (A), the filter is supported by the housing member, and the moisture absorbing member can be pressed from the lower end. 図13(a),(b)は、それぞれ実施例1および比較例1の画像による結果を示す。FIGS. 13A and 13B show the results of the images of Example 1 and Comparative Example 1, respectively. 図14(a),(b)は、それぞれ実施例2の画像による結果を示す。FIGS. 14A and 14B show the results of the image of Example 2, respectively. 図15(a),(b)は、それぞれ実施例4の画像による結果を示す。FIGS. 15A and 15B show the results of the images of Example 4, respectively. 図16は、特許文献1に開示されている捕捉染色装置の正面図を示す。より詳しくは、注入部(3)は、複数のシリンジ(14)と、シリンジヘッド(13)を押圧して溶液を注入する加圧体(7)と、シリンジ(14)を保持する移送体(6)と、その移送体(6)をその中心で固定組付けする回転軸とから構成されている。これらシリンジ(14)内には同一の溶液が収納させており、移送体(6)によってホルダー(17)上に移送された後、加圧体(7)によって溶液ホルダー(17)内に注入される。そして、細胞等の検体を含有する溶液をホルダー(17)内に注入した後、濾過部(4)によって溶液を吸引濾過し、検体をメンブレンフィルター(1)上に捕捉する。次に、ホルダー(17)内に染色処理のための溶液が注入された後、染色に必要な一定時間経過後、その溶液は吸引濾過される。濾過部(4)は、吸引ポンプ(18)と廃液壜(19)とから構成され、ホルダー(17)内の溶液を吸引ポンプ(18)で吸引し、廃液壜(19)内へ排出するものとしている。FIG. 16 shows a front view of the capture staining apparatus disclosed in Patent Document 1. As shown in FIG. More specifically, the injection unit (3) includes a plurality of syringes (14), a pressure body (7) for injecting a solution by pressing the syringe head (13), and a transfer body for holding the syringe (14) ( 6) and a rotating shaft for fixing and assembling the transfer body (6) at its center. The same solution is stored in these syringes (14), transferred to the holder (17) by the transfer body (6), and then injected into the solution holder (17) by the pressure body (7). The Then, after a solution containing a specimen such as a cell is injected into the holder (17), the solution is suction filtered by the filtration section (4), and the specimen is captured on the membrane filter (1). Next, after a solution for dyeing treatment is injected into the holder (17), the solution is suction filtered after a lapse of a certain time necessary for dyeing. The filtration unit (4) is composed of a suction pump (18) and a waste liquid tank (19), and sucks the solution in the holder (17) with the suction pump (18) and discharges it into the waste liquid tank (19). It is said.

次に、本発明の、粒子状の生体関連物質の展開方法および該展開方法で用いる展開装置について詳細に説明する。
本発明において、粒子状の生体関連物質を含む溶液を「試料溶液」と呼ぶことがある。また、試料溶液を供給して最終的に細胞が展開される側であるフィルタの一方の面を「表面」、供給された試料溶液の水分を排出する側であるフィルタのもう一方(他方)の面を「裏面」と呼ぶことがある。
Next, the developing method of the particulate biological material and the developing device used in the developing method of the present invention will be described in detail.
In the present invention, a solution containing a particulate biological material may be referred to as a “sample solution”. In addition, one surface of the filter which is the side where the sample solution is supplied and the cells are finally developed is “surface”, and the other side (the other) of the filter which is the side which discharges the moisture of the supplied sample solution. The surface is sometimes referred to as the “back surface”.

<展開方法>
本発明の展開方法は、少なくとも下記工程を含むことを特徴とする;
溶液供給工程:溶液供給機構を用いて、粒子状の生体関連物質を含有する溶液を、試料溶液中の水分は透過するが粒子状の生体関連物質は透過しないフィルタの表面上に供給する工程;および
水分排出工程:水分排出機構を用いて、フィルタの表面上に供給された試料溶液中の水分を、該フィルタの平面方向の一端に向かう力を作用させながら、フィルタの裏面から排出する工程。
<Deployment method>
The development method of the present invention includes at least the following steps:
Solution supply step: a step of supplying a solution containing a particulate biological material using a solution supply mechanism onto the surface of a filter that allows moisture in the sample solution to permeate but does not penetrate particulate biological material; And moisture discharging step: a step of discharging moisture in the sample solution supplied on the surface of the filter from the back surface of the filter while applying a force toward one end in the planar direction of the filter by using a moisture discharging mechanism.

本発明の展開方法の好ましい態様の一つとして、例えば、図8に示すように、フィルタの一部を折り曲げ(傾斜し)、その折り曲げたフィルタの下側に濾紙などの水分吸収部材を差し込み、溶液供給部材からPBS(リン酸緩衝塩類溶液)に懸濁した細胞を供給しつつ、溶液供給部材と水分吸収部材とをともに移動させる態様が挙げられる。濾紙によりPBSのみが吸収され、傾斜したフィルタの左手側から細胞が固着される。最初に固着された細胞を起点に、表面張力由来の横毛管力とぬれ膜中の液体の流れによる力(層流力)とにより順次細胞が集積していく。PBSに懸濁している細胞は電気二重層を形成するため互いに反発し合い分散しているが、析出するにつれてその反発力が徐々に弱まるため、二次元で凝集することができる。   As one preferred embodiment of the development method of the present invention, for example, as shown in FIG. 8, a part of the filter is bent (tilted), and a moisture absorbing member such as a filter paper is inserted below the folded filter, A mode in which the solution supply member and the water absorption member are moved together while supplying cells suspended in PBS (phosphate buffered saline) from the solution supply member can be mentioned. Only PBS is absorbed by the filter paper, and the cells are fixed from the left hand side of the inclined filter. Starting from the first fixed cells, the cells are sequentially accumulated by the lateral capillary force derived from surface tension and the force (laminar flow force) caused by the flow of liquid in the wetting film. Cells suspended in PBS repel each other to form an electric double layer and are dispersed. However, the repulsive force gradually weakens as they are deposited, and can therefore aggregate in two dimensions.

