JP2012255223A - Method for producing carbon fiber - Google Patents

Method for producing carbon fiber Download PDF

Info

Publication number
JP2012255223A
JP2012255223A JP2011127684A JP2011127684A JP2012255223A JP 2012255223 A JP2012255223 A JP 2012255223A JP 2011127684 A JP2011127684 A JP 2011127684A JP 2011127684 A JP2011127684 A JP 2011127684A JP 2012255223 A JP2012255223 A JP 2012255223A
Authority
JP
Japan
Prior art keywords
pitch
carbon fiber
wood
spinning
woody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011127684A
Other languages
Japanese (ja)
Other versions
JP5818066B2 (en
Inventor
Osamu Kato
攻 加藤
Katsuki Ito
勝喜 伊藤
Kotetsu Matsunaga
興哲 松永
Kinya Sakanishi
欣也 坂西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Tokai Carbon Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Tokai Carbon Co Ltd
Priority to JP2011127684A priority Critical patent/JP5818066B2/en
Publication of JP2012255223A publication Critical patent/JP2012255223A/en
Application granted granted Critical
Publication of JP5818066B2 publication Critical patent/JP5818066B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably conduct a spinning process for producing a carbon fiber by enhancing solubilization properties (solubility) of a solid wood-based raw material and enhancing heat stability of wood-based pitch obtained by removing a low-boiling component from the raw material even in a method for heating and fusing the solid wood-based raw material including cellulose, hemicellulose, lignin and lignocellulose, and spinning the resultant material.SOLUTION: The carbon fiber is produced by the steps of: preparing the solid wood-based raw material including at least one substance selected from cellulose, hemicellulose, lignin and lignocellulose; pressurizing and heating the raw material under the existence of phenols and a thermally decomposable heavy oil to solubilize the material; removing the low-boiling component from the solubilized material to obtain the wood-based pitch; and spinning, infusibilizing and carbonizing the pitch.

Description

本発明は、セルロース、ヘミセルロース、リグニン、リグノセルロースなどを含む固形木質系原料の利用技術に関するものであり、より詳しくは前記固形木質系原料を用いた炭素繊維の製造技術に関するものである。
炭素繊維は、例えば、炭素繊維強化樹脂複合材料、炭素繊維強化炭素複合材料、断熱材、防音材、活性炭素繊維等に使用される。
The present invention relates to a technique for using a solid wood material containing cellulose, hemicellulose, lignin, lignocellulose, and the like, and more particularly to a technique for producing carbon fiber using the solid wood material.
The carbon fiber is used for, for example, a carbon fiber reinforced resin composite material, a carbon fiber reinforced carbon composite material, a heat insulating material, a soundproof material, and activated carbon fiber.

従来、炭素繊維の製造方法は大きく別けて2つが知られている。第1の方法では、石油および石炭等の化石原料から生産されるポリアクリロニトリルを耐炎化処理、炭化処理することによって炭素繊維を製造する。第2の方法では、石油系重質油および石炭系重質油を熱処理して得られるピッチを溶融紡糸して、不融化処理、炭化処理等を実施することによって炭素繊維を製造する。しかし、化石原料は有限であり、その使用量低減が望まれる。   Conventionally, there are two known methods for producing carbon fibers. In the first method, carbon fiber is produced by flameproofing and carbonizing polyacrylonitrile produced from fossil raw materials such as petroleum and coal. In the second method, carbon fiber is produced by melt spinning a pitch obtained by heat treating petroleum heavy oil and coal heavy oil and performing infusibilization treatment, carbonization treatment, and the like. However, the fossil raw materials are limited, and it is desired to reduce the amount of use.

化石原料の代替として、再生可能なバイオマス資源(生物由来原料)が挙げられる。バイオマス資源は、酸素濃度を調整した条件下で熱分解して一酸化炭素と水素ガスへ転換する例、バイオマス資源を醗酵等してエタノールへ転換する例などの様に燃料としての利用研究が進められており、また炭素繊維原料や樹脂原料としての応用研究も鋭意進められている(例えば、特許文献1〜4など)。   As an alternative to fossil raw materials, renewable biomass resources (biological raw materials) can be mentioned. Biomass resources are being researched for use as fuel, such as thermal decomposition under conditions with adjusted oxygen concentration to convert them to carbon monoxide and hydrogen gas, and examples of converting biomass resources to ethanol by fermentation, etc. In addition, applied research as a carbon fiber raw material or a resin raw material has been earnestly promoted (for example, Patent Documents 1 to 4).

特許文献1では、木質系資源を高圧飽和水蒸気処理、アルコール系有機溶媒処理することによって得られるリグニンを水素添加分解し、熱溶融法により紡糸し、炭素化することによって炭素繊維を製造している。しかし水素添加分解を利用する方法は、エネルギー消費が大きく、望ましくない。   In Patent Document 1, carbon fiber is produced by hydrocracking lignin obtained by treating a wood-based resource with high-pressure saturated steam treatment and alcohol-based organic solvent treatment, spinning it by a thermal melting method, and carbonizing it. . However, the method using hydrocracking is not desirable because of the high energy consumption.

特許文献2では、木質系物質をフェノール類と水との混合溶媒を蒸解液として加熱することにより、パルプと、ヘミセルロースが分解して単糖類として溶解している水層、及びリグニンが溶解している有機層の三成分に分離した後、該有機層を減圧濃縮して得られるリグニンを溶融紡糸し、リグニン繊維を製造している。しかしこの方法は、パルプの分離・精製操作が煩雑であり、水層部分の廃液処理が難しいので、実用的ではない。   In Patent Document 2, by heating a woody material using a mixed solvent of phenols and water as a cooking solution, pulp, an aqueous layer in which hemicellulose is decomposed and dissolved as a monosaccharide, and lignin are dissolved. After separating into three components of the organic layer, lignin obtained by concentrating the organic layer under reduced pressure is melt-spun to produce lignin fibers. However, this method is not practical because the separation and refining operation of the pulp is complicated and it is difficult to treat the waste liquid in the aqueous layer portion.

