JP2012253162A - Reclaimed magnetic powder for magnet and production method of magnet body - Google Patents

Reclaimed magnetic powder for magnet and production method of magnet body Download PDF

Info

Publication number
JP2012253162A
JP2012253162A JP2011123862A JP2011123862A JP2012253162A JP 2012253162 A JP2012253162 A JP 2012253162A JP 2011123862 A JP2011123862 A JP 2011123862A JP 2011123862 A JP2011123862 A JP 2011123862A JP 2012253162 A JP2012253162 A JP 2012253162A
Authority
JP
Japan
Prior art keywords
magnetic powder
magnet body
mixed
virgin
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011123862A
Other languages
Japanese (ja)
Inventor
Hitomi Yamada
人巳 山田
Maki Muratsubaki
真紀 村椿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Electronics Co Ltd
Original Assignee
Daido Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Electronics Co Ltd filed Critical Daido Electronics Co Ltd
Priority to JP2011123862A priority Critical patent/JP2012253162A/en
Publication of JP2012253162A publication Critical patent/JP2012253162A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To utilize resource effectively by increasing the mixing ratio of reclaimed magnetic powder to the virgin magnetic powder.SOLUTION: The unusable part of a magnet body produced by performing hot plastic processing of a material, containing virgin magnetic powder obtained by rapid quenching, is subjected to hydrogen absorption pulverization thus obtaining a reclaimed magnetic powder for magnet production. The reclaimed magnetic powder is mixed with the virgin magnetic powder at a ratio of 40-80 mass% of the total quantity to produce a mixed magnetic powder, which is then subjected to hot plastic processing thus obtaining a magnet body.

Description

本発明は磁石用再生磁粉および磁石体の製造方法に関し、特に、異方性磁石体の製造に適した製造方法に関する。   The present invention relates to a regenerated magnetic powder for magnets and a method for manufacturing a magnet body, and more particularly to a manufacturing method suitable for manufacturing an anisotropic magnet body.

異方性磁石体の製造方法として、超急冷法によって得た磁粉(バージン磁粉)を、形状成形のための冷間プレス成形、成形品密度を高めるための熱間プレス成形、および磁気異方性を付与するための熱間塑性加工を経て行う方法が知られている。この場合、熱間塑性加工後の形状が筒状になるものでは、その開口縁部分は磁気特性が劣るために使用不可部分となる。また、熱間塑性加工後の形状が有底筒状になるものでは、開口縁部分に加えて、底壁部分では磁気異方性が得られないためこの部分が使用不可部分となる。また、寸法不良等によって成形品全体が使用不可部分となることもある。従来、これら使用不可部分は回収して再溶融し、超急冷法によって再度磁粉にしているが、これはコスト高になるとともに使用不可部分の再利用に時間を要するという問題があった。   Magnetic powder (virgin magnetic powder) obtained by the ultra-quenching method as a manufacturing method of the anisotropic magnet body, cold press forming for shape forming, hot press forming for increasing the density of the molded product, and magnetic anisotropy There is known a method of performing through hot plastic working for imparting. In this case, when the shape after the hot plastic working is a cylindrical shape, the opening edge portion is unusable due to poor magnetic properties. Further, in the case where the shape after the hot plastic working is a bottomed cylindrical shape, magnetic anisotropy cannot be obtained at the bottom wall portion in addition to the opening edge portion, and this portion becomes an unusable portion. Moreover, the whole molded product may become an unusable part by the dimension defect etc. Conventionally, these unusable parts are collected and remelted, and then re-magnetized by a super rapid cooling method. However, this increases the cost and requires time to reuse the unusable parts.

そこで、引用文献1では、Nd-Fe-B系磁石体の使用不可部分を粉砕して再生磁粉とし、これをバージン磁粉に一定割合で混合して、この混合粉末を熱間塑性加工することによって新たなNd-Fe-B系磁石体を得る方法が示されている。   Therefore, in Cited Document 1, the unusable part of the Nd-Fe-B magnet body is pulverized into a regenerated magnetic powder, which is mixed with virgin magnetic powder at a certain ratio, and this mixed powder is hot plastic processed. A method for obtaining a new Nd-Fe-B magnet body is shown.

特開2002−100524JP2002-1000052

ところが、上記従来の方法は回収された使用不可部分の粉砕を機械的に行っているため、得られた再生磁粉はその粒子形態や、酸素含有量等が高くなるなどその化学組成がバージン磁粉とは大きく異なる。このため、磁石体の耐食性や機械的強度、磁気特性の低下を防止するためには再生磁粉の混合割合は全体量の40質量%以下に抑える必要があって、再生磁粉の利用率が未だ不十分であるという問題があった。   However, since the above conventional method mechanically grinds the recovered unusable part, the obtained regenerated magnetic powder has a chemical composition such as a virgin magnetic powder such as its particle form and oxygen content are increased. Are very different. For this reason, in order to prevent deterioration of the corrosion resistance, mechanical strength, and magnetic properties of the magnet body, the mixing ratio of the regenerated magnetic powder must be suppressed to 40% by mass or less of the total amount, and the utilization rate of the regenerated magnetic powder is still unsatisfactory. There was a problem that it was enough.

そこで、本発明はこのような課題を解決するもので、バージン磁粉に対する再生磁粉の混合割合を増大させることができ、もって資源の有効利用を図ることが可能な磁石用再生磁粉および磁石体の製造方法を提供することを目的とする。   Therefore, the present invention solves such problems, and can produce a regenerated magnetic powder for magnets and a magnet body that can increase the mixing ratio of regenerated magnetic powder to virgin magnetic powder and can effectively use resources. It aims to provide a method.

上記目的を達成するために、本第1発明の再生磁粉の製造方法では、超急冷法によって得たバージン磁粉を含む原料を熱間塑性加工することにより製造された磁石体の、使用不可部分に対して水素吸蔵粉砕処理を施して磁石製造用の再生磁粉を得ることを特徴とする。ここで、「使用不可部分」とは、磁石体のうち磁気特性が劣る部分、寸法が不良な部分等、製品として使用するには不適な部分を言う。   In order to achieve the above object, in the method for producing regenerated magnetic powder according to the first aspect of the present invention, the unusable portion of the magnet body produced by hot plastic processing a raw material containing virgin magnetic powder obtained by the ultra-quenching method. On the other hand, a hydrogen storage and pulverization treatment is performed to obtain a regenerated magnetic powder for producing a magnet. Here, the “unusable part” refers to a part that is unsuitable for use as a product, such as a part having a poor magnetic property or a part having a poor dimension in the magnet body.

本第1発明で得られる再生磁粉は、酸化し易い粒径の小さい微粉の発生が少なく粉末の酸素濃度が低いため磁石体の耐食性や機械的強度、磁気特性の低下を防くことができ、この結果、磁石体の製造に際してバージン磁粉への混合割合を従来より多くして資源の有効利用を図ることができる。   The regenerated magnetic powder obtained in the first aspect of the invention can prevent the deterioration of the corrosion resistance, mechanical strength, and magnetic properties of the magnet body because the generation of fine powder with a small particle size that is easy to oxidize is low and the oxygen concentration of the powder is low. As a result, when the magnet body is manufactured, the mixing ratio of the virgin magnetic powder can be increased as compared with the conventional case to effectively use the resources.

また、本第2発明の磁石体の製造方法では、前記再生磁粉をバージン磁粉に対し全体量の40質量%以上で80質量%以下の割合で混合して混合磁粉とし、当該混合磁粉を熱間塑性加工して磁石体を得ることを特徴とする。   Moreover, in the manufacturing method of the magnet body of this 2nd invention, the said reproduction | regeneration magnetic powder is mixed in the ratio of 40 mass% or more and 80 mass% or less of the whole quantity with respect to virgin magnetic powder. A magnet body is obtained by plastic working.

本第2発明により得られる磁石体は、バージン磁粉のみから製造された磁石体に対して、耐食性や機械的強度、磁気特性のいずれもその低下を許容範囲内に収めることができ、しかも再生磁粉の混入量を従来よりも多くすることができるから、資源の有効利用を図ることができる。   The magnet body obtained by the second invention is capable of keeping the deterioration in corrosion resistance, mechanical strength, and magnetic properties within an allowable range with respect to a magnet body manufactured only from virgin magnetic powder. As a result, the effective use of resources can be achieved.

以上のように、本発明によれば、バージン磁粉に対する再生磁粉の混合割合を増大させることができ、もって資源の有効利用を図ることができる。   As described above, according to the present invention, the mixing ratio of the regenerated magnetic powder to the virgin magnetic powder can be increased, so that the resources can be effectively used.

再生磁粉とバージン磁粉の粒径分布を比較したグラフである。It is the graph which compared the particle size distribution of reproduction | regeneration magnetic powder and virgin magnetic powder. 磁石体の熱間塑性加工工程を示す断面図である。It is sectional drawing which shows the hot plastic working process of a magnet body. 磁石体の全体縦断面図である。It is the whole longitudinal cross-sectional view of a magnet body. 磁石体のB−H特性を示す図である。It is a figure which shows the BH characteristic of a magnet body.

なお、以下に説明する実施形態はあくまで一例であり、本発明の要旨を逸脱しない範囲で当業者が行う種々の設計的改良も本発明の範囲に含まれる。   The embodiment described below is merely an example, and various design improvements made by those skilled in the art without departing from the gist of the present invention are also included in the scope of the present invention.

Nd:30質量%,Co:4.0質量%,Ga:0.5質量%,B:0.9質量%,Fe:残部からなるNd−Fe−Co−B系合金から、公知の超急冷法によって薄片のバージン磁粉を得た。この際のバージン磁粉の粒径分布は図1の細実線棒グラフで示すように、53〜355μmの範囲にあり、53μm以下の微粉は存在しない。   From a Nd—Fe—Co—B alloy composed of Nd: 30% by mass, Co: 4.0% by mass, Ga: 0.5% by mass, B: 0.9% by mass, Fe: remainder, known ultra rapid cooling A thin virgin magnetic powder was obtained by the method. At this time, the particle size distribution of the virgin magnetic powder is in the range of 53 to 355 μm as shown by the thin solid bar graph in FIG. 1, and there is no fine powder of 53 μm or less.

このようなバージン磁粉を冷間プレス成形し、冷間プレス成形体にカーボン潤滑剤を塗布した後、800℃で熱間プレス成形を行った。その後、熱間プレス成形体を室温まで冷却した後、再度カーボン潤滑剤の塗布を行って、800℃で熱間押出加工(塑性加工)を行い、磁石体を得た。熱間押出加工は図2に示すように、金型1の内部で金型2,3によって上記熱間プレス成形体を押出成形するもので、この成形で得られる磁石体4は図3に示すような有底円筒体となる。   Such virgin magnetic powder was cold press-molded, a carbon lubricant was applied to the cold press-molded body, and then hot press-molded at 800 ° C. Then, after the hot press-molded body was cooled to room temperature, a carbon lubricant was applied again, and hot extrusion processing (plastic processing) was performed at 800 ° C. to obtain a magnet body. In the hot extrusion process, as shown in FIG. 2, the hot press-molded body is extruded by the molds 2 and 3 inside the mold 1, and the magnet body 4 obtained by this molding is shown in FIG. It becomes such a bottomed cylindrical body.

磁石体4のうち開口縁部分41と底壁部分42は、前述のように磁気特性が劣る、あるいは磁気異方性が得られない等の使用不可部分であるため、これらの部分41,42は磁石体4から切断分離されて、最終的に円筒状の磁石体4が得られる。本実施形態では、切断分離された使用不可部分41,42に対して水素吸蔵粉砕処理を施した。   Since the opening edge portion 41 and the bottom wall portion 42 of the magnet body 4 are unusable portions such as inferior in magnetic characteristics or incapable of obtaining magnetic anisotropy as described above, these portions 41 and 42 are The cylindrical magnet body 4 is finally obtained by being cut and separated from the magnet body 4. In the present embodiment, the hydrogen storage and pulverization process is performed on the unusable portions 41 and 42 that have been cut and separated.

すなわち、真空槽内に使用不可部分41,42たる磁石片を装入して真空排気し、その後、水素を導入して所定温度(本実施形態では400℃)まで昇温する。この状態で所定時間(本実施形態では3時間)放置して水素を吸蔵させる。その後、水素を排気して再度所定温度(本実施形態では720℃)まで昇温し、この状態で所定時間(本実施形態では1時間)水素の脱気を行って再生磁粉を得た。   That is, the magnet pieces that are the unusable portions 41 and 42 are inserted into the vacuum chamber and evacuated, and then hydrogen is introduced to raise the temperature to a predetermined temperature (400 ° C. in this embodiment). In this state, the hydrogen is occluded by leaving for a predetermined time (in this embodiment, 3 hours). Thereafter, the hydrogen was exhausted, and the temperature was raised again to a predetermined temperature (720 ° C. in the present embodiment). In this state, hydrogen was deaerated for a predetermined time (1 hour in the present embodiment) to obtain a regenerated magnetic powder.

水素吸蔵粉砕処理で得られた再生磁粉の粒径分布を図1の斜線を付した太実線棒グラフで示す。これによれば、粒径分布は53μm以下から1000μm辺りまで広く分布しているものの、図より明らかなように、酸化し易いため磁石体の耐食性や機械的強度および磁気特性の低下をもたらす53μm以下の微粉の割合は2%程度と極めて少ない。これに対して、ジェットミル粉砕等の従来の機械的粉砕では、図1の破線棒グラフで示すように、53μm以下の微粉の割合が24%程度にも達している。   The particle size distribution of the regenerated magnetic powder obtained by the hydrogen storage and pulverization treatment is shown by a thick solid line bar graph with hatching in FIG. According to this, although the particle size distribution is widely distributed from 53 μm or less to around 1000 μm, as is apparent from the figure, it is easily oxidized and thus the corrosion resistance, mechanical strength and magnetic properties of the magnet body are reduced to 53 μm or less. The proportion of fine powder is as low as 2%. On the other hand, in the conventional mechanical pulverization such as jet mill pulverization, as shown by the broken line bar graph in FIG. 1, the proportion of fine powder of 53 μm or less reaches about 24%.

そこでバージン磁粉のみを使用した場合、水素吸蔵粉砕により得られた再生磁粉について、再生磁粉のみを使用した場合、バージン磁粉に対し全体量の20質量%,40質量%,60質量%,80質量%の再生磁粉を混合した混合磁粉(それぞれ混合磁粉20,混合磁粉40,混合磁粉60,混合磁粉80という)を使用した場合、のそれぞれについて、前述の冷間プレス成形、熱間プレス成形、および熱間押出加工の工程により外径30mm、内径25mm、長さ30mmの円筒磁石体を製造して、それぞれのBH特性を測定した。これを図4に示す。図4より明らかなように、再生磁粉のみでは良好なBH特性が得られないが、再生磁粉の混入割合が40質量%以下ではBH特性は殆ど悪化せず、再生磁粉の混入割合を60質量%、80質量%にしてもBH特性はやや悪化するものの未だ許容範囲内にある。したがって、再生磁粉の混入量を40質量%を越えて80質量%程度まで増やすことができる。   Therefore, when only virgin magnetic powder is used, with respect to regenerated magnetic powder obtained by hydrogen storage and pulverization, when only regenerated magnetic powder is used, the total amount is 20 mass%, 40 mass%, 60 mass%, and 80 mass% with respect to virgin magnetic powder. In the case of using mixed magnetic powders (respectively mixed magnetic powder 20, mixed magnetic powder 40, mixed magnetic powder 60, mixed magnetic powder 80) mixed with the above regenerated magnetic powder, the cold press molding, hot press molding, and heat described above are used. Cylindrical magnets having an outer diameter of 30 mm, an inner diameter of 25 mm, and a length of 30 mm were manufactured by the inter-extrusion process, and the respective BH characteristics were measured. This is shown in FIG. As is clear from FIG. 4, good BH characteristics cannot be obtained with regenerated magnetic powder alone, but when the mixing ratio of regenerated magnetic powder is 40% by mass or less, the BH characteristics are hardly deteriorated, and the mixing ratio of regenerated magnetic powder is 60% by mass. Even if it is 80% by mass, the BH characteristics are slightly deteriorated, but still within the allowable range. Therefore, the mixing amount of the regenerated magnetic powder can be increased from about 40% by mass to about 80% by mass.

また、バージン磁粉のみ、バージン磁粉に水素吸蔵粉砕による再生磁粉を全体量の80質量%混合した混合磁粉(混合磁粉Aという)、バージン磁粉に機械粉砕による再生磁粉を全体量の40質量%混合した混合磁粉(混合磁粉Bという)、バージン磁粉に機械粉砕による再生磁粉を全体量の80質量%混合した混合磁粉(混合磁粉C)を使用して上記と同様の工程で同形の円筒磁石体を製造し、各磁石体の磁気特性および機械的強度を測定した。これを表1に示す。   Also, only virgin magnetic powder, mixed magnetic powder (mixed magnetic powder A) in which virgin magnetic powder was mixed with 80% by mass of regenerated magnetic powder by hydrogen storage and pulverization, and regenerated magnetic powder by mechanical pulverization was mixed with 40% by mass of virgin magnetic powder. Using the mixed magnetic powder (mixed magnetic powder B) and the mixed magnetic powder (mixed magnetic powder C) in which virgin magnetic powder is mixed with 80% by mass of regenerated magnetic powder by mechanical pulverization, the same cylindrical magnet body is manufactured in the same process as above. Then, the magnetic properties and mechanical strength of each magnet body were measured. This is shown in Table 1.

磁気特性についてはマグネットアナライザーによって全磁束量を測定した。表1より明らかなように、バージン磁粉のみの磁石体の全磁束量が484μWであるのに対して、混合磁粉Aを使用した磁石体の全磁束量は460μWと十分大きな値を示している。これに対し、混合磁粉Bを使用した磁石体では全磁束量は449μWと大きくは低下していない。しかし、混合磁粉Cを使用した磁石体では全磁束量は420μWと大きく低下してしまう。   Regarding the magnetic characteristics, the total magnetic flux was measured with a magnet analyzer. As is clear from Table 1, the total magnetic flux of the magnet body using only the virgin magnetic powder is 484 μW, whereas the total magnetic flux of the magnet body using the mixed magnetic powder A is a sufficiently large value of 460 μW. On the other hand, in the magnet body using the mixed magnetic powder B, the total magnetic flux amount is not significantly reduced to 449 μW. However, in the magnet body using the mixed magnetic powder C, the total magnetic flux amount is greatly reduced to 420 μW.

機械的強度については表1に示すように圧環強度を測定した。ここで圧環強度とは、サンプルに半径方向から力を加えて当該サンプルが破壊した荷重(圧環荷重)に対してサンプルの寸法等を勘案した値である。具体的には、圧環荷重×(外径−肉厚)/(高さ×(肉厚)2)で求められる。なお肉厚は、(外径−内径)/2の値である。これによると、バージン磁粉のみの磁石体では圧環強度が181MPaであるのに対して、混合磁粉Aを使用した磁石体の圧環強度は176.3MPaと十分な強度を示している。これに対し、混合磁粉Bを使用した磁石体では圧環強度は143MPaと大きく低下してしまう。混合磁粉Gを使用した磁石体では圧環強度は110MPaと著しく低下する。 As for mechanical strength, the crushing strength was measured as shown in Table 1. Here, the crushing strength is a value in consideration of the dimensions of the sample with respect to a load (crushing crushing load) applied to the sample from the radial direction and broken by the sample. Specifically, it is determined by the pressure ring load × (outer diameter−wall thickness) / (height × (wall thickness) 2 ). The wall thickness is a value of (outer diameter−inner diameter) / 2. According to this, the crushing strength of the magnet body using only the virgin magnetic powder is 181 MPa, whereas the crushing strength of the magnet body using the mixed magnetic powder A is 176.3 MPa. On the other hand, in the magnet body using the mixed magnetic powder B, the crushing strength is greatly reduced to 143 MPa. In the magnet body using the mixed magnetic powder G, the crushing strength is remarkably reduced to 110 MPa.

Figure 2012253162
Figure 2012253162

以上より、従来の機械粉砕により得られた再生磁粉を全体量の80質量%の混合割合でバージン磁粉に加えると、これを使用して成形された磁石体は磁気特性、機械的強度のいずれもバージン磁粉のみを使用して成形された磁石体に対して大きく低下する。これに対して、水素吸蔵粉砕により得られた再生磁粉はバージン磁粉に対して全体量の80質量%の混合割合で加えても、これより成形された磁石体は、バージン磁粉のみを使用して成形された磁石体に比して磁気特性、機械的強度のいずれもその低下は許容範囲内に維持される。したがって、再生磁粉の有効活用が可能となり、資源の有効利用を図ることが可能となる。   From the above, when the regenerated magnetic powder obtained by conventional mechanical pulverization is added to the virgin magnetic powder at a mixing ratio of 80% by mass of the total amount, the magnet body molded using this has both magnetic properties and mechanical strength. It is greatly reduced with respect to a magnet body formed using only virgin magnetic powder. On the other hand, even if the regenerated magnetic powder obtained by hydrogen storage and pulverization is added at a mixing ratio of 80% by mass of the total amount with respect to the virgin magnetic powder, the magnet body formed from this uses only the virgin magnetic powder. The decrease in both magnetic properties and mechanical strength compared to the molded magnet body is maintained within an allowable range. Therefore, it is possible to effectively use the regenerated magnetic powder and to effectively use resources.

1,2,3…金型、4…磁石体、41…開口縁部分(使用不可部分)、42…底壁部分(使用不可部分)。   1, 2, 3 ... mold, 4 ... magnet body, 41 ... opening edge part (unusable part), 42 ... bottom wall part (unusable part).

Claims (2)

超急冷法によって得たバージン磁粉を含む原料を熱間塑性加工することにより製造された磁石体の、使用不可部分に対して水素吸蔵粉砕処理を施して磁石製造用の再生磁粉を得ることを特徴とする再生磁粉の製造方法。 A magnet body produced by hot plastic processing of a raw material containing virgin magnetic powder obtained by a super-quenching method is subjected to hydrogen occlusion and pulverization treatment to obtain a regenerated magnetic powder for magnet production. A method for producing regenerated magnetic powder. 請求項1の製造方法により得られた前記再生磁粉を、バージン磁粉に対し全体量の40質量%以上で80質量%以下の割合で混合して混合磁粉とし、当該混合磁粉を熱間塑性加工して磁石体を得ることを特徴とする磁石体の製造方法。 The regenerated magnetic powder obtained by the production method according to claim 1 is mixed at a ratio of 40% by mass to 80% by mass with respect to the total amount of virgin magnetic powder to obtain mixed magnetic powder, and the mixed magnetic powder is subjected to hot plastic working. To obtain a magnet body.
JP2011123862A 2011-06-02 2011-06-02 Reclaimed magnetic powder for magnet and production method of magnet body Withdrawn JP2012253162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011123862A JP2012253162A (en) 2011-06-02 2011-06-02 Reclaimed magnetic powder for magnet and production method of magnet body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011123862A JP2012253162A (en) 2011-06-02 2011-06-02 Reclaimed magnetic powder for magnet and production method of magnet body

Publications (1)

Publication Number Publication Date
JP2012253162A true JP2012253162A (en) 2012-12-20

Family

ID=47525715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011123862A Withdrawn JP2012253162A (en) 2011-06-02 2011-06-02 Reclaimed magnetic powder for magnet and production method of magnet body

Country Status (1)

Country Link
JP (1) JP2012253162A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103714928A (en) * 2013-12-30 2014-04-09 钢铁研究总院 Ferro-cerium-based rapid quenching permanent magnet powder and preparation method of ferro-cerium-based rapid quenching permanent magnet powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103714928A (en) * 2013-12-30 2014-04-09 钢铁研究总院 Ferro-cerium-based rapid quenching permanent magnet powder and preparation method of ferro-cerium-based rapid quenching permanent magnet powder

Similar Documents

Publication Publication Date Title
JP6366666B2 (en) Method for producing sintered Nd-Fe-B magnetic body containing no heavy rare earth element
JP2016188432A (en) Production method of powder metallurgy workpiece and workpiece
WO2011010561A1 (en) Dust core and method for producing same
KR20160069447A (en) Metal powder, method of fabricating the same, and method of fabricating molded article using the same
JP2018090892A (en) Rare-earth-iron-nitrogen-based magnetic powder and method for producing the same
JP2010251696A (en) Soft magnetic powder core and method of manufacturing the same
JP2013001985A (en) Rare-earth transition metal-based alloy powder and method for producing the same
US20140018483A1 (en) Method for producing ceramic or metal components by means of powder injection moulding, based on the use of inorganic fibres or nanofibres
JP2014130888A (en) R-t-b-based sintered magnet and method for producing the same
CN105087981A (en) Preparation method for novel welding-resistant ablation-resistant long-service-life copper-chromium contact material
JP2011243830A (en) Powder magnetic core and method for manufacturing the same
JP6613730B2 (en) Rare earth magnet manufacturing method
JP2017095792A (en) Method for generating porous spherical type iron-based alloy powder by reduction reaction and powder and sintered body thereof
JP6427991B2 (en) Dust core
US10002695B2 (en) Method for manufacturing rare-earth magnets
JP2014095486A (en) Method of producing magnetic refrigeration material
CN104016399B (en) The method preparing hydroxide of nano rare earth is reclaimed from Nd-Fe-Bo permanent magnet material
KR20120136350A (en) Molybdenum alloy and process for producing same
JP2012253162A (en) Reclaimed magnetic powder for magnet and production method of magnet body
CN107267847B (en) A kind of resistance to high temperature oxidation, iron-based porous material of caustic corrosion resistance and preparation method thereof
JP2015135935A (en) Rare earth based magnet
CN103080355B (en) The manufacture method of R-T-B based rare earth element permanent magnet alloy material, R-T-B based rare earth element permanent magnet and electric motor
JP6511844B2 (en) RTB based sintered magnet
JP5435398B2 (en) Soft magnetic dust core and manufacturing method thereof
RU2534473C1 (en) Manufacturing method of sintered hard-magnetic alloys based on iron-chrome-cobalt system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805