JP2012117162A - Method for manufacturing carbon fiber - Google Patents

Method for manufacturing carbon fiber Download PDF

Info

Publication number
JP2012117162A
JP2012117162A JP2010265487A JP2010265487A JP2012117162A JP 2012117162 A JP2012117162 A JP 2012117162A JP 2010265487 A JP2010265487 A JP 2010265487A JP 2010265487 A JP2010265487 A JP 2010265487A JP 2012117162 A JP2012117162 A JP 2012117162A
Authority
JP
Japan
Prior art keywords
pitch
woody
carbon fiber
solid
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010265487A
Other languages
Japanese (ja)
Inventor
Osamu Kato
攻 加藤
Katsuki Ito
勝喜 伊藤
Kotetsu Matsunaga
興哲 松永
Kinya Sakanishi
欣也 坂西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Tokai Carbon Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Tokai Carbon Co Ltd
Priority to JP2010265487A priority Critical patent/JP2012117162A/en
Publication of JP2012117162A publication Critical patent/JP2012117162A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a carbon fiber by heating and dissolving a solid woody material including cellulose, hemicellulose, lignin, lignocellulose and the like, in which solubility of the material and heat stability of woody pitch are improved and a spinning step in manufacturing the carbon fiber is stably performed.SOLUTION: A method for manufacturing a carbon fiber, comprises: pressure-heating a solid woody material including at least one kind selected from cellulose, hemicellulose, lignin and lignocellulose under the presence of phenols and a hydrogen-donating solvent to form the solubilized material; and subjecting woody pitch obtained by removing a low-boiling point component from the solubilized material to melt spinning, infusibilization and carbonization. It is preferable that the hydrogen-donating solvent is tetralin, for example.

Description

本発明は、セルロース、ヘミセルロース、リグニン、リグノセルロースなどを含む固形木質系原料の利用技術に関するものであり、より詳しくは前記固形木質系原料を用いた炭素繊維の製造技術に関するものである。
炭素繊維は、例えば、炭素繊維強化樹脂複合材料、炭素繊維強化炭素複合材料、断熱材、防音材、活性炭素繊維等に使用される。
The present invention relates to a technique for using a solid wood material containing cellulose, hemicellulose, lignin, lignocellulose, and the like, and more particularly to a technique for producing carbon fiber using the solid wood material.
The carbon fiber is used for, for example, a carbon fiber reinforced resin composite material, a carbon fiber reinforced carbon composite material, a heat insulating material, a soundproof material, and activated carbon fiber.

従来、炭素繊維の製造方法は大きく別けて2つが知られている。第1の方法では、石油および石炭等の化石原料から生産されるポリアクリロニトリルを耐炎化処理、炭化処理することによって炭素繊維を製造する。第2の方法では、石油系重質油および石炭系重質油を熱処理して得られるピッチを溶融紡糸して、不融化処理、炭化処理等を実施することによって炭素繊維を製造する。しかし、化石原料は有限であり、その使用量低減が望まれる。   Conventionally, there are two known methods for producing carbon fibers. In the first method, carbon fiber is produced by flameproofing and carbonizing polyacrylonitrile produced from fossil raw materials such as petroleum and coal. In the second method, carbon fiber is produced by melt spinning a pitch obtained by heat treating petroleum heavy oil and coal heavy oil and performing infusibilization treatment, carbonization treatment, and the like. However, the fossil raw materials are limited, and it is desired to reduce the amount of use.

化石原料の代替として、再生可能なバイオマス資源(生物由来原料)が挙げられる。バイオマス資源は、酸素濃度を調整した条件下で熱分解して一酸化炭素と水素ガスへ転換する例、バイオマス資源を醗酵等してエタノールへ転換する例などの様に燃料としての利用研究が進められており、また炭素繊維原料や樹脂原料としての応用研究も鋭意進められている(例えば、特許文献1〜4など)。   As an alternative to fossil raw materials, renewable biomass resources (biological raw materials) can be mentioned. Biomass resources are being researched for use as fuel, such as thermal decomposition under conditions with adjusted oxygen concentration to convert them to carbon monoxide and hydrogen gas, and examples of converting biomass resources to ethanol by fermentation, etc. In addition, applied research as a carbon fiber raw material or a resin raw material has been earnestly promoted (for example, Patent Documents 1 to 4).

特許文献1では、木質系資源を高圧飽和水蒸気処理、アルコール系有機溶媒処理することによって得られるリグニンを水素添加分解し、熱溶融法により紡糸し、炭素化することによって炭素繊維を製造している。しかし水素添加分解を利用する方法は、エネルギー消費が大きく、望ましくない。   In Patent Document 1, carbon fiber is produced by hydrocracking lignin obtained by treating a wood-based resource with high-pressure saturated steam treatment and alcohol-based organic solvent treatment, spinning it by a thermal melting method, and carbonizing it. . However, the method using hydrocracking is not desirable because of the high energy consumption.

特許文献2では、木質系物質をフェノール類と水との混合溶媒を蒸解液として加熱することにより、パルプと、ヘミセルロースが分解して単糖類として溶解している水層、及びリグニンが溶解している有機層の三成分に分離した後、該有機層を減圧濃縮して得られるリグニンを溶融紡糸し、リグニン繊維を製造している。しかしこの方法は、パルプの分離・精製操作が煩雑であり、水層部分の廃液処理が難しいので、実用的ではない。   In Patent Document 2, by heating a woody material using a mixed solvent of phenols and water as a cooking solution, pulp, an aqueous layer in which hemicellulose is decomposed and dissolved as a monosaccharide, and lignin are dissolved. After separating into three components of the organic layer, lignin obtained by concentrating the organic layer under reduced pressure is melt-spun to produce lignin fibers. However, this method is not practical because the separation and refining operation of the pulp is complicated and it is difficult to treat the waste liquid in the aqueous layer portion.

特許文献3では木質材料からの脱リグニン処理で溶出したリグニンを酸性有機触媒で処理して得られるフェノール化リグニンを非酸化雰囲気下、加熱重質化することで炭素繊維紡糸用リグニンを調製している。しかしこの方法は、製造工程が煩雑であり、また炭素繊維の収率も低く、コストがかかる方法である。   In Patent Document 3, a lignin for carbon fiber spinning is prepared by heat-healing phenolic lignin obtained by treating lignin eluted by delignification treatment from a woody material with an acidic organic catalyst in a non-oxidizing atmosphere. Yes. However, this method is costly because the production process is complicated and the yield of carbon fibers is low.

特許文献4には、リグノセルロース材料を爆砕前処理し、この処理物とフェノール化合物とを加熱下に溶解反応させることで可溶化物を製造している。しかしこの方法では、爆砕処理装置が膨大であり、生成物中に固形分が残存する。そのため紡糸が困難で、炭素繊維用原料として不適切である。   In Patent Document 4, a lignocellulosic material is pretreated for explosion, and a solubilized product is produced by dissolving the treated product and a phenol compound under heating. However, in this method, the explosion treatment apparatus is enormous and solid content remains in the product. Therefore, spinning is difficult and it is not suitable as a raw material for carbon fiber.