特許文献3では木質材料からの脱リグニン処理で溶出したリグニンを酸性有機触媒で処理して得られるフェノール化リグニンを非酸化雰囲気下、加熱重質化することで炭素繊維紡糸用リグニンを調製している。しかしこの方法は、製造工程が煩雑であり、また炭素繊維の収率も低く、コストがかかる方法である。   In Patent Document 3, a lignin for carbon fiber spinning is prepared by heat-healing phenolic lignin obtained by treating lignin eluted by delignification treatment from a woody material with an acidic organic catalyst in a non-oxidizing atmosphere. Yes. However, this method is costly because the production process is complicated and the yield of carbon fibers is low.

特許文献4には、リグノセルロース材料を爆砕前処理し、この処理物とフェノール化合物とを加熱下に溶解反応させることで可溶化物を製造している。しかしこの方法では、爆砕処理装置が膨大であり、生成物中に固形分が残存する。そのため紡糸が困難で、炭素繊維用原料として不適切である。   In Patent Document 4, a lignocellulosic material is pretreated for explosion, and a solubilized product is produced by dissolving the treated product and a phenol compound under heating. However, in this method, the explosion treatment apparatus is enormous and solid content remains in the product. Therefore, spinning is difficult and it is not suitable as a raw material for carbon fiber.

なお、上述の従来法では、高温・高圧・高エネルギー消費を必要とする水素添加分解法(特許文献1)を除くと、いずれも生成物ピッチの熱安定性が低い欠点を持っている。ピッチの熱安定性が低いと、溶融紡糸時に粘度上昇(軟化点上昇)により所望の繊維径が得られなくなるだけでなく、ノズルの閉塞により紡糸そのものができなくなる。従って、熱安定性の向上は、木質系ピッチから炭素繊維を作る過程における大きな課題である。   Note that the conventional methods described above have the disadvantage that the thermal stability of the product pitch is low except for the hydrocracking method (Patent Document 1) that requires high temperature, high pressure, and high energy consumption. When the thermal stability of the pitch is low, not only a desired fiber diameter cannot be obtained due to an increase in viscosity (increase in softening point) during melt spinning, but spinning itself cannot be performed due to nozzle clogging. Therefore, improvement of thermal stability is a major problem in the process of producing carbon fibers from a wood pitch.

特開昭62−110922号公報Japanese Unexamined Patent Publication No. Sho 62-110922 特開平01−239114号公報Japanese Patent Laid-Open No. 01-239114 特開平01−306618号公報Japanese Patent Laid-Open No. 01-306618 特開平04−126725号公報Japanese Patent Laid-Open No. 04-126725

本発明は上記の様な事情に着目してなされたものであって、その目的は、セルロース、ヘミセルロース、リグニン、リグノセルロースなどを含む固形木質系原料を加熱溶解して紡糸する方法であっても、その可溶性(溶解性)を高め、且つ低沸点成分を除去後の木質系ピッチの熱安定性を高め、炭素繊維を製造する際の紡糸工程を安定して実施できる技術を確立することにある。   The present invention has been made paying attention to the circumstances as described above, and the object thereof is a method of heating and dissolving a solid woody material containing cellulose, hemicellulose, lignin, lignocellulose, etc. , To improve the solubility (solubility) and to improve the thermal stability of the woody pitch after removing low-boiling components, and to establish a technology that can stably carry out the spinning process when producing carbon fiber .

本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、セルロース、ヘミセルロース、リグニン、及びリグノセルロースから選択される少なくとも一種を含む固形木質系原料をフェノール化合物で可溶化する際に、熱分解系重質油を併用すれば、不溶物(固形分)を著しく低減できるとともに、さらに低沸点成分を除去後の木質系ピッチの熱変質を抑制できることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have solubilized a solid woody material containing at least one selected from cellulose, hemicellulose, lignin, and lignocellulose with a phenol compound. The present inventors have found that if pyrolytic heavy oil is used in combination, insoluble matter (solid content) can be remarkably reduced, and thermal alteration of the woody pitch after removal of low-boiling components can be suppressed, and the present invention has been completed.

すなわち、本発明に係る炭素繊維は、セルロース、ヘミセルロース、リグニン、及びリグノセルロースから選択される少なくとも一種を含む固形木質系原料を、フェノール類と熱分解系重質油の存在下で加圧加熱して可溶化し、この可溶化物から低沸点成分を除去して得られる木質系ピッチを紡糸、不融化、及び炭化することによって製造される。前記木質系原料は、木質体を生物的、化学的、又は機械的に分解したものであることが好ましく、例えば、木質体を糖化処理した後の残渣、或いは木質体を糖化及び醗酵処理した後の残渣が含まれる。前記フェノール類としてはフェノールが好ましく、前記熱分解系重質油としてはエチレンボトム油、デカント油、コールタールなどが好ましい。   That is, the carbon fiber according to the present invention is obtained by pressurizing and heating a solid woody material containing at least one selected from cellulose, hemicellulose, lignin, and lignocellulose in the presence of phenols and pyrolytic heavy oil. It is produced by spinning, infusibilizing, and carbonizing a woody pitch obtained by solubilizing and removing low-boiling components from the solubilized product. The wood-based material is preferably a material obtained by biologically, chemically, or mechanically degrading a wood body, for example, a residue after saccharification treatment of the wood body, or after saccharification and fermentation treatment of the wood body Of residues. As the phenols, phenol is preferable, and as the pyrolytic heavy oil, ethylene bottom oil, decant oil, coal tar, and the like are preferable.

本発明によれば、フェノール類及び熱分解系重質油の存在下で固形木質系原料を加圧加熱しているため、不溶物(固形分)を低減でき、さらに木質系ピッチの熱変質を抑えることで炭素繊維を製造する際の紡糸工程を安定して実施できる。
さらに熱分解系重質油を利用して熱変質を抑えた炭素繊維は、その強度も優れている。加えて熱分解系重質油は安価であって、コストメリットも大きい。
According to the present invention, since the solid woody raw material is heated under pressure in the presence of phenols and pyrolysis heavy oil, insoluble matter (solid content) can be reduced, and thermal alteration of the woody pitch can be further reduced. By restraining, the spinning process when producing the carbon fiber can be carried out stably.
Furthermore, the carbon fiber which suppressed thermal change using the pyrolysis heavy oil is excellent also in the intensity | strength. In addition, pyrolytic heavy oil is inexpensive and has great cost merit.