本発明の展開方法において、フィルタの平面方向における、溶液供給部材および/または水分排出部材のフィルタに対する相対的な位置は、固定させてもよいし、変動させてもよい。この際、フィルタの平面方向における、溶液供給部材の水分排出部材に対する相対的な位置も、固定させてもよいし、変動させてもよい。用いる溶液供給部材、溶液排出部材およびフィルタの態様や、粒子状の生体関連物質のフィルタ上への展開面積などの条件に応じて、上述したような位置は自在に設計することができる。例えば、
・溶液供給部材,水分排出部材およびフィルタすべてを固定する態様
・水分排出部材およびフィルタを固定し、溶液供給部材のみを移動させる態様(図1)
・溶液供給部材およびフィルタを固定し、水分排出部材のみを移動させる態様(図2)
・フィルタのみを固定し、溶液供給部材および水分排出部材を移動させる態様(図3)
・溶液供給部材および水分排出部材を固定し、フィルタのみを移動させる態様(図4)
などが挙げられる。溶液供給部材および水分排出部材のフィルタに対する相対的な位置を変動させる場合は、溶液供給部材がフィルタ上に描く軌跡および水分排出部材がフィルタ上に描く軌跡を略同一とすることが好ましい。
In the deployment method of the present invention, the relative positions of the solution supply member and / or the moisture discharge member with respect to the filter in the planar direction of the filter may be fixed or may be varied. At this time, the relative position of the solution supply member with respect to the moisture discharging member in the plane direction of the filter may be fixed or may be changed. The positions as described above can be freely designed according to conditions such as the form of the solution supply member, the solution discharge member and the filter used, and the development area of the particulate biological material on the filter. For example,
A mode in which all of the solution supply member, the water discharge member and the filter are fixed A mode in which the water discharge member and the filter are fixed and only the solution supply member is moved (FIG. 1)
A mode in which the solution supply member and the filter are fixed and only the water discharge member is moved (FIG. 2).
A mode in which only the filter is fixed and the solution supply member and the moisture discharge member are moved (FIG. 3)
A mode in which the solution supply member and the water discharge member are fixed and only the filter is moved (FIG. 4).
Etc. When the relative positions of the solution supply member and the moisture discharge member with respect to the filter are changed, it is preferable that the locus drawn by the solution supply member on the filter and the locus drawn by the moisture discharge member on the filter are substantially the same.

また、溶液供給工程および水分排出工程は順次行っても同時に行ってもよく、
・溶液供給工程の完了後に、水分排出工程を行う態様
であっても、
・溶液供給工程を行いながら水分排出工程を行う態様
であってもよい。
Further, the solution supply step and the water discharge step may be performed sequentially or simultaneously,
-Even after the completion of the solution supply process,
-The aspect which performs a water | moisture-content discharge | emission process may be sufficient as performing a solution supply process.

さらに、
・直線状に展開する態様(図3(c)「ディスク構造」以外の図1〜3)
であっても、
・孤状に展開する態様(図3(c)「ディスク構造」)
であってもよい。
further,
・ Linear development (FIGS. 1 to 3 other than FIG. 3 (c) “disc structure”)
Even
-Mode of unfolding (Fig. 3 (c) "Disk structure")
It may be.

得られる展開面は、前者の場合は矩形となり、後者の場合は円形となる。
本発明の展開方法における具体的な態様(直線状に展開)として、
・溶液供給機構,水分排出機構およびフィルタすべてを固定し、かつ溶液を供給後に排出する態様(図7)
・フィルタのみを固定し、溶液供給機構および水分排出機構を移動させ、かつ溶液を供給しながら排出する態様(図8)
・フィルタおよび溶液供給機構を固定し、水分排出機構のみを移動させ、かつ溶液を供給後に排出する態様(図9)
・水分排出機構およびフィルタを固定し、溶液供給機構のみを移動させ、かつ溶液を供給しながら排出する態様(図10)
などが好ましい。
The obtained development surface is rectangular in the former case and circular in the latter case.
As a specific mode (development in a straight line) in the deployment method of the present invention,
A mode in which all of the solution supply mechanism, the water discharge mechanism and the filter are fixed and the solution is discharged after the supply (FIG. 7).
A mode in which only the filter is fixed, the solution supply mechanism and the moisture discharge mechanism are moved, and the solution is discharged while being supplied (FIG. 8).
A mode in which the filter and the solution supply mechanism are fixed, only the moisture discharge mechanism is moved, and the solution is discharged after being supplied (FIG. 9).
A mode in which the water discharge mechanism and the filter are fixed, only the solution supply mechanism is moved, and the solution is discharged while supplying the solution (FIG. 10).
Etc. are preferable.

(粒子状の生体関連物質を含有する溶液)
粒子状の生体関連物質としては、その直径がコロイドと同程度の範囲内、具体的には100nm以上100μm以下であり、例えば、あらゆる種類の細胞やウイルスなどが挙げられ、本発明は特に限定されない。ただし、フィルタ表面上に展開させたい、目的とする粒子状の生体関連物質の直径が、用いるフィルタの孔径より大きいことが条件となる。
(Solution containing particulate biological material)
The particulate biological material has a diameter in the same range as that of the colloid, specifically 100 nm or more and 100 μm or less, and examples thereof include all kinds of cells and viruses, and the present invention is not particularly limited. . However, it is a condition that the diameter of the target particulate bio-related substance to be developed on the filter surface is larger than the pore diameter of the filter to be used.

粒子状の生体関連物質を含有する溶液(試料溶液)としては、例えば、細胞が懸濁したPBSなどが挙げられる。粒子状の生体関連物質を懸濁または分散させる媒体(本発明において「水分」と称する。)は特に限定されず、当業者であれば適宜選択することができる。また、試料溶液中の生体関連物質の密度は、溶液排出機構による排出能力などに応じて適切に調整することができる。   Examples of the solution (sample solution) containing particulate biological materials include PBS in which cells are suspended. The medium for suspending or dispersing the particulate biological material (referred to as “water” in the present invention) is not particularly limited, and can be appropriately selected by those skilled in the art. In addition, the density of the biological substance in the sample solution can be appropriately adjusted according to the discharge capacity by the solution discharge mechanism.

(フィルタ)
フィルタは、目的とする粒子状の生体関連物質の直径より小さい(試料溶液中の水分は透過しうる)孔径の穴を無数に有するものであれば、材質や大きさ、厚さなどは当業者であれば適宜選択することができる。
(filter)
If the filter has an infinite number of pores whose diameter is smaller than the diameter of the target particulate bio-related substance (water in the sample solution can pass through), the material, size, thickness, etc. are those skilled in the art. Can be selected as appropriate.

このようなフィルタとして市販品を用いることができ、例えば、GEヘルスケア・ジャパン(株)社製の「ニュークリポアメンブレン」などが好ましい。
また、フィルタは、図1に示すように、細孔を無数に有する支持体と積層して用いることもできる。このような支持体は、金属製、ガラス製、樹脂製であってもよい。
A commercially available product can be used as such a filter. For example, “New Clipore Membrane” manufactured by GE Healthcare Japan, Inc. is preferable.
Further, as shown in FIG. 1, the filter can be used by being laminated with a support having an infinite number of pores. Such a support may be made of metal, glass, or resin.