なお、上述の従来法では、高温・高圧・高エネルギー消費を必要とする水素添加分解法(特許文献1)を除くと、いずれも生成物ピッチの熱安定性が低い欠点を持っている。ピッチの熱安定性が低いと、溶融紡糸時に粘度上昇(軟化点上昇)により所望の繊維径が得られなくなるだけでなく、ノズルの閉塞により紡糸そのものができなくなる。従って、熱安定性の向上は、木質系ピッチから炭素繊維を作る過程における大きな課題である。   Note that the conventional methods described above have the disadvantage that the thermal stability of the product pitch is low except for the hydrocracking method (Patent Document 1) that requires high temperature, high pressure, and high energy consumption. When the thermal stability of the pitch is low, not only a desired fiber diameter cannot be obtained due to an increase in viscosity (increase in softening point) during melt spinning, but spinning itself cannot be performed due to nozzle clogging. Therefore, improvement of thermal stability is a major problem in the process of producing carbon fibers from a wood pitch.

特開昭62−110922号公報Japanese Unexamined Patent Publication No. Sho 62-110922 特開平01−239114号公報Japanese Patent Laid-Open No. 01-239114 特開平01−306618号公報Japanese Patent Laid-Open No. 01-306618 特開平04−126725号公報Japanese Patent Laid-Open No. 04-126725

本発明は上記の様な事情に着目してなされたものであって、その目的は、セルロース、ヘミセルロース、リグニン、リグノセルロースなどを含む固形木質系原料を加熱溶解して紡糸する方法であっても、その可溶性(溶解性)を高め、且つ低沸点成分を除去後の木質系ピッチの熱安定性を高め、炭素繊維を製造する際の紡糸工程を安定して実施できる技術を確立することにある。   The present invention has been made paying attention to the circumstances as described above, and the object thereof is a method of heating and dissolving a solid woody material containing cellulose, hemicellulose, lignin, lignocellulose, etc. , To improve the solubility (solubility) and to improve the thermal stability of the woody pitch after removing low-boiling components, and to establish a technology that can stably carry out the spinning process when producing carbon fiber .

本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、セルロース、ヘミセルロース、リグニン、及びリグノセルロースから選択される少なくとも一種を含む固形木質系原料をフェノール化合物で可溶化する際に、所定の溶剤を併用すれば、不溶物(固形分)を著しく低減できるとともに、さらに低沸点成分を除去後の木質系ピッチの熱変質を抑制できることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have solubilized a solid woody material containing at least one selected from cellulose, hemicellulose, lignin, and lignocellulose with a phenol compound. The inventors have found that if a predetermined solvent is used in combination, insoluble matter (solid content) can be remarkably reduced, and thermal alteration of the woody pitch after removal of low-boiling components can be suppressed, and the present invention has been completed.

すなわち、本発明に係る炭素繊維は、セルロース、ヘミセルロース、リグニン、及びリグノセルロースから選択される少なくとも一種を含む固形木質系原料を、フェノール類(特にフェノール)及び水素供与性溶剤(特にテトラリン)の存在下で加圧加熱して可溶化し、この可溶化物から低沸点成分を除去して得られる木質系ピッチを紡糸、不融化、及び炭化することによって製造される。前記木質系原料は、木質体を生物的、化学的、又は機械的に分解したものであることが好ましく、例えば、木質体を水熱処理、糖化処理、醗酵の順に処理してエタノールを生成した後の残渣が挙げられる。前記フェノール類の量は、木質系原料100質量部に対して、20〜500質量部である。前記水素供与性溶剤の量は、木質系原料100質量部に対して、10〜300質量部である。前記加圧加熱では、例えば、ゲージ圧0.2〜10MPa、温度230〜430℃の条件にする。前記加圧加熱の後、蒸留により溶媒や可溶化物中の低沸点成分を除去してから紡糸、不融化、及び炭化するのが好ましい。   That is, the carbon fiber according to the present invention comprises a solid woody material containing at least one selected from cellulose, hemicellulose, lignin, and lignocellulose, the presence of phenols (particularly phenol) and a hydrogen-donating solvent (particularly tetralin). It is produced by spinning, infusibilizing, and carbonizing a woody pitch obtained by solubilization by heating under pressure and solubilizing, and removing low-boiling components from the solubilized product. The wood-based raw material is preferably obtained by biologically, chemically, or mechanically degrading a wood body, for example, after producing a ethanol by treating the wood body in the order of hydrothermal treatment, saccharification treatment, and fermentation. Of the residue. The amount of the phenols is 20 to 500 parts by mass with respect to 100 parts by mass of the wooden raw material. The amount of the hydrogen donating solvent is 10 to 300 parts by mass with respect to 100 parts by mass of the wood-based raw material. In the pressurization and heating, for example, a gauge pressure of 0.2 to 10 MPa and a temperature of 230 to 430 ° C. are used. After the pressurization and heating, it is preferable to spin, infusibilize, and carbonize after removing low-boiling components in the solvent and solubilizate by distillation.

本発明によれば、フェノール類及び水素供与性溶剤の存在下で固形木質系原料を加圧加熱しているため、不溶物(固形分)を著しく低減でき、さらに木質系ピッチの熱変質を抑えることで炭素繊維を製造する際の紡糸工程を安定して実施できる。   According to the present invention, since the solid woody material is heated under pressure in the presence of phenols and a hydrogen donating solvent, insoluble matter (solid content) can be significantly reduced, and thermal alteration of the woody pitch is further suppressed. Thus, the spinning process when producing the carbon fiber can be carried out stably.

炭素繊維は、ピッチを溶融紡糸し、不融化処理、炭化処理をすることによって製造されている。本発明は、固形木質系原料を有効利用して前記木質系ピッチを製造し、この木質系ピッチから炭素繊維を製造するものである。   Carbon fiber is manufactured by melt spinning a pitch and performing infusibilization treatment and carbonization treatment. The present invention is to produce the above-mentioned wood-based pitch by effectively using a solid wood-based raw material, and to produce carbon fibers from this wood-based pitch.

(1)木質系ピッチの調製
本発明では、固形木質系原料を後述する所定溶剤の存在下で加圧加熱することで、ピッチを調製している。固形木質系原料を使用することによって、化石原料の依存度を下げることができる。また所定溶剤の存在下で加圧加熱することで、固形木質系原料を可溶化することができ、この可溶化物から低沸点成分を除去して得られる木質系ピッチを炭素繊維の製造原料として使用することができる。固形木質系原料を完全溶解するのは、一般には難しく、又可溶化処理後得られる木質系ピッチは熱安定性が悪いが、本発明では後述する所定の溶剤を使用して加圧加熱しているため、固形木質系原料の95質量%以上を可溶化でき、得られるピッチの熱変質を抑制することができる。
(1) Preparation of woody pitch In the present invention, the pitch is prepared by pressurizing and heating a solid woody raw material in the presence of a predetermined solvent described later. By using a solid woody material, the dependence of fossil materials can be reduced. Moreover, by heating under pressure in the presence of a predetermined solvent, the solid woody material can be solubilized, and the woody pitch obtained by removing low-boiling components from this solubilized product is used as a raw material for producing carbon fiber Can be used. It is generally difficult to completely dissolve a solid woody material, and the woody pitch obtained after solubilization treatment has poor thermal stability, but in the present invention, it is heated under pressure using a predetermined solvent described later. Therefore, 95% by mass or more of the solid woody material can be solubilized, and thermal alteration of the obtained pitch can be suppressed.

前記固形木質原料としては、セルロース、ヘミセルロース、リグニン、及びリグノセルロースから選択される少なくとも一種を含む固形原料である限り特に限定されず、植物(特に木材)由来の原料であればいずれも使用可能である。例えば、針葉樹と広葉樹とを網羅した間伐材、林地残材、製材残材、建築廃材、剪定枝葉、切り株、樹皮などの木質系廃材が廃棄物の有効利用の観点から固形木質原料として望ましい。   The solid wood material is not particularly limited as long as it is a solid material containing at least one selected from cellulose, hemicellulose, lignin, and lignocellulose, and any material derived from plants (particularly wood) can be used. is there. For example, wood-based waste such as thinned wood, coniferous wood, hardwood residue, lumber, construction waste, pruned branches, stumps, and bark covering conifers and hardwoods is desirable as a solid woody material from the viewpoint of effective use of waste.

固形木質系原料は、好ましくは、生物的、化学的、又は機械的に分解されている。予め分解しておくことにより、加圧加熱による可溶化の処理効率を高めることができる。生物学的な分解としては、菌、微生物、酵素などによる分解が挙げられる。化学的な分解は、硫酸・アルカリ法であってもよいが、環境負荷を考慮すると、水熱処理或いは過熱水蒸気による加水分解が好ましい。また機械的な分解には、叩解、破砕、粉砕、摩砕、爆砕などが含まれ、この機械的分解は乾式及び湿式のいずれでもよい。   The solid woody material is preferably decomposed biologically, chemically or mechanically. By decomposing in advance, the processing efficiency of solubilization by pressure heating can be increased. Biological degradation includes degradation by fungi, microorganisms, enzymes, and the like. The chemical decomposition may be a sulfuric acid / alkali method, but hydrothermal treatment or hydrolysis with superheated steam is preferable in consideration of environmental load. In addition, the mechanical decomposition includes beating, crushing, crushing, grinding, and explosion, and this mechanical decomposition may be either dry or wet.

これら生物的、化学的、又は機械的分解は、適宜組み合わせるのが望ましく、典型的には、機械的分解(粉砕など)をした後、必要に応じて水熱処理(加水分解処理)し、次いで生物学的に糖化処理(酵素法による糖化処理など)される。糖化処理物は、通常、濾過して液体成分と固形分とに分離される。液体成分(主成分は糖分)はエタノール発酵に供し、固形分は残渣(糖化残渣)として排出される。場合によっては、前記糖化処理物は、濾過せずそのまま後段に送り、微生物や菌(特に酵母)によってエタノール醗酵処理してもよい。この醗酵処理では、通常前記糖化処理物中の糖分だけがエタノールに変換され、固形分(糖化残渣)は変化しない。醗酵処理物も濾過により、液体成分(主成分はエタノール水溶液)と固形分(糖化残渣と基本的には同じ成分であるが、ここでは「発酵残渣」という)とに分離される。このように得られる糖化残渣又は醗酵残渣は、いずれもリグニンを主成分としており、セルロース及びヘミセルロースを含有していても、そのまま固形木質原料として使用できる。好ましい固形木質原料は、糖化残渣又は醗酵残渣である。これら水熱処理、糖化処理、醗酵処理の詳細は、例えば、特開2005−168335号公報に詳述されている。   These biological, chemical, or mechanical degradations are desirably combined as appropriate. Typically, after mechanical degradation (such as pulverization), hydrothermal treatment (hydrolysis treatment) is performed as necessary, and then biological degradation is performed. Scientifically, saccharification treatment (eg, saccharification treatment by enzymatic method) is performed. The saccharified product is usually separated into a liquid component and a solid content by filtration. The liquid component (main component is sugar) is subjected to ethanol fermentation, and the solid is discharged as a residue (saccharification residue). In some cases, the saccharified product may be sent to the subsequent stage without filtration and subjected to ethanol fermentation with microorganisms or fungi (particularly yeast). In this fermentation treatment, usually only the sugar content in the saccharification product is converted to ethanol, and the solid content (saccharification residue) does not change. The fermented product is also separated by filtration into a liquid component (main component is an aqueous ethanol solution) and a solid content (which is basically the same component as the saccharification residue, but here referred to as “fermentation residue”). The saccharification residue or fermentation residue obtained in this way has lignin as the main component, and even if it contains cellulose and hemicellulose, it can be used as it is as a solid woody material. A preferable solid wood raw material is a saccharification residue or a fermentation residue. Details of these hydrothermal treatment, saccharification treatment, and fermentation treatment are described in detail in, for example, JP-A-2005-168335.

そして本発明では、上記の様な固形木質系原料を所定溶剤の存在下で加圧加熱することで、可溶化している。この所定溶剤は、具体的には、フェノール類及び水素供与性溶剤の組み合わせ溶剤である。固形木質系原料をフェノール類に加圧加熱溶解しようとすると、固形分(不溶物)が発生する。この固形分は、熱分解で発生する不安定ラジカルが再結合したものであると想定され、水素供与性溶剤をフェノール類と共に用いれば、不安定なラジカルに水素を供与することでラジカルを安定化できるため、固形分を著しく低減できるものと考えられる。   In the present invention, the solid woody material as described above is solubilized by heating under pressure in the presence of a predetermined solvent. Specifically, the predetermined solvent is a combined solvent of phenols and a hydrogen donating solvent. If a solid woody material is dissolved in phenol under pressure and heating, a solid content (insoluble matter) is generated. This solid is assumed to be a recombination of unstable radicals generated by thermal decomposition, and if a hydrogen-donating solvent is used with phenols, the radicals are stabilized by donating hydrogen to unstable radicals. Therefore, it is considered that the solid content can be significantly reduced.

さらに、低沸点成分を除去後の木質系ピッチは紡糸温度領域で熱変質する。すなわち、木質系ピッチの軟化点が高くなり、紡糸が困難となる。軟化点の上昇は木質系ピッチ中の熱的に不安定なフェノール骨格を有した成分が熱重合を起こすためと考えている。水素供与性溶剤とフェノール類と共に用いれば、熱重合開始点となる不安定なフェノール骨格から酸素の引き抜きが起こり、得られる木質系ピッチの熱変質が抑制されるものと推察される。   Furthermore, the woody pitch after removing the low boiling point component is thermally altered in the spinning temperature region. That is, the softening point of the woody pitch becomes high and spinning becomes difficult. The increase in the softening point is thought to be due to the thermal polymerization of components with a thermally unstable phenolic skeleton in the wooden pitch. If used together with a hydrogen-donating solvent and phenols, it is presumed that oxygen is extracted from the unstable phenol skeleton that is the starting point of thermal polymerization, and thermal alteration of the resulting woody pitch is suppressed.

前記フェノール類は、フェノール骨格(ヒドロキシベンゼン骨格)を有する化合物を意味し、例えば、フェノール、クレゾールなどのモノヒドロキシベンゼン類;カテコールなどのジヒドロキシベンゼン類;ナフトールなどのヒドロキシベンゼン縮環物;或いは石炭系又は木質系タール由来の混合フェノール類などが含まれる。好ましいフェノール類は、モノヒドロキシベンゼン類、特にフェノールである。   The phenols mean compounds having a phenol skeleton (hydroxybenzene skeleton), for example, monohydroxybenzenes such as phenol and cresol; dihydroxybenzenes such as catechol; hydroxybenzene condensed rings such as naphthol; or coal-based Alternatively, mixed phenols derived from wood tar are included. Preferred phenols are monohydroxybenzenes, especially phenol.

前記水素供与性溶剤としては、縮環型芳香族性炭化水素類を部分的に水素化した化合物が使用でき、例えば、部分水素化ナフタレン類(テトラリンなど)などの2環型化合物;部分水素化アントラセン類(9,10−ジヒドロアントラセンなど)、部分水素化フェナントレン類(9,10−ジヒドロフェナントレンなど)などの3環型化合物、部分水素化フルオランテン(テトラヒドロフルオランテンなど)等の4環型化合物などが含まれる。またこの水素供与性溶剤として、アントラセン油、クレオソート油などの縮環型芳香族炭化水素類を含む混合物を水素化したものを使用することもできる。好ましい水素供与性溶剤は、前記2環型化合物を含む低沸点溶剤、特に部分水素化ナフタレン類を含む溶剤である。   As the hydrogen-donating solvent, compounds obtained by partially hydrogenating condensed aromatic hydrocarbons can be used. For example, bicyclic compounds such as partially hydrogenated naphthalenes (tetralin, etc.); partial hydrogenation Tricyclic compounds such as anthracenes (such as 9,10-dihydroanthracene), partially hydrogenated phenanthrenes (such as 9,10-dihydrophenanthrene), and tetracyclic compounds such as partially hydrogenated fluoranthene (such as tetrahydrofluoranthene) Etc. are included. As the hydrogen-donating solvent, a hydrogenated mixture containing a condensed aromatic hydrocarbon such as anthracene oil or creosote oil can also be used. A preferred hydrogen donating solvent is a low boiling point solvent containing the bicyclic compound, particularly a solvent containing partially hydrogenated naphthalenes.

フェノール類及び水素供与性溶剤の使用量は、固形木質系原料を可溶化するのに十分な量であれば特に限定されないが、過剰に用いてもそれ以上の効果はなく、却って生産性が低下するため、適度な量を使用することが推奨される。固形木質系原料として糖化残渣又は醗酵残渣を使用する場合、フェノール類の量は、糖化残渣又は醗酵残渣100質量部に対して、例えば、20〜500質量部程度、好ましくは50〜400質量部程度、さらに好ましくは100〜300質量部程度である。フェノール類の量が20質量部を下回ると、固形原料に対する溶解力が著しく低下し、またフェノール類の量が500質量部を超えると、溶解に必要なフェノール類の量は十分であるが、溶媒回収に必要なエネルギー消費量が高くなり、コストアップに繋がる。また水素供与性溶剤の量は、糖化残渣又は醗酵残渣100質量部に対して、例えば、10〜300質量部程度、好ましくは30〜250質量部程度、さらに好ましくは50〜200質量部程度である。水素供与性溶剤の量が10質量部を下回ると、ピッチの熱変質が起こりやすくなり、固形分の増加ならびに熱安定性の低下を招く。また、水素供与性溶剤の量が300質量部を超えると、前記フェノールの場合と同様に、溶媒回収に必要なエネルギー消費量が高くなり、コストアップに繋がる。   The amount of phenols and hydrogen-donating solvent used is not particularly limited as long as it is sufficient to solubilize the solid woody material, but even if used in excess, there is no further effect, and productivity is reduced. Therefore, it is recommended to use an appropriate amount. When using a saccharification residue or fermentation residue as a solid woody material, the amount of phenol is, for example, about 20 to 500 parts by mass, preferably about 50 to 400 parts by mass, with respect to 100 parts by mass of the saccharification residue or fermentation residue. More preferably, it is about 100 to 300 parts by mass. When the amount of phenols is less than 20 parts by mass, the solubility in solid raw materials is remarkably reduced, and when the amount of phenols exceeds 500 parts by mass, the amount of phenols necessary for dissolution is sufficient, but the solvent Energy consumption required for recovery increases, leading to cost increase. The amount of the hydrogen donating solvent is, for example, about 10 to 300 parts by mass, preferably about 30 to 250 parts by mass, and more preferably about 50 to 200 parts by mass with respect to 100 parts by mass of the saccharification residue or fermentation residue. . When the amount of the hydrogen donating solvent is less than 10 parts by mass, the pitch is likely to be thermally altered, resulting in an increase in solid content and a decrease in thermal stability. On the other hand, when the amount of the hydrogen donating solvent exceeds 300 parts by mass, as in the case of the phenol, the energy consumption required for solvent recovery increases, leading to an increase in cost.

固形木質系原料を前記溶剤の存在下で加圧加熱して可溶化する時、加熱温度は、230〜430℃程度、好ましくは260〜400℃程度、さらに好ましくは280〜380℃程度である。230℃を下回ると、可溶化が不十分であるため、固形分量が多くなり、また、430℃を超えると、環化重縮合反応が促進され、炭素前駆体としての固形分が多くなる。また、ゲージ圧は0.2〜10MPa程度である。このゲージ圧は、原料中の水分、熱分解で生成する低沸点成分、使用するフェノール類、水素供与性溶剤の所定温度での蒸気圧によって決まる。上記の圧力及び温度での処理時間(所定温度に達してからの保持時間)は、例えば、1〜120分程度、好ましくは5〜60分程度、さらに好ましくは10〜30分程度である。   When the solid woody material is solubilized by heating under pressure in the presence of the solvent, the heating temperature is about 230 to 430 ° C, preferably about 260 to 400 ° C, more preferably about 280 to 380 ° C. If the temperature is below 230 ° C., the solubilization is insufficient, so the amount of solids increases, and if it exceeds 430 ° C., the cyclization polycondensation reaction is promoted and the solid content as a carbon precursor increases. The gauge pressure is about 0.2 to 10 MPa. This gauge pressure is determined by the vapor pressure at a predetermined temperature of moisture in the raw material, low-boiling components generated by thermal decomposition, phenols to be used, and hydrogen donating solvent. The treatment time at the above pressure and temperature (holding time after reaching a predetermined temperature) is, for example, about 1 to 120 minutes, preferably about 5 to 60 minutes, and more preferably about 10 to 30 minutes.

固形木質系原料を前記のようにして可溶化した後、可溶化物中に残存する固形分はペーパーフィルター(保留粒子径1〜10μm程度)でろ過することで分離し、その量を調べることができる。ろ過前の可溶化物に含まれる固形分量は、投入した固形木質系原料(105℃乾燥ベース)に対して、例えば、5質量%以下、好ましくは4質量%以下、さらに好ましくは3質量%以下である。ろ過した可溶化物は蒸留する。蒸留操作は、固形木質系原料に含まれる水分、可溶化で使用した溶剤(フェノール類、水素供与性溶剤など)、及び加圧加熱処理時に生じる低沸点の分解生成物(熱分解油及び熱分解により生成した水)など(これらを総称して低沸点成分という)を除去できればよく、減圧条件下で実施してもよく、常圧条件下で実施してもよい。
上記の様にして得られた可溶化物は、炭素繊維製造原料となるピッチ(木質系ピッチ)として使用できる。この木質系ピッチの軟化点は、通常170〜230℃程度である。
After solubilizing the solid woody material as described above, the solid content remaining in the solubilizate can be separated by filtering with a paper filter (retained particle diameter of about 1 to 10 μm), and the amount can be examined. it can. The solid content contained in the solubilized product before filtration is, for example, 5% by mass or less, preferably 4% by mass or less, and more preferably 3% by mass or less, with respect to the input solid woody material (105 ° C. dry base). It is. The filtered lysate is distilled. The distillation operation consists of the moisture contained in the solid woody raw material, the solvent used for solubilization (phenols, hydrogen donating solvent, etc.), and the low-boiling decomposition products (pyrolysis oil and pyrolysis produced during pressure heat treatment) (Water generated by the above) (these are collectively referred to as low boiling point components) can be removed, and may be carried out under reduced pressure conditions or under normal pressure conditions.
The solubilized product obtained as described above can be used as a pitch (woody pitch) as a carbon fiber production raw material. The softening point of the woody pitch is usually about 170 to 230 ° C.

(2)紡糸
上記木質系ピッチは、炭化又は熱分解することによって、様々な炭素材料(例えば、活性炭、カーボンブラックおよびバインダーなど)にすることができるが、上記木質系ピッチから炭素繊維を製造することが好ましい。炭素繊維を製造するためには、まず上記のようにして得られた木質系ピッチを紡糸(特に溶融紡糸)する。通常、紡糸する際には混入したゴミやピッチ中の固形分により、紡糸ノズルの閉塞や炭素繊維の強度低下を防ぐために金属フィルターを設置する。上記木質系ピッチを用いれば、固形分量が極めて少ないため、フィルター負荷が減少し、長時間に亘って連続紡糸運転が可能となる。
(2) Spinning The woody pitch can be made into various carbon materials (for example, activated carbon, carbon black, binder, etc.) by carbonization or pyrolysis, and carbon fiber is produced from the woody pitch. It is preferable. In order to produce carbon fiber, the woody pitch obtained as described above is first spun (especially melt-spun). Usually, when spinning, a metal filter is installed in order to prevent clogging of the spinning nozzle and a decrease in strength of the carbon fiber due to the mixed dust and solid content in the pitch. If the above wood pitch is used, the amount of solid content is extremely small, so the filter load is reduced and continuous spinning operation can be performed for a long time.

また紡糸するに当たって、脱気はピッチを軟化点以上(好ましくは軟化点よりも30〜120℃程度高い温度、特に軟化点よりも50〜100℃程度高い温度)に加熱することで実施される。上記木質系ピッチを用いれば、木質系ピッチの熱変質による軟化点の上昇が抑えられ、長時間の連続紡糸運転が可能となる。
紡糸条件としては、公知の条件が適宜採用でき、例えば、押し出し法、遠心法等の方法にて溶融紡糸を行い、ピッチ繊維とする。
In spinning, deaeration is carried out by heating the pitch to the softening point or higher (preferably a temperature higher by about 30 to 120 ° C. than the softening point, particularly a temperature higher by about 50 to 100 ° C. than the softening point). If the above-mentioned wood pitch is used, an increase in the softening point due to thermal alteration of the wood pitch can be suppressed, and a continuous spinning operation can be performed for a long time.
As spinning conditions, known conditions can be appropriately employed. For example, melt spinning is performed by a method such as an extrusion method or a centrifugal method to obtain pitch fibers.

(3)不融化処理、炭化処理
溶融紡糸して得られたピッチ繊維は、酸化性ガス雰囲気下で不融化処理が施される。酸化性ガスとしては、通常、酸素、オゾン、空気、ハロゲン、窒素酸化物、亜硫酸等の酸化性ガスが一種あるいは二種以上を用いる。この不融化処理はピッチ繊維が軟化変形しない温度条件下で実施される。例えば20〜350℃、好ましくは30〜320℃の温度が推奨される。不融化処理されたピッチ繊維は、次に不活性ガス雰囲気下で炭化処理を施して本発明の木質ピッチ系炭素繊維を得る。炭化処理条件は500〜1300℃程度(特に800℃±50℃程度)である。必要に応じて、黒鉛化処理してもよい。黒鉛化処理では、例えば、1500〜2800℃程度の温度で、不活性雰囲気(特にアルゴンガス)で炭化繊維を加熱する。
(3) Infusibilization treatment, carbonization treatment Pitch fibers obtained by melt spinning are subjected to infusibilization treatment in an oxidizing gas atmosphere. As the oxidizing gas, one or more oxidizing gases such as oxygen, ozone, air, halogen, nitrogen oxide, sulfurous acid and the like are usually used. This infusibilization treatment is performed under temperature conditions where the pitch fibers are not softened and deformed. For example, a temperature of 20 to 350 ° C, preferably 30 to 320 ° C is recommended. The infusibilized pitch fiber is then carbonized in an inert gas atmosphere to obtain the woody pitch-based carbon fiber of the present invention. The carbonization conditions are about 500 to 1300 ° C. (particularly about 800 ° C. ± 50 ° C.). You may graphitize as needed. In the graphitization treatment, for example, the carbonized fiber is heated in an inert atmosphere (particularly argon gas) at a temperature of about 1500 to 2800 ° C.

上記のようにして得られる木質系ピッチから製造した炭素繊維は、従来のピッチ系炭素繊維の代替材料として使用できる。従ってその用途は幅広く、例えば、トウ、ステープルヤーン、クロス、ミルド、フェルト、マットのいずれでもよい。なお炭素繊維の引張強さは、JIS R7601に従って求められる。   Carbon fibers produced from the wood-based pitch obtained as described above can be used as an alternative material for conventional pitch-based carbon fibers. Therefore, the use is wide, and for example, any of tow, staple yarn, cloth, milled, felt, and mat may be used. The tensile strength of the carbon fiber is obtained according to JIS R7601.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

参考例1
杉の切り株と枝葉からなる直径5〜100cm程度の未利用木質系バイオマスを破砕機により3〜5cm角のチップに破砕した後、含水率が約20質量%になるまで自然乾燥した。さらに粉砕して、平均粒径約20μm、含水率約3質量%の粉末にした。この木粉100質量部に、アクレモニュウムセルラーゼ(明治製菓製、商品名:アクレモニュウムエンザイム)5質量部と水500質量部を加え、温度55℃で40時間糖化処理(糖化率は原料中のセルロース100質量%に対して35質量%)した後、濾過して液体成分(a)と固形分とに分離した。固形分はさらに水で洗浄し、洗浄液(b)と前記液体成分(a)を合わせてエタノール発酵に供した。固形分(糖化処理残渣)は自然乾燥してから粉状に砕いた後、さらに温度105℃で一夜乾燥して、炭素繊維用ピッチの原料となる糖化残渣を得た。糖化残渣の収量は、原料木粉の乾燥質量100質量%に対して82質量%であった。
Reference example 1
After crushing unused woody biomass of about 5-100 cm in diameter consisting of cedar stumps and branches and leaves into chips of 3-5 cm square using a crusher, it was naturally dried until the water content was about 20% by mass. Further, the powder was pulverized into a powder having an average particle size of about 20 μm and a water content of about 3% by mass. To 100 parts by mass of this wood flour, 5 parts by mass of Acremonium cellulase (Meiji Seika, trade name: Acremonium Enzyme) and 500 parts by mass of water are added, and saccharification treatment is carried out at a temperature of 55 ° C. for 40 hours (the saccharification rate is in the raw material) And 35% by mass with respect to 100% by mass of cellulose), followed by filtration to separate into liquid component (a) and solid content. The solid content was further washed with water, and the washing liquid (b) and the liquid component (a) were combined and subjected to ethanol fermentation. The solid content (saccharification treatment residue) was naturally dried and then crushed into powder, and further dried overnight at a temperature of 105 ° C. to obtain a saccharification residue as a raw material for carbon fiber pitch. The yield of the saccharification residue was 82% by mass with respect to 100% by mass of the dry mass of the raw material wood flour.

実施例1
参考例1で得られた杉の糖化残渣50gに対してフェノール75gとテトラリン75gを加えて325℃で1時間、ゲージ圧5MPaの条件で加熱した。加熱処理により得られた加熱処理液をペーパーフィルターでろ過したところ固形分は痕跡程度である。ろ過して固形分を除去した可溶化物を温度280℃、絶対圧4hPa(3torr)の条件で蒸留して木質系ピッチを得た。得られた木質系ピッチの軟化点は195℃であった。
Example 1
To 50 g of saccharification residue obtained in Reference Example 1, 75 g of phenol and 75 g of tetralin were added and heated at 325 ° C. for 1 hour under a gauge pressure of 5 MPa. When the heat treatment liquid obtained by the heat treatment is filtered with a paper filter, the solid content is about trace. The solubilized product from which the solid content was removed by filtration was distilled under conditions of a temperature of 280 ° C. and an absolute pressure of 4 hPa (3 torr) to obtain a woody pitch. The softening point of the obtained woody pitch was 195 ° C.

前記木質系ピッチを直径0.2mm、長さ0.4mmのノズル(D/L=0.2/0.4)を備えた単孔紡糸装置に入れ、285℃で減圧脱気後、温度255℃に加熱し、窒素圧を利用して押し出し量0.05g/分、巻き取り速度300m/分の条件で紡糸し、直径13μmのピッチ繊維を得た。紡糸終了後、紡糸器内のピッチの軟化点を測定したところ、200℃であった。得られたピッチ繊維を管状炉に入れ、昇温速度1℃/分、保持温度270℃、保持時間1時間、保持雰囲気:空気中の条件で処理して不融化した。さらに昇温速度5℃/分、保持温度800℃、保持時間5分の条件で不融化物を処理して炭化した。
炭化処理後の炭素繊維の引っ張り強度は650MPaであった。
The wood pitch is put into a single hole spinning apparatus equipped with a nozzle (D / L = 0.2 / 0.4) having a diameter of 0.2 mm and a length of 0.4 mm, and after degassing at 285 ° C. under reduced pressure, the temperature is 255. The mixture was heated to 0 ° C. and spun using a nitrogen pressure under the conditions of an extrusion amount of 0.05 g / min and a winding speed of 300 m / min to obtain a pitch fiber having a diameter of 13 μm. After spinning, the pitch softening point in the spinning machine was measured and found to be 200 ° C. The obtained pitch fiber was put into a tubular furnace, and it was made infusible by treatment under conditions of a heating rate of 1 ° C./min, a holding temperature of 270 ° C., a holding time of 1 hour, and a holding atmosphere: air. Furthermore, the infusible material was treated and carbonized under the conditions of a heating rate of 5 ° C./min, a holding temperature of 800 ° C., and a holding time of 5 minutes.
The tensile strength of the carbon fiber after carbonization was 650 MPa.

実施例2
参考例1で得られた杉の糖化残渣50gに対してフェノール50gとテトラリン100g加えて325℃で1時間、ゲージ圧5MPaの条件で加熱した。得られた加熱処理液には固形分は観察されなかった。加熱処理液を実施例1と同様にろ過、蒸留して、木質系ピッチを得た(軟化点190℃)。この木質系ピッチを実施例1と同様に紡糸して直径13μmのピッチ繊維を得た。紡糸終了後、紡糸器内のピッチの軟化点を測定したところ、196℃であった。得られたピッチ繊維を実施例1と同様に不融化処理および炭化処理をして、炭素繊維(引っ張り強度600MPa)を得た。
Example 2
50 g of phenol and 100 g of tetralin were added to 50 g of the cedar saccharification residue obtained in Reference Example 1, and the mixture was heated at 325 ° C. for 1 hour under a gauge pressure of 5 MPa. Solid content was not observed in the obtained heat treatment liquid. The heat treatment liquid was filtered and distilled in the same manner as in Example 1 to obtain a woody pitch (softening point 190 ° C.). This woody pitch was spun in the same manner as in Example 1 to obtain a pitch fiber having a diameter of 13 μm. After the spinning, the softening point of the pitch in the spinning machine was measured and found to be 196 ° C. The obtained pitch fiber was subjected to infusibilization treatment and carbonization treatment in the same manner as in Example 1 to obtain carbon fiber (tensile strength: 600 MPa).

実施例3
参考例1で得られた杉の糖化残渣50gに対してフェノール75gとテトラリン75gを加えて350℃で1時間、ゲージ圧7MPaの条件で加熱した。得られた加熱処理液中の固形分は、投入した糖化残渣原料(105℃乾燥ベース)に対して2.9質量%であった。加熱処理液を実施例1と同様にろ過、蒸留して木質系ピッチを得た(軟化点190℃)。この木質系ピッチを実施例1と同様に紡糸して直径13μmのピッチ繊維を得た。紡糸終了後、紡糸器内のピッチの軟化点を測定したところ、198℃であった。得られたピッチ繊維を実施例1と同様に不融化処理および炭化処理をして、炭素繊維(引っ張り強度680MPa)を得た。
Example 3
To 50 g of cedar saccharification residue obtained in Reference Example 1, 75 g of phenol and 75 g of tetralin were added and heated at 350 ° C. for 1 hour under a gauge pressure of 7 MPa. The solid content in the obtained heat treatment liquid was 2.9% by mass with respect to the charged saccharification residue raw material (105 ° C. dry base). The heat treatment liquid was filtered and distilled in the same manner as in Example 1 to obtain a woody pitch (softening point 190 ° C.). This woody pitch was spun in the same manner as in Example 1 to obtain a pitch fiber having a diameter of 13 μm. After spinning, the pitch softening point in the spinning machine was measured and found to be 198 ° C. The obtained pitch fiber was infusibilized and carbonized in the same manner as in Example 1 to obtain carbon fiber (tensile strength of 680 MPa).

実施例4
参考例1で得られた杉の糖化残渣50gに対してフェノール50gとテトラリン100gを加えて350℃で1時間、ゲージ圧7MPaの条件で加熱した。得られた加熱処理液中の固形分は、投入した糖化残渣原料(105℃乾燥ベース)に対して1.5質量%であった。加熱処理液を実施例1と同様にろ過、濃縮して木質系ピッチを得た(軟化点184℃)。この木質系ピッチを実施例1と同様に紡糸して直径13μmのピッチ繊維を得た。紡糸終了後、紡糸器内のピッチの軟化点を測定したところ、190℃であった。得られたピッチ繊維を実施例1と同様に不融化処理および炭化処理をして、炭素繊維(引っ張り強度650MPa)を得た。
Example 4
50 g of phenol and 100 g of tetralin were added to 50 g of the cedar saccharification residue obtained in Reference Example 1, and the mixture was heated at 350 ° C. for 1 hour under a gauge pressure of 7 MPa. The solid content in the obtained heat treatment liquid was 1.5% by mass with respect to the charged saccharification residue raw material (105 ° C. dry base). The heat treatment liquid was filtered and concentrated in the same manner as in Example 1 to obtain a woody pitch (softening point 184 ° C.). This woody pitch was spun in the same manner as in Example 1 to obtain a pitch fiber having a diameter of 13 μm. After spinning, the pitch softening point in the spinning machine was measured and found to be 190 ° C. The obtained pitch fiber was infusibilized and carbonized in the same manner as in Example 1 to obtain carbon fiber (tensile strength of 650 MPa).

実施例5
参考例1で得られた杉の糖化残渣50gに対してフェノール75gとテトラリン75gを加えて325℃で0.5時間、ゲージ圧5MPaの条件で加熱した。得られた加熱処理液に固形分は観察されなかった。加熱処理液を実施例1と同様にろ過、濃縮して木質系ピッチを得た(軟化点195℃)。この木質系ピッチを実施例1と同様に紡糸して直径13μmのピッチ繊維を得た。紡糸終了後、紡糸器内のピッチの軟化点を測定したところ、202℃であった。得られたピッチ繊維を実施例1と同様に不融化処理および炭化処理をして、炭素繊維を得た(引っ張り強度580MPa)。
Example 5
To 50 g of cedar saccharification residue obtained in Reference Example 1, 75 g of phenol and 75 g of tetralin were added and heated at 325 ° C. for 0.5 hours under the condition of a gauge pressure of 5 MPa. Solid content was not observed in the obtained heat treatment liquid. The heat treatment liquid was filtered and concentrated in the same manner as in Example 1 to obtain a woody pitch (softening point 195 ° C.). This woody pitch was spun in the same manner as in Example 1 to obtain a pitch fiber having a diameter of 13 μm. After spinning, the softening point of the pitch in the spinning machine was measured and found to be 202 ° C. The obtained pitch fiber was infusibilized and carbonized in the same manner as in Example 1 to obtain carbon fiber (tensile strength of 580 MPa).

比較例1
参考例1で得られた杉の糖化残渣50gに対してフェノール150gを加えて325℃で1時間、ゲージ圧5MPaの条件で加熱処理を実施した。得られた加熱処理液中の固形分は、投入した糖化残渣原料(105℃乾燥ベース)に対して6.0質量%であった。加熱処理液を実施例1と同様にろ過、濃縮して木質系ピッチを得た(軟化点205℃)。この木質系ピッチを実施例1と同様に紡糸しようとしたが、紡糸ノズルが閉塞し、繊維が得られなかった。紡糸終了後、紡糸器内のピッチの軟化点を測定したところ、245℃であった。
Comparative Example 1
To 50 g of the cedar saccharification residue obtained in Reference Example 1, 150 g of phenol was added, and a heat treatment was performed at 325 ° C. for 1 hour under a gauge pressure of 5 MPa. The solid content in the obtained heat treatment liquid was 6.0% by mass relative to the charged saccharification residue raw material (105 ° C. dry base). The heat treatment liquid was filtered and concentrated in the same manner as in Example 1 to obtain a woody pitch (softening point 205 ° C.). An attempt was made to spin this woody pitch in the same manner as in Example 1, but the spinning nozzle was clogged and no fiber was obtained. After spinning, the softening point of the pitch in the spinning machine was measured and found to be 245 ° C.

比較例2
参考例1で得られた杉の糖化残渣50gに対してフェノール150gを加えて350℃で1時間、ゲージ圧7MPaの条件で加熱処理を実施した。得られた加熱処理液中の固形分は、投入した糖化残渣原料(105℃乾燥ベース)に対して8.5質量%であった。加熱処理液を実施例1と同様にろ過、濃縮して木質系ピッチを得た(軟化点210℃)。この木質系ピッチを実施例1と同様に紡糸することで直径13μmのピッチ繊維が得られたが、短時間で紡糸ノズルが閉塞した。紡糸終了後、紡糸器内のピッチの軟化点を測定したところ、230℃であった。
Comparative Example 2
To 50 g of cedar saccharification residue obtained in Reference Example 1, 150 g of phenol was added, and a heat treatment was carried out at 350 ° C. for 1 hour under a gauge pressure of 7 MPa. The solid content in the obtained heat treatment liquid was 8.5% by mass with respect to the charged saccharification residue raw material (105 ° C. dry base). The heat treatment liquid was filtered and concentrated in the same manner as in Example 1 to obtain a woody pitch (softening point 210 ° C.). By spinning this woody pitch in the same manner as in Example 1, a pitch fiber having a diameter of 13 μm was obtained, but the spinning nozzle was closed in a short time. After spinning, the pitch softening point in the spinning machine was measured and found to be 230 ° C.

Claims (4)

セルロース、ヘミセルロース、リグニン、及びリグノセルロースから選択される少なくとも一種を含む固形木質系原料を、フェノール類及び水素供与性溶剤の存在下で加圧加熱して可溶化し、この可溶化物から低沸点成分を除去して得られる木質系ピッチを紡糸、不融化、及び炭化することを特徴とする炭素繊維の製造方法。   Solid woody material containing at least one selected from cellulose, hemicellulose, lignin, and lignocellulose is solubilized by heating under pressure in the presence of phenols and a hydrogen-donating solvent. A method for producing a carbon fiber, comprising spinning, infusibilizing, and carbonizing a wood pitch obtained by removing components. 前記固形木質系原料が、木質体を生物的、化学的、又は機械的に分解したものである請求項1に記載の炭素繊維の製造方法。   The method for producing carbon fiber according to claim 1, wherein the solid wood-based raw material is obtained by biologically, chemically, or mechanically decomposing a wooden body. 前記固形木質系原料が、木質体を糖化処理した後の残渣、或いは木質体を糖化及び醗酵処理した後の残渣である請求項1又は2に記載の炭素繊維の製造方法。   The carbon fiber production method according to claim 1 or 2, wherein the solid wood-based material is a residue after saccharification treatment of a wood body or a residue after saccharification and fermentation treatment of a wood body. 前記フェノール類がフェノールであり、前記水素供与性溶剤がテトラリンである請求項1〜3のいずれかに記載の炭素繊維の製造方法。   The method for producing a carbon fiber according to any one of claims 1 to 3, wherein the phenol is phenol and the hydrogen-donating solvent is tetralin.
JP2010265487A 2010-11-29 2010-11-29 Method for manufacturing carbon fiber Withdrawn JP2012117162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010265487A JP2012117162A (en) 2010-11-29 2010-11-29 Method for manufacturing carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010265487A JP2012117162A (en) 2010-11-29 2010-11-29 Method for manufacturing carbon fiber

Publications (1)

Publication Number Publication Date
JP2012117162A true JP2012117162A (en) 2012-06-21

Family

ID=46500335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010265487A Withdrawn JP2012117162A (en) 2010-11-29 2010-11-29 Method for manufacturing carbon fiber

Country Status (1)

Country Link
JP (1) JP2012117162A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101451384B1 (en) 2013-09-17 2014-10-22 한국과학기술연구원 Method of preparing carbon fiber from wood waste including adhesive
WO2016199060A1 (en) * 2015-06-11 2016-12-15 Stora Enso Oyj A fiber and a process for the manufacture thereof
CN114890405A (en) * 2022-06-16 2022-08-12 清华大学 Method for low-temperature rapid hydrothermal synthesis of submicron carbon spheres from cellulose

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101451384B1 (en) 2013-09-17 2014-10-22 한국과학기술연구원 Method of preparing carbon fiber from wood waste including adhesive
US9175424B2 (en) 2013-09-17 2015-11-03 Korea Institute Of Science And Technology Method of preparing carbon fiber from wood waste including adhesive
WO2016199060A1 (en) * 2015-06-11 2016-12-15 Stora Enso Oyj A fiber and a process for the manufacture thereof
US10626523B2 (en) 2015-06-11 2020-04-21 Stora Enso Oyj Fiber and a process for the manufacture thereof
CN114890405A (en) * 2022-06-16 2022-08-12 清华大学 Method for low-temperature rapid hydrothermal synthesis of submicron carbon spheres from cellulose

Similar Documents

Publication Publication Date Title
Sagues et al. Are lignin-derived carbon fibers graphitic enough?
US20170058127A1 (en) Production of nanocellulose and carbon black from lignocellulosic biomass
Lobato-Peralta et al. A review on trends in lignin extraction and valorization of lignocellulosic biomass for energy applications
Kubo et al. Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pulping
Souto et al. Lignin-based carbon fiber: a current overview
Gellerstedt et al. The wood-based biorefinery: A source of carbon fiber?
Shamsuddin et al. Synthesis and characterization of activated carbon produced from kenaf core fiber using H3PO4 activation
Peng et al. Pyrolysis of lignin for phenols with alkaline additive
Baker et al. Recent advances in low‐cost carbon fiber manufacture from lignin
JP5263738B2 (en) Process for producing other polysaccharides and / or monosaccharides by hydrolysis of polysaccharides
Yang et al. Preparation of isotropic pitch-based carbon fiber using hyper coal through co-carbonation with ethylene bottom oil
Li et al. Preparation of carbon fibers from low-molecular-weight compounds obtained from low-rank coal and biomass by solvent extraction
Peng et al. Pyrolysis of black liquor for phenols and impact of its inherent alkali
Huang et al. Effect of ionic liquid assisted hydrothermal carbonization on the properties and gasification reactivity of hydrochar derived from eucalyptus
Chen et al. Effect of temperature on the evolution of physical structure and chemical properties of bio-char derived from co-pyrolysis of lignin with high-density polyethylene
Yan et al. Preparation and characterization of chars and activated carbons from wood wastes
Khalid et al. Lignin extraction from lignocellulosic biomass using sub-and supercritical fluid technology as precursor for carbon fiber production
JP2015140403A (en) Cellulose nanofiber and manufacturing method thereof
JP6445832B2 (en) Biopitch manufacturing method
JP2012117162A (en) Method for manufacturing carbon fiber
Canché-Escamilla et al. Characterization of bio-oil and biochar obtained by pyrolysis at high temperatures from the lignocellulosic biomass of the henequen plant
JP5747488B2 (en) Woody pitch
JP5818066B2 (en) Carbon fiber manufacturing method
Bao et al. Assessment of porous carbon from rice straw residues with potassium ferrate-assisted activation as cationic and anionic dye adsorbents
Le et al. A review of future directions in the development of sustainable carbon fiber from bio-based precursors

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140204