炭素繊維は、ピッチを溶融紡糸し、不融化処理、炭化処理をすることによって製造されている。本発明は、固形木質系原料を有効利用して前記木質系ピッチを製造し、この木質系ピッチから炭素繊維を製造するものである。   Carbon fiber is manufactured by melt spinning a pitch and performing infusibilization treatment and carbonization treatment. The present invention is to produce the above-mentioned wood-based pitch by effectively using a solid wood-based raw material, and to produce carbon fibers from this wood-based pitch.

(1)木質系ピッチの調製
本発明では、固形木質系原料を後述する所定溶剤の存在下で加圧加熱することで、ピッチを調製している。固形木質系原料を使用することによって、化石原料の依存度を下げることができる。また所定溶剤の存在下で加圧加熱することで、固形木質系原料を可溶化することができ、この可溶化物から低沸点成分を除去して得られる木質系ピッチを炭素繊維の製造原料として使用することができる。固形木質系原料を完全溶解するのは、一般には難しく、又可溶化処理後得られる木質系ピッチは熱安定性が悪いが、本発明では後述する所定の溶剤を使用して加圧加熱しているため、固形木質系原料の95質量%以上を可溶化でき、得られるピッチの熱変質を抑制することができる。
(1) Preparation of woody pitch In the present invention, the pitch is prepared by pressurizing and heating a solid woody raw material in the presence of a predetermined solvent described later. By using a solid woody material, the dependence of fossil materials can be reduced. Moreover, by heating under pressure in the presence of a predetermined solvent, the solid woody material can be solubilized, and the woody pitch obtained by removing low-boiling components from this solubilized product is used as a raw material for producing carbon fiber Can be used. It is generally difficult to completely dissolve a solid woody material, and the woody pitch obtained after solubilization treatment has poor thermal stability, but in the present invention, it is heated under pressure using a predetermined solvent described later. Therefore, 95% by mass or more of the solid woody material can be solubilized, and thermal alteration of the obtained pitch can be suppressed.

前記固形木質系原料としては、セルロース、ヘミセルロース、リグニン、及びリグノセルロースから選択される少なくとも一種を含む固形原料である限り特に限定されず、植物(特に木材)由来の原料であればいずれも使用可能である。例えば、針葉樹と広葉樹とを網羅した間伐材、林地残材、製材残材、建築廃材、剪定枝葉、切り株、樹皮などの木質系廃材が廃棄物の有効利用の観点から固形木質系原料として望ましい。   The solid wood material is not particularly limited as long as it is a solid material containing at least one selected from cellulose, hemicellulose, lignin, and lignocellulose, and any material derived from plants (particularly wood) can be used. It is. For example, wood-based waste materials such as thinned wood covering conifers and broad-leaved trees, forest land residual materials, lumber residual materials, construction waste materials, pruned branches, stumps and bark are desirable as solid wood-based raw materials from the viewpoint of effective use of waste.

固形木質系原料は、好ましくは、生物的、化学的、又は機械的に分解されている。予め分解しておくことにより、加圧加熱による可溶化の処理効率を高めることができる。生物学的な分解としては、菌、微生物、酵素などによる分解が挙げられる。化学的な分解は、硫酸・アルカリ法であってもよいが、環境負荷を考慮すると、水熱処理或いは過熱水蒸気による加水分解が好ましい。また機械的な分解には、叩解、破砕、粉砕、摩砕、爆砕などが含まれ、この機械的分解は乾式及び湿式のいずれでもよい。   The solid woody material is preferably decomposed biologically, chemically or mechanically. By decomposing in advance, the processing efficiency of solubilization by pressure heating can be increased. Biological degradation includes degradation by fungi, microorganisms, enzymes, and the like. The chemical decomposition may be a sulfuric acid / alkali method, but hydrothermal treatment or hydrolysis with superheated steam is preferable in consideration of environmental load. In addition, the mechanical decomposition includes beating, crushing, crushing, grinding, and explosion, and this mechanical decomposition may be either dry or wet.

これら生物的、化学的、又は機械的分解は、適宜組み合わせるのが望ましく、典型的には、機械的分解(粉砕など)をした後、必要に応じて水熱処理(加水分解処理)し、次いで生物学的に糖化処理(酵素法による糖化処理など)される。糖化処理物は、通常、濾過して液体成分と固形分とに分離される。液体成分(主成分は糖分)はエタノール発酵に供し、固形分は残渣(糖化残渣)として排出される。場合によっては、前記糖化処理物は、濾過せずそのまま後段に送り、微生物や菌(特に酵母)によってエタノール醗酵処理してもよい。この醗酵処理では、通常前記糖化処理物中の糖分だけがエタノールに変換され、固形分(糖化残渣)は変化しない。醗酵処理物も濾過により、液体成分(主成分はエタノール水溶液)と固形分(糖化残渣と基本的には同じ成分であるが、ここでは「醗酵残渣」という)とに分離される。このように得られる糖化残渣又は醗酵残渣は、いずれもリグニンを主成分としており、セルロース及びヘミセルロースを含有していても、そのまま固形木質系原料として使用できる。好ましい固形木質系原料は、糖化残渣又は醗酵残渣である。これら水熱処理、糖化処理、醗酵処理の詳細は、例えば、特開2005−168335号公報に詳述されている。   These biological, chemical, or mechanical degradations are desirably combined as appropriate. Typically, after mechanical degradation (such as pulverization), hydrothermal treatment (hydrolysis treatment) is performed as necessary, and then biological degradation is performed. Scientifically, saccharification treatment (eg, saccharification treatment by enzymatic method) is performed. The saccharified product is usually separated into a liquid component and a solid content by filtration. The liquid component (main component is sugar) is subjected to ethanol fermentation, and the solid is discharged as a residue (saccharification residue). In some cases, the saccharified product may be sent to the subsequent stage without filtration and subjected to ethanol fermentation with microorganisms or fungi (particularly yeast). In this fermentation treatment, usually only the sugar content in the saccharification product is converted to ethanol, and the solid content (saccharification residue) does not change. The fermented product is also separated by filtration into a liquid component (main component is an aqueous ethanol solution) and a solid content (which is basically the same component as the saccharification residue, but here referred to as “fermentation residue”). The saccharification residue or fermentation residue obtained in this way has lignin as the main component, and even if it contains cellulose and hemicellulose, it can be used as it is as a solid woody material. A preferable solid woody material is a saccharification residue or a fermentation residue. Details of these hydrothermal treatment, saccharification treatment, and fermentation treatment are described in detail in, for example, JP-A-2005-168335.

そして本発明では、上記の様な固形木質系原料を所定溶剤の存在下で加圧加熱することで、可溶化している。この所定溶剤は、具体的には、フェノール類と熱分解系重質油の組み合わせ溶剤である。固形木質系原料をフェノール類に加圧加熱溶解しようとすると、固形分(不溶物)が発生する。この固形分は、熱分解で発生する不安定ラジカルが再結合したものであると想定され、熱分解系重質油をフェノール類と共に用いれば、不安定なラジカルが熱分解系重質油の働きにより再結合が抑制され、また複合溶媒の分散効果並びに溶解力アップにより不溶分(固形分)を低減できるものと考えられる。   In the present invention, the solid woody material as described above is solubilized by heating under pressure in the presence of a predetermined solvent. Specifically, the predetermined solvent is a combined solvent of phenols and pyrolytic heavy oil. If a solid woody material is dissolved in phenol under pressure and heating, a solid content (insoluble matter) is generated. This solid content is assumed to be a recombination of unstable radicals generated by pyrolysis. If pyrolysis heavy oil is used with phenols, unstable radicals function as pyrolysis heavy oil. It is considered that recombination is suppressed by the above, and that the insoluble matter (solid content) can be reduced by the dispersion effect of the composite solvent and the increase in dissolving power.

さらに、低沸点成分を除去後の木質系ピッチは紡糸温度領域で熱変質する。すなわち、木質系ピッチの軟化点が高くなり、紡糸が困難となる。軟化点の上昇は木質系ピッチ中の熱的に不安定なフェノール骨格を有した成分が熱重合を起こすためと考えている。フェノール類と熱分解系重質油と共に用いれば、熱重合の開始点となる不安定なフェノール骨格からの酸素の引き抜きと熱分解系重質油成分との反応により架橋反応などに起因する粘度の急激な上昇が抑制され、得られる木質系ピッチの熱安定性が向上されるものと推察される。   Furthermore, the woody pitch after removing the low boiling point component is thermally altered in the spinning temperature region. That is, the softening point of the woody pitch becomes high and spinning becomes difficult. The increase in the softening point is thought to be due to the thermal polymerization of components with a thermally unstable phenolic skeleton in the wooden pitch. When used together with phenols and pyrolytic heavy oil, the viscosity resulting from the crosslinking reaction due to the extraction of oxygen from the unstable phenolic skeleton, which is the starting point of thermal polymerization, and the reaction with the pyrolytic heavy oil component. It is speculated that the rapid rise is suppressed and the thermal stability of the obtained woody pitch is improved.

前記フェノール類は、フェノール骨格(ヒドロキシベンゼン骨格)を有する化合物を意味し、例えば、フェノール、クレゾールなどのモノヒドロキシベンゼン類;カテコールなどのジヒドロキシベンゼン類;ナフトールなどのヒドロキシベンゼン縮環物;或いは石炭系又は木質系タール由来の混合フェノール類などが含まれる。好ましいフェノール類は、モノヒドロキシベンゼン類、特にフェノールである。   The phenols mean compounds having a phenol skeleton (hydroxybenzene skeleton), for example, monohydroxybenzenes such as phenol and cresol; dihydroxybenzenes such as catechol; hydroxybenzene condensed rings such as naphthol; or coal-based Alternatively, mixed phenols derived from wood tar are included. Preferred phenols are monohydroxybenzenes, especially phenol.

前記熱分解系重質油とは、石油又は石炭の精製の為にこれらを熱分解する時に副生する重質油のことであり、例えば、常圧での留出温度が200℃超の重質油を指す。この様な熱分解系重質油には、ナフサの水蒸気分解によるオレフィン類の製造時に副生する重質油であるエチレンボトム油、流動接触分解装置でガソリンなどを製造する際に副生する重質油であるデカント油、石炭コークスを製造する際に副生するコールタール、コールタールを蒸留して得られるクレオソート油、アントラセン油などが含まれる。好ましい熱分解系重質油は、エチレンボトム油、デカント油、コールタールなどであり、木質系ピッチの熱安定性時間を長くする観点からすれば、エチレンボトム油が特に好ましい。   The pyrolytic heavy oil is a heavy oil that is by-produced when pyrolyzing petroleum or coal for refining, for example, heavy oil having a distillation temperature at atmospheric pressure of more than 200 ° C. It refers to quality oil. Such pyrolysis heavy oil includes ethylene bottom oil, which is a heavy oil by-product when olefins are produced by steam cracking of naphtha, and heavy oil that is a by-product when gasoline is produced by a fluid catalytic cracking unit. Examples include decant oil, which is a quality oil, coal tar produced as a by-product in the production of coal coke, creosote oil obtained by distillation of coal tar, anthracene oil, and the like. Preferable pyrolysis heavy oil is ethylene bottom oil, decant oil, coal tar, and the like, and ethylene bottom oil is particularly preferable from the viewpoint of extending the thermal stability time of the woody pitch.