フィルタは、その全体が水平になるよう配置してもよいし、一部もしくは全体が傾斜するように配置してもよい。例えば、図9に示すように、フィルタに試料溶液を供給した後、傾斜させると、形成された液滴は重力により傾斜方向に沿って流れ落ちるので、溶液供給部材を移動させながら試料溶液を供給した場合と同じような状態で、フィルタ上に粒子状の生体関連物質を展開することが可能となる。また、図2(a)に示すように、フィルタを枠部材で囲った上で傾斜させ、そこに試料溶液を供給して貯留させ、傾斜の上流側から下流側に向かって水分排出部材を移動させるようにしてもよい。傾斜の角度は、水分排出部材の水分排出能力や移動速度などを考慮しながら、粒子状の生体関連物質の展開具合が適切なものとなるよう設定すればよく、傾斜の角度を自由に変更できる角度調整手段を用いて適宜調整することが好ましい。   The filter may be arranged so that the whole is horizontal, or may be arranged so that a part or the whole is inclined. For example, as shown in FIG. 9, when the sample solution is supplied to the filter and then tilted, the formed droplets flow down along the tilted direction due to gravity, so the sample solution was supplied while moving the solution supply member. In the same state as the case, it is possible to develop the particulate biological material on the filter. Further, as shown in FIG. 2 (a), the filter is tilted after being surrounded by a frame member, the sample solution is supplied and stored therein, and the moisture discharging member is moved from the upstream side of the tilt toward the downstream side. You may make it make it. The inclination angle may be set so that the development state of the particulate biological substance is appropriate while taking into consideration the water discharging ability and movement speed of the water discharging member, and the inclination angle can be freely changed. It is preferable to adjust appropriately using an angle adjusting means.

図4に示すように、フィルタ(またはフィルタと支持体)のみを移動させる場合、すなわち、溶液供給部材および/または水分排出部材のフィルタに対する相対的な位置を移動させる場合は、フィルタを移動させるための手段、例えば、水分が通過可能な微小孔(例えば1μmφ)を有するステンレス板を支持体としその上部にフィルタを固定したデバイスにおいてフィルタを移動させるための支持体の移動(a)やそのデバイスをディスク状に構成しての支持体の回転移動(c)、あるいは一対のロールにフィルタを懸架してのロールの回転(b)やフィルタを巻き取る巻き取りローラーの回転(d)などが必要である。   As shown in FIG. 4, when only the filter (or the filter and the support) is moved, that is, when the relative position of the solution supply member and / or the moisture discharge member with respect to the filter is moved, the filter is moved. For example, the movement of the support (a) and the device for moving the filter in a device in which a stainless plate having a micropore (for example, 1 μmφ) through which moisture can pass is used as a support and the filter is fixed on the stainless steel plate. It is necessary to rotate the support (c) configured as a disk, or rotate the roll (b) with the filter suspended between a pair of rolls, or rotate the take-up roller that winds the filter (d). is there.

(溶液供給機構)
溶液供給機構は、試料溶液をフィルタの一方の面(表面)上に供給できるものであればどのような態様であってもよい。典型的な態様としては、溶液供給部材(または単に液供給部)と、液供給部に連通した試料溶液の貯蔵部(または単に水分貯留部)と、必要に応じて液供給部を移動させる装置とを含むシステムや流路などが挙げられる。
(Solution supply mechanism)
The solution supply mechanism may be in any form as long as it can supply the sample solution onto one surface (surface) of the filter. As typical embodiments, a solution supply member (or simply a liquid supply unit), a sample solution storage unit (or simply a water storage unit) communicating with the liquid supply unit, and an apparatus for moving the liquid supply unit as necessary And a system including a flow path and the like.

展開すべき粒子状の生体関連物質が少量であれば、溶液供給部材を移動させることなく一定量の試料溶液を一回で供給して、溶液供給工程を完了させてもよい。一方、展開すべき粒子状の生体関連物質が多量であれば、溶液供給部材を移動させながら、連続的または断続的に、単位時間あたり所定量の試料溶液を供給するようにしてもよい。   If the amount of the particulate biological material to be developed is small, a fixed amount of the sample solution may be supplied at a time without moving the solution supply member to complete the solution supply step. On the other hand, if the amount of the particulate biological material to be developed is large, a predetermined amount of the sample solution may be supplied per unit time continuously or intermittently while moving the solution supply member.

試料溶液は、フィルタの上方から供給することも、フィルタの側方から供給することもできる。溶液供給部材をフィルタに対して相対的に移動させる場合、溶液供給部材の先端(供給口)が、フィルタの表面には接触しないがフィルタの表面に供給された試料溶液に接触した状態を保ちながら、後述する移動機構により溶液供給部材を移動させるか、フィルタを移動させることが好ましい。   The sample solution can be supplied from above the filter or from the side of the filter. When the solution supply member is moved relative to the filter, the tip (supply port) of the solution supply member is not in contact with the surface of the filter but is kept in contact with the sample solution supplied to the surface of the filter. Preferably, the solution supply member is moved by a moving mechanism described later, or the filter is moved.

上記のようにして試料溶液を供給することのできる溶液供給機構として、より具体的には、例えば、ブレードコータ,ディップコータ,アプリケータ,インクジェットなどが挙げられる。   More specifically, examples of the solution supply mechanism that can supply the sample solution as described above include a blade coater, a dip coater, an applicator, and an ink jet.

溶液供給工程において、溶液供給機構によりフィルタ表面上に供給される試料溶液の単位時間あたりの供給量は、溶液排出機構により溶液排出工程においてフィルタ裏面から排出される、上記試料溶液中の水分の単位時間あたりの排出量と、同じであってもよいし、それより多くてもよい。上記供給量と上記排出量とが同じであれば、供給された試料溶液の液溜まりの体積を一定に保ちながら水分を排出することが可能であるため、溶液供給工程および水分排出工程を同時に進行させることができる。一方、上記供給量が上記排出量よりも多ければ、供給された試料溶液の液溜まりの体積はある程度増大するので、許容限度に達する前に溶液供給工程を完了ないし一時中断させる必要がある。   In the solution supply step, the supply amount per unit time of the sample solution supplied onto the filter surface by the solution supply mechanism is the unit of moisture in the sample solution discharged from the back surface of the filter in the solution discharge step by the solution discharge mechanism. The amount of discharge per hour may be the same or more. If the supply amount and the discharge amount are the same, it is possible to discharge moisture while keeping the volume of the liquid pool of the supplied sample solution constant, so the solution supply step and the moisture discharge step proceed simultaneously. Can be made. On the other hand, if the supply amount is larger than the discharge amount, the volume of the liquid reservoir of the supplied sample solution increases to some extent. Therefore, it is necessary to complete or suspend the solution supply step before reaching the allowable limit.

(水分排出機構)
水分排出機構は、フィルタの一方の面(表面)上に供給された、粒子状の生体関連物質を含有する溶液を、上記フィルタの平面方向の一端に向かう力を作用させながら、フィルタの他方の面(裏面)から排出できるものであればどのような態様であってもよい。典型的な態様としては、水分排出部材(または単に排出部)と、必要に応じて該排出部を移動させる手段とを含むシステムが挙げられる。排出部から溶液を排出する能力が十分に高ければ、排出部をフィルタに対して相対的に移動させなくとも、遠い位置にある粒子状の生体関連物質にまで横毛管力を作用させて、所期の目的を達成することが可能である。
(Moisture drainage mechanism)
The moisture discharging mechanism applies a force directed to one end in the planar direction of the filter while applying the solution containing the particulate biological material supplied on one surface (surface) of the filter to the other surface of the filter. Any mode may be used as long as it can be discharged from the surface (back surface). A typical embodiment includes a system including a moisture discharging member (or simply a discharging unit) and means for moving the discharging unit as required. If the ability to discharge the solution from the discharge part is sufficiently high, the lateral capillary force can be applied to the particulate bio-related substance at a distant position without moving the discharge part relative to the filter. It is possible to achieve the purpose of the period.

一方、フィルタを支持体に重ねた状態で、溶液供給工程において、フィルタの表面の一端に試料溶液を供給し、水分排出工程において、フィルタの他端より順次フィルタを支持体から離間して行き、支持体上に水分を吸着または保持させることによって水分を排出する、すなわち毛細管力を利用して支持体上に溶液を保持させることによって溶液を排出する態様などであってもよい。ここで用いる支持体は、いかなる材料から構成されていてもよいが、支持体の表面が充分に親水性であることを要する。   On the other hand, the sample solution is supplied to one end of the surface of the filter in the solution supply step in a state where the filter is overlaid on the support, and in the moisture discharge step, the filter is sequentially separated from the support from the other end of the filter, For example, the moisture may be discharged by adsorbing or holding moisture on the support, that is, the solution may be discharged by holding the solution on the support using capillary force. The support used here may be composed of any material, but the surface of the support needs to be sufficiently hydrophilic.

また、図2の(b)シャッター構造に示すように、フィルタと水分吸収部材との間にシャッターを挟み、シャッター部を移動させることによって排出部を形成し、フィルタの裏面の一端から溶液を排出する態様も挙げられる。   Further, as shown in FIG. 2B, the shutter structure, a shutter is sandwiched between the filter and the moisture absorbing member, and a discharge portion is formed by moving the shutter portion, and the solution is discharged from one end of the back surface of the filter. The aspect which performs is also mentioned.

水分排出部材としては、水分吸収部材を用いることが好ましい。水分吸収部材を、フィルタ表面に供給された試料溶液(液溜まり)の一端側からフィルタの裏面に当接させることにより、粒子状の生体関連物質および水分に対してその一端に向う力を作用させながら、水分を排出することができる。このような水分吸収部材としては、例えば、濾紙などを用いることができる。水分吸収部材をフィルタの裏面に当接させる場合、フィルタの一部を持ち上げて(折り曲げて)水分吸収部材をフィルタと基板との間に挟み込むようにしてもよいし、フィルタ全体を平面に保てるよう支持体に傾斜をつけ、そのフィルタと支持体の傾斜の間に水分吸収部材を挟むようにしてもよい。   It is preferable to use a moisture absorbing member as the moisture discharging member. By bringing the moisture absorbing member into contact with the back surface of the filter from one end side of the sample solution (liquid reservoir) supplied to the filter surface, a force directed toward the one end is applied to the particulate biological material and moisture. While the water can be discharged. As such a moisture absorbing member, for example, filter paper or the like can be used. When the moisture absorbing member is brought into contact with the back surface of the filter, a part of the filter may be lifted (folded) so that the moisture absorbing member is sandwiched between the filter and the substrate, or the entire filter can be kept flat. The support may be inclined, and the moisture absorbing member may be sandwiched between the filter and the support.

また、水分排出部材としては、水分を能動的に連続的に吸引することのできる吸引装置、例えばポンプ等の減圧装置と連通した吸引口を用いることもできる。このような供給口をフィルタの裏面に必要に応じて、このような吸引口と上記水分吸収部材とを組み合わせて用いてもよい。   Further, as the water discharge member, a suction device capable of actively and continuously sucking water, for example, a suction port communicating with a decompression device such as a pump can be used. Such a supply port may be used on the back surface of the filter in combination with such a suction port and the moisture absorbing member as required.

<展開装置>
本発明の展開装置は、溶液供給機構および水分排出機構;フィルタを配置するフィルタ配置部;該フィルタ配置部の上方および下方にそれぞれ溶液供給機構または水分排出機構を保持する治具;ならびに、溶液供給機構および/または水分排出機構をフィルタ面に平行な方向に相対的に移動させ、かつ移動速度を調整することができる移動機構を備え、該治具が、該治具に溶液供給機構または水分排出機構を保持させた状態で、溶液供給機構および水分排出機構とフィルタ配置部との距離を調整できる、上記展開方法に用いることを特徴とする。
<Deployment device>
The developing device of the present invention includes a solution supply mechanism and a moisture discharge mechanism; a filter arrangement portion for arranging a filter; a jig for holding the solution supply mechanism or the moisture discharge mechanism above and below the filter arrangement portion; A moving mechanism capable of moving the mechanism and / or the moisture discharging mechanism relatively in a direction parallel to the filter surface and adjusting the moving speed, and the jig is connected to the solution supply mechanism or the moisture discharging mechanism. The present invention is characterized in that the distance between the solution supply mechanism and the water discharge mechanism and the filter arrangement portion can be adjusted while the mechanism is held.

例えば、より具体的な展開装置として、図4(b)に示す装置が挙げられる。フィルタは2個の回転するロール間に巻かれており、2個のロールを一定の速度にて同一方向に回転させることによりフィルタを一定方向に動かすことができる。水分吸収部材をフィルタに接するように配置・固定し、溶液供給側の先端が平坦となっている溶液供給部材(図6)を、水分吸収部材に対してフィルタ移動方向と反対側に配置・固定し、ロールの回転と同時に溶液吸収部材から細胞懸濁液を供給することができる。   For example, as a more specific deployment device, the device shown in FIG. The filter is wound between two rotating rolls, and the filter can be moved in a certain direction by rotating the two rolls in the same direction at a constant speed. Place and fix the moisture absorption member in contact with the filter, and place and fix the solution supply member (FIG. 6) whose tip on the solution supply side is flat on the side opposite to the filter moving direction with respect to the moisture absorption member. In addition, the cell suspension can be supplied from the solution absorbing member simultaneously with the rotation of the roll.

このような展開装置は、図5に示すような細胞集積装置に組み込むことができる。この細胞集積装置は、例えば、図4(b)に示す展開装置を含む細胞集積部(溶液供給機構および水分排出機構を固定し、フィルタのみを移動させる態様の展開方法に好適な展開装置),染色部,観察部およびフィルタを巻き取る駆動部からなり、細胞をフィルタ上に展開し、細胞を染色し、染色した細胞を観察(画像撮影)する工程を連続して行うことができる。   Such a deployment device can be incorporated into a cell accumulation device as shown in FIG. This cell accumulating apparatus is, for example, a cell accumulating section including a developing apparatus shown in FIG. 4B (a developing apparatus suitable for a developing method in which the solution supply mechanism and the water discharge mechanism are fixed and only the filter is moved), It comprises a staining section, an observation section, and a drive section that winds up the filter. The steps of developing cells on the filter, staining the cells, and observing (photographing) the stained cells can be performed continuously.

次に、本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
細胞懸濁液の調製ならびに細胞展開平面および溶液供給部材の作製を以下のようにして行った。
Next, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited by these.
Preparation of the cell suspension and preparation of the cell development plane and the solution supply member were performed as follows.

(細胞懸濁液の調製)
Jurkat細胞を、パラフォルムアルデヒド4%含有PBSにて懸濁し固定後、「Hoechst 33342」(インビトロゲン社製)にて細胞核を染色した。PBSにて洗浄し、8×106細胞/mLの濃度に調整し、これを細胞懸濁液とした。
(Preparation of cell suspension)
Jurkat cells were suspended and fixed in PBS containing paraformaldehyde 4%, and then cell nuclei were stained with “Hoechst 33342” (Invitrogen). The cells were washed with PBS, adjusted to a concentration of 8 × 10 6 cells / mL, and used as a cell suspension.

(細胞展開平面の作製)
ガラス製の支持体としてのスライドグラス(松浪硝子工業(株)製「S091120」;76mm×52mm)上に、フィルタ(GEヘルスケア・ジャパン(株)社製「ニュークリポアメンブレン」;孔径2μm)を積層し、これを細胞展開平面とした。
(Preparation of cell expansion plane)
On a slide glass (“S091120” manufactured by Matsunami Glass Industry Co., Ltd .; 76 mm × 52 mm) as a glass support, a filter (“New Clipore Membrane” manufactured by GE Healthcare Japan Co., Ltd .; pore diameter 2 μm) is used. These were stacked and used as a cell expansion plane.

(溶液供給部材の作製)
図6(a)に示すように、カバーガラス(松浪硝子工業(株)社製「C218181」;18mm×18mm)の両端に、厚さ0.7mm、幅5mmのステンレス板をスペーサーとして2枚のカバーガラスを貼り合わせることによって、このような溶液供給側に先端部を有する溶液供給部材を作製した。
(Production of solution supply member)
As shown in FIG. 6 (a), two pieces of stainless steel plates having a thickness of 0.7 mm and a width of 5 mm are used as spacers at both ends of a cover glass (“C218181” manufactured by Matsunami Glass Industry Co., Ltd .; 18 mm × 18 mm). A solution supply member having such a tip on the solution supply side was produced by laminating a cover glass.

また、実施例2,4で用いた細胞展開装置は以下のように構成されている。
フィルタ配置部の上部に溶液供給機構の治具を備え、該治具に溶液供給機構を保持させた状態で、溶液供給機構の高さ調整が可能であって、溶液供給機構をフィルタ配置部の平面に平行な方向に移動させる移動機構(移動速度調整可能)を備えている。
Moreover, the cell expansion | deployment apparatus used in Example 2, 4 is comprised as follows.
The jig of the solution supply mechanism is provided on the upper part of the filter arrangement part, and the height of the solution supply mechanism can be adjusted with the jig holding the solution supply mechanism. A moving mechanism (moving speed adjustable) that moves in a direction parallel to the plane is provided.

溶液供給機構による細胞懸濁液の供給としては、その治具に溶液供給機構を保持させ、溶液供給機構が有する水分貯留部に、細胞懸濁液を100μL貯留する。貯留された細胞懸濁液は、細胞展開平面上部に設置され溶液供給部材の先端部より細胞懸濁液を供給することができる。   As the supply of the cell suspension by the solution supply mechanism, the solution supply mechanism is held by the jig, and 100 μL of the cell suspension is stored in the water storage section of the solution supply mechanism. The stored cell suspension can be supplied from the tip of the solution supply member placed on the upper part of the cell development plane.

[実施例1]
まず、水平に設置した細胞展開平面のフィルタとスライドグラスとの間に、厚さが0.5mmの水分吸収部材(GEヘルスケア・ジャパン(株)製のブロッティング用ろ紙 角型(GB005))を差し込み固定した。次いで、水分吸収部材の先端部から約5mm離れた箇所に細胞懸濁液を10μL滴下し、液滴を形成した(図6)。30秒後に液滴内の細胞像を倒立蛍光顕微鏡(カールツァイス(株)製「Observer D1」)にて撮影した。
[Example 1]
First, a 0.5 mm thick water absorption member (GE Healthcare Japan Co., Ltd. blotting filter paper square type (GB005)) is placed between a horizontally installed cell spreading plane filter and a slide glass. Inserted and fixed. Next, 10 μL of the cell suspension was dropped at a location about 5 mm away from the tip of the moisture absorbing member to form a droplet (FIG. 6). After 30 seconds, the cell image in the droplet was photographed with an inverted fluorescence microscope (“Observer D1” manufactured by Carl Zeiss Co., Ltd.).

その結果、図13(a)中、白い丸で示されるように、Jurkat細胞による水分吸収部材方向への集合配列が確認できた。なお、該図中の四角で示したところが水分吸収部材を配置した個所である。   As a result, as shown by the white circles in FIG. 13A, a collective arrangement in the direction of the water absorbing member by Jurkat cells could be confirmed. In addition, the place shown with the square in this figure is a location which has arrange | positioned the moisture absorption member.

[比較例1]
実施例1において、水分吸収部材を用いなかった以外は実施例1と同様にして細胞像を撮影した。すなわち、水平に設置した細胞展開平面のフィルタに、細胞懸濁液を10μL滴下し、液滴を形成した後、液滴内の細胞像を蛍光顕微鏡にて撮影した。
その結果、図13(b)に示すように、Jurkat細胞による集合配列は認められなかった。
[Comparative Example 1]
In Example 1, cell images were taken in the same manner as in Example 1 except that the water absorbing member was not used. That is, 10 μL of the cell suspension was dropped on a filter on the cell development plane placed horizontally to form a droplet, and then a cell image in the droplet was photographed with a fluorescence microscope.
As a result, as shown in FIG. 13 (b), no assembly sequence by Jurkat cells was observed.

[実施例2]
図8に示すように、まず、水平に設置した細胞展開平面から約2mm程度上部に溶液供給部材の先端部を配置し、細胞懸濁液を供給した。次いで、細胞展開平面のフィルタとスライドグラスとの間に、実施例1で用いた水分吸収部材を差し込み、約1mm/秒の速度で液滴横方向から近づけると同時に、溶液供給部材も同方向、同速度で約1cm移動させた。移動後の細胞集積状況を経時的に蛍光顕微鏡にて撮影をした。
[Example 2]
As shown in FIG. 8, first, the tip of the solution supply member was placed about 2 mm above the horizontally placed cell development plane to supply the cell suspension. Next, the moisture absorbing member used in Example 1 was inserted between the filter on the cell development plane and the slide glass, and approached from the lateral direction of the droplet at a speed of about 1 mm / sec. It was moved about 1 cm at the same speed. The state of cell accumulation after migration was photographed over time with a fluorescence microscope.

その結果を図14(a),(b)に示す。(a)は、水分吸収部材・溶液供給部材の移動を開始して30秒後の画像であり、(b)は、それらの移動を開始して50秒後の画像である。   The results are shown in FIGS. 14 (a) and 14 (b). (A) is an image 30 seconds after the movement of the moisture absorbing member / solution supply member is started, and (b) is an image 50 seconds after the movement is started.

[実施例3]
図9(a)に示すように、水平面に対して傾斜角度15度で設置した細胞展開平面上に、細胞懸濁液を100μL添加し液滴を形成した。次に、細胞展開平面のフィルタとスライドグラスとの間に、実施例1で用いた水分吸収部材を差し込み、液滴の斜面下部への落下と同期するよう(速さ約0.2mm/秒)液滴横方向から近づけたことにより、細胞集積平面を作製した。
[Example 3]
As shown in FIG. 9A, 100 μL of a cell suspension was added to form a droplet on a cell development plane placed at an inclination angle of 15 degrees with respect to the horizontal plane. Next, the water absorbing member used in Example 1 is inserted between the filter on the cell development plane and the slide glass so as to synchronize with the drop of the liquid droplet on the lower slope (speed: about 0.2 mm / second). A cell accumulation plane was prepared by bringing the droplet close to the lateral direction.

[実施例4]
図10に示すように、水平に設置した細胞展開平面のフィルタとスライドグラスとの間に、実施例1で用いた水分吸収部材を差し込み固定した。次に、水分吸収部材の先端部から約5mm離れた箇所に実施例2と同様にして約2mm程度のメニスカスを形成させ、約1mm/秒の速度で水分吸収部材の先端部から遠ざける方向に溶液供給部材を約1cm移動させることによって細胞集積平面を作製した。
その結果を図15(a),(b)に示す。(a)は溶液供給部材の移動を開始して5秒後の画像であり、(b)は、それらの移動を開始して20秒後の画像である。
[Example 4]
As shown in FIG. 10, the water absorbing member used in Example 1 was inserted and fixed between a horizontally installed filter on a cell development plane and a slide glass. Next, a meniscus of about 2 mm is formed at a location about 5 mm away from the tip of the moisture absorbing member in the same manner as in Example 2, and the solution is moved away from the tip of the moisture absorbing member at a speed of about 1 mm / second. A cell accumulation plane was prepared by moving the supply member about 1 cm.
The results are shown in FIGS. 15 (a) and 15 (b). (A) is an image 5 seconds after the movement of the solution supply member is started, and (b) is an image 20 seconds after the movement is started.

[実施例5]
フィルタ用ハウジング(アドバンテック社製の「減圧濾過用フィルターホルダー」(KGS-90))にて細胞展開平面のフィルタを挟み、細胞懸濁液を100μL添加し液滴を形成後、ポリプロピレン製フィルムをフィルタ下部から押し当てた。次に、図11に示すように、細胞展開平面のフィルタとスライドグラスとの間に、実施例1で用いた水分吸収部材を差し込み、約1mm/秒の速度で液滴横方向から近づけることにより細胞集積平面を作製した。
[Example 5]
A filter housing (Advantech's “filter holder for vacuum filtration” (KGS-90)) is used to sandwich the filter on the cell development plane, add 100 μL of the cell suspension to form droplets, and then filter the polypropylene film. Pressed from the bottom. Next, as shown in FIG. 11, the moisture absorbing member used in Example 1 is inserted between the filter on the cell development plane and the slide glass, and is brought close to the droplet lateral direction at a speed of about 1 mm / second. A cell accumulation plane was prepared.

[実施例6]
図12(a)に示すように、フィルタ用ハウジング(アドバンテック社製の「減圧濾過用フィルターホルダー」(KGS-90))にて細胞展開平面のフィルタを挟み、細胞懸濁液を100μL添加し液滴を形成した。次いで、細胞展開平面のフィルタ下部に実施例1で用いた水分吸収部材を押し当て、約1mm/秒の速度で液滴横方向から近づけることにより細胞集積平面を作製した(図12(b))。
[Example 6]
As shown in FIG. 12 (a), a filter on the cell development plane is sandwiched between filter housings (“filter holder for vacuum filtration” (KGS-90) manufactured by Advantech), and 100 μL of cell suspension is added to the solution. Drops formed. Next, the moisture-absorbing member used in Example 1 was pressed against the lower part of the filter on the cell development plane, and the cell accumulation plane was prepared by approaching it from the lateral direction of the droplet at a speed of about 1 mm / sec (FIG. 12B). .

以上の実施例1〜6においては、厚さが0.5mmの水分吸収部材を用いたが、水分吸収部材の厚みは一様である必要はなく、フィルタに接触する水分吸収部材の先端の厚さが0.5mm程度であればフィルタ下部に差し込む際に好適であり、さらに差し込みを容易にするために更に先端を薄くしてもよく、先端から徐々に厚くなる形状としてもよい。また、フィルタに接触するようにして差し込まれる部分以外(例えば、水分吸収部材の後端側)は水分吸収部材を厚くすることで、水分吸収量を大きくすることもできる。   In Examples 1 to 6 described above, the moisture absorbing member having a thickness of 0.5 mm was used. However, the thickness of the moisture absorbing member does not have to be uniform, and the thickness of the tip of the moisture absorbing member that contacts the filter. If the thickness is about 0.5 mm, it is suitable for insertion into the lower portion of the filter, and the tip may be further thinned to make insertion easier, or the shape may gradually increase from the tip. Further, the moisture absorption amount can be increased by increasing the thickness of the moisture absorbing member except for the portion inserted so as to be in contact with the filter (for example, the rear end side of the moisture absorbing member).

本発明の展開方法を用いて細胞を観察した場合、細胞懸濁液が、例えば、被験者から採血した血液(10mL)である場合、顕微鏡の狭い視野内に多数の細胞を高密度で展開することができるため、例えば癌細胞などの数が少ない細胞を効率良く発見することができる。   When cells are observed using the development method of the present invention, when the cell suspension is, for example, blood (10 mL) collected from a subject, a large number of cells are developed at a high density within a narrow field of view of a microscope. Therefore, it is possible to efficiently find a cell having a small number such as a cancer cell.

1・・・・・・メンブレンフィルター
2・・・・・・フィルター保持部
3・・・・・・注入部
4・・・・・・濾過部
5・・・・・・収納体
6・・・・・・移送体
7・・・・・・加圧体
12・・・・・・回転軸
13・・・・・・シリンジヘッド
14・・・・・・シリンジ
15・・・・・・保持板
16・・・・・・支持棒
17・・・・・・ホルダー
18・・・・・・吸引ポンプ
19・・・・・・廃液壜
20・・・・・・制御盤
26・・・・・・固定軸
DESCRIPTION OF SYMBOLS 1 .... Membrane filter 2 .... Filter holding part 3 .... Injection part 4 .... Filtering part 5 .... Housing 6 ... ... Transfer 7 ... Pressure 12 ... Rotating shaft 13 ... Syringe head 14 ... Syringe 15 ... Holding plate 16 ··· Support rod 17 ··· Holder 18 ··· Suction pump 19 ··· Waste liquid tank 20 ··· Control panel 26 ···・ Fixed shaft

Claims (11)

溶液供給機構を用いて、粒子状の生体関連物質を含有する溶液(以下「試料溶液」と呼ぶ。)を、試料溶液中の水分は透過するが該生体関連物質は透過しないフィルタの一方の面(以下「表面」と呼ぶ。)上に供給する溶液供給工程;および
水分排出機構を用いて、該フィルタの表面上に供給された試料溶液中の水分を、該フィルタの平面方向の一端に向かう力を作用させながら、該フィルタの他方の面(以下「裏面」と呼ぶ。)から排出する水分排出工程
を含むことを特徴とする該生体関連物質の展開方法。
Using a solution supply mechanism, a solution containing particulate biological substances (hereinafter referred to as “sample solution”) is one side of a filter that allows moisture in the sample solution to pass through but does not pass through the biological substances. (Hereinafter referred to as “surface”) solution supply step to be supplied on; and using the moisture discharge mechanism, moisture in the sample solution supplied on the surface of the filter is directed to one end in the planar direction of the filter. A method for developing the biological material, comprising a step of draining water from the other surface (hereinafter referred to as “back surface”) of the filter while applying a force.
上記水分排出機構が、水分排出部材として、上記フィルタの裏面に当接させた水分吸収部材、および/または、水分吸引装置に連通する吸引口を備える請求項1に記載の展開方法。   The expansion | deployment method of Claim 1 with which the said water | moisture-content discharge | release mechanism is provided with the suction opening connected to the water | moisture-content absorption member contacted with the back surface of the said filter, and / or a water | moisture-content suction apparatus as a water | moisture-content discharge | emission member. 上記溶液供給機構が備える溶液供給部材、および/または、上記水分排出機構が備える水分排出部材を、上記フィルタの面に平行な方向において、該フィルタに対して相対的に移動させる請求項1または2に記載の展開方法。   The solution supply member provided in the solution supply mechanism and / or the water discharge member provided in the water discharge mechanism are moved relative to the filter in a direction parallel to the surface of the filter. Deployment method described in 1. 上記溶液供給機構が備える溶液供給部材を、その先端が上記フィルタの表面には接触しないが該フィルタの表面に供給された試料溶液に接触した状態で、試料溶液を供給しながら、該フィルタの面に平行な方向において、該フィルタに対して相対的に移動させる請求項1〜3のいずれかに記載の展開方法。   While supplying the sample solution in a state where the tip of the solution supply member provided in the solution supply mechanism is not in contact with the surface of the filter but in contact with the sample solution supplied to the surface of the filter, the surface of the filter The expansion | deployment method in any one of Claims 1-3 moved relatively with respect to this filter in the direction parallel to. 上記フィルタを傾斜させることによって、該フィルタの表面に供給された試料溶液を重力に従って展開させるか、または、該フィルタの表面の片側に試料溶液が貯留した状態にさせる請求項1〜3のいずれかに記載の展開方法。   The sample solution supplied to the surface of the filter is developed according to gravity by tilting the filter, or the sample solution is stored on one side of the surface of the filter. Deployment method described in 1. 上記溶液供給機構が備える溶液供給部材の上記フィルタに対する相対的な移動および/または傾斜により、試料溶液が該フィルタ表面に展開される軌跡と、上記水分排出機構が備える水分排出部材のフィルタに対する相対的な移動による軌跡とが略同一である請求項1〜5のいずれかに記載の展開方法。   The relative movement and / or inclination of the solution supply member provided in the solution supply mechanism with respect to the filter causes the sample solution to be developed on the surface of the filter, and the relative relationship between the moisture discharge member provided in the moisture discharge mechanism with respect to the filter. The development method according to claim 1, wherein trajectories due to simple movement are substantially the same. 上記フィルタを支持体に重ねた状態で、
上記溶液供給工程において、該フィルタの表面の一端に試料溶液を供給し、
上記水分排出工程において、該フィルタの他端より順次該フィルタを該支持体から離間して行き、該支持体上に水分を吸着または保持させることによって水分を排出する請求項1に記載の展開方法。
In a state where the filter is overlaid on the support,
In the solution supply step, a sample solution is supplied to one end of the surface of the filter,
2. The developing method according to claim 1, wherein in the moisture discharging step, the filter is sequentially separated from the support from the other end of the filter, and the moisture is discharged by adsorbing or holding the moisture on the support. .
試料溶液の単位時間当りの供給量が、水分の単位時間当りの排出量と同じか、または多い請求項1〜7のいずれかに記載の展開方法。   The developing method according to any one of claims 1 to 7, wherein the supply amount of the sample solution per unit time is the same as or greater than the discharge amount of water per unit time. 上記溶液供給工程と上記水分排出工程とを同時並行して行う請求項1〜8のいずれかに記載の展開方法。   The expansion | deployment method in any one of Claims 1-8 which perform the said solution supply process and the said water | moisture-content discharge | release process simultaneously in parallel. 上記生体関連物質が、細胞である請求項1〜9のいずれかに記載の展開方法。   The development method according to claim 1, wherein the biological substance is a cell. 溶液供給機構および水分排出機構;フィルタを配置するフィルタ配置部;該フィルタ配置部の上方および下方にそれぞれ溶液供給機構または水分排出機構を保持する治具;ならびに、溶液供給機構および/または水分排出機構をフィルタ面に平行な方向に相対的に移動させ、かつ移動速度を調整することができる移動機構を備え、
該治具が、該治具に溶液供給機構または水分排出機構を保持させた状態で、溶液供給機構および水分排出機構とフィルタ配置部との距離を調整できる、
請求項1〜10のいずれかに記載の展開方法に用いることを特徴とする展開装置。
A solution supply mechanism and a water discharge mechanism; a filter arrangement portion for disposing a filter; a jig for holding the solution supply mechanism or the water discharge mechanism above and below the filter arrangement portion; and a solution supply mechanism and / or a water discharge mechanism. A moving mechanism capable of moving the filter relatively in a direction parallel to the filter surface and adjusting the moving speed,
The jig can adjust the distance between the solution supply mechanism and the water discharge mechanism and the filter arrangement portion in a state where the jig holds the solution supply mechanism or the water discharge mechanism.
A deployment apparatus, which is used in the deployment method according to claim 1.
JP2011129027A 2011-06-09 2011-06-09 Cell plane development method Expired - Fee Related JP5659960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011129027A JP5659960B2 (en) 2011-06-09 2011-06-09 Cell plane development method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011129027A JP5659960B2 (en) 2011-06-09 2011-06-09 Cell plane development method

Publications (2)

Publication Number Publication Date
JP2012255720A true JP2012255720A (en) 2012-12-27
JP5659960B2 JP5659960B2 (en) 2015-01-28

Family

ID=47527415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011129027A Expired - Fee Related JP5659960B2 (en) 2011-06-09 2011-06-09 Cell plane development method

Country Status (1)

Country Link
JP (1) JP5659960B2 (en)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194356A (en) * 1981-05-14 1982-11-29 Coulter Electronics Device for forming single layer
JPS62135749A (en) * 1985-12-10 1987-06-18 Daicel Chem Ind Ltd Filter holder for measuring pulverized particle
JPS63167267A (en) * 1986-12-15 1988-07-11 ポール・コーポレーション Well type disgnostic plate device
JPH02129531A (en) * 1988-11-09 1990-05-17 Michirou Shibazaki Method and device for acquisition and dyeing of sample
JPH03125262U (en) * 1990-03-30 1991-12-18
WO1994003103A1 (en) * 1992-07-28 1994-02-17 Guirguis Raouf A Method and apparatus for obtaining cytology monolayers
JPH0783939A (en) * 1993-09-13 1995-03-31 Aloka Co Ltd Method and apparatus for suction for microplate
JPH0990321A (en) * 1995-09-20 1997-04-04 Hitachi Ltd Liquid crystal display device and its production
JPH10513259A (en) * 1995-01-25 1998-12-15 セラコス・インコーポレイテッド Disposable hemolysis detector
WO2004083852A1 (en) * 2003-03-10 2004-09-30 Arkray Inc. Blood cell separation membrane and blood retention tool including the same
JP2005526953A (en) * 2001-09-17 2005-09-08 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト Embossed test strip system
WO2006080362A1 (en) * 2005-01-27 2006-08-03 National University Corporation Hokkaido University Method of producing honeycomb structure body
JP2006208317A (en) * 2005-01-31 2006-08-10 Srl Inc Producing method of cytologic specimen, and cytologic specimen produced by it
JP2006223252A (en) * 2005-02-21 2006-08-31 Fuji Photo Film Co Ltd Cartridge holding device for nucleic acid extracting apparatus
JP2007206032A (en) * 2006-02-06 2007-08-16 Arkray Inc Specimen analytical tool
WO2008041773A1 (en) * 2006-10-02 2008-04-10 Hitachi High-Technologies Corporation Analysis kit, analyzer and analysis method
JP2010237050A (en) * 2009-03-31 2010-10-21 Institute Of Microchemical Technology Plasma separation device and method
WO2010146123A1 (en) * 2009-06-17 2010-12-23 Leukocare Ag Blood filter and method for filtering blood
JP2011095161A (en) * 2009-10-30 2011-05-12 Tdk Corp Collection implement, detection device, and collection method

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194356A (en) * 1981-05-14 1982-11-29 Coulter Electronics Device for forming single layer
JPS62135749A (en) * 1985-12-10 1987-06-18 Daicel Chem Ind Ltd Filter holder for measuring pulverized particle
JPS63167267A (en) * 1986-12-15 1988-07-11 ポール・コーポレーション Well type disgnostic plate device
JPH02129531A (en) * 1988-11-09 1990-05-17 Michirou Shibazaki Method and device for acquisition and dyeing of sample
JPH03125262U (en) * 1990-03-30 1991-12-18
WO1994003103A1 (en) * 1992-07-28 1994-02-17 Guirguis Raouf A Method and apparatus for obtaining cytology monolayers
JPH0783939A (en) * 1993-09-13 1995-03-31 Aloka Co Ltd Method and apparatus for suction for microplate
JPH10513259A (en) * 1995-01-25 1998-12-15 セラコス・インコーポレイテッド Disposable hemolysis detector
JPH0990321A (en) * 1995-09-20 1997-04-04 Hitachi Ltd Liquid crystal display device and its production
JP2005526953A (en) * 2001-09-17 2005-09-08 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト Embossed test strip system
WO2004083852A1 (en) * 2003-03-10 2004-09-30 Arkray Inc. Blood cell separation membrane and blood retention tool including the same
WO2006080362A1 (en) * 2005-01-27 2006-08-03 National University Corporation Hokkaido University Method of producing honeycomb structure body
JP2006208317A (en) * 2005-01-31 2006-08-10 Srl Inc Producing method of cytologic specimen, and cytologic specimen produced by it
JP2006223252A (en) * 2005-02-21 2006-08-31 Fuji Photo Film Co Ltd Cartridge holding device for nucleic acid extracting apparatus
JP2007206032A (en) * 2006-02-06 2007-08-16 Arkray Inc Specimen analytical tool
WO2008041773A1 (en) * 2006-10-02 2008-04-10 Hitachi High-Technologies Corporation Analysis kit, analyzer and analysis method
JP2010237050A (en) * 2009-03-31 2010-10-21 Institute Of Microchemical Technology Plasma separation device and method
WO2010146123A1 (en) * 2009-06-17 2010-12-23 Leukocare Ag Blood filter and method for filtering blood
JP2011095161A (en) * 2009-10-30 2011-05-12 Tdk Corp Collection implement, detection device, and collection method

Also Published As

Publication number Publication date
JP5659960B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
EP2211716B1 (en) Blood sampling device comprising at least one filter
US7815855B2 (en) Test element with nanofibers
US10376845B2 (en) Membranes with tunable selectivity
JP4863714B2 (en) Composite porous membrane and method for producing the same
JP3903098B2 (en) Blood filtration method
JP3459923B2 (en) Multi-site chemotaxis test apparatus and method
CN103157382B (en) There is the film of localized non-uniformities
JP4299851B2 (en) Protein microarray slide
US20190242796A1 (en) Collection of suspended cells using a transferable membrane
CS235005B2 (en) Method of plasma or serum separation from blood and agent for application of this method
WO2011139233A1 (en) A microsieve for cells and particles filtration
KR20180053686A (en) Holder for cell-holding substrate for observation sample preparation, kit containing the same, and method for producing observation sample
JP4717961B2 (en) Artificial lipid membrane formation method
CN113796860A (en) Method and apparatus for sample collection and sample separation
JP5659960B2 (en) Cell plane development method
JP6738012B2 (en) Cell-holding substrate holder for preparing cell observation specimen and kit containing the same
JP2004361419A (en) Blood filtering unit
US4280442A (en) Apparatus for producing monocellular layers of cell-containing biological fluid
JP4992115B2 (en) Composite membrane and manufacturing method thereof
JP2008116211A (en) Cell separator and method for separating cells using the same
US20190120735A1 (en) Device for preparing glass slide specimen of cells, method of preparing glass slide specimen of cells, and method of extracting dna or rna
Cordovez et al. A novel polymer microneedle fabrication process for active fluidic delivery
JP5771934B2 (en) Cell staining method and cell staining kit
TWI627991B (en) Apparatus for self-drive microfluid filtration, microfluid filtration and microfluid driver
CN114018667A (en) Cell-retaining substrate holder for producing observation specimen, kit including same, and method for producing observation specimen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R150 Certificate of patent or registration of utility model

Ref document number: 5659960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees