JP2012253815A - Image reading line light source and light guide unit - Google Patents

Image reading line light source and light guide unit Download PDF

Info

Publication number
JP2012253815A
JP2012253815A JP2012187829A JP2012187829A JP2012253815A JP 2012253815 A JP2012253815 A JP 2012253815A JP 2012187829 A JP2012187829 A JP 2012187829A JP 2012187829 A JP2012187829 A JP 2012187829A JP 2012253815 A JP2012253815 A JP 2012253815A
Authority
JP
Japan
Prior art keywords
light
light guide
light source
phosphor layer
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012187829A
Other languages
Japanese (ja)
Other versions
JP5418646B2 (en
Inventor
Hironobu Arimoto
浩延 有本
Akiko Tonai
亜紀子 藤内
Toshiaki Shoji
俊明 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012187829A priority Critical patent/JP5418646B2/en
Publication of JP2012253815A publication Critical patent/JP2012253815A/en
Application granted granted Critical
Publication of JP5418646B2 publication Critical patent/JP5418646B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an image reading line light source with light emission intensity, by which uniformity of lighting can be obtained in a longitudinal direction and conversion efficiency of fluorescent light is improved, and to provide a light guide unit.SOLUTION: The image reading line light source includes: an LED light source 1 generating blue light; a rod-like light guide body 3 in which the LED light source 1 is arranged at the end thereof and which transmits the blue light which is made incident on an inner part by reflecting it along a long-axis direction; a reflector 6 which surrounds the light guide body 3 by leaving a prescribed space with the light guide body 3 and in which an opening part constituted of a long groove is arranged along the long axis direction; and a phosphor layer 5 which is installed on a light guide body 3 side of the reflector 6 and emits excited fluorescence by absorbing the blue light.

Description

この発明は、読み取り対象物(被照射体)に光を照射し、読み取り対象物からの透過光や反射光をライン状に配置された光センサで読み取らせることで読み取り対象物上に形成された画像、文字、パターンなどを電子情報化する複写機やスキャナー等の画像読み取り機器に使用される画像読み取り用ライン光源に関するものである。 The present invention is formed on a reading object by irradiating the reading object (irradiated object) with light and reading transmitted light and reflected light from the reading object with a photosensor arranged in a line shape. The present invention relates to an image reading line light source used in an image reading device such as a copying machine or a scanner that converts images, characters, patterns and the like into electronic information.

紙媒体などに印刷形成された画像、文字、パターンなどの情報を電子化するときに用いられる複写機、スキャナー等の機器においては、キセノン(Xe)ランプなどの線状光源で読み取り対象物を照明するものが多い。例えば、特開2002−190919号公報段落〔0020〕(特許文献1参照)には、蛍光体非塗布部(帯状光投射部)13a、13bを残して蛍光体膜とした、キセノンガスを放電媒体とするアパーチャ形の蛍光ランプ12a、12bが開示されている。 In devices such as copiers and scanners used to digitize information such as images, characters, and patterns printed on paper media, the object to be read is illuminated with a linear light source such as a xenon (Xe) lamp. There are many things to do. For example, in paragraph [0020] of Japanese Patent Application Laid-Open No. 2002-190919 (see Patent Document 1), a xenon gas in which a phosphor film is formed by leaving phosphor non-applied portions (band-shaped light projection portions) 13a and 13b is used as a discharge medium. Aperture-type fluorescent lamps 12a and 12b are disclosed.

また、線状光源としてXeランプの代わりに青色光や紫外光を発するLEDを用いた光源が普及している。例えば、特開2000−127505号公報段落〔0023〕(特許文献2参照)には、LED26から放出された青色光36を受けて、蛍光ストリップ30、32と非蛍光ストリップ34をガラス又はプラスチック材料で構成した透明な棒レンズ28から複合「白色」光38を発生させる光源アセンブリ18が開示されている。 In addition, light sources using LEDs that emit blue light or ultraviolet light instead of Xe lamps are widely used as linear light sources. For example, in paragraph [0023] of Japanese Patent Laid-Open No. 2000-127505 (see Patent Document 2), the fluorescent strips 30 and 32 and the non-fluorescent strip 34 are made of glass or plastic material in response to the blue light 36 emitted from the LED 26. A light source assembly 18 is disclosed that generates composite “white” light 38 from a constructed transparent rod lens 28.

特開2004−85824号公報段落〔0014〕(特許文献3参照)には、紫外線発光のLED11の上方に数タイプの発光色をブレンドした蛍光体13を塗布した透明板(ガラス板等)12が配置され、LED11から発した紫外光UVが蛍光体13に当たって可視光を発光する長尺光源(線状光源)10が開示されている。 In paragraph [0014] of Japanese Patent Application Laid-Open No. 2004-85824 (see Patent Document 3), there is a transparent plate (glass plate or the like) 12 in which a phosphor 13 in which several types of luminescent colors are blended is applied above an LED 11 that emits ultraviolet light. There is disclosed a long light source (linear light source) 10 that is arranged and emits visible light when ultraviolet light UV emitted from an LED 11 strikes a phosphor 13.

特開平10−79835号公報段落〔0015〕(特許文献4参照)には、光源1の管内面に塗付されている蛍光体5により紫外線4から変換された可視光6と、光源1の開口部2から直接放射された紫外線4aを蛍光体10と反射膜11からなる蛍光部材9により変換された可視光6aとからなる合成可視光を原稿7に照射する照明装置が開示されている。 In paragraph [0015] of Japanese Patent Laid-Open No. 10-79835 (see Patent Document 4), visible light 6 converted from ultraviolet rays 4 by a phosphor 5 applied to the inner surface of the tube of the light source 1 and the opening of the light source 1 are disclosed. An illumination device is disclosed that irradiates a document 7 with synthetic visible light composed of visible light 6a obtained by converting ultraviolet rays 4a directly radiated from the unit 2 by a fluorescent member 9 composed of a phosphor 10 and a reflective film 11.

特開2006−67197号公報段落〔0062〕(特許文献5参照)には、外筒部としての反射シート18の内面に蛍光体43が印刷されたパターン、又はカバー15の内面に蛍光体44が印刷されたパターンを導光体と接するように貼り付け又は覆うライン光源が開示されている。 In paragraph [0062] of Japanese Patent Application Laid-Open No. 2006-67197 (see Patent Document 5), a pattern in which the phosphor 43 is printed on the inner surface of the reflection sheet 18 serving as an outer cylinder, or the phosphor 44 is formed on the inner surface of the cover 15. A line light source is disclosed in which a printed pattern is attached or covered so as to be in contact with a light guide.

特開2002−190919号公報(段落〔0020〕)JP 2002-190919 A (paragraph [0020]) 特開2000−127505号公報(段落〔0023〕)JP 2000-127505 A (paragraph [0023]) 特開2004−85824号公報(段落〔0014〕、第2図)Japanese Patent Laying-Open No. 2004-85824 (paragraph [0014], FIG. 2) 特開平10−79835号公報(段落〔0015〕、第1図)Japanese Patent Laid-Open No. 10-79835 (paragraph [0015], FIG. 1) 特開2006−67197号公報(段落〔0062〕)JP 2006-67197 A (paragraph [0062])

しかしながら、特許文献1に記載のものでは、Xeガスの放電で発生した紫外光でガラス管内壁面に形成した蛍光体層を励起して蛍光させるためにXeランプに数kVの高電圧を印加するので高電圧を生成するための電源回路が必要であるという課題がある。また、放電現象を利用していることにより発熱が大きく、ランプの温度上昇に伴い蛍光体の発光効率や輝度が低下し、時間と共に輝度が大きく変化してしまうという課題もあった。 However, in the device described in Patent Document 1, a high voltage of several kV is applied to the Xe lamp in order to excite and fluoresce the phosphor layer formed on the inner wall surface of the glass tube with ultraviolet light generated by the discharge of Xe gas. There is a problem that a power supply circuit for generating a high voltage is necessary. In addition, since the discharge phenomenon is used, there is a problem that heat generation is large, and the luminous efficiency and luminance of the phosphor are lowered as the lamp temperature rises, and the luminance is greatly changed with time.

特許文献2に記載のものは、青色のLEDを使用するので低電圧で動作が可能であるものの、ハウジング14の内部に入っているキャリッジユニット16の一部を構成する棒状の光源アセンブリ18の蛍光ストリップ30、32については言及されているが、ハウジング14やキャリッジユニット16などの周辺部材との取り合わせについては触れていない。 Although the thing of patent document 2 can operate | move by a low voltage since it uses blue LED, it is fluorescence of the rod-shaped light source assembly 18 which comprises a part of carriage unit 16 contained in the housing 14 inside. The strips 30 and 32 are mentioned, but the assembly with the peripheral members such as the housing 14 and the carriage unit 16 is not mentioned.

特許文献3に記載のものは、紫外発光のLED11の上方に蛍光体13を塗布した透明板(ガラス板等)12が配置されるので、光の照射方向に可視光(VR)と紫外線(UV)とが複合され、紫外線の強度が大きい場合には、読み取り対象物に対する紫外線のスペクトラム比率が高くなり、紫外線の強度が小さい場合には、蛍光の変換効率を悪くなるという課題がある。また、LED11を長手方向(読み取り幅方向)の長さに合わせてアレー状に多数配列するので経時変化などで個々のLED11の光変換効率に差が生じ均一な照明が困難になるという課題があった。 Since the transparent plate (glass plate etc.) 12 which apply | coated the fluorescent substance 13 is arrange | positioned above the LED 11 of ultraviolet light emission, the thing of patent document 3 arrange | positions visible light (VR) and ultraviolet-ray (UV) in the irradiation direction of light. ) And the intensity of the ultraviolet rays is high, the spectrum ratio of the ultraviolet rays to the object to be read is high, and when the intensity of the ultraviolet rays is low, the fluorescence conversion efficiency is deteriorated. In addition, since a large number of LEDs 11 are arranged in an array according to the length in the longitudinal direction (reading width direction), there is a problem that uniform illumination is difficult due to a difference in the light conversion efficiency of each LED 11 due to changes over time. It was.

特許文献4に記載のものは、光源1の管内面に蛍光体5が塗布されるので、副走査方向と直交する領域に塗布された蛍光体5の塗布厚のばらつきがあり、均一性を確保することが困難であるという課題がある。また、長筒状の光源1が筐体フレームに保持されることに関する詳細については触れられていない。 Since the phosphor 5 is coated on the inner surface of the tube of the light source 1 in the one described in Patent Document 4, there is a variation in the coating thickness of the phosphor 5 coated in a region orthogonal to the sub-scanning direction, ensuring uniformity. There is a problem that it is difficult to do. Further, details regarding the long cylindrical light source 1 being held by the housing frame are not mentioned.

特許文献5に記載のものは、外筒部としての反射シート18の内面に蛍光体43が印刷されたパターン又はカバー15の内面に蛍光体44が印刷されたパターンを導光体と接するように貼り付け又は覆うので、蛍光体層の厚みを十分に確保できないため蛍光体43、44の発光効率が低下するという課題がある。 In the device described in Patent Document 5, a pattern in which the phosphor 43 is printed on the inner surface of the reflection sheet 18 as an outer cylinder or a pattern in which the phosphor 44 is printed on the inner surface of the cover 15 is in contact with the light guide. Since it is stuck or covered, there is a problem that the luminous efficiency of the phosphors 43 and 44 is lowered because the thickness of the phosphor layer cannot be sufficiently secured.

この発明は上記のような課題を解決するためになされたものであり、長尺の光源を形成した場合にも長手方向に照明の均一性を得ることができると共に蛍光される光の変換効率を高めることで発光強度の大きな画像読み取り用ライン光源及び導光ユニットを得ることを目的とする。 The present invention has been made to solve the above-described problems. Even when a long light source is formed, it is possible to obtain illumination uniformity in the longitudinal direction and to improve the conversion efficiency of fluorescent light. An object of the present invention is to obtain an image reading line light source and a light guide unit with high emission intensity.

請求項1に係る発明の画像読み取り用ライン光源は、発光素子と、この発光素子を端部に配置し、内部に入射した前記発光素子からの光を長軸方向に沿って反射させながら伝搬させる棒状の導光体と、この導光体と所定の隙間を設けて前記導光体を取り囲み長軸方向に沿って設けた反射板と、この反射板の前記導光体側に設けられ、前記発光素子からの光を吸収して励起された蛍光を放出する蛍光体層とを備えたものである。 An image reading line light source according to a first aspect of the present invention includes a light emitting element and the light emitting element disposed at an end, and propagates the light from the light emitting element incident on the inside while reflecting the light along the long axis direction. A rod-shaped light guide, a reflector provided around the light guide with a predetermined gap from the light guide, and provided along the long axis direction; the light guide provided on the light guide side of the reflector; A phosphor layer that absorbs light from the element and emits excited fluorescence.

請求項2に係る発明の画像読み取り用ライン光源は、前記反射板は、前記導光体と所定の隙間を設けて前記導光体を取り囲むと共に長軸方向に沿って長溝で構成した開口部を有し、前記長溝で形成した前記開口部のそれぞれの端部と隙間を空けて対向する前記導光体の外周面に、前記長軸方向に沿ってライン状に設けた細幅の光反射パターンとを備えた請求項1に記載のものである。 The line light source for image reading according to a second aspect of the invention is characterized in that the reflection plate has a predetermined gap between the light guide body and surrounds the light guide body, and an opening formed by a long groove along the long axis direction. A narrow light reflection pattern provided in a line along the major axis direction on the outer peripheral surface of the light guide opposite to each end of the opening formed by the long groove with a gap. The apparatus according to claim 1, comprising:

請求項3に係る発明の画像読み取り用ライン光源は、前記発光素子からの光が前記導光体を伝搬する過程において、前記蛍光体層は、前記導光体の表面から出射した前記発光素子からの光を捕捉し、前記発光素子からの光を反射させると共に前記発光素子からの光とは異なる光学波長の光に変換された2種以上の複合光を生成し、前記蛍光体層で生成された光を前記導光体の内部を透過させて前記発光素子からの光を含む前記複合光を被照射体に照射する請求項1に記載のものである。 According to a third aspect of the present invention, in the process of light from the light emitting element propagating through the light guide, the phosphor layer is formed from the light emitting element emitted from the surface of the light guide. 2 or more types of composite light that is reflected by the light from the light emitting element and converted into light having an optical wavelength different from that of the light from the light emitting element is generated in the phosphor layer. 2. The device according to claim 1, wherein the irradiated light is transmitted through the inside of the light guide and the irradiated light is irradiated with the composite light including the light from the light emitting element.

請求項4に係る発明の画像読み取り用ライン光源は、前記発光素子からの光が前記導光体を伝搬する過程において、前記蛍光体層は、前記光反射パターンで散乱又は正反射して前記導光体の表面から出射した前記発光素子からの光を捕捉し、前記発光素子からの光を反射させると共に前記発光素子からの光とは異なる光学波長の光に変換された2種以上の複合光を生成し、前記蛍光体層で生成された光を前記導光体の内部を透過させて前記開口部から前記発光素子からの光を含む前記複合光を被照射体に照射する請求項2に記載のものである。 According to a fourth aspect of the present invention, there is provided the image reading line light source, wherein the phosphor layer is scattered or specularly reflected by the light reflection pattern in the process in which the light from the light emitting element propagates through the light guide. Two or more types of composite light that captures light from the light emitting element emitted from the surface of the light body, reflects the light from the light emitting element, and is converted into light having an optical wavelength different from that of the light from the light emitting element The light generated by the phosphor layer is transmitted through the inside of the light guide, and the object to be irradiated is irradiated with the composite light including the light from the light emitting element through the opening. As described.

請求項5に係る発明の導光ユニットは、端部から内部に入射した入射光を長軸方向に沿って反射させながら伝搬させる棒状の導光体と、この導光体と所定の隙間を設けて前記導光体を取り囲み長軸方向に沿って設けた反射板と、この反射板の前記導光体側に設けられ、前記入射光を吸収して励起された蛍光を放出する蛍光体層とを備えたものである。 The light guide unit of the invention according to claim 5 is provided with a rod-shaped light guide for propagating incident light incident on the inside from the end while reflecting along the major axis direction, and a predetermined gap is provided between the light guide and the light guide. A reflector that surrounds the light guide and is provided along the long axis direction, and a phosphor layer that is provided on the light guide side of the reflector and that absorbs the incident light and emits excited fluorescence. It is provided.

請求項6に係る発明の導光ユニットは、前記反射板は、前記導光体と所定の隙間を設けて前記導光体を取り囲むと共に長軸方向に沿って長溝で構成した開口部を有し、前記長溝で形成した前記開口部のそれぞれの端部と隙間を空けて対向する前記導光体の外周面に、前記長軸方向に沿ってライン状に設けた細幅の光反射パターンとを備えた請求項5に記載のものである。 In the light guide unit of the invention according to claim 6, the reflector has a predetermined gap between the light guide and surrounds the light guide, and has an opening formed by a long groove along the long axis direction. A narrow light reflection pattern provided in a line along the major axis direction on the outer peripheral surface of the light guide opposite to each end of the opening formed by the long groove with a gap. It is a thing of Claim 5 provided.

この発明によれば、長尺の光源を形成した場合にも長手方向に照明の均一性を得ることができると共に蛍光される光の変換効率を高めることで発光強度の大きな画像読み取り用ライン光源及び導光ユニットを得ることができる。 According to the present invention, even when a long light source is formed, it is possible to obtain illumination uniformity in the longitudinal direction and increase the conversion efficiency of the fluorescent light, thereby increasing the light emission intensity of the image reading line light source and A light guide unit can be obtained.

この発明の実施の形態1による画像読み取り用ライン光源の側面断面図である。It is side surface sectional drawing of the line light source for image reading by Embodiment 1 of this invention. この発明の実施の形態1による画像読み取り用ライン光源の斜視図である。It is a perspective view of the line light source for image reading by Embodiment 1 of this invention. この発明の実施の形態1による画像読み取り用ライン光源の構成を説明する展開斜視図である。It is an expansion | deployment perspective view explaining the structure of the line light source for image reading by Embodiment 1 of this invention. この発明の実施の形態1による画像読み取り用ライン光源の断面図である。It is sectional drawing of the line light source for image reading by Embodiment 1 of this invention. この発明の実施の形態1による画像読み取り用ライン光源の光路を説明する側面図である。It is a side view explaining the optical path of the line light source for image reading by Embodiment 1 of this invention. この発明の実施の形態1による画像読み取り用ライン光源の光路を説明する断面図である。It is sectional drawing explaining the optical path of the line light source for image reading by Embodiment 1 of this invention. この発明の実施の形態1による画像読み取り用ライン光源の導光体ケースを変更した展開斜視図である。It is the expansion | deployment perspective view which changed the light guide body case of the line light source for image reading by Embodiment 1 of this invention. この発明の実施の形態1による画像読み取り用ライン光源の導光体ケースを変更した断面図である。It is sectional drawing which changed the light guide case of the line light source for image reading by Embodiment 1 of this invention. 蛍光体の厚みと発光輝度との関係を説明する図である。It is a figure explaining the relationship between the thickness of fluorescent substance, and light emission luminance. この発明の実施の形態1による画像読み取り用ライン光源の照明発光特性を説明する図である。It is a figure explaining the illumination light emission characteristic of the line light source for image reading by Embodiment 1 of this invention. この発明の実施の形態2による画像読み取り用ライン光源の側面断面図である。It is side surface sectional drawing of the line light source for image reading by Embodiment 2 of this invention. この発明の実施の形態2による画像読み取り用ライン光源の斜視図である。It is a perspective view of the line light source for image reading by Embodiment 2 of this invention. この発明の実施の形態2による画像読み取り用ライン光源に搭載する紫外線カットフィルタの特性を説明する図である。It is a figure explaining the characteristic of the ultraviolet cut filter mounted in the line light source for image reading by Embodiment 2 of this invention. この発明の実施の形態1又は2による画像読み取り用ライン光源の反射パターンのサイズを説明する断面図であり、図14(a)は細幅サイズ、図14(b)は広幅サイズを示す。It is sectional drawing explaining the size of the reflective pattern of the line light source for image reading by Embodiment 1 or 2 of this invention, Fig.14 (a) shows narrow width size, FIG.14 (b) shows wide width size. この発明の実施の形態1又は2による画像読み取り用ライン光源の反射パターンの位置を説明する断面図であり、図15(a)は端部付近、図15(b)は中央部付近を示す。It is sectional drawing explaining the position of the reflection pattern of the line light source for image reading by Embodiment 1 or 2 of this invention, Fig.15 (a) shows edge part vicinity, FIG.15 (b) shows center part vicinity. この発明の実施の形態3による画像読み取り用ライン光源の蛍光体層の位置を説明する断面図であり、図16(a)は端部付近、図16(b)は中央部付近を示す。FIGS. 16A and 16B are cross-sectional views illustrating the position of a phosphor layer of an image reading line light source according to Embodiment 3 of the present invention, in which FIG. 16A shows the vicinity of the end and FIG. 16B shows the vicinity of the center. この発明の実施の形態3による画像読み取り用ライン光源の蛍光体層の領域を説明する断面図であり、図17(a)は端部付近、図17(b)は中央部付近を示す。It is sectional drawing explaining the area | region of the fluorescent substance layer of the line light source for image reading by Embodiment 3 of this invention, Fig.17 (a) shows edge part vicinity, FIG.17 (b) shows center part vicinity. この発明の実施の形態4による画像読み取り用ライン光源の断面図であり、図18(a)は端部付近、図18(b)は中央部付近を示す。It is sectional drawing of the line light source for image reading by Embodiment 4 of this invention, Fig.18 (a) shows edge part vicinity, FIG.18 (b) shows center part vicinity. この発明の実施の形態5による画像読み取り用ライン光源の断面図であり、図19(a)は端部付近、図19(b)は中央部付近を示す。It is sectional drawing of the line light source for image reading by Embodiment 5 of this invention, Fig.19 (a) shows edge part vicinity, FIG.19 (b) shows center part vicinity. この発明の実施の形態5による画像読み取り用ライン光源の反射パターンを付加した断面図であり、図20(a)は端部付近、図20(b)は中央部付近を示す。FIG. 20A is a cross-sectional view to which a reflection pattern of an image reading line light source according to Embodiment 5 of the present invention is added, FIG. 20A shows the vicinity of the end portion, and FIG. 20B shows the vicinity of the central portion. この発明の実施の形態6による画像読み取り用ライン光源の断面図であり、図21(a)は端部付近、図21(b)は中央部付近を示す。It is sectional drawing of the line light source for image reading by Embodiment 6 of this invention, Fig.21 (a) shows edge part vicinity, FIG.21 (b) shows center part vicinity. この発明の実施の形態6による画像読み取り用ライン光源の反射パターンを付加した断面図であり、図22(a)は端部付近、図22(b)は中央部付近を示す。It is sectional drawing which added the reflection pattern of the line light source for image reading by Embodiment 6 of this invention, Fig.22 (a) shows edge part vicinity, FIG.22 (b) shows center part vicinity. この発明の実施の形態7による画像読み取り用ライン光源の断面図であり、図23(a)は端部付近、図23(b)は中央部付近を示す。It is sectional drawing of the line light source for image reading by Embodiment 7 of this invention, Fig.23 (a) shows edge part vicinity, FIG.23 (b) shows center part vicinity. この発明の実施の形態7による画像読み取り用ライン光源の反射パターンを付加した断面図であり、図24(a)は端部付近、図24(b)は中央部付近を示す。FIG. 24A is a cross-sectional view to which a reflection pattern of an image reading line light source according to Embodiment 7 of the present invention is added. FIG. 24A shows the vicinity of the end portion, and FIG. この発明の実施の形態8による画像読み取り用ライン光源の中央部付近の断面図である。It is sectional drawing of the center part vicinity of the line light source for image reading by Embodiment 8 of this invention. この発明の実施の形態8による画像読み取り用ライン光源の側面断面図である。It is side surface sectional drawing of the line light source for image reading by Embodiment 8 of this invention.

実施の形態1.
この発明の実施の形態1による画像読み取り用ライン光源について図1〜図4を用いて説明する。図1は、この発明の実施の形態1による画像読み取り用ライン光源の側面断面図である。図2は、この発明の実施の形態1による画像読み取り用ライン光源の斜視図である。図3は、この発明の実施の形態1による画像読み取り用ライン光源の構成を説明する展開斜視図である。図4は、この発明の実施の形態1による画像読み取り用ライン光源の図3端部から見た断面図である。
Embodiment 1 FIG.
An image reading line light source according to Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a side sectional view of an image reading line light source according to Embodiment 1 of the present invention. FIG. 2 is a perspective view of the line light source for image reading according to Embodiment 1 of the present invention. FIG. 3 is an exploded perspective view illustrating the configuration of the image reading line light source according to the first embodiment of the present invention. 4 is a cross-sectional view of the image reading line light source according to Embodiment 1 of the present invention as viewed from the end of FIG.

LED光源1は青色光を発光するLED発光素子を用いた波長が約430nm〜470nm程度の光源である。LED回路2は、エポキシ材などの基板2aにLED光源1を載置すると共に外部からの電源をLED光源1に供給するコネクタ2bとからなる。導光体3は透明なソーダガラス、透明な樹脂、又は透過率が80%程度の透明サファイアなど、屈折率(n)が1.5以上を有する部材を棒状に成形加工したもので、端部を鏡面処理し、この端部からLED光源1の光を入射させ、内部に入射した青色光を長手方向(長軸方向)に沿って導光する。この導光体3の内部を長軸方向に通過する光の経路を導光路と呼び、導光体3の長軸方向と直交する方向を通過する光の経路を横断路(透過路)と呼ぶ。 The LED light source 1 is a light source having a wavelength of about 430 nm to 470 nm using an LED light emitting element that emits blue light. The LED circuit 2 includes a connector 2b for mounting the LED light source 1 on a substrate 2a such as an epoxy material and supplying power from the outside to the LED light source 1. The light guide 3 is formed by molding a member having a refractive index (n) of 1.5 or more, such as transparent soda glass, transparent resin, or transparent sapphire having a transmittance of about 80%, into an end portion. The light from the LED light source 1 is incident from this end, and the blue light incident on the inside is guided along the longitudinal direction (long axis direction). A path of light passing through the inside of the light guide 3 in the long axis direction is called a light guide path, and a path of light passing through the direction orthogonal to the long axis direction of the light guide 3 is called a transverse path (transmission path). .

図4に示す一例では、円柱状の導光体3の外周面に対して0.1mm程度の所定の隙間(d)を隔てて内周面に蛍光体層(蛍光体)5を塗布した白色の反射板(導光体ケース)6が導光体3を取り囲むように設置される。すなわち、導光体3の外周面と反射板6の内周面とは長軸方向の読み取り領域(有効読取幅)に対して中心軸を同一とする同心円状に構成される。 In the example shown in FIG. 4, white in which a phosphor layer (phosphor) 5 is applied to the inner circumferential surface with a predetermined gap (d) of about 0.1 mm from the outer circumferential surface of the cylindrical light guide 3. The reflector (light guide body) 6 is installed so as to surround the light guide 3. That is, the outer peripheral surface of the light guide 3 and the inner peripheral surface of the reflection plate 6 are configured in a concentric shape with the same central axis with respect to the reading region (effective reading width) in the long axis direction.

反射板6には、長軸方向に沿って長軸方向と直交する方向に一定幅の長溝を形成することで光を被照射体に出射する取り出し口となる開口部6aを設けている。この開口部6aの端部を長溝端部と呼ぶ。それぞれの長溝端部と所定の隙間を空けて対向する導光体3の外周面には、長軸方向に沿ってシルク印刷用の白色の光反射部材又は導光体3に直接切溝で形成したレンチキュラーレンズやプリズムパターンを用いて光反射パターン4が互いに平行して形成される。したがって、導光体3の導光路を通過する青色光の一部は光反射パターン4で散乱又は正反射して導光体3の内部の横断路を透過して導光体3の表面から出射し、反射板6の蛍光体層5で捕捉される。 The reflector 6 is provided with an opening 6a serving as a take-out port for emitting light to the irradiated body by forming a long groove having a constant width in a direction perpendicular to the long axis direction along the long axis direction. The end of the opening 6a is called a long groove end. On the outer peripheral surface of the light guide 3 facing each end of each long groove with a predetermined gap, a white light reflecting member for silk printing or a direct groove is formed in the light guide 3 along the long axis direction. The light reflection patterns 4 are formed in parallel with each other using the lenticular lens or the prism pattern. Therefore, part of the blue light passing through the light guide path of the light guide 3 is scattered or specularly reflected by the light reflection pattern 4, passes through the transverse path inside the light guide 3, and exits from the surface of the light guide 3. And captured by the phosphor layer 5 of the reflector 6.

反射板6の内面には、約50μmの厚み(t)の蛍光体層5が塗布される。この蛍光体層5には、波長が約600nm程度の赤色発光する蛍光体と波長が525nm程度の緑色発光する蛍光体とが混合して塗布され、この蛍光体層5で青色光を捕捉し、一部の青色光は反射し、導光体3の内部を横断して開口部6aから被照射体に照射される。その他の青色光は蛍光体層5で吸収され励起された蛍光を放出する。すなわち、蛍光体層5は青色光とは異なる波長の光に変換された2種の複合光を生成する。 A phosphor layer 5 having a thickness (t) of about 50 μm is applied to the inner surface of the reflecting plate 6. The phosphor layer 5 is coated with a mixture of a phosphor emitting red light having a wavelength of about 600 nm and a phosphor emitting green light having a wavelength of about 525 nm. The phosphor layer 5 captures blue light, A part of the blue light is reflected and crosses the inside of the light guide 3 and is irradiated to the irradiated body from the opening 6a. The other blue light is absorbed by the phosphor layer 5 and emits excited fluorescence. That is, the phosphor layer 5 generates two types of composite light converted into light having a wavelength different from that of blue light.

生成された蛍光は導光体3の内部を横断して開口部6aから複合光として被照射体に照射される。したがって青色光、赤色光、緑色光が混合した擬似白色光が被照射体に照明される。なお、導光体3は図3に示すように反射板6の両端部と中央部に設けた突起部6bで固定される。 The generated fluorescence traverses the inside of the light guide 3 and is irradiated to the irradiated body as composite light from the opening 6a. Accordingly, pseudo white light in which blue light, red light, and green light are mixed is illuminated on the irradiated object. As shown in FIG. 3, the light guide 3 is fixed by projections 6b provided at both ends and the center of the reflection plate 6.

ライン光源(画像読み取り用ライン光源)は、中空部を有するホルダー7の中空部の一端側にLED回路2の基板2aに載置したLED光源1を収納し、他端側に導光体3を組み込んだ反射板6の端部を挿入することで構成される。図1では、ホルダー7は反射板6の両端側に設けられ、LED光源1から照射される青色光は導光体3の両側から入射する。 The line light source (line light source for image reading) stores the LED light source 1 placed on the substrate 2a of the LED circuit 2 on one end side of the hollow portion of the holder 7 having a hollow portion, and the light guide 3 on the other end side. It is configured by inserting the end of the incorporated reflector 6. In FIG. 1, the holders 7 are provided at both ends of the reflector 6, and blue light emitted from the LED light source 1 enters from both sides of the light guide 3.

次にLED光源1とホルダー7との関係について説明する。導光体3の端部に設けられる青色発光のLED光源1を搭載するLED回路2は、その保持機構であるホルダー7で固定され、LED回路2は導光体3や反射板6に対して導光体3の端部で光が通過する照射軸を中心とする光学位置が一致するように取り付けられ、LED回路2には単数又は複数の青色LEDが配置される。またホルダー7の構造によりLED光源1は導光体3の端部に対して所定の間隔を保持し、LED光源1から出射する青色光が安定して導光体3の内部に取り込まれるように構成される。 Next, the relationship between the LED light source 1 and the holder 7 will be described. The LED circuit 2 mounted with the blue light emitting LED light source 1 provided at the end of the light guide 3 is fixed by a holder 7 which is a holding mechanism thereof, and the LED circuit 2 is attached to the light guide 3 and the reflection plate 6. At the end of the light guide 3, the light guide 3 is attached so that the optical positions centering on the irradiation axis through which light passes are aligned, and the LED circuit 2 is provided with one or more blue LEDs. Further, the structure of the holder 7 allows the LED light source 1 to maintain a predetermined distance from the end of the light guide 3 so that the blue light emitted from the LED light source 1 can be stably taken into the light guide 3. Composed.

また、ホルダー7は導光体3や反射板6の位置ずれを防止するために図1に示す2段の嵌め合わせの差込構造を持ち、導光体3の両端部で位置決めを行う構造としている。さらに、導光体3に対するホルダー7の嵌め合わせは例えば導光体3の直径が4mmでは、2mm以上の深さとし、LED光源1から入射される青色光が導光体3の表面に対して全反射角よりも小さな角度で入射した光だけが導光体3の内部へ入射するようにし、ホルダー7の外部においてはLED光源1の直接光が照明光として直接関与しない構造としている。 Further, the holder 7 has a two-stage fitting insertion structure shown in FIG. 1 to prevent the light guide 3 and the reflector 6 from being displaced, and the holder 7 is positioned at both ends of the light guide 3. Yes. Further, the fitting of the holder 7 to the light guide 3 is, for example, a depth of 2 mm or more when the diameter of the light guide 3 is 4 mm, and the blue light incident from the LED light source 1 is entirely against the surface of the light guide 3. Only light incident at an angle smaller than the reflection angle is incident on the inside of the light guide 3, and the direct light of the LED light source 1 is not directly involved as illumination light outside the holder 7.

次にライン光源の動作について図5及び図6を用いて説明する。図5は、この発明の実施の形態1による画像読み取り用ライン光源の光路を説明する側面図である。図6は、この発明の実施の形態1による画像読み取り用ライン光源の光路を説明する断面図である。 Next, the operation of the line light source will be described with reference to FIGS. FIG. 5 is a side view for explaining the optical path of the image reading line light source according to the first embodiment of the present invention. FIG. 6 is a sectional view for explaining the optical path of the line light source for image reading according to Embodiment 1 of the present invention.

LED光源1から発せられた光は透明材料により形成された円柱状の導光体3の内部を他端側に向かって導光される過程において、導光体3に設けられた光反射パターン4で光は散乱又は正反射され、蛍光体層5へ照射される。蛍光体層5で発光した蛍光と蛍光体層5で反射された青色光が混色し、導光体3を経由して反射板6の開口部6aから原稿などの被照射体に向かって蛍光と青色光とが照射される。 In the process in which light emitted from the LED light source 1 is guided toward the other end side of the cylindrical light guide 3 formed of a transparent material, a light reflection pattern 4 provided on the light guide 3. Then, the light is scattered or specularly reflected and irradiated onto the phosphor layer 5. The fluorescence emitted from the phosphor layer 5 and the blue light reflected by the phosphor layer 5 are mixed, and the fluorescence is emitted from the opening 6a of the reflector 6 to the irradiated object such as a document via the light guide 3. Irradiate with blue light.

導光体3は外部空間より高い屈折率を保有しているので導光体3の端部から入射された光は鏡面状態の導光体3の表面に到達したとき、全反射角よりも大きな角度で入射し、表面で全反射されることにより導光体3内部の導光路を伝搬する。 Since the light guide 3 has a higher refractive index than the external space, the light incident from the end of the light guide 3 is larger than the total reflection angle when reaching the surface of the mirror-shaped light guide 3. It is incident at an angle and propagates through the light guide in the light guide 3 by being totally reflected by the surface.

一部の光は光反射パターン4で反射し、反射角が変更され、全反射角より小さな角度で導光体3の表面から外部へ放射される。この光は反射板6の内面に塗布された蛍光体層5に照射される。反射板6は、反射板6の導光体3側にある反射板6の内面に形成される蛍光体層5の支持基板としての役目を担う。 Part of the light is reflected by the light reflection pattern 4, the reflection angle is changed, and the light is emitted from the surface of the light guide 3 to the outside at an angle smaller than the total reflection angle. This light is applied to the phosphor layer 5 applied to the inner surface of the reflector 6. The reflector 6 serves as a support substrate for the phosphor layer 5 formed on the inner surface of the reflector 6 on the light guide 3 side of the reflector 6.

導光体3の外周面と反射板6内周面とは所定の隙間(ギャップ)を有しており、この隙間を一定にすることにより、導光体3に対する位置の安定性を確保する。また、図3及び図4に示すように反射板6は両端部及び中央部の3箇所の内面に約0.1mmの高さの導光体3との接触面積が小さい突起部6bを有しており、この突起部6bと導光体3とが密接することにより、反射板6の内面に形成されている蛍光体層5と導光体3との間に所定の隙間(d>t)を維持する。 The outer peripheral surface of the light guide 3 and the inner peripheral surface of the reflector 6 have a predetermined gap (gap), and the stability of the position with respect to the light guide 3 is ensured by making this gap constant. Further, as shown in FIGS. 3 and 4, the reflector 6 has protrusions 6b having a small contact area with the light guide 3 having a height of about 0.1 mm on the inner surfaces of the three portions at both ends and the center. When the protrusion 6b and the light guide 3 are in close contact with each other, a predetermined gap (d> t) is provided between the phosphor layer 5 formed on the inner surface of the reflector 6 and the light guide 3. To maintain.

蛍光体層5は、赤色や緑色(黄緑色)などの蛍光波長を持つ染料又は顔料で形成され、導光体3の光反射パターン4に対向する反射板6の内面に主体的に形成される。導光体3から蛍光体層5へ照射される青色光は、蛍光体層5からの蛍光と蛍光体層5の表面で反射した青色光の拡散反射光が合わさって導光体3の横断路を透過して反射板6の開口部6aより放射され、被照射体に対して白色光による照明を行う。 The phosphor layer 5 is formed of a dye or pigment having a fluorescence wavelength such as red or green (yellowish green), and is mainly formed on the inner surface of the reflection plate 6 facing the light reflection pattern 4 of the light guide 3. . The blue light emitted from the light guide 3 to the phosphor layer 5 is a crossing path of the light guide 3 by combining the fluorescence from the phosphor layer 5 and the diffuse reflection of the blue light reflected from the surface of the phosphor layer 5. And is emitted from the opening 6a of the reflecting plate 6 to illuminate the irradiated object with white light.

なお、実施の形態1では、反射板6の突起部6bは反射板6の両端部及び中央部に設けたが図7及び図8に示すように長軸方向に一様に連続的に設けても良い。すなわち、導光体3と蛍光体層5が塗布された反射板6との隙間を維持する機構として、実施の形態1では長軸方向に所定間隔の突起6bを反射板6の内面に形成したが、反射板6の長軸方向に三角柱や半円柱状の突起6cを連続的にライン状に形成することで反射板6の突起部6bとし、導光体3と蛍光体層5との位置関係を保持する機構としても良い。この場合には、反射板6の短軸断面形状が長軸方向に亘って同一になるので反射板6の成形加工が容易になる。 In the first embodiment, the protrusions 6b of the reflecting plate 6 are provided at both ends and the center of the reflecting plate 6. However, as shown in FIGS. 7 and 8, they are provided uniformly and continuously in the major axis direction. Also good. That is, as a mechanism for maintaining a gap between the light guide 3 and the reflecting plate 6 coated with the phosphor layer 5, in the first embodiment, protrusions 6b having a predetermined interval in the major axis direction are formed on the inner surface of the reflecting plate 6. However, a triangular prism or semi-cylindrical projection 6c is continuously formed in a line shape in the major axis direction of the reflecting plate 6 to form a protruding portion 6b of the reflecting plate 6, and the position of the light guide 3 and the phosphor layer 5 A mechanism for maintaining the relationship may be used. In this case, since the short-axis cross-sectional shape of the reflecting plate 6 is the same in the long-axis direction, the reflecting plate 6 can be easily molded.

図9は、蛍光体の厚みと発光輝度との関係を説明する図である。蛍光体層5は約50μmの膜厚としたが、図9に示すように、青色光を照射した際に発光強度が飽和する厚みで蛍光体層5を形成することにより蛍光を生成する変換効率を向上させて、省エネ化を図ると共に蛍光体層5の膜厚のばらつきによる発光強度が不均一になることを防止することができる。 FIG. 9 is a diagram for explaining the relationship between the thickness of the phosphor and the light emission luminance. Although the phosphor layer 5 has a thickness of about 50 μm, as shown in FIG. 9, the conversion efficiency for generating fluorescence by forming the phosphor layer 5 with such a thickness that the emission intensity is saturated when irradiated with blue light. As a result, it is possible to save energy and to prevent the emission intensity from becoming uneven due to the variation in the film thickness of the phosphor layer 5.

図10は、この発明の実施の形態1による画像読み取り用ライン光源の照明発光特性を説明する図である。図10では、450nm程度のピーク波長と、約500〜630nmに亘る蛍光体で発光した複合光とが合わさり白色光を呈する。 FIG. 10 is a diagram for explaining the illumination emission characteristics of the image reading line light source according to the first embodiment of the present invention. In FIG. 10, the peak wavelength of about 450 nm and the composite light emitted by the phosphor over about 500 to 630 nm are combined to give white light.

以上の構造を持つ画像読み取り用ライン光源では、蛍光体層5で反射した青色光と蛍光体層5で生成された複合光は混色し、導光体3の内部を透過し、反射板6の開口部6aから被照射体に白色の照明光を与える。さらに導光体3が円柱状の形状をしているので、蛍光体層5の表面で反射した反射光や生成された蛍光は導光体3で集光され、そのレンズ効果により、被照射体に対する照明照度を向上させるという効果がある。 In the image reading line light source having the above structure, the blue light reflected by the phosphor layer 5 and the composite light generated by the phosphor layer 5 are mixed and transmitted through the inside of the light guide 3. White illumination light is given to the irradiated object from the opening 6a. Further, since the light guide 3 has a cylindrical shape, the reflected light reflected from the surface of the phosphor layer 5 and the generated fluorescence are collected by the light guide 3 and the irradiated object is subjected to the lens effect. There is an effect that the illumination illuminance is improved.

実施の形態2.
実施の形態1では、青色LEDを用いたライン光源の構成について説明したが、実施の形態2では、紫外線LEDを用いたライン光源の構成について図11及び図12を用いて説明する。図11は、この発明の実施の形態2による画像読み取り用ライン光源の側面断面図である。図12は、この発明の実施の形態2による画像読み取り用ライン光源の斜視図である。
Embodiment 2. FIG.
In the first embodiment, the configuration of the line light source using the blue LED has been described. In the second embodiment, the configuration of the line light source using the ultraviolet LED will be described with reference to FIGS. 11 and 12. FIG. 11 is a side sectional view of an image reading line light source according to Embodiment 2 of the present invention. FIG. 12 is a perspective view of an image reading line light source according to Embodiment 2 of the present invention.

LED光源11は紫外線を発光するLED発光素子を用いた波長が約350nm〜380nmまでの光源である。LED回路2は、エポキシ材などの基板2aにLED光源11を載置すると共に外部からの電源をLED光源11に供給するコネクタ2bとからなる。導光体3は透明なソーダガラス、透明な樹脂、又は透過率が80%程度の透明サファイアなど、屈折率(n)が1.5以上を有する部材を棒状に成形加工したもので、端部を鏡面処理し、この端部からLED光源11の光を入射させ、内部に入射した紫外光(紫外線)を長手方向(長軸方向)に沿って導光する。この導光体3の内部を長軸方向に通過する光の経路を導光路と呼び、導光体3の長軸方向と直交する方向を通過する光の経路を横断路(透過路)と呼ぶ。 The LED light source 11 is a light source having a wavelength of about 350 nm to 380 nm using an LED light emitting element that emits ultraviolet rays. The LED circuit 2 includes a connector 2b for mounting the LED light source 11 on a substrate 2a such as an epoxy material and supplying power from the outside to the LED light source 11. The light guide 3 is formed by molding a member having a refractive index (n) of 1.5 or more, such as transparent soda glass, transparent resin, or transparent sapphire having a transmittance of about 80%, into an end portion. , And the light from the LED light source 11 is incident from this end, and the ultraviolet light (ultraviolet light) incident on the inside is guided along the longitudinal direction (long axis direction). A path of light passing through the inside of the light guide 3 in the long axis direction is called a light guide path, and a path of light passing through the direction orthogonal to the long axis direction of the light guide 3 is called a transverse path (transmission path). .

円柱状の導光体3の外周面に対して0.1mm程度の所定の隙間を隔てて内周面に蛍光体を塗布した白色の反射板(導光体ケース)6が導光体3を取り囲むように設置される構成については実施の形態1で説明したものと同一なので詳細説明を省略する。 A white reflector (light guide body case) 6 in which a fluorescent material is applied to the inner peripheral surface with a predetermined gap of about 0.1 mm with respect to the outer peripheral surface of the cylindrical light guide 3 is used as the light guide 3. Since the configuration installed so as to surround is the same as that described in the first embodiment, detailed description thereof is omitted.

反射板6には、長軸方向に沿って長軸方向と直交する方向に一定幅の長溝を形成することで光を被照射体に出射する取り出し口となる開口部6aを設けている。この開口部6aの端部を長溝端部と呼ぶ。それぞれの長溝端部と所定の隙間を空けて対向する導光体3の外周面には、長軸方向に沿ってシルク印刷用の白色の光反射部材又は導光体3に直接切溝で形成したレンチキュラーレンズやプリズムパターンを用いて光反射パターン4が互いに平行して形成される。したがって、導光体3の導光路を通過する紫外光の一部は光反射パターン4で散乱又は正反射して導光体3の内部の横断路を透過して導光体3の表面から出射し、反射板6の蛍光体層51で捕捉される。 The reflector 6 is provided with an opening 6a serving as a take-out port for emitting light to the irradiated body by forming a long groove having a constant width in a direction perpendicular to the long axis direction along the long axis direction. The end of the opening 6a is called a long groove end. On the outer peripheral surface of the light guide 3 facing each end of each long groove with a predetermined gap, a white light reflecting member for silk printing or a direct groove is formed in the light guide 3 along the long axis direction. The light reflection patterns 4 are formed in parallel with each other using the lenticular lens or the prism pattern. Accordingly, a part of the ultraviolet light passing through the light guide path of the light guide 3 is scattered or specularly reflected by the light reflection pattern 4 and transmitted through the transverse path inside the light guide 3 and emitted from the surface of the light guide 3. And captured by the phosphor layer 51 of the reflector 6.

反射板6の内面には、約50μmの厚み(t)の蛍光体層51が塗布される。この蛍光体層51には、波長が約600nm程度の赤色発光する蛍光体、波長が525nm程度の緑色発光する蛍光体、及び波長が450nm程度の青色発光させる蛍光体が混合して塗布され、この蛍光体層51で紫外光を捕捉し、一部の紫外光は反射し、導光体3の内部を横断して開口部6aから被照射体に照射される。その他の紫外光は蛍光体層51で吸収され励起された蛍光を放出する。すなわち、蛍光体層51は紫外光と異なる波長の光に変換された3種の複合光を生成する。 A phosphor layer 51 having a thickness (t) of about 50 μm is applied to the inner surface of the reflector 6. The phosphor layer 51 is coated with a mixture of a phosphor emitting red light having a wavelength of about 600 nm, a phosphor emitting green light having a wavelength of about 525 nm, and a phosphor emitting blue light having a wavelength of about 450 nm. Ultraviolet light is captured by the phosphor layer 51, a part of the ultraviolet light is reflected, crosses the inside of the light guide 3, and is irradiated to the irradiated object from the opening 6 a. Other ultraviolet light is absorbed by the phosphor layer 51 and emits excited fluorescence. That is, the phosphor layer 51 generates three types of composite light converted into light having a wavelength different from that of ultraviolet light.

生成された蛍光は導光体3の内部を横断して開口部6aから複合光として被照射体に照射される。したがって青色光、赤色光、緑色光が混合した擬似白色光が被照射体に照明される。 The generated fluorescence traverses the inside of the light guide 3 and is irradiated to the irradiated body as composite light from the opening 6a. Accordingly, pseudo white light in which blue light, red light, and green light are mixed is illuminated on the irradiated object.

ライン光源(画像読み取り用ライン光源)は、中空部を有するホルダー7の中空部の一端側にLED回路2の基板2aに載置したLED光源11を収納し、他端側に導光体3を組み込んだ反射板6の端部を挿入することで構成される。図11では、ホルダー7は反射板6の両端側に設けられ、LED光源11から照射される紫外光は導光体3の両側から入射する。なお、LED光源11とホルダー7との関係及びライン光源の動作については、実施の形態1で説明したものと同一なので説明を省略する。図11及び図12中、図1及び図2と同一符号は、同一又は相当部分を示す。 The line light source (line light source for image reading) accommodates the LED light source 11 placed on the substrate 2a of the LED circuit 2 on one end side of the hollow portion of the holder 7 having a hollow portion, and the light guide 3 on the other end side. It is configured by inserting the end of the incorporated reflector 6. In FIG. 11, the holder 7 is provided on both ends of the reflector 6, and the ultraviolet light emitted from the LED light source 11 enters from both sides of the light guide 3. Note that the relationship between the LED light source 11 and the holder 7 and the operation of the line light source are the same as those described in the first embodiment, and a description thereof will be omitted. 11 and 12, the same reference numerals as those in FIGS. 1 and 2 denote the same or corresponding parts.

実施の形態2では、紫外光が被照射体に入射しないように光反射パターン4に挟まれた導光体3の外周面に長軸方向に沿って反射板6の開口部6aからライン状に出射する紫外光を遮光する紫外線遮光パターン(紫外線カットフィルタ)8を設けている。すなわち、光反射パターン4に挟まれた導光体3の外周面に長軸方向に沿って反射板6の開口部6aからライン状に出射する紫外光を遮光する紫外線遮光パターン8を設けている。紫外線カットフィルタ8は、図13に示すように遮断波長が約430nm付近にあり、430nm以下の短波長側の波長をカットし、青色光を含む長波長側の光を透過させるフィルタ材料を導光体3に塗布又は蒸着して用いる。 In the second embodiment, a line is formed from the opening 6a of the reflector 6 along the long axis direction on the outer peripheral surface of the light guide 3 sandwiched between the light reflection patterns 4 so that ultraviolet light does not enter the irradiated body. An ultraviolet light shielding pattern (ultraviolet cut filter) 8 for shielding the emitted ultraviolet light is provided. In other words, the ultraviolet light shielding pattern 8 is provided on the outer peripheral surface of the light guide 3 sandwiched between the light reflecting patterns 4 to shield the ultraviolet light emitted in a line shape from the opening 6a of the reflecting plate 6 along the long axis direction. . As shown in FIG. 13, the ultraviolet cut filter 8 has a cut-off wavelength in the vicinity of about 430 nm, cuts a wavelength on the short wavelength side of 430 nm or less, and guides a filter material that transmits light on the long wavelength side including blue light. Used by applying or vapor-depositing on the body 3.

このようにして蛍光体層51などで反射された紫外光は照明光としては不要であるため紫外線カットフィルタ8を透過した蛍光の可視光のみが被照射体に照射される。本実施形態2では実施形態1で説明した青色LEDを用いた図10に示す発光スペクトルに対して、青色発光成分に強い発光ピークが無い発光スペクトルを得ることが可能となる。すなわち可視光領域でフラットな発光スペクトルを持つ照明となる。 Since the ultraviolet light reflected by the phosphor layer 51 and the like is not necessary as illumination light, only the fluorescent visible light that has passed through the ultraviolet cut filter 8 is irradiated to the irradiated object. In the second embodiment, it is possible to obtain a light emission spectrum having no strong light emission peak in the blue light-emitting component with respect to the light emission spectrum shown in FIG. 10 using the blue LED described in the first embodiment. That is, the illumination has a flat emission spectrum in the visible light region.

以上から実施の形態2に係る画像読み取り用ライン光源では、開口部6aに到達した紫外光は紫外線カットフィルタ8で遮光され、蛍光体層51で生成された複合光は導光体3の内部を透過して反射板6の開口部6aから被照射体に白色の照明光を与える。さらに導光体3が円柱状の形状をしているので、蛍光体層5で生成した蛍光は導光体3で集光され、そのレンズ効果により、被照射体に対する照明照度を向上させるという効果もある。 As described above, in the line light source for image reading according to the second embodiment, the ultraviolet light reaching the opening 6 a is shielded by the ultraviolet cut filter 8, and the composite light generated by the phosphor layer 51 passes through the light guide 3. The white illumination light is transmitted through the opening 6a of the reflecting plate 6 to the irradiated object. Further, since the light guide 3 has a cylindrical shape, the fluorescence generated by the phosphor layer 5 is condensed by the light guide 3 and the illumination effect on the irradiated body is improved by the lens effect. There is also.

実施の形態1及び2では、光反射パターン4の幅について言及しなかったが、光反射パターン4の幅は、図14(a)に示すようにW1=0.2mm程度の細幅から図14(b)に示すようにW2=0.3mm程度の比較的広い細幅のパターンが適当である。 In Embodiments 1 and 2, the width of the light reflection pattern 4 is not mentioned, but the width of the light reflection pattern 4 is as small as W1 = 0.2 mm as shown in FIG. As shown in (b), a relatively wide narrow pattern of W2 = 0.3 mm is appropriate.

実施の形態1及び2では光反射パターン4の位置は、長溝で形成した開口部6aのそれぞれの端部と隙間を空けて対向する導光体3の外周面に設けるようにしたが、光反射パターン4は図15(a)及び図15(b)に示すように一部が開口部6a側に入り込んでいても実施の形態1及び2で説明したものと同様な効果を奏する。 In the first and second embodiments, the position of the light reflection pattern 4 is provided on the outer peripheral surface of the light guide 3 facing the respective end portions of the opening 6a formed by the long groove with a gap therebetween. As shown in FIGS. 15A and 15B, the pattern 4 has the same effect as that described in the first and second embodiments even when a part of the pattern 4 enters the opening 6a side.

実施の形態3.
図16は、この発明の実施の形態3による画像読み取り用ライン光源の蛍光体層の位置を説明する断面図であり、図16(a)は端部付近、図16(b)は中央部付近を示す。図17は、この発明の実施の形態3による画像読み取り用ライン光源の蛍光体層の領域を説明する断面図であり、図17(a)は端部付近、図17(b)は中央部付近を示す。
Embodiment 3 FIG.
FIG. 16 is a cross-sectional view for explaining the position of the phosphor layer of the line light source for image reading according to Embodiment 3 of the present invention. FIG. 16 (a) is near the end, and FIG. 16 (b) is near the center. Indicates. FIGS. 17A and 17B are sectional views for explaining the region of the phosphor layer of the line light source for image reading according to the third embodiment of the present invention. FIG. 17A shows the vicinity of the end portion, and FIG. Indicates.

実施の形態1では、反射板6の内面全域に蛍光体層5を塗布したが実施の形態3では、長軸方向に沿って長軸方向と直交する方向に一定幅の蛍光体層5を複数個ライン状に設け、隣接する蛍光体層5間にスリット部を設ける。また少なくとも蛍光体層5が塗布されない反射板6の内面表面領域を黒色などの光吸収材で遮光することにより、青色光を吸収し、図10に示す青色LED発光成分の発光輝度を軽減することで蛍光体層発光成分の輝度に近づけることができる。すなわち、導光体ケース(反射板)6に黒色プラスチィック樹脂を適用することで白色発光スペクトルの輝度調節が可能である。 In the first embodiment, the phosphor layer 5 is applied to the entire inner surface of the reflector 6. However, in the third embodiment, a plurality of phosphor layers 5 having a constant width are formed in the direction perpendicular to the major axis direction along the major axis direction. It is provided in the form of individual lines, and a slit portion is provided between the adjacent phosphor layers 5. Further, at least the inner surface area of the reflector 6 on which the phosphor layer 5 is not coated is shielded with a light absorbing material such as black, thereby absorbing blue light and reducing the light emission luminance of the blue LED light emitting component shown in FIG. Thus, the luminance of the phosphor layer light emitting component can be brought close to. That is, the luminance of the white light emission spectrum can be adjusted by applying a black plastic resin to the light guide case (reflecting plate) 6.

実施の形態1では、反射板6の内面全域に蛍光体層を塗布したが、図17に示すように蛍光体層5の塗布領域は反射板6の内面全域に限らず、開口部6aと対向する反射板6の領域を主体に2mm幅で3ライン程度の蛍光体層5を設け、黒色の導光体ケース6を用いることにより、青色LED発光成分の発光輝度をさらに軽減することができる。 In the first embodiment, the phosphor layer is applied to the entire inner surface of the reflector 6. However, as shown in FIG. 17, the application region of the phosphor layer 5 is not limited to the entire inner surface of the reflector 6 and faces the opening 6 a. By using the black light guide case 6 by providing the phosphor layer 5 having a width of 2 mm and about 3 lines mainly in the region of the reflecting plate 6 to be emitted, the light emission luminance of the blue LED light emitting component can be further reduced.

実施の形態4.
実施の形態1では、円柱状の導光体を用いたライン光源の構成について説明したが、実施の形態4では、短軸側断面が楕円状の導光体を用いたライン光源の構成について図18を用いて説明する。図18は、この発明の実施の形態4による画像読み取り用ライン光源の断面図であり、図18(a)は端部付近、図18(b)は中央部付近を示す。
Embodiment 4 FIG.
In the first embodiment, the configuration of the line light source using the cylindrical light guide has been described. In the fourth embodiment, the configuration of the line light source using the light guide having an elliptical short-side cross section is illustrated. 18 will be described. 18A and 18B are cross-sectional views of an image reading line light source according to Embodiment 4 of the present invention. FIG. 18A shows the vicinity of the end, and FIG. 18B shows the vicinity of the center.

短軸側断面が楕円状の棒状導光体31の外周面に対して0.1mm程度の所定の隙間を隔てて内周面に蛍光体を塗布した白色の反射板(導光体ケース)61が導光体31を取り囲むように設置される構成以外は実施の形態1で説明したものと同一なので説明を省略する。 A white reflector (light guide case) 61 in which a phosphor is applied to the inner peripheral surface with a predetermined gap of about 0.1 mm from the outer peripheral surface of the rod-shaped light guide 31 having an elliptical short-side cross section. Is the same as that described in the first embodiment except for the configuration that is installed so as to surround the light guide 31.

反射板61には、長軸方向に沿って長軸方向と直交する方向に一定幅の長溝を形成することで光を被照射体に出射する取り出し口となる開口部61aを設けている。この開口部61aの端部を長溝端部と呼ぶ。それぞれの長溝端部と所定の隙間を空けて対向する導光体31の外周面には、長軸方向に沿ってシルク印刷用の白色の光反射部材又は導光体3に直接切溝で形成したレンチキュラーレンズやプリズムパターンを用いて光反射パターン4が互いに平行して形成される。したがって、導光体31の導光路を通過する青色光の一部は光反射パターン4で散乱又は正反射して導光体31の内部の横断路を透過して導光体31の表面から出射し、反射板61の蛍光体層5で捕捉される。 The reflecting plate 61 is provided with an opening 61a serving as a take-out port for emitting light to the irradiated body by forming a long groove having a constant width in a direction orthogonal to the long axis direction along the long axis direction. The end of the opening 61a is referred to as a long groove end. On the outer peripheral surface of the light guide 31 facing each long groove end portion with a predetermined gap, a white light reflecting member for silk printing or a light guide 3 is directly cut along the long axis direction. The light reflection patterns 4 are formed in parallel with each other using the lenticular lens or the prism pattern. Accordingly, part of the blue light passing through the light guide path of the light guide 31 is scattered or specularly reflected by the light reflection pattern 4, passes through the transverse path inside the light guide 31, and is emitted from the surface of the light guide 31. And captured by the phosphor layer 5 of the reflector 61.

反射板61の内面には、約50μmの厚み(t)の蛍光体層5が塗布される。この蛍光体層5には、波長が約600nm程度の赤色発光する蛍光体と波長が525nm程度の緑色発光する蛍光体とが混合して塗布され、この蛍光体層5で青色光を捕捉し、一部の青色光は反射し、導光体31の内部を横断して開口部61aから被照射体に照射される。その他の青色光は蛍光体層5で吸収され励起された蛍光を放出する。すなわち、蛍光体層5は青色光とは異なる波長の光に変換された2種の複合光を生成する。 A phosphor layer 5 having a thickness (t) of about 50 μm is applied to the inner surface of the reflecting plate 61. The phosphor layer 5 is coated with a mixture of a phosphor emitting red light having a wavelength of about 600 nm and a phosphor emitting green light having a wavelength of about 525 nm. The phosphor layer 5 captures blue light, A part of the blue light is reflected and crosses the inside of the light guide 31 and is irradiated to the irradiated body from the opening 61a. The other blue light is absorbed by the phosphor layer 5 and emits excited fluorescence. That is, the phosphor layer 5 generates two types of composite light converted into light having a wavelength different from that of blue light.

生成された蛍光は導光体31の内部を横断して開口部61aから複合光として被照射体に照射される。したがって青色光、赤色光、緑色光が混合した擬似白色光が被照射体に照明される。なお、LED光源とホルダーとの関係及びライン光源の動作については、実施の形態1で説明したものと同一なので説明を省略する。図18中、図4と同一符号は、同一又は相当部分を示す。 The generated fluorescence traverses the inside of the light guide 31 and is irradiated to the irradiated body as composite light from the opening 61a. Accordingly, pseudo white light in which blue light, red light, and green light are mixed is illuminated on the irradiated object. Since the relationship between the LED light source and the holder and the operation of the line light source are the same as those described in the first embodiment, the description thereof is omitted. 18, the same reference numerals as those in FIG. 4 denote the same or corresponding parts.

以上の構造を持つ画像読み取り用ライン光源では、蛍光体層5で反射した青色光と蛍光体層5で生成された複合光は混色し、導光体31の内部を透過し、反射板61の開口部61aから被照射体に白色の照明光を与える。さらに導光体31の断面が楕円状の形状をしているので、蛍光体層5の表面で反射した反射光や生成された蛍光は導光体31で集光され、そのレンズ効果により、被照射体に対する照明照度を向上させるという効果があると共に断面が楕円状であるので楕円形の長軸方向に多数のLED光源を搭載できる利点がある。 In the image reading line light source having the above structure, the blue light reflected by the phosphor layer 5 and the composite light generated by the phosphor layer 5 are mixed and transmitted through the light guide 31, White illumination light is given to the irradiated object from the opening 61a. Further, since the cross section of the light guide 31 has an elliptical shape, the reflected light reflected on the surface of the phosphor layer 5 and the generated fluorescence are collected by the light guide 31 and are subject to the lens effect. This has the effect of improving the illumination illuminance on the irradiating body, and has an advantage that a large number of LED light sources can be mounted in the major axis direction of the ellipse because the section is elliptical.

実施の形態5.
実施の形態1では、円柱状の導光体を用いたライン光源の構成について説明したが、実施の形態5では、短軸側断面が楕円状の導光体に切り欠き部を設けたライン光源の構成について図19及び図20を用いて説明する。図19は、この発明の実施の形態5による画像読み取り用ライン光源の断面図であり、図19(a)は端部付近、図19(b)は中央部付近を示す。図20は、この発明の実施の形態5による画像読み取り用ライン光源の反射パターンを付加した断面図であり、図20(a)は端部付近、図20(b)は中央部付近を示す。
Embodiment 5 FIG.
In the first embodiment, the configuration of a line light source using a cylindrical light guide has been described. In the fifth embodiment, a line light source in which a short-axis-side cross section is provided with a notch in a light guide having an elliptical cross section. The configuration will be described with reference to FIGS. 19 and 20. 19 is a cross-sectional view of an image reading line light source according to Embodiment 5 of the present invention. FIG. 19A shows the vicinity of the end portion, and FIG. 19B shows the vicinity of the center portion. 20 is a cross-sectional view to which a reflection pattern of an image reading line light source according to Embodiment 5 of the present invention is added. FIG. 20 (a) shows the vicinity of the end portion, and FIG. 20 (b) shows the vicinity of the central portion.

図19において、短軸側断面が楕円状の棒状導光体32の一部に切り欠き部62cを設け、この切り欠き部62cの両側に長軸方向に沿って光反射パターン4を設け、切り欠き部62cを除く導光体32の外周面に対して0.1mm程度の所定の隙間を隔てて内周面に蛍光体層5を塗布した白色の反射板(導光体ケース)62が導光体32を取り囲むように設置される構成以外は実施の形態1で説明したものと同一なので説明を省略する。 In FIG. 19, a notch 62c is provided in a part of the rod-shaped light guide 32 whose minor axis side section is elliptical, and the light reflection pattern 4 is provided along the major axis on both sides of the notch 62c. A white reflecting plate (light guide body case) 62 in which the phosphor layer 5 is applied to the inner peripheral surface with a predetermined gap of about 0.1 mm from the outer peripheral surface of the light guide 32 excluding the notch portion 62c is guided. Since the configuration other than that installed so as to surround the light body 32 is the same as that described in the first embodiment, the description thereof is omitted.

反射板62には、長軸方向に沿って長軸方向と直交する方向に一定幅の長溝を形成することで光を被照射体に出射する取り出し口となる開口部62aを設けている。この開口部62aの端部を長溝端部と呼ぶ。それぞれの長溝端部と離間して対向する導光体32の外周面の切り欠き部62cには、長軸方向に沿ってシルク印刷用の白色の光反射部材又は導光体32に直接切溝で形成したレンチキュラーレンズやプリズムパターンを用いて光反射パターン4が互いに平行して形成される。したがって、導光体32の導光路を通過する青色光の一部は光反射パターン4で散乱又は正反射して導光体32の内部の横断路を透過して導光体32の表面から出射し、反射板62の蛍光体層5で捕捉される。 The reflector 62 is provided with an opening 62a serving as a take-out port for emitting light to the irradiated body by forming a long groove having a constant width in a direction perpendicular to the long axis direction along the long axis direction. The end of the opening 62a is called a long groove end. A cutout portion 62c on the outer peripheral surface of the light guide 32 that is spaced apart and opposed to each long groove end portion is directly cut into the white light reflecting member for silk printing or the light guide 32 along the long axis direction. The light reflection patterns 4 are formed in parallel with each other using the lenticular lens or prism pattern formed in (1). Accordingly, part of the blue light passing through the light guide path of the light guide 32 is scattered or specularly reflected by the light reflection pattern 4, passes through the transverse path inside the light guide 32, and is emitted from the surface of the light guide 32. And captured by the phosphor layer 5 of the reflector 62.

反射板62の内面には、約50μmの厚み(t)の蛍光体層5が塗布される。この蛍光体層5には、波長が約600nm程度の赤色発光する蛍光体と波長が525nm程度の緑色発光する蛍光体とが混合して塗布され、この蛍光体層5で青色光を捕捉し、一部の青色光は反射し、導光体32の内部を横断して開口部62aから被照射体に照射される。その他の青色光は蛍光体層5で吸収され励起された蛍光を放出する。すなわち、蛍光体層5は青色光とは異なる波長の光に変換された2種の複合光を生成する。 A phosphor layer 5 having a thickness (t) of about 50 μm is applied to the inner surface of the reflector 62. The phosphor layer 5 is coated with a mixture of a phosphor emitting red light having a wavelength of about 600 nm and a phosphor emitting green light having a wavelength of about 525 nm. The phosphor layer 5 captures blue light, A part of the blue light is reflected, crosses the inside of the light guide 32, and is irradiated to the irradiated body from the opening 62a. The other blue light is absorbed by the phosphor layer 5 and emits excited fluorescence. That is, the phosphor layer 5 generates two types of composite light converted into light having a wavelength different from that of blue light.

生成された蛍光は導光体32の内部を横断して開口部62aから複合光として被照射体に照射される。したがって青色光、赤色光、緑色光が混合した擬似白色光が被照射体に照明される。なお、LED光源とホルダーとの関係及びライン光源の動作については、実施の形態1で説明したものと同一なので説明を省略する。図19中、図4と同一符号は、同一又は相当部分を示す。 The generated fluorescence crosses the inside of the light guide 32 and is irradiated to the irradiated body as composite light from the opening 62a. Accordingly, pseudo white light in which blue light, red light, and green light are mixed is illuminated on the irradiated object. Since the relationship between the LED light source and the holder and the operation of the line light source are the same as those described in the first embodiment, the description thereof is omitted. 19, the same reference numerals as those in FIG. 4 denote the same or corresponding parts.

以上の構造を持つ画像読み取り用ライン光源では、蛍光体層5で反射した青色光と蛍光体層5で生成された複合光は混色し、導光体32の内部を透過し、反射板62の開口部62aから被照射体に白色の照明光を与える。さらに導光体32の断面が楕円状の形状をしているので、蛍光体層5の表面で反射した反射光や生成された蛍光は導光体32で集光され、そのレンズ効果により、被照射体に対する照明照度を向上させるという効果があると共に導光体32の短軸側断面が楕円状であるので楕円形の長軸方向に多数のLED光源を搭載できる利点がある。また、図20に示すように導光体32の開口部62a側に設置した光反射パターン4と対向する導光体32の外周面に光反射パターン41を付加することにより開口部62aから出射する青色光の照射量を多くすることができる。また、導光体32の外周面に設置した光反射パターン41の設置位置を変更することにより、青色光の出射量を調節することもできる。 In the image reading line light source having the above structure, the blue light reflected by the phosphor layer 5 and the composite light generated by the phosphor layer 5 are mixed and transmitted through the light guide 32, White illumination light is given to the irradiated object from the opening 62a. Furthermore, since the cross section of the light guide 32 has an elliptical shape, the reflected light reflected by the surface of the phosphor layer 5 and the generated fluorescence are collected by the light guide 32 and are subject to the lens effect. This has the effect of improving the illumination illuminance to the irradiating body and has an advantage that a large number of LED light sources can be mounted in the major axis direction of the ellipse since the short-axis side section of the light guide 32 is elliptical. Further, as shown in FIG. 20, the light reflection pattern 41 is added to the outer peripheral surface of the light guide 32 facing the light reflection pattern 4 installed on the opening 62a side of the light guide 32, and the light is emitted from the opening 62a. The amount of blue light irradiation can be increased. Also, the amount of blue light emitted can be adjusted by changing the installation position of the light reflection pattern 41 installed on the outer peripheral surface of the light guide 32.

実施の形態6.
実施の形態1では、円柱状の導光体を用いたライン光源の構成について説明したが、実施の形態6では、短軸側断面が5角形の導光体に切り欠き部を設けたライン光源の構成について図21及び図22を用いて説明する。図21は、この発明の実施の形態6による画像読み取り用ライン光源の断面図であり、図21(a)は端部付近、図21(b)は中央部付近を示す。図22は、この発明の実施の形態6による画像読み取り用ライン光源の反射パターンを付加した断面図であり、図22(a)は端部付近、図22(b)は中央部付近を示す。
Embodiment 6 FIG.
In the first embodiment, the configuration of the line light source using the cylindrical light guide has been described, but in the sixth embodiment, the line light source in which the short-axis side cross section has a pentagonal light guide and a notch is provided. The configuration will be described with reference to FIGS. 21 and 22. 21 is a cross-sectional view of an image reading line light source according to Embodiment 6 of the present invention. FIG. 21 (a) shows the vicinity of the end portion, and FIG. 21 (b) shows the vicinity of the central portion. FIGS. 22A and 22B are sectional views to which a reflection pattern of the line light source for image reading according to the sixth embodiment of the present invention is added. FIG. 22A shows the vicinity of the end portion, and FIG. 22B shows the vicinity of the central portion.

図21において、短軸側断面が5角形の棒状導光体33の一部に切り欠き部63cを設け、この切り欠き部63cの両側に長軸方向に沿って光反射パターン4を設け、切り欠き部63cを除く導光体33の外周面に対して0.1mm程度の所定の隙間を隔てて内周面に蛍光体層5を塗布した白色の反射板(導光体ケース)63が導光体33を取り囲むように設置される構成以外は実施の形態1で説明したものと同一なので説明を省略する。 In FIG. 21, a notch 63c is provided in a part of a rod-shaped light guide 33 having a pentagonal cross section on the short axis side, and the light reflection pattern 4 is provided along the major axis on both sides of the notch 63c. A white reflector (light guide case) 63 in which the phosphor layer 5 is applied to the inner peripheral surface with a predetermined gap of about 0.1 mm from the outer peripheral surface of the light guide 33 excluding the notch 63c is guided. Since the configuration other than that installed so as to surround the light body 33 is the same as that described in the first embodiment, the description thereof is omitted.

反射板63には、長軸方向に沿って長軸方向と直交する方向に一定幅の長溝を形成することで光を被照射体に出射する取り出し口となる開口部63aを設けている。この開口部63aの端部を長溝端部と呼ぶ。それぞれの長溝端部と離間して対向する導光体33の外周面の切り欠き部63cには、長軸方向に沿ってシルク印刷用の白色の光反射部材又は導光体33に直接切溝で形成したレンチキュラーレンズやプリズムパターンを用いて光反射パターン4が互いに平行して形成される。したがって、導光体33の導光路を通過する青色光の一部は光反射パターン4で散乱又は正反射して導光体33の内部の横断路を透過して導光体33の表面から出射し、反射板63の蛍光体層5で捕捉される。 The reflector 63 is provided with an opening 63a serving as a take-out port for emitting light to the irradiated body by forming a long groove having a constant width in a direction perpendicular to the long axis direction along the long axis direction. The end of the opening 63a is called a long groove end. A notch 63c on the outer peripheral surface of the light guide 33 that is spaced apart from and opposed to each long groove end is directly cut into the white light reflecting member for silk printing or the light guide 33 along the long axis direction. The light reflection patterns 4 are formed in parallel with each other using the lenticular lens or prism pattern formed in (1). Therefore, part of the blue light passing through the light guide path of the light guide 33 is scattered or specularly reflected by the light reflection pattern 4, passes through the transverse path inside the light guide 33, and exits from the surface of the light guide 33. And captured by the phosphor layer 5 of the reflector 63.

反射板63の内面には、約50μmの厚み(t)の蛍光体層5が塗布される。この蛍光体層5には、波長が約600nm程度の赤色発光する蛍光体と波長が525nm程度の緑色発光する蛍光体とが混合して塗布され、この蛍光体層5で青色光を捕捉し、一部の青色光は反射し、導光体33の内部を横断して開口部63aから被照射体に照射される。その他の青色光は蛍光体層5で吸収され励起された蛍光を放出する。すなわち、蛍光体層5は青色光とは異なる波長の光に変換された2種の複合光を生成する。 The phosphor layer 5 having a thickness (t) of about 50 μm is applied to the inner surface of the reflector 63. The phosphor layer 5 is coated with a mixture of a phosphor emitting red light having a wavelength of about 600 nm and a phosphor emitting green light having a wavelength of about 525 nm. The phosphor layer 5 captures blue light, A part of the blue light is reflected, crosses the inside of the light guide 33 and is irradiated to the irradiated body from the opening 63a. The other blue light is absorbed by the phosphor layer 5 and emits excited fluorescence. That is, the phosphor layer 5 generates two types of composite light converted into light having a wavelength different from that of blue light.

生成された蛍光は導光体33の内部を横断して開口部63aから複合光として被照射体に照射される。したがって青色光、赤色光、緑色光が混合した擬似白色光が被照射体に照明される。なお、LED光源とホルダーとの関係及びライン光源の動作については、実施の形態1で説明したものと同一なので説明を省略する。図21中、図4と同一符号は、同一又は相当部分を示す。 The generated fluorescence traverses the inside of the light guide 33 and is irradiated to the irradiated body as composite light from the opening 63a. Accordingly, pseudo white light in which blue light, red light, and green light are mixed is illuminated on the irradiated object. Since the relationship between the LED light source and the holder and the operation of the line light source are the same as those described in the first embodiment, the description thereof is omitted. In FIG. 21, the same reference numerals as those in FIG. 4 denote the same or corresponding parts.

以上の構造を持つ画像読み取り用ライン光源では、蛍光体層5で反射した青色光と蛍光体層5で生成された複合光は混色し、導光体33の内部を透過し、反射板63の開口部63aから被照射体に白色の照明光を与える。本実施の形態6では、導光体33の切り欠き部63cが光の出射面となる。また、図22に示すように導光体33の開口部63a側に設置した反射パターン4と対向する導光体33の外周面に光反射パターン41を付加することにより開口部63aから出射する青色光の照射量を多くすることができる。また、導光体33の外周面に設置した反射パターン41の設置位置を変更することにより、青色光の出射量を調節することもできる。 In the image reading line light source having the above structure, the blue light reflected by the phosphor layer 5 and the composite light generated by the phosphor layer 5 are mixed and transmitted through the light guide 33, White illumination light is given to the irradiated body from the opening 63a. In the sixth embodiment, the notch 63c of the light guide 33 serves as a light exit surface. Further, as shown in FIG. 22, the blue light emitted from the opening 63a by adding the light reflection pattern 41 to the outer peripheral surface of the light guide 33 facing the reflection pattern 4 installed on the opening 63a side of the light guide 33. The amount of light irradiation can be increased. Moreover, the emission amount of blue light can be adjusted by changing the installation position of the reflection pattern 41 installed on the outer peripheral surface of the light guide 33.

実施の形態7.
実施の形態6では、短軸側断面が5角形の導光体の切り欠き部に光反射パターンを設けたが実施の形態7では、切り欠き部以外の導光体の表面に光反射パターンを設けたライン光源の構成について図23及び図24を用いて説明する。図23は、この発明の実施の形態7による画像読み取り用ライン光源の断面図であり、図23(a)は端部付近、図23(b)は中央部付近を示す。図24は、この発明の実施の形態7による画像読み取り用ライン光源の反射パターンを付加した断面図であり、図24(a)は端部付近、図24(b)は中央部付近を示す。
Embodiment 7 FIG.
In the sixth embodiment, the light reflection pattern is provided in the notch portion of the light guide having a pentagonal cross section on the short axis side. However, in the seventh embodiment, the light reflection pattern is provided on the surface of the light guide other than the notch portion. The configuration of the provided line light source will be described with reference to FIGS. FIG. 23 is a cross-sectional view of an image reading line light source according to Embodiment 7 of the present invention. FIG. 23 (a) shows the vicinity of the end, and FIG. 23 (b) shows the vicinity of the center. 24 is a cross-sectional view to which a reflection pattern of an image reading line light source according to Embodiment 7 of the present invention is added. FIG. 24 (a) shows the vicinity of the end portion, and FIG. 24 (b) shows the vicinity of the central portion.

図23において、短軸側断面が5角形の棒状導光体33の一部に切り欠き部63cを設け、この切り欠き部63cの外側に位置する導光体33の長軸方向に沿って導光体33に光反射パターン4を設け、切り欠き部63cを除く導光体33の外周面に対して0.1mm程度の所定の隙間を隔てて内周面に蛍光体を塗布した白色の反射板(導光体ケース)63が導光体33を取り囲むように設置される構成以外は実施の形態1で説明したものと同一なので説明を省略する。 In FIG. 23, a notch 63c is provided in a part of a rod-shaped light guide 33 having a pentagonal cross section on the short axis side, and is guided along the major axis direction of the light guide 33 located outside the notch 63c. A white reflection in which a light reflecting pattern 4 is provided on the light body 33 and a fluorescent material is applied to the inner peripheral surface with a predetermined gap of about 0.1 mm from the outer peripheral surface of the light guide 33 excluding the notch 63c. Except for the configuration in which the plate (light guide case) 63 is installed so as to surround the light guide 33, the description is omitted because it is the same as that described in the first embodiment.

反射板63には、長軸方向に沿って長軸方向と直交する方向に一定幅の長溝を形成することで光を被照射体に出射する取り出し口となる開口部63aを設けている。この開口部63aの端部を長溝端部と呼ぶ。それぞれの長溝端部と離間して対向する導光体33の外周面の切り欠き部63cと隣接する導光体33の辺には、切り欠き部63cに近接して長軸方向に沿ってシルク印刷用の白色の光反射部材又は導光体33に直接切溝で形成したレンチキュラーレンズやプリズムパターンを用いて光反射パターン4が互いに平行して形成される。したがって、導光体33の導光路を通過する青色光の一部は光反射パターン4で散乱又は正反射して導光体33の内部の横断路を透過して導光体33の表面から出射し、反射板63の蛍光体層5で捕捉される。 The reflector 63 is provided with an opening 63a serving as a take-out port for emitting light to the irradiated body by forming a long groove having a constant width in a direction perpendicular to the long axis direction along the long axis direction. The end of the opening 63a is called a long groove end. The side of the light guide 33 that is adjacent to the notch 63c on the outer peripheral surface of the light guide 33 that is opposed to the end of each long groove is adjacent to the notch 63c and silks along the long axis direction. The light reflecting patterns 4 are formed in parallel to each other using a white light reflecting member for printing or a lenticular lens or a prism pattern formed directly on the light guide 33 by kerfs. Therefore, part of the blue light passing through the light guide path of the light guide 33 is scattered or specularly reflected by the light reflection pattern 4, passes through the transverse path inside the light guide 33, and exits from the surface of the light guide 33. And captured by the phosphor layer 5 of the reflector 63.

反射板63の内面には、約50μmの厚み(t)の蛍光体層5が塗布される。この蛍光体層5には、波長が約600nm程度の赤色発光する蛍光体と波長が525nm程度の緑色発光する蛍光体とが混合して塗布され、この蛍光体層5で青色光を捕捉し、一部の青色光は反射し、導光体33の内部を横断して開口部63aから被照射体に照射される。その他の青色光は蛍光体層5で吸収され励起された蛍光を放出する。すなわち、蛍光体層5は青色光とは異なる波長の光に変換された2種の複合光を生成する。 The phosphor layer 5 having a thickness (t) of about 50 μm is applied to the inner surface of the reflector 63. The phosphor layer 5 is coated with a mixture of a phosphor emitting red light having a wavelength of about 600 nm and a phosphor emitting green light having a wavelength of about 525 nm. The phosphor layer 5 captures blue light, A part of the blue light is reflected, crosses the inside of the light guide 33 and is irradiated to the irradiated body from the opening 63a. The other blue light is absorbed by the phosphor layer 5 and emits excited fluorescence. That is, the phosphor layer 5 generates two types of composite light converted into light having a wavelength different from that of blue light.

生成された蛍光は導光体33の内部を横断して開口部63aから複合光として被照射体に照射される。したがって青色光、赤色光、緑色光が混合した擬似白色光が被照射体に照明される。なお、LED光源とホルダーとの関係及びライン光源の動作については、実施の形態1で説明したものと同一なので説明を省略する。図23中、図21と同一符号は、同一又は相当部分を示す。 The generated fluorescence traverses the inside of the light guide 33 and is irradiated to the irradiated body as composite light from the opening 63a. Accordingly, pseudo white light in which blue light, red light, and green light are mixed is illuminated on the irradiated object. Since the relationship between the LED light source and the holder and the operation of the line light source are the same as those described in the first embodiment, the description thereof is omitted. 23, the same reference numerals as those in FIG. 21 denote the same or corresponding parts.

以上の構造を持つ画像読み取り用ライン光源では、蛍光体層5で反射した青色光と蛍光体層5で生成された複合光は混色し、導光体33の内部を透過し、反射板63の開口部63aから被照射体に白色の照明光を与える。本実施の形態7では、導光体33の切り欠き部63cが光の出射面となるものの光反射パターン4から透過して開口部63aに漏れる青色光を軽減すると共に導光体33の切り欠き部63cから出射する光の出射領域の面積を増加せせることができる。また、図24に示すように導光体33の開口部63a側に設置した光反射パターン4と対向する導光体33の外周面に光反射パターン41を付加することにより開口部63aから出射する青色光の照射量を多くすることができる。また、導光体33の外周面に設置した反射パターン41の設置位置を変更することにより、青色光の出射量を調節することもできる。 In the image reading line light source having the above structure, the blue light reflected by the phosphor layer 5 and the composite light generated by the phosphor layer 5 are mixed and transmitted through the light guide 33, White illumination light is given to the irradiated body from the opening 63a. In the seventh embodiment, the notch 63c of the light guide 33 serves as a light exit surface, but the blue light transmitted through the light reflection pattern 4 and leaking to the opening 63a is reduced, and the notch of the light guide 33 is reduced. The area of the emission region of the light emitted from the portion 63c can be increased. Further, as shown in FIG. 24, the light reflection pattern 41 is added to the outer peripheral surface of the light guide 33 facing the light reflection pattern 4 disposed on the opening 63a side of the light guide 33, and the light is emitted from the opening 63a. The amount of blue light irradiation can be increased. Moreover, the emission amount of blue light can be adjusted by changing the installation position of the reflection pattern 41 installed on the outer peripheral surface of the light guide 33.

実施の形態8.
実施の形態7では、短軸側断面が5角形の導光体の切欠き部の外側に光反射パターンを設けたが実施の形態8では、導光体の切り欠き部を面取り(C面取り)したライン光源の構成について図25及び図26を用いて説明する。図25は、この発明の実施の形態8による画像読み取り用ライン光源の中央部付近の断面図である。図26は、この発明の実施の形態8による画像読み取り用ライン光源の側面断面図である。
Embodiment 8 FIG.
In the seventh embodiment, the light reflection pattern is provided outside the notch portion of the light guide having a pentagonal short-axis cross section. However, in the eighth embodiment, the notch portion of the light guide is chamfered (C chamfering). The configuration of the line light source will be described with reference to FIGS. 25 and 26. FIG. FIG. 25 is a cross-sectional view of the vicinity of the center of an image reading line light source according to the eighth embodiment of the present invention. FIG. 26 is a side sectional view of an image reading line light source according to the eighth embodiment of the present invention.

図25において、短軸側断面が四角形の棒状導光体34の一部に切り欠き部64cを設け、この切り欠き部64cの外側に位置する導光体34の長軸方向に沿って導光体34に光反射パターン4を設け、切り欠き部64cを除く導光体34の外周面に対して0.1mm程度の所定の隙間を隔てて内周面に蛍光体を塗布した白色の反射板(導光体ケース)64が導光体34を取り囲むように設置される構成以外は実施の形態1で説明したものに準ずるので説明を省略する。 In FIG. 25, a notch portion 64c is provided in a part of the rod-shaped light guide 34 whose short-axis side section is a quadrangle, and light is guided along the long-axis direction of the light guide 34 located outside the notch 64c. A white reflector in which a light reflecting pattern 4 is provided on the body 34 and a phosphor is applied to the inner peripheral surface with a predetermined gap of about 0.1 mm from the outer peripheral surface of the light guide 34 excluding the notch 64c. (Light guide case) Except for the configuration in which the light guide case 64 is installed so as to surround the light guide 34, the description is omitted because it conforms to that described in the first embodiment.

反射板64には、長軸方向に沿って長軸方向と直交する方向に一定幅の長溝を形成することで光を被照射体に出射する取り出し口となる開口部64aを設けている。この開口部64aの端部を長溝端部と呼ぶ。それぞれの長溝端部と所定の隙間を空けて対向する導光体34の外周面の切り欠き部64cと隣接する導光体34の辺には、切り欠き部64cに近接して長軸方向に沿ってシルク印刷用の白色の光反射部材又は導光体34に直接切溝で形成したレンチキュラーレンズやプリズムパターンを用いて光反射パターン4が互いに平行して形成される。したがって、導光体34の導光路を通過する青色光の一部は光反射パターン4で散乱又は正反射して導光体34の内部の横断路を透過して導光体34の表面から出射し、反射板64の蛍光体層5で捕捉される。 The reflecting plate 64 is provided with an opening 64a serving as a take-out port for emitting light to the irradiated body by forming a long groove having a constant width in a direction perpendicular to the long axis direction along the long axis direction. The end of the opening 64a is called a long groove end. The side of the light guide 34 adjacent to the notch 64c on the outer peripheral surface of the light guide 34 facing each long groove end with a predetermined gap is adjacent to the notch 64c in the long axis direction. A light reflecting pattern 4 is formed in parallel with each other using a white light reflecting member for silk printing or a lenticular lens or a prism pattern formed in the light guide 34 directly by a kerf. Accordingly, part of the blue light passing through the light guide path of the light guide 34 is scattered or specularly reflected by the light reflection pattern 4, passes through the transverse path inside the light guide 34, and is emitted from the surface of the light guide 34. And captured by the phosphor layer 5 of the reflector 64.

反射板64の内面には、約50μmの厚み(t)の蛍光体層5が塗布される。この蛍光体層5には、波長が約600nm程度の赤色発光する蛍光体と波長が525nm程度の緑色発光する蛍光体とが混合して塗布され、この蛍光体層5で青色光を捕捉し、一部の青色光は反射し、導光体34の内部を横断して開口部64aから被照射体に照射される。その他の青色光は蛍光体層5で吸収され励起された蛍光を放出する。すなわち、蛍光体層5は青色光とは異なる波長の光に変換された2種の複合光を生成する。 A phosphor layer 5 having a thickness (t) of about 50 μm is applied to the inner surface of the reflector 64. The phosphor layer 5 is coated with a mixture of a phosphor emitting red light having a wavelength of about 600 nm and a phosphor emitting green light having a wavelength of about 525 nm. The phosphor layer 5 captures blue light, A part of the blue light is reflected, crosses the inside of the light guide 34 and is irradiated to the irradiated body from the opening 64a. The other blue light is absorbed by the phosphor layer 5 and emits excited fluorescence. That is, the phosphor layer 5 generates two types of composite light converted into light having a wavelength different from that of blue light.

生成された蛍光は導光体34の内部を横断して開口部64aから複合光として被照射体に照射される。したがって青色光、赤色光、緑色光が混合した擬似白色光が被照射体に照明される。なお、LED光源とホルダーとの関係及びライン光源の動作については、実施の形態1で説明したものと同一なので説明を省略する。図25中、図4と同一符号は、同一又は相当部分を示す。 The generated fluorescence traverses the inside of the light guide 34 and is irradiated to the irradiated body as composite light from the opening 64a. Accordingly, pseudo white light in which blue light, red light, and green light are mixed is illuminated on the irradiated object. Since the relationship between the LED light source and the holder and the operation of the line light source are the same as those described in the first embodiment, the description thereof is omitted. 25, the same reference numerals as those in FIG. 4 denote the same or corresponding parts.

以上の構造を持つ画像読み取り用ライン光源では、蛍光体層5で反射した青色光と蛍光体層5で生成された複合光は混色し、導光体34の内部を透過し、反射板64の開口部64aから被照射体に白色の照明光を与える。本実施の形態8では、導光体34の切り欠き部64cが光の出射面となり、切り欠き部64cは導光体34の一部を面取りしている。 In the image reading line light source having the above structure, the blue light reflected by the phosphor layer 5 and the composite light generated by the phosphor layer 5 are mixed and transmitted through the light guide 34, White illumination light is given to the irradiated object from the opening 64a. In the eighth embodiment, the cutout portion 64 c of the light guide 34 serves as a light emission surface, and the cutout portion 64 c chamfers a part of the light guide 34.

図26は、図25に示す断面領域を長軸方向から見たライン光源の側面断面図であり、導光体34の面取り部(切り欠き部)64cから集中させて白色光を被照射体に照射することにより、照明照度の大きいライン光源を得ることができる利点がある。 FIG. 26 is a side cross-sectional view of the line light source when the cross-sectional area shown in FIG. 25 is viewed from the long axis direction, and white light is concentrated on the object to be irradiated from the chamfered portion (notch portion) 64c of the light guide 34. By irradiating, there is an advantage that a line light source having a large illumination illuminance can be obtained.

実施の形態3〜8では、主として青色LEDを用いたライン光源で説明したが、実施の形態2で説明した紫外線LEDを用いたライン光源であってもLED光源とホルダーとの関係及び光源の動作については同一である。 In the third to eighth embodiments, the line light source using mainly blue LEDs has been described. However, even in the case of the line light source using ultraviolet LEDs described in the second embodiment, the relationship between the LED light source and the holder and the operation of the light source. Is the same.

なお、実施の形態1〜8において蛍光体層5、51は蛍光材料を混合(ブレンド)したもので説明したが、蛍光体層5、51を分割形成し、それぞれの蛍光体層5、51を単色発光させても良く、蛍光体材料は赤色発光、緑色発光、青色発光を主体で説明したが、これらの発光色に限るものではなく、橙色や黄緑発光色などの蛍光体材料を用いて画像読み取り用ライン光源を構成しても良い。 In the first to eighth embodiments, the phosphor layers 5 and 51 are described as a mixture (blend) of fluorescent materials. However, the phosphor layers 5 and 51 are dividedly formed, and the phosphor layers 5 and 51 are formed. Monochromatic light emission may be performed, and the phosphor material has mainly been described for red light emission, green light emission, and blue light emission, but is not limited to these light emission colors, and phosphor materials such as orange and yellow-green light emission colors are used. An image reading line light source may be configured.

1・・LED光源(青色LED)
2・・LED回路 2a・・基板 2b・・コネクタ(外部端子)
3・・導光体(円柱導光体)
4・・光反射パターン(導光体反射パターン)
5・・蛍光体層
6・・反射板(導光体ケース) 6a・・開口部 6b・・突起部 6c・・突起部
7・・ホルダー
8・・紫外光カットフィルタ(紫外線カットパターン)
11・・LED光源(紫外線光源)
31・・導光体(楕円状導光体) 32・・導光体(楕円状導光体)
33・・導光体(5角柱導光体) 34・・導光体(四角柱面取り導光体)
41・・光反射パターン
51・・蛍光体層
61・・反射板(導光体ケース)
61a・・開口部 61b・・突起部
62・・反射板(導光体ケース)
62a・・開口部 62b・・突起部 62c・・切り欠き部(導光体の切り欠き部)
63・・反射板(導光体ケース)
63a・・開口部 63b・・突起部 63c・・切り欠き部(導光体の切り欠き部)
64・・反射板(導光体ケース)
64a・・開口部 64b・・突起部 64c・・面取り部(導光体の切り欠き部)
1. LED light source (blue LED)
2 .... LED circuit 2a ... PCB 2b ... Connector (external terminal)
3. Light guide (cylindrical light guide)
4. Light reflection pattern (light guide reflection pattern)
5..Phosphor layer 6..Reflector (light guide case) 6a..Opening part 6b..Protrusion part 6c..Protrusion part 7..Holder 8..Ultraviolet light cut filter (ultraviolet cut pattern)
11. LED light source (ultraviolet light source)
31 .. Light guide (elliptical light guide) 32 .. Light guide (elliptical light guide)
33 .. Light guide (pentagonal light guide) 34 .. Light guide (square prism chamfered light guide)
41 .. Light reflection pattern 51 .. Phosphor layer 61 .. Reflector (light guide case)
61a ··· Opening portion 61b ·· Protruding portion 62 ·· Reflector (light guide case)
62a ·· Opening portion 62b ·· Protruding portion 62c ·· Notched portion (notched portion of light guide)
63 .. Reflector (light guide case)
63a..Opening part 63b..Protrusion part 63c..Notch part (notch part of light guide)
64 .. Reflector (light guide case)
64a ·· Opening portion 64b ·· Protruding portion 64c ·· Chamfered portion (notch portion of light guide)

Claims (6)

発光素子と、この発光素子を端部に配置し、内部に入射した前記発光素子からの光を長軸方向に沿って反射させながら伝搬させる棒状の導光体と、この導光体と所定の隙間を設けて前記導光体を取り囲み長軸方向に沿って設けた反射板と、この反射板の前記導光体側に設けられ、前記発光素子からの光を吸収して励起された蛍光を放出する蛍光体層とを備えた画像読み取り用ライン光源。 A light-emitting element; a light-emitting element disposed at an end; and a rod-shaped light guide that propagates light from the light-emitting element incident on the inside while reflecting the light along the major axis direction; and A reflector that surrounds the light guide with a gap and is provided along the long axis direction, and is provided on the light guide side of the reflector and emits excited fluorescence by absorbing light from the light emitting element. An image reading line light source comprising a phosphor layer. 前記反射板は、前記導光体と所定の隙間を設けて前記導光体を取り囲むと共に長軸方向に沿って長溝で構成した開口部を有し、前記長溝で形成した前記開口部のそれぞれの端部と隙間を空けて対向する前記導光体の外周面に、前記長軸方向に沿ってライン状に設けた細幅の光反射パターンとを備えた請求項1に記載の画像読み取り用ライン光源。 The reflector has an opening formed with a long groove along the long axis direction while providing a predetermined gap with the light guide and surrounding the light guide, and each of the openings formed with the long groove 2. The image reading line according to claim 1, further comprising a narrow light reflection pattern provided in a line shape along the major axis direction on an outer peripheral surface of the light guide facing the end portion with a gap. light source. 前記発光素子からの光が前記導光体を伝搬する過程において、前記蛍光体層は、前記導光体の表面から出射した前記発光素子からの光を捕捉し、前記発光素子からの光を反射させると共に前記発光素子からの光とは異なる光学波長の光に変換された2種以上の複合光を生成し、前記蛍光体層で生成された光を前記導光体の内部を透過させて前記発光素子からの光を含む前記複合光を被照射体に照射する請求項1に記載の画像読み取り用ライン光源。 In the process in which the light from the light emitting element propagates through the light guide, the phosphor layer captures the light from the light emitting element emitted from the surface of the light guide and reflects the light from the light emitting element. And generating two or more kinds of composite light converted into light having an optical wavelength different from that of the light from the light emitting element, and transmitting the light generated in the phosphor layer through the inside of the light guide. The line light source for image reading according to claim 1, wherein the object to be irradiated is irradiated with the composite light including light from the light emitting element. 前記発光素子からの光が前記導光体を伝搬する過程において、前記蛍光体層は、前記光反射パターンで散乱又は正反射して前記導光体の表面から出射した前記発光素子からの光を捕捉し、前記発光素子からの光を反射させると共に前記発光素子からの光とは異なる光学波長の光に変換された2種以上の複合光を生成し、前記蛍光体層で生成された光を前記導光体の内部を透過させて前記開口部から前記発光素子からの光を含む前記複合光を被照射体に照射する請求項2に記載の画像読み取り用ライン光源。 In the process in which the light from the light emitting element propagates through the light guide, the phosphor layer scatters or specularly reflects the light from the light emitting element that is emitted from the surface of the light guide. Captures and reflects the light from the light emitting element and generates two or more kinds of composite light converted into light having an optical wavelength different from that of the light from the light emitting element, and the light generated by the phosphor layer The line light source for image reading according to claim 2, wherein the light source is irradiated with the composite light including the light from the light emitting element through the opening through the inside of the light guide. 端部から内部に入射した入射光を長軸方向に沿って反射させながら伝搬させる棒状の導光体と、この導光体と所定の隙間を設けて前記導光体を取り囲み長軸方向に沿って設けた反射板と、この反射板の前記導光体側に設けられ、前記入射光を吸収して励起された蛍光を放出する蛍光体層とを備えた導光ユニット。 A rod-shaped light guide that propagates incident light incident on the inside from the end while reflecting along the long axis direction, and surrounds the light guide by providing a predetermined gap with the light guide along the long axis direction. And a phosphor layer that is provided on the light guide side of the reflector and that absorbs the incident light and emits excited fluorescence. 前記反射板は、前記導光体と所定の隙間を設けて前記導光体を取り囲むと共に長軸方向に沿って長溝で構成した開口部を有し、前記長溝で形成した前記開口部のそれぞれの端部と隙間を空けて対向する前記導光体の外周面に、前記長軸方向に沿ってライン状に設けた細幅の光反射パターンとを備えた請求項5に記載の導光ユニット。 The reflector has an opening formed with a long groove along the long axis direction while providing a predetermined gap with the light guide and surrounding the light guide, and each of the openings formed with the long groove The light guide unit according to claim 5, further comprising a narrow light reflection pattern provided in a line shape along the major axis direction on an outer peripheral surface of the light guide that is opposed to the end portion with a gap.
JP2012187829A 2012-08-28 2012-08-28 Image reading line light source and light guide unit Active JP5418646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012187829A JP5418646B2 (en) 2012-08-28 2012-08-28 Image reading line light source and light guide unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012187829A JP5418646B2 (en) 2012-08-28 2012-08-28 Image reading line light source and light guide unit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010200803A Division JP5077409B2 (en) 2010-09-08 2010-09-08 Line light source for image reading

Publications (2)

Publication Number Publication Date
JP2012253815A true JP2012253815A (en) 2012-12-20
JP5418646B2 JP5418646B2 (en) 2014-02-19

Family

ID=47526103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012187829A Active JP5418646B2 (en) 2012-08-28 2012-08-28 Image reading line light source and light guide unit

Country Status (1)

Country Link
JP (1) JP5418646B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2938921A4 (en) * 2012-12-28 2016-10-19 Intematix Corp Solid-state lamps utilizing photoluminescence wavelength conversion components
WO2018221579A1 (en) * 2017-05-30 2018-12-06 日立化成株式会社 Optical integrator holder and optical integrator unit
WO2019193522A1 (en) * 2018-04-06 2019-10-10 Hella Saturnus Slovenija d.o.o. Luminescent structure of a lamp
JP2022536062A (en) * 2019-10-31 2022-08-12 ムゲン カンパニー リミテッド Spectral polarimetry device and automatic optical path difference adjustment device
WO2022231302A1 (en) * 2021-04-28 2022-11-03 엘지이노텍 주식회사 Lighting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000127505A (en) * 1998-08-25 2000-05-09 Hewlett Packard Co <Hp> Light source assembly for scanning device using light emitting diode
JP2006067197A (en) * 2004-08-26 2006-03-09 Mitsubishi Electric Corp Line light source and contact type image sensor
JP2011113689A (en) * 2009-11-25 2011-06-09 Ushio Inc Linear light source device
JP2011249059A (en) * 2010-05-25 2011-12-08 Harison Toshiba Lighting Corp Linear light-emitting device
JP2012060356A (en) * 2010-09-08 2012-03-22 Mitsubishi Electric Corp Line light source for reading images

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000127505A (en) * 1998-08-25 2000-05-09 Hewlett Packard Co <Hp> Light source assembly for scanning device using light emitting diode
JP2006067197A (en) * 2004-08-26 2006-03-09 Mitsubishi Electric Corp Line light source and contact type image sensor
JP2011113689A (en) * 2009-11-25 2011-06-09 Ushio Inc Linear light source device
JP2011249059A (en) * 2010-05-25 2011-12-08 Harison Toshiba Lighting Corp Linear light-emitting device
JP2012060356A (en) * 2010-09-08 2012-03-22 Mitsubishi Electric Corp Line light source for reading images
JP5077409B2 (en) * 2010-09-08 2012-11-21 三菱電機株式会社 Line light source for image reading

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2938921A4 (en) * 2012-12-28 2016-10-19 Intematix Corp Solid-state lamps utilizing photoluminescence wavelength conversion components
TWI679375B (en) * 2012-12-28 2019-12-11 美商英特曼帝克司公司 Solid-state lamps utilizing photoluminescence wavelength conversion components
US10557594B2 (en) 2012-12-28 2020-02-11 Intematix Corporation Solid-state lamps utilizing photoluminescence wavelength conversion components
WO2018221579A1 (en) * 2017-05-30 2018-12-06 日立化成株式会社 Optical integrator holder and optical integrator unit
WO2019193522A1 (en) * 2018-04-06 2019-10-10 Hella Saturnus Slovenija d.o.o. Luminescent structure of a lamp
JP2022536062A (en) * 2019-10-31 2022-08-12 ムゲン カンパニー リミテッド Spectral polarimetry device and automatic optical path difference adjustment device
US12025502B2 (en) 2019-10-31 2024-07-02 Mgen.Co., Ltd Spectroscopic polarimeter and device for automatically adjusting optical path difference
WO2022231302A1 (en) * 2021-04-28 2022-11-03 엘지이노텍 주식회사 Lighting device

Also Published As

Publication number Publication date
JP5418646B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5903950B2 (en) Line light source for image reading
JP5077409B2 (en) Line light source for image reading
US9470895B2 (en) Light-emitting device
JP6259443B2 (en) Liquid crystal display
JP5380498B2 (en) Light source device, lighting device, vehicle headlamp, and vehicle
JP5418646B2 (en) Image reading line light source and light guide unit
JP5066462B2 (en) Vehicle lighting
JP2012099362A (en) Light emitting device
US20110149548A1 (en) Light emitting diode based linear lamps
KR20080085732A (en) White light source device
JP6890287B2 (en) lighting equipment
JPWO2017038176A1 (en) Luminescent body and lighting device
JPWO2009004739A1 (en) Fluorescent lamp type LED lighting device
JP2012243979A (en) Light source device
KR100580416B1 (en) Illuminator, liquid crystal display comprising it and lamp socket
JP4638192B2 (en) Line light source and contact image sensor using the same
JP6138705B2 (en) Lighting device and display device
JP4496417B2 (en) Line light source and contact image sensor using the same
JP2011124063A (en) Linear light source device
JP6658436B2 (en) Lighting equipment
KR200429443Y1 (en) Brightness enhancement structure of side-type LCD backlight module
JP6085204B2 (en) Light emitting device
JP2012231299A (en) Phosphor film, and line light source for image reading using the same
JP5229630B2 (en) Light irradiation device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131104

R151 Written notification of patent or utility model registration

Ref document number: 5418646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250