フェノール類及び熱分解系重質油の使用量は、固形木質系原料を可溶化するのに十分な量であれば特に限定されないが、過剰に用いてもそれ以上の効果はなく、却って生産性が低下するため、適度な量を使用することが推奨される。固形木質系原料として糖化残渣又は醗酵残渣を使用する場合、フェノール類の量は、糖化残渣又は醗酵残渣100質量部に対して、例えば、20〜400質量部程度、好ましくは50〜300質量部程度である。フェノール類の量が20質量部を下回ると、固形原料に対する溶解力が著しく低下し、またフェノール類の量が400質量部を超えると、溶解に必要なフェノール類の量は十分であるが、溶媒回収に必要なエネルギー消費量が高くなり、コストアップに繋がる。また熱分解系重質油の量は、糖化残渣又は醗酵残渣100質量部に対して、例えば、10〜400質量部程度、好ましくは20〜300質量部程度である。熱分解系重質油の量が10質量部を下回ると、ピッチの熱変質が起こりやすくなり、固形分の増加ならびに熱安定性の低下を招く。また、熱分解系重質油の量が400質量部を超えると、前記フェノールの場合と同様に、溶媒回収に必要なエネルギー消費量が高くなり、コストアップに繋がる。   The amount of phenols and pyrolytic heavy oil used is not particularly limited as long as it is sufficient to solubilize solid woody raw materials, but even if used excessively, there is no further effect, and productivity is reversed. Therefore, it is recommended to use an appropriate amount. When using a saccharification residue or fermentation residue as a solid woody material, the amount of phenols is, for example, about 20 to 400 parts by mass, preferably about 50 to 300 parts by mass with respect to 100 parts by mass of the saccharification residue or fermentation residue. It is. When the amount of phenols is less than 20 parts by mass, the solubility in solid raw materials is remarkably reduced, and when the amount of phenols exceeds 400 parts by mass, the amount of phenols necessary for dissolution is sufficient, Energy consumption required for recovery increases, leading to cost increase. Moreover, the quantity of pyrolysis heavy oil is about 10-400 mass parts with respect to 100 mass parts of saccharification residues or fermentation residues, Preferably it is about 20-300 mass parts. If the amount of the pyrolytic heavy oil is less than 10 parts by mass, thermal alteration of the pitch is likely to occur, leading to an increase in solid content and a decrease in thermal stability. On the other hand, when the amount of the pyrolytic heavy oil exceeds 400 parts by mass, the energy consumption required for solvent recovery increases as in the case of the phenol, leading to an increase in cost.

固形木質系原料を前記溶剤の存在下で加圧加熱して可溶化する時、加熱温度は、230〜430℃程度、好ましくは260〜400℃程度である。230℃を下回ると、可溶化が不十分であるため、固形分量が多くなり、また、430℃を超えると、環化重縮合反応が促進され、炭素前駆体としての固形分が多くなる。また、ゲージ圧は0.2〜10MPa程度である。このゲージ圧は、原料中の水分、熱分解で生成する低沸点成分、使用するフェノール類、熱分解系重質油の所定温度での蒸気圧によって決まる。上記の圧力及び温度での処理時間(所定温度に達してからの保持時間)は、例えば、1〜120分程度、好ましくは5〜60分程度である。   When the solid wood material is solubilized by heating under pressure in the presence of the solvent, the heating temperature is about 230 to 430 ° C, preferably about 260 to 400 ° C. If the temperature is below 230 ° C., the solubilization is insufficient, so the amount of solids increases, and if it exceeds 430 ° C., the cyclization polycondensation reaction is promoted and the solid content as a carbon precursor increases. The gauge pressure is about 0.2 to 10 MPa. This gauge pressure is determined by the vapor pressure at a predetermined temperature of moisture in the raw material, low-boiling components generated by pyrolysis, phenols to be used, and pyrolysis heavy oil. The treatment time at the above pressure and temperature (holding time after reaching a predetermined temperature) is, for example, about 1 to 120 minutes, preferably about 5 to 60 minutes.

固形木質系原料を前記のようにして可溶化した後、可溶化物中に残存する固形分はペーパーフィルター(保留粒子径1〜10μm程度)でろ過することで分離し、その量を調べることができる。ろ過前の可溶化物に含まれる固形分量は、投入した固形木質系原料(105℃乾燥ベース)に対して、例えば、5質量%以下である。ろ過した可溶化物は蒸留する。蒸留操作は、固形木質系原料に含まれる水分、可溶化で使用した溶剤(フェノール類、熱分解系重質油に含まれた軽質分など)、及び加圧加熱処理時に生じる低沸点の分解生成物(熱分解油及び熱分解により生成した水)など(これらを総称して低沸点成分という)を除去できればよく、減圧条件下で実施してもよく、常圧条件下で実施してもよい。
上記の様にして得られた可溶化物は、炭素繊維製造原料となるピッチ(木質系ピッチ)として使用できる。この木質系ピッチの軟化点は、通常170〜230℃程度である。
After solubilizing the solid woody material as described above, the solid content remaining in the solubilizate can be separated by filtering with a paper filter (retained particle diameter of about 1 to 10 μm), and the amount can be examined. it can. The amount of solid content contained in the solubilized product before filtration is, for example, 5% by mass or less with respect to the input solid woody material (105 ° C. dry base). The filtered lysate is distilled. The distillation operation consists of the moisture contained in the solid wood material, the solvent used for solubilization (phenols, light components contained in the pyrolysis heavy oil, etc.), and the low-boiling decomposition produced during pressure heat treatment Products (pyrolyzed oil and water generated by pyrolysis) and the like (these are collectively referred to as low-boiling components) may be removed, and may be carried out under reduced pressure conditions or under normal pressure conditions. .
The solubilized product obtained as described above can be used as a pitch (woody pitch) as a carbon fiber production raw material. The softening point of the woody pitch is usually about 170 to 230 ° C.

(2)紡糸
上記木質系ピッチは、炭化又は熱分解することによって、様々な炭素材料(例えば、活性炭、カーボンブラックおよびバインダーなど)にすることができるが、上記木質系ピッチから炭素繊維を製造することが好ましい。炭素繊維を製造するためには、まず上記のようにして得られた木質系ピッチを紡糸(特に溶融紡糸)する。通常、紡糸する際には混入したゴミやピッチ中の固形分により、紡糸ノズルの閉塞や炭素繊維の強度低下を防ぐために金属フィルターを設置する。上記木質系ピッチを用いれば、固形分量が極めて少ないため、フィルター負荷が減少し、長時間に亘って連続紡糸運転が可能となる。
(2) Spinning The woody pitch can be made into various carbon materials (for example, activated carbon, carbon black, binder, etc.) by carbonization or pyrolysis, and carbon fiber is produced from the woody pitch. It is preferable. In order to produce carbon fiber, the woody pitch obtained as described above is first spun (especially melt-spun). Usually, when spinning, a metal filter is installed in order to prevent clogging of the spinning nozzle and a decrease in strength of the carbon fiber due to the mixed dust and solid content in the pitch. If the above wood pitch is used, the amount of solid content is extremely small, so the filter load is reduced and continuous spinning operation can be performed for a long time.

また紡糸するに当たって、脱気はピッチを軟化点以上(好ましくは軟化点よりも30〜120℃程度高い温度、特に軟化点よりも50〜100℃程度高い温度)に加熱することで実施される。上記木質系ピッチを用いれば、木質系ピッチの熱変質による軟化点の上昇が抑えられ、長時間の連続紡糸運転が可能となる。
紡糸条件としては、公知の条件が適宜採用でき、例えば、押し出し法、遠心法等の方法にて溶融紡糸を行い、ピッチ繊維とする。
In spinning, deaeration is carried out by heating the pitch to the softening point or higher (preferably a temperature higher by about 30 to 120 ° C. than the softening point, particularly a temperature higher by about 50 to 100 ° C. than the softening point). If the above-mentioned wood pitch is used, an increase in the softening point due to thermal alteration of the wood pitch can be suppressed, and a continuous spinning operation can be performed for a long time.
As spinning conditions, known conditions can be appropriately employed. For example, melt spinning is performed by a method such as an extrusion method or a centrifugal method to obtain pitch fibers.

(3)不融化処理、炭化処理
溶融紡糸して得られたピッチ繊維は、酸化性ガス雰囲気下で不融化処理が施される。酸化性ガスとしては、通常、酸素、オゾン、空気、ハロゲン、窒素酸化物、亜硫酸等の酸化性ガスが一種あるいは二種以上を用いる。この不融化処理はピッチ繊維が軟化変形しない温度条件下で実施される。例えば20〜350℃、好ましくは70〜320℃の温度が推奨される。不融化処理されたピッチ繊維は、次に不活性ガス雰囲気下で炭化処理を施して本発明の木質ピッチ系炭素繊維を得る。炭化処理条件は500〜1300℃程度(特に800℃±50℃程度)である。必要に応じて、黒鉛化処理してもよい。黒鉛化処理では、例えば、1500〜2800℃程度の温度で、不活性雰囲気(特にアルゴンガス)で炭化繊維を加熱する。
(3) Infusibilization treatment, carbonization treatment Pitch fibers obtained by melt spinning are subjected to infusibilization treatment in an oxidizing gas atmosphere. As the oxidizing gas, one or more oxidizing gases such as oxygen, ozone, air, halogen, nitrogen oxide, sulfurous acid and the like are usually used. This infusibilization treatment is performed under temperature conditions where the pitch fibers are not softened and deformed. For example, a temperature of 20 to 350 ° C., preferably 70 to 320 ° C. is recommended. The infusibilized pitch fiber is then carbonized in an inert gas atmosphere to obtain the woody pitch-based carbon fiber of the present invention. The carbonization conditions are about 500 to 1300 ° C. (particularly about 800 ° C. ± 50 ° C.). You may graphitize as needed. In the graphitization treatment, for example, the carbonized fiber is heated in an inert atmosphere (particularly argon gas) at a temperature of about 1500 to 2800 ° C.

上記のようにして得られる木質系ピッチから製造した炭素繊維は、ピッチ中に熱分解系重質油が含まれているため、その引張強度も優れている。炭素繊維の引張強度は、例えば、600〜900MPa程度である。
本発明の炭素繊維は、従来のピッチ系炭素繊維の代替材料として使用できる。従ってその用途は幅広く、例えば、トウ、ステープルヤーン、クロス、ミルド、フェルト、マットのいずれでもよい。なお炭素繊維の引張強さは、JIS R7601に従って求められる。
Since the carbon fiber manufactured from the woody pitch obtained as described above contains a pyrolytic heavy oil in the pitch, its tensile strength is also excellent. The tensile strength of the carbon fiber is, for example, about 600 to 900 MPa.
The carbon fiber of the present invention can be used as an alternative material for conventional pitch-based carbon fibers. Therefore, the use is wide, and for example, any of tow, staple yarn, cloth, milled, felt, and mat may be used. The tensile strength of the carbon fiber is obtained according to JIS R7601.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

原料例1
杉の切り株と枝葉からなる直径5〜100cm程度の未利用木質系バイオマスを破砕機により3〜5cm角のチップに破砕した後、含水率が約20質量%になるまで自然乾燥した。さらに粉砕して、平均粒径約20μm、含水率約3質量%の粉末にした。この木粉100質量部に、アクレモニュウムセルラーゼ(明治製菓製、商品名:アクレモニュウムエンザイム)5質量部と水500質量部を加え、温度55℃で40時間糖化処理(糖化率は原料中のセルロース100質量%に対して35質量%)した後、濾過して液体成分(a)と固形分とに分離した。固形分はさらに水で洗浄し、洗浄液(b)と前記液体成分(a)を合わせてエタノール発酵に供した。固形分(糖化処理残渣)は自然乾燥してから粉状に砕いた後、さらに温度105℃で一夜乾燥して、炭素繊維用ピッチの原料となる糖化残渣を得た。糖化残渣の収量は、原料木粉の乾燥質量100質量%に対して82質量%であった。
Raw material example 1
After crushing unused woody biomass of about 5-100 cm in diameter consisting of cedar stumps and branches and leaves into chips of 3-5 cm square using a crusher, it was naturally dried until the water content was about 20% by mass. Further, the powder was pulverized into a powder having an average particle size of about 20 μm and a water content of about 3% by mass. To 100 parts by mass of this wood flour, 5 parts by mass of Acremonium cellulase (Meiji Seika, trade name: Acremonium Enzyme) and 500 parts by mass of water are added, and saccharification treatment is carried out at a temperature of 55 ° C. for 40 hours (the saccharification rate is in the raw material) And 35% by mass with respect to 100% by mass of cellulose), followed by filtration to separate into liquid component (a) and solid content. The solid content was further washed with water, and the washing liquid (b) and the liquid component (a) were combined and subjected to ethanol fermentation. The solid content (saccharification treatment residue) was naturally dried and then crushed into powder, and further dried overnight at a temperature of 105 ° C. to obtain a saccharification residue as a raw material for carbon fiber pitch. The yield of the saccharification residue was 82% by mass with respect to 100% by mass of the dry mass of the raw material wood flour.

実施例1
原料例1で得られた杉の糖化残渣とフェノールとエチレンボトム油とを、表1に示す量で混合し、表1に示す条件で加圧加熱処理することによって、表1に示す固形分量の加圧加熱処理液を得た(なお固形分量は、加圧加熱処理液をペーパーフィルターでろ過することによって求め、投入した糖化残渣原料(105℃乾燥ベース)に対する割合で示す。以下、同様)。前記加圧加熱処理液をろ過して固形分を除去した可溶化物を温度280℃、絶対圧4hPa(3torr)の条件で蒸留して木質系ピッチを得た。
Example 1
The saccharification residue of cedar obtained in Raw Material Example 1, phenol and ethylene bottom oil are mixed in the amounts shown in Table 1, and subjected to pressure and heat treatment under the conditions shown in Table 1, so that the solid content shown in Table 1 A pressure heat treatment liquid was obtained (the solid content was determined by filtering the pressure heat treatment liquid with a paper filter and indicated by the ratio to the saccharification residue raw material (105 ° C. dry base). The same applies hereinafter). The solubilized product from which the pressure heat treatment liquid was filtered to remove the solid content was distilled under conditions of a temperature of 280 ° C. and an absolute pressure of 4 hPa (3 torr) to obtain a woody pitch.

前記木質系ピッチを直径0.2mm、長さ0.4mmのノズル(D/L=0.2/0.4)を備えた単孔紡糸装置に入れ、表1に示す温度で減圧脱気後、表1に示す温度に加熱し、窒素圧を利用して表1に示す押し出し量で、かつ巻き取り速度300m/分の条件で紡糸し、表1に示す直径のピッチ繊維を得た。得られたピッチ繊維を管状炉に入れ、昇温速度1℃/分、保持温度270℃、保持時間1時間、保持雰囲気:空気中の条件で処理して不融化した。さらに昇温速度5℃/分、保持温度800℃、保持時間5分の条件で不融化物を処理して炭化した。   The wood pitch was put into a single hole spinning device equipped with a nozzle (D / L = 0.2 / 0.4) having a diameter of 0.2 mm and a length of 0.4 mm, and after degassing under reduced pressure at the temperatures shown in Table 1. The mixture was heated to the temperature shown in Table 1 and spun using nitrogen pressure at the extrusion amount shown in Table 1 and at a winding speed of 300 m / min to obtain pitch fibers having the diameters shown in Table 1. The obtained pitch fiber was put into a tubular furnace, and it was made infusible by treatment under conditions of a heating rate of 1 ° C./min, a holding temperature of 270 ° C., a holding time of 1 hour, and a holding atmosphere: air. Furthermore, the infusible material was treated and carbonized under the conditions of a heating rate of 5 ° C./min, a holding temperature of 800 ° C., and a holding time of 5 minutes.

紡糸前の木質系ピッチの軟化点と、紡糸後に紡糸器内に残った木質系ピッチの軟化点をそれぞれ調べ、軟化点の変化(ΔT)を求めた。また炭化処理後の炭素繊維の引張強度も測定した。結果を表1に示す。   The softening point of the woody pitch before spinning and the softening point of the woody pitch remaining in the spinning machine after spinning were examined to determine the change in softening point (ΔT). The tensile strength of the carbon fiber after carbonization was also measured. The results are shown in Table 1.

実施例2〜6
加圧加熱処理の原料と条件を表1に示すように変更する以外は、実施例1と同様にして木質系ピッチを得た。この木質系ピッチを実施例1と同様に紡糸して所定の直径のピッチ繊維を得た。さらに得られたピッチ繊維を実施例1と同様に不融化処理および炭化処理をして、炭素繊維を得た。
これら実施例2〜6の結果を表1に示す。
Examples 2-6
A woody pitch was obtained in the same manner as in Example 1 except that the raw materials and conditions for the pressure heat treatment were changed as shown in Table 1. This woody pitch was spun in the same manner as in Example 1 to obtain pitch fibers having a predetermined diameter. Further, the obtained pitch fibers were subjected to infusibilization treatment and carbonization treatment in the same manner as in Example 1 to obtain carbon fibers.
The results of Examples 2 to 6 are shown in Table 1.

比較例1〜2
加圧加熱処理の原料と条件を表1に示すように変更する以外は、実施例1と同様にして木質系ピッチを得た。この木質系ピッチを実施例1と同様に紡糸した。しかし比較例1ではただちに紡糸ノズルが閉塞し、繊維が得られなかった。比較例2でも短時間で紡糸ノズルが閉塞した。
これら比較例1〜2の結果を表1に示す。
Comparative Examples 1-2
A woody pitch was obtained in the same manner as in Example 1 except that the raw materials and conditions for the pressure heat treatment were changed as shown in Table 1. This woody pitch was spun in the same manner as in Example 1. However, in Comparative Example 1, the spinning nozzle was immediately closed and no fiber was obtained. Also in Comparative Example 2, the spinning nozzle was blocked in a short time.
The results of Comparative Examples 1 and 2 are shown in Table 1.

Figure 2012255223
Figure 2012255223

表1より明らかなように、糖化残渣を、フェノールと、エチレンボトム油、デカント油、又はコールタール油とで可溶化した実施例1〜6では、比較例1〜2に比べて、固形分量が少なくなり、またピッチの加熱時(溶融紡糸時)におけるΔT(軟化点の変化)が非常に小さいことから優れた熱安定性も確認され、紡糸工程を安定して実施できる。   As is clear from Table 1, in Examples 1 to 6 in which the saccharification residue was solubilized with phenol and ethylene bottom oil, decant oil, or coal tar oil, the solid content was higher than that of Comparative Examples 1 and 2. Further, since ΔT (change in softening point) at the time of heating the pitch (melt spinning) is very small, excellent thermal stability is confirmed, and the spinning process can be carried out stably.

Claims (4)

セルロース、ヘミセルロース、リグニン、及びリグノセルロースから選択される少なくとも一種を含む固形木質系原料を、フェノール類と熱分解系重質油の存在下で加圧加熱して可溶化し、この可溶化物から低沸点成分を除去して得られる木質系ピッチを紡糸、不融化、及び炭化することを特徴とする炭素繊維の製造方法。   Solid wood-based raw materials containing at least one selected from cellulose, hemicellulose, lignin, and lignocellulose are solubilized by pressurizing and heating in the presence of phenols and pyrolytic heavy oil. A method for producing a carbon fiber, comprising spinning, infusibilizing, and carbonizing a wood pitch obtained by removing low-boiling components. 前記固形木質系原料が、木質体を生物的、化学的、又は機械的に分解したものである請求項1に記載の炭素繊維の製造方法。   The method for producing carbon fiber according to claim 1, wherein the solid wood-based raw material is obtained by biologically, chemically, or mechanically decomposing a wooden body. 前記固形木質系原料が、木質体を糖化処理した後の残渣、或いは木質体を糖化及び醗酵処理した後の残渣である請求項1又は2に記載の炭素繊維の製造方法。   The carbon fiber production method according to claim 1 or 2, wherein the solid wood-based material is a residue after saccharification treatment of a wood body or a residue after saccharification and fermentation treatment of a wood body. 前記フェノール類がフェノールであり、前記熱分解系重質油がエチレンボトム油、デカント油、及びコールタールから選択される少なくとも一種である請求項1〜3のいずれかに記載の炭素繊維の製造方法。   The method for producing a carbon fiber according to any one of claims 1 to 3, wherein the phenol is phenol, and the pyrolysis heavy oil is at least one selected from ethylene bottom oil, decant oil, and coal tar. .
JP2011127684A 2011-06-07 2011-06-07 Carbon fiber manufacturing method Expired - Fee Related JP5818066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011127684A JP5818066B2 (en) 2011-06-07 2011-06-07 Carbon fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011127684A JP5818066B2 (en) 2011-06-07 2011-06-07 Carbon fiber manufacturing method

Publications (2)

Publication Number Publication Date
JP2012255223A true JP2012255223A (en) 2012-12-27
JP5818066B2 JP5818066B2 (en) 2015-11-18

Family

ID=47527029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011127684A Expired - Fee Related JP5818066B2 (en) 2011-06-07 2011-06-07 Carbon fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP5818066B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016011422A (en) * 2014-06-27 2016-01-21 オーシーアイ カンパニー リミテッドOCI Company Ltd. Method for producing pitch for carbon fiber
CN109735966A (en) * 2019-02-23 2019-05-10 华南理工大学 There is the method for the activated carbon fibre of hollow structure by wood fibre preparation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239114A (en) * 1988-03-16 1989-09-25 Nippon Kamiparupu Kenkyusho:Kk Production of lignin fiber
JPH01306618A (en) * 1988-06-06 1989-12-11 Norin Suisansyo Ringyo Shikenjo Preparation of lignin for spinning of carbon fiber
JPH04194029A (en) * 1990-11-28 1992-07-14 Mokushitsu Shinsozai Gijutsu Kenkyu Kumiai Production of lignin-based carbon fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239114A (en) * 1988-03-16 1989-09-25 Nippon Kamiparupu Kenkyusho:Kk Production of lignin fiber
JPH01306618A (en) * 1988-06-06 1989-12-11 Norin Suisansyo Ringyo Shikenjo Preparation of lignin for spinning of carbon fiber
JPH04194029A (en) * 1990-11-28 1992-07-14 Mokushitsu Shinsozai Gijutsu Kenkyu Kumiai Production of lignin-based carbon fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016011422A (en) * 2014-06-27 2016-01-21 オーシーアイ カンパニー リミテッドOCI Company Ltd. Method for producing pitch for carbon fiber
CN109735966A (en) * 2019-02-23 2019-05-10 华南理工大学 There is the method for the activated carbon fibre of hollow structure by wood fibre preparation
CN109735966B (en) * 2019-02-23 2021-08-10 华南理工大学 Method for preparing activated carbon fiber with hollow structure from wood fiber

Also Published As

Publication number Publication date
JP5818066B2 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
Souto et al. Lignin-based carbon fiber: a current overview
Sagues et al. Are lignin-derived carbon fibers graphitic enough?
Kubo et al. Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pulping
US20170058127A1 (en) Production of nanocellulose and carbon black from lignocellulosic biomass
Cotana et al. Lignin as co-product of second generation bioethanol production from ligno-cellulosic biomass
Gellerstedt et al. The wood-based biorefinery: A source of carbon fiber?
US8765938B2 (en) Process for production of polysaccharide and/or monosaccharide by hydrolysis of different polysaccharide
Li et al. Preparation of carbon fibers from low-molecular-weight compounds obtained from low-rank coal and biomass by solvent extraction
Yang et al. Preparation of isotropic pitch-based carbon fiber using hyper coal through co-carbonation with ethylene bottom oil
Peng et al. Pyrolysis of black liquor for phenols and impact of its inherent alkali
Harun et al. Cellulase production from treated oil palm empty fruit bunch degradation by locally isolated Thermobifida fusca
Huang et al. Effect of ionic liquid assisted hydrothermal carbonization on the properties and gasification reactivity of hydrochar derived from eucalyptus
Lappa et al. Hydrothermal liquefaction of Miscanthus× Giganteus: Preparation of the ideal feedstock
JP6445832B2 (en) Biopitch manufacturing method
Khalid et al. Lignin extraction from lignocellulosic biomass using sub-and supercritical fluid technology as precursor for carbon fiber production
JP2015140403A (en) Cellulose nanofiber and manufacturing method thereof
Yan et al. Preparation and characterization of chars and activated carbons from wood wastes
JP5818066B2 (en) Carbon fiber manufacturing method
Canché-Escamilla et al. Characterization of bio-oil and biochar obtained by pyrolysis at high temperatures from the lignocellulosic biomass of the henequen plant
JP2012117162A (en) Method for manufacturing carbon fiber
JP5747488B2 (en) Woody pitch
Zhong et al. Microwave-assisted catalytic pyrolysis of commercial residual lignin with in-situ catalysts to produce homogenous bio-oil and high-yield biochar with enriched pores
Bakarudin et al. Liquefied residue of kenaf core wood produced at different phenol-kenaf ratio
Khalid et al. Lignin from oil palm frond under subcritical phenol conditions as a precursor for carbon fiber production
Solihat et al. Microwave assisted dilute organic acid pre-treatment of oil palm empty fruit bunch to improve enzyme accessibility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150916

R150 Certificate of patent or registration of utility model

Ref document number: 5818066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees