JP2012252961A - リチウムイオン二次電池 - Google Patents
リチウムイオン二次電池 Download PDFInfo
- Publication number
- JP2012252961A JP2012252961A JP2011126619A JP2011126619A JP2012252961A JP 2012252961 A JP2012252961 A JP 2012252961A JP 2011126619 A JP2011126619 A JP 2011126619A JP 2011126619 A JP2011126619 A JP 2011126619A JP 2012252961 A JP2012252961 A JP 2012252961A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- current collector
- electrode current
- ion secondary
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
【課題】充放電サイクルによる活物質の膨張収縮に伴う、活物質層と集電体の剥離を抑制し、さらに大電流を必要とする用途に対しても用いることのできるリチウムイオン二次電池を得ること。
【解決手段】リチウムイオン二次電池D1は、負極集電体31が第1の負極集電体31Aと第2の負極集電体31Bとを積層した積層構造を有する。そして、第1の負極集電体31Aは、第2の負極集電体31Bよりも引張強度が高い高強度金属材料により構成されている。そして、第2負極集電体31Bは、第1の負極集電体31Aよりも導電率が高い高導電金属材料により構成されている。
【選択図】図1
【解決手段】リチウムイオン二次電池D1は、負極集電体31が第1の負極集電体31Aと第2の負極集電体31Bとを積層した積層構造を有する。そして、第1の負極集電体31Aは、第2の負極集電体31Bよりも引張強度が高い高強度金属材料により構成されている。そして、第2負極集電体31Bは、第1の負極集電体31Aよりも導電率が高い高導電金属材料により構成されている。
【選択図】図1
Description
本発明は、リチウムイオン二次電池に関し、例えば、充放電サイクル特性の向上と高出力での充放電を可能にする負極集電体を有するリチウムイオン二次電池に関する。
昨今の環境負荷の低減を目的として、石油資源に変わる新たなエネルギー源に注目が集まっている。特に動力がエンジンであった自動車においてその変化が顕著に表れており、エンジン車からエンジンとモータを組み合わせたハイブリッド車(HEV)、さらに電気自動車(EV)へと移り変わろうとしている。
そのエネルギー源として、電気を蓄えるデバイスである電池への注目度はますます高まっている。なかでもリチウムイオン二次電池は、その動作電圧が高く、高い出力を得やすいことから、モータで駆動する自動車の電源の本命とされている。
特に自動車向けのリチウムイオン二次電池には、駆動開始時に大電流を必要とし、ブレーキ使用時に回生エネルギーを電池の充電に使用することから、充放電サイクル特性と、高出力、また高容量化が求められている。
現在使用されているリチウムイオン二次電池における負極の構造は、負極合剤層を集電体上に堆積させた構造を採用しており、集電体には銅箔が用いられ、負極合剤層の負極活物質には黒鉛等の炭素材料が主に用いられている。黒鉛の理論容量は372mAh/gであり、現時点でほぼ理論容量に達している。さらなる高容量化のためにはより理論容量が大きい活物質を用いることが必要であり、リチウムと合金化する金属として知られているSiは4199mAh/gと、理論容量が大きく有望な材料である。
しかし、理論容量が大きな負極活物質は、充電時の体積膨張が大きく、前述したSiの場合で体積膨張率が300%に達する。この膨張時に負極集電体として使用している銅箔は塑性変形してしまい、収縮時に活物質の体積変化に追随できず、活物質層が集電板から剥離してしまうため、充放電サイクルが短くなるという問題があった。
この問題に対して、特許文献1には集電銅箔の引張強度が400N/mm2以上および破断伸びが7%以上、かつ、引張強度と破断伸びとの積が2800N/mm2・%以上となる銅箔を用いることを提案している。
また、特許文献2には集電銅箔に銅合金を用い、引張強度と厚さの積が4000N/mm2以上となる銅箔を用いることを提案している。
さらに、特許文献3には電極・電池の製造工程において、銅箔の引張強度が半分以下に低下することから、引張強度が銅箔の初期値の90%以上を維持できる温度で電極・電池を作製することを提案している。
しかしながら、特許文献1、2に示される銅箔を負極集電体に用いると、充放電を繰り返すサイクル特性に対しての改善は見られるものの、銅箔自体の抵抗が高くなってしまうため、大電流を必要とする高出力用途においては、銅箔が発熱し、電池全体の温度が上昇し、熱による劣化が加速してしまうという問題がある。
熱による劣化を低減させるためには抵抗の低い銅箔を使用すればよいが、そうなると引張強度が200N/mm2以下に低減してしまうために、サイクル特性が得られない。
また、これまでの研究結果では、集電体の引張強度が400N/mm2で、負極活物質が炭素ならば、充放電に伴う膨張収縮が起こっても、負極合剤層と負極集電体の間での剥離や、負極集電体自体が切れることはない。しかし、さらに膨張収縮量の大きなSiやSnを使用した負極では、充放電サイクル試験を行うと、負極合剤層と負極集電体の間で剥離が起こってしまう。
この現象は、特に正極と負極をセパレータで挟み、ロール状に巻きつけた捲回型のリチウムイオン二次電池で見られている。このような構造の電池は、体積当たりの容量は得られるものの、同じ方向に曲率を有しており、正極負極それぞれに内周側と外周側が存在し、内周側の活物質層には圧縮応力が作用し、外周側の活物質層には引張応力が作用する。このように内周側と外周側で活物質層が受ける応力が異なることが、活物質層と集電体の間で剥離が見られる要因となっている。
本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、充放電サイクルによる活物質の膨張収縮に伴う、活物質層と集電体の剥離を抑制し、さらに大電流を必要とする用途に対しても用いることのできるリチウムイオン二次電池を提供することである。
上記課題を解決する本発明のリチウムイオン二次電池は、負極集電体の両面に負極合剤層が形成されて湾曲された負極を有するリチウムイオン二次電池であって、負極集電体は、第1の負極集電体と第2の負極集電体とを積層した積層構造を有し、第1の負極集電体は、第2の負極集電体よりも引張強度が高い高強度金属材料により構成され、第2負極集電体は、第1の負極集電体よりも導電率が高い高導電金属材料により構成されている。
本発明によれば、負極合剤層との剥離を抑制しかつ負極全体の電気抵抗を低減することができる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
以下、本実施の形態に係わる負極集電体を用いたリチウムイオン二次電池およびそれら製造方法について、図面を参照して説明する。
〔リチウムイオン二次電池の構造〕
図1は、円筒型のリチウムイオン二次電池を片側断面により示した図である。
図1は、円筒型のリチウムイオン二次電池を片側断面により示した図である。
非水電解液二次電池であるリチウムイオン二次電池は、湾曲された負極を有するものであれば、捲回型、積層型、コイン型、カード型等のいずれでもよく、特に限定されないが、例として、以下に捲回型のリチウムイオン二次電池の構造を説明する。
リチウムイオン二次電池D1は、捲回型の一種である円筒型のリチウムイオン二次電池であり、捲回電極群1と、捲回電極群1が収容される電池容器2とを有している。捲回電極群1は、正極20と負極30との間にセパレータ10を介在させて積層した積層電極を渦巻状に捲回して作製される。電池容器2は、有底円筒状の電池缶3と、その電池缶3に捲回電極群1を装填した後に電池缶3の上部開口を封止する電池蓋4を有している。電池缶3と電池蓋4との間には、ガスケット5が介在されて絶縁されている。電池缶3には、負極30が負極リード片6を介して電気的に接続されている。そして、電池蓋4には、正極20が正極リード片7を介して電気的に接続されている。上記構成を有するリチウムイオン二次電池D1には、以下に述べる材料を用いることができる。
〔正極〕
正極20は、正極集電体21と、その両面に設けられた正極合剤層22を有する。正極20は、充電時にリチウムイオンを放出し、放電時にリチウムイオンを吸蔵する材料を活物質として用いている。正極合剤層22は、正極活物質と、黒鉛系炭素材を主とする導電剤と、バインダーとを含む正極合剤を、正極集電体21であるアルミニウム箔上に塗布することにより形成される。
正極20は、正極集電体21と、その両面に設けられた正極合剤層22を有する。正極20は、充電時にリチウムイオンを放出し、放電時にリチウムイオンを吸蔵する材料を活物質として用いている。正極合剤層22は、正極活物質と、黒鉛系炭素材を主とする導電剤と、バインダーとを含む正極合剤を、正極集電体21であるアルミニウム箔上に塗布することにより形成される。
正極合剤層22の空孔体積は、正極合剤層22の体積に対して25%以上40%以下であることが好ましい。正極合剤層22の空孔体積が、前記正極合剤層22の体積に対して25%に満たないと、正極合剤層22内に浸透する電解液の量が減少しリチウムイオン数が減少する。このため、特に低温では、正極活物質へのリチウムイオン供給不足となり十分な出力が得られない。一方、空孔体積の割合が40%を超えると、正極活物質の割合が減少して入出力の低下を招く正極活物質としてはリチウム複合酸化物を用いることができる。
リチウム複合酸化物は、組成式LiαMnxM1yM2zO2(式中、M1は、Co、Niから選ばれる少なくとも1種、M2は、Co、Ni、Al、B、Fe、Mg、Crから選ばれる少なくとも1種であり、x+y+z=1、0<α<1.2、0.2≦x≦0.6、0.2≦y≦0.4、0.05≦z≦0.4)で表されるものが好ましい。
また、その中でも、M1がNi又はCoであって、M2がCo又はNiであることがより好ましい。LiMn1/3Ni1/3Co1/3O2であればさらに好ましい。組成中、Niを多くすると容量が大きく取れ、Coを多くすると低温での出力が向上でき、Mnを多くすると材料コストを抑制できる。また、添加元素は、サイクル特性を安定させるのに効果がある。
他に、一般式LiMxPO4(M:Fe又はMn、0.01≦X≦0.4)やLiMn1-xMxPO4(M:Mn以外の2価のカチオン、0.01≦X≦0.4)である空間群Pmnbの対称性を有する斜方晶のリン酸化合物でも良い。特に、LiMn1/3Ni1/3Co1/3O2は、低温特性とサイクル安定性とが高く、ハイブリット自動車用のリチウムイオン二次電池の材料として好適である。
正極20の作製にあたって使用するバインダーとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリル酸、ポリイミド樹脂、スチレンブタジエンゴム(SBR)などが挙げられる。
導電剤としては、例えば、グラファイト、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンナノチューブやその誘導体、炭素繊維のほか、金属粉末、金属繊維などが挙げられる。
〔負極〕
負極30は、負極集電体31と、その両面に設けられた負極合剤層32を有する。負極合剤層32は、充放電反応の中心となる負極活物質を含む層であり、負極活物質と、導電剤と、バインダーから構成されている。
負極30は、負極集電体31と、その両面に設けられた負極合剤層32を有する。負極合剤層32は、充放電反応の中心となる負極活物質を含む層であり、負極活物質と、導電剤と、バインダーから構成されている。
負極活物質の例としては、炭素質材料が従来多く用いられている。炭素質材料の例としては、非晶質炭素やグラッシーカーボンなどに代表される難黒鉛化性炭素や、天然黒鉛、天然黒鉛に乾式のCVD法や湿式のスプレイ法で形成される被膜を形成した複合炭素質材料、エポキシやフェノール等の樹脂原料若しくは石油や石炭から得られるピッチ系材料を原料として焼成して造られる人造黒鉛等がある。
また、炭素質材料以外に負極活物質として用いられる材料として、スピネル構造を有するリチウムチタン複合酸化物、一般式Li4/3Ti5/3O4などがある。
また、負極活物質の特性として、リチウムイオンを吸蔵脱離することができればよいため、リチウム金属や、Mg、Ca、Al、Si、Ge、Sn、Bi、Ag、Au、Znなどリチウムと合金を形成する材料を用いても良い。リチウム金属や、リチウムと合金を形成する材料は理論容量が大きくなるため、より高容量の電池を作製するのに適している。なかでも、理論容量の大きなSiやSnを含む合金が好適である。
さらに、上に挙げた炭素質材料とリチウム金属、リチウムと合金を形成する材料を混合して形成された複合材料や、上記の材料のうちの一つ以上を母材とし、その周囲に別の材料を被覆した構造の材料を負極活物質として用いることも可能である。
負極30の作製にあたって使用するバインダーとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリル酸、ポリイミド樹脂、スチレンブタジエンゴム(SBR)などが挙げられる。
導電剤としては、例えば、グラファイト、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンナノチューブやその誘導体、炭素繊維のほか、金属粉末、金属繊維などが挙げられる。
上記の材料を適用して作製した、負極合剤層32内の空孔体積は、負極合剤層32の体積に対して25%以上40%以下が好ましい。負極合剤層32の空孔体積が、負極合剤層32の体積に対して25%に満たないと、負極合剤層32内に浸透する電解液の量が減少する。このため、特に低温では、負極活物質へのリチウムイオン供給不足となり十分な入力が得られない。一方、空孔体積の割合が40%を超えると、負極活物質の割合が減少して入出力の低下を招く。
これらの材料層を集電体に配置する方法としては従来公知の塗布や印刷、蒸着やスパッタリング、CVD等の気相法の中から一つを含む方法を採用することが望ましい。
〔集電体〕
リチウムイオン二次電池D1の集電体は、アルミニウム箔、ニッケル箔、銅箔、ステンレス箔など、導電性を有する材料から構成される。従来公知の例としては、正極側の集電体にアルミニウム箔が用いられることが多い。
リチウムイオン二次電池D1の集電体は、アルミニウム箔、ニッケル箔、銅箔、ステンレス箔など、導電性を有する材料から構成される。従来公知の例としては、正極側の集電体にアルミニウム箔が用いられることが多い。
図2は、本実施の形態に係わる負極の構造を模式的に示す図である。
負極集電体31は、巻回された状態で内周側に配置される第1の負極集電体31Aと、外周側に配置される第2の負極集電体31Bとを積層した積層構造を有している。第1の負極集電体31Aと第2の負極集電体31Bの積層方法は、それぞれの材料を重ね合わせて形成する方法でも、第1の負極集電体31Aを基材として、第2の負極集電体31Bをめっきや蒸着、スパッタ、PVD、CVD等の方法により堆積させる方法のどちらでもよく、方法に限定されない。例えば、第1の負極集電体31Aと第2の負極集電体31Bを物理的に張り合わせることによって構成される。
負極集電体31は、巻回された状態で内周側に配置される第1の負極集電体31Aと、外周側に配置される第2の負極集電体31Bとを積層した積層構造を有している。第1の負極集電体31Aと第2の負極集電体31Bの積層方法は、それぞれの材料を重ね合わせて形成する方法でも、第1の負極集電体31Aを基材として、第2の負極集電体31Bをめっきや蒸着、スパッタ、PVD、CVD等の方法により堆積させる方法のどちらでもよく、方法に限定されない。例えば、第1の負極集電体31Aと第2の負極集電体31Bを物理的に張り合わせることによって構成される。
第1の負極集電体31Aに用いられる材料としては、材料の引張強度が前記第2の負極集電体31Bと比較して高強度であり、電池作製時における熱を加えた後での引張強度が500N/mm2以上1000N/mm2以下であることが望ましい。特に、銅を基材とし、クロム、スズ、亜鉛、シリコン、鉄、チタン、コバルト、ジルコニウムのうち、少なくとも1種類以上の元素を含む銅合金が好適である。
第2の負極集電体31Bに用いられる材料としては、材料の導電率が前記第1の負極集電体31Aと比較して、高いことを特徴としており、その導電率は5×107S/m以上1×108S/m以下であることが望ましい。特に、銅を基材とし、銀、スズ、ジルコニウムのうち、少なくとも1種類以上の元素を含む銅合金、または純銅が好適である。
基材となる銅箔の作製方法としては、電解銅箔または圧延銅箔のいずれでもよい。銅箔の厚さ、表面の粗さや形態、分子修飾などの表面の化学的な処理については前記の引張強度と導電率を満たしさえすれば、特に限定されず、必要に応じて所望のものを用いることができる。
負極集電体31の作製方法としては、第1の負極集電体31Aと第2の負極集電体31Bを重ね合わせて圧延し、その時の圧力によって前記第1の負極集電体31Aと第2の負極集電体31Bの表面金属原子同士を接合するクラッドによる接合や、材料を熱して溶接により接合する方法、または接着材を用いて接着する方法のうち少なくとも一つ以上の方法によって作製される。
また、第1の負極集電体31Aは、引張強度が500N/mm2以上1000N/mm2以下であれば、膜状あるいは箔状である必要はなく、図3に示すような網目構造や格子構造、あるいは短冊状にした構造の上に、第2の負極集電体31Bを前記のようなクラッドや溶接、接着等の方法のうち少なくとも一つの方法により接合させることも可能である。
さらに、第1の負極集電体31Aを基材として、電池作製時に外周側となる面に、第2の負極集電体31Bを、めっきや蒸着、スパッタ、PVD、CVDといった方法のうち少なくとも一つの方法により堆積させることで、本発明の構造を作製することができる。
このようにして作製した負極集電体31の厚さとしては、8〜20μmが好ましい。負極集電体31が薄すぎると取り扱いが困難になり、厚すぎるとリチウムイオン二次電池D1の重量エネルギー密度が低くなる。
図3は、負極集電体の他の実施例を説明する図であり、負極集電体31を捲回内周側から見た模式図である。本実施例における負極集電体31は、第2の負極集電体31Bが膜状あるいは箔状に広がる平面形状を有し、第1の負極集電体31Aが第2の負極集電体31Bの表面の一部を露出させた状態で第2の負極集電体31Bの表面に沿って広がる網目状あるいは格子状の形状を有している。
負極集電体31は、第2の負極集電体31Bの捲回内周側に、第1の負極集電体31Aを重ね合わせることにより作製されている。第1の負極集電体31Aは、捲回軸方向に切り込みを入れて捲回方向に引っ張ることによって形成される。第2の負極集電体31Bは、第1の負極集電体31Aの網目の間から露出している。
上記構成によれば、第1の負極集電体31Aを骨格部材として負極集電体31全体の強度を確保することができる。また、負極集電体31全体に占める第1の負極集電体31Aの割合を減らすことで、高い導電性を確保することができ、また、材料費の低減による低コスト化を図ることができる。
〔セパレータ〕
図1に示すセパレータ10は、公知のリチウムイオン二次電池に使用されているセパレータを用いることができ、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン製の微孔性フィルムや不織布などが挙げられる。電池の高容量化の観点からは、セパレータ10の厚みは、20μm以下とすることが好ましく、18μm以下とすることがより好ましい。このような厚みのセパレータを用いることで、電池の体積あたりの容量を大きくすることができる。しかし、セパレータを薄くしすぎると、取扱性が損なわれたり、正負極間の隔離が不十分となって短絡が生じ易くなったりするため、厚みの下限は10μmであることが好ましい。
図1に示すセパレータ10は、公知のリチウムイオン二次電池に使用されているセパレータを用いることができ、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン製の微孔性フィルムや不織布などが挙げられる。電池の高容量化の観点からは、セパレータ10の厚みは、20μm以下とすることが好ましく、18μm以下とすることがより好ましい。このような厚みのセパレータを用いることで、電池の体積あたりの容量を大きくすることができる。しかし、セパレータを薄くしすぎると、取扱性が損なわれたり、正負極間の隔離が不十分となって短絡が生じ易くなったりするため、厚みの下限は10μmであることが好ましい。
〔電池容器〕
電池容器2は、公知のリチウムイオン二次電池で採用されているものを用いることができる。たとえば、電池缶3は、アルミニウム製またはステンレス製の有底円筒形の容器であり、電池蓋4は、電池缶3の上方開口にレーザー溶接されるか、またはパッキングを介したクリンプシールにより密封されるものが使用できる。また、正極20や負極30は、電池容器2内でガラス製や樹脂製の絶縁体8、9で包まれて、電池容器2から隔離される。
電池容器2は、公知のリチウムイオン二次電池で採用されているものを用いることができる。たとえば、電池缶3は、アルミニウム製またはステンレス製の有底円筒形の容器であり、電池蓋4は、電池缶3の上方開口にレーザー溶接されるか、またはパッキングを介したクリンプシールにより密封されるものが使用できる。また、正極20や負極30は、電池容器2内でガラス製や樹脂製の絶縁体8、9で包まれて、電池容器2から隔離される。
〔電解液〕
電解液としては有機溶媒にリチウム塩を溶解させた有機溶媒系の非水電解液が用いられる。電解液の有機溶媒としては、特に限定されるものではないが、例えば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネートなどの鎖状エステル、あるいはエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの誘電率の高い環状エステル、あるいは鎖状エステルと環状エステルとの混合溶媒などが挙げられ、特に鎖状エステルを主溶媒とした環状エステルとの混合溶媒が用いられる。
電解液としては有機溶媒にリチウム塩を溶解させた有機溶媒系の非水電解液が用いられる。電解液の有機溶媒としては、特に限定されるものではないが、例えば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネートなどの鎖状エステル、あるいはエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの誘電率の高い環状エステル、あるいは鎖状エステルと環状エステルとの混合溶媒などが挙げられ、特に鎖状エステルを主溶媒とした環状エステルとの混合溶媒が用いられる。
電解液に用いるリチウム塩としては、特に限定はないが、無機リチウム塩では、LiPF6、LiBF4、LiClO4、LiI、LiCl、LiBr等、また、有機リチウム塩では、LiB[OCOCF3]4、LiB[OCOCF2CF3]4、LiPF4(CF3)2、LiN(SO2CF3)2、LiN(SO2CF2CF3)2等を用いることができる。特に、民生用電池で多く用いられているLiPF6は、品質の安定性から好適な材料である。
〔リチウムイオン二次電池の製造方法〕
上記構成を有するリチウムイオン二次電池D1の製造方法の一例について説明する。以下に示す製造方法について、工程順に説明するが、下記の形態のみには制限されない。
上記構成を有するリチウムイオン二次電池D1の製造方法の一例について説明する。以下に示す製造方法について、工程順に説明するが、下記の形態のみには制限されない。
正極20は、正極活物質であるリチウム複合酸化物粒子に、黒鉛、アセチレンブラック、カーボンブラック等の導電材を添加して混合した後、さらに、N−メチル−2−ピロリジノン(NMP)などの溶媒に溶解させたPVDFなどの結着剤を加えて混練し、正極スラリーを得る。次に、この正極スラリーをアルミニウム金属箔からなる正極集電体21上に塗布した後、乾燥して正極を作製する。
負極30は、負極活物質であるグラファイトカーボン或いはソフトカーボンに、カーボンブラック、アセチレンブラック及び炭素繊維などの導電材を加え、混合する。これにバインダーとしてNMPに溶解したPVDF或いはゴム系バインダーであるSBR等を加えた後に混練し、負極スラリーを得る。次に、この負極スラリーを負極集電体31の第1の負極集電体31Aの捲回内周側と、第2の負極集電体31Bの捲回外周側に塗布した後、乾燥して負極30を作製する。
上記正極20及び負極30は、圧延加工により緻密化され、所望の形状に裁断され、これらの電極20、30に電流を流すためのリード片6、7が形成される。
そして、正極20及び負極30の間に多孔質絶縁材のセパレータ10を挟みこみ、捲回して捲回電極群1を形成する。捲回電極群1は電池缶3に装填され、リード片6と電池缶3を接続された後、非水系電解液が注入され、最後に、電池缶3を電池蓋4で封缶してリチウムイオン二次電池D1を得る。
〔電池モジュール〕
上記リチウムイオン二次電池D1を使用する形態として、複数個の電池を直列かつ、または並列に接続し、電極端子を接合した形状のリチウムイオン二次電池モジュールを構成することができる。このようにして作製した電池モジュールを用いて、モータにより駆動する自動車や、鉄道に適用できる。また、風力発電や太陽光、太陽熱発電など、自然エネルギーから取り出した電気を貯蔵、放出するための電源として用いることができる。
上記リチウムイオン二次電池D1を使用する形態として、複数個の電池を直列かつ、または並列に接続し、電極端子を接合した形状のリチウムイオン二次電池モジュールを構成することができる。このようにして作製した電池モジュールを用いて、モータにより駆動する自動車や、鉄道に適用できる。また、風力発電や太陽光、太陽熱発電など、自然エネルギーから取り出した電気を貯蔵、放出するための電源として用いることができる。
上記構成を有するリチウムイオン二次電池D1によれば、高強度金属材料により構成された第1の負極集電体31Aにより、負極活物質との間の剥離を抑制でき、高導電金属材料により構成された第2の負極集電体31Bにより、負曲全体の電気抵抗を低減することができる。
負極合剤層32は、負極集電体31の捲回方向内周面側の方が、捲回方向外周面側よりも膨張収縮量が大きく、負極集電体31から剥がれやすい。これに対して、本実施の形態に係わるリチウムイオン二次電池では、第1の負極集電体31Aが、湾曲された捲回内周側(湾曲内側)に配置されて、第2の負極集電体31Bが、湾曲された捲回外周側(湾曲外側)に配置されているので、第1の負極集電体31Aにより、充放電に伴う内周側の負極活物質の膨張収縮によって引き起こされる合剤層と集電体間の剥離を抑制でき、加えて、外周側に配置された第2の負極集電体31Bにより、負極全体の抵抗を低減することができる。その結果、充放電サイクル特性を改善することができる。また、大電流での充放電が可能となり、充電時間を短縮し、放電時の熱によるエネルギーロスを低減することができる。以上の点から、充放電サイクルと大電流での充放電をともに満たす電池を作製することが可能となる。
次に、本発明の効果を、以下の実施例および比較例を用いて説明する。
[実施例1]
(1)負極集電体の作製
負極活物質には、平均粒径が20μmの天然黒鉛を用い、バインダーとしてSBR、増粘剤としてCMCを用いて、黒鉛:SBR:CMC=97:1.5:1.5の比となるように混合し、ペースト中の固形分の割合が44%になるよう溶媒として純水を添加することで、負極材ペースト(負極スラリー)を調製した。
(1)負極集電体の作製
負極活物質には、平均粒径が20μmの天然黒鉛を用い、バインダーとしてSBR、増粘剤としてCMCを用いて、黒鉛:SBR:CMC=97:1.5:1.5の比となるように混合し、ペースト中の固形分の割合が44%になるよう溶媒として純水を添加することで、負極材ペースト(負極スラリー)を調製した。
負極集電体として、第1の負極集電体31Aには、Niを2.2〜2.8%、Siを0.3〜0.7%、Znを1.5〜2.0%、Pを0.015〜0.06%を含む銅合金で、厚さが20μmの板を用意した。そして、第2の負極集電体31Bには、厚さ50μmの無酸素銅板を用意した。前記第1の負極集電体31Aと第2の負極集電体31Bを重ね合わせて圧延機に通し、機械的に接合させ、さらに厚さを10μmにしたものを負極集電体31として使用した。このときの負極集電体31中に占める第1の負極集電体31Aと第2の負極集電体31Bの厚さの比はほぼ1:1であった。
前記負極材ペーストを図3に示す長さ560mm、幅56mmに加工した負極集電体31の両面に塗布し、50℃の熱風炉と100℃の遠赤外炉を通過させた後、80℃の熱風炉と190℃の遠赤外炉を通すことで乾燥し、加圧ローラーでプレスすることで、負極合剤層32を負極集電体31の両面に形成した。
(2)リチウムイオン二次電池の作製
正極活物質としてLiMn1/3Ni1/3Co1/3O2を用い、導電助材としてカーボンブラック(CB2)と黒鉛(GF2)を用い、バインダーとしてPVDFを用いて、乾燥時の固形分重量を、LiMn1/3Ni1/3Co1/3O2:CB2:GF2:PVDF=86:2:9:3の比となるように、溶剤としてNMPを用いて正極材ペースト(正極スラリー)を調製した。
正極活物質としてLiMn1/3Ni1/3Co1/3O2を用い、導電助材としてカーボンブラック(CB2)と黒鉛(GF2)を用い、バインダーとしてPVDFを用いて、乾燥時の固形分重量を、LiMn1/3Ni1/3Co1/3O2:CB2:GF2:PVDF=86:2:9:3の比となるように、溶剤としてNMPを用いて正極材ペースト(正極スラリー)を調製した。
この正極材ペーストを、正極集電体21となる長さ510mm、幅54mmのアルミ箔の両面に塗布し、80℃で乾燥、加圧ローラーでプレス、120℃で乾燥して正極合剤層22を正極集電体21の両面に形成した。
上記(1)で作製した負極合剤層と前記正極合剤層との間にセパレータ10を挟み込み、捲回電極群1を形成した。このとき、負極合剤層32は、第1の負極集電体31Aが捲回された状態で内周側(捲回方向内周側)になるように設置して捲回を行った。その後、この捲回電極群1を電池缶3に挿入し、電解液を注入した。その後、ガスケット5を取り付けた電池蓋4を電池缶3にかしめて密閉し、直径18mm、長さ65mmの捲回型のリチウムイオン二次電池D1を作製した。
電解液には、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)エチルメチルカーボネート(EMC)の体積比で2:4:4の混合溶媒に1.0モルパーセントのLiPF6と添加材としてビニレンカーボネート(VC)0.8モルパーセントを加えた溶液を用いた。
[実施例2]
(1)負極集電体の作製
負極材ペーストは、実施例1と同様の手順により作製した。
(1)負極集電体の作製
負極材ペーストは、実施例1と同様の手順により作製した。
負極集電体31として、第1の負極集電体31Aには、Niを2.2〜2.8%、Siを0.3〜0.7%、Znを1.5〜2.0%、Pを0.015〜0.06%を含む銅合金で、厚さが50μmの板を用意した。第2の負極集電体31Bには、厚さ50μmの無酸素銅板を用意した。第1の負極集電体31Aと第2の負極集電体31Bを重ね合わせて圧延機に通し、機械的に接合させ、さらに厚さを10μmにしたものを負極集電体31として使用した。このときの負極集電体31中に占める第1の負極集電体31Aと第2の負極集電体31Bの厚さの比はおよそ3:1となった。
前記負極材ペーストを長さ560mm、幅56mmに加工した負極集電体31の両面に塗布し、50℃の熱風炉と100℃の遠赤外炉を通過させた後、80℃の熱風炉と190℃の遠赤外炉を通すことで乾燥し、加圧ローラーでプレスすることで、負極合剤層32を負極集電体31の両面に形成した。
(2)リチウムイオン二次電池の作製
負極集電体31は、前記(1)の方法により作製し、正極材料、電池の作製については実施例1と同様の手順により作製した。
負極集電体31は、前記(1)の方法により作製し、正極材料、電池の作製については実施例1と同様の手順により作製した。
[実施例3]
(1)負極集電体の作製
負極材ペーストは、実施例1と同様の手順により作製した。
(1)負極集電体の作製
負極材ペーストは、実施例1と同様の手順により作製した。
負極集電体31として、第1の負極集電体31Aには、Niを2.2〜2.8%、Siを0.3〜0.7%、Znを1.5〜2.0%、Pを0.015〜0.06%を含む銅合金で、厚さが50μmの板を用意した。この板の短辺方向に長さ5mmのスリットを短辺方向5mm、長手方向5mmの間隔で入れて圧延することで、図3に示すような網目状の構造を有する第1の負極集電体31Aを作製した。第2の負極集電体31Bには、厚さ50μmの無酸素銅板を用意した。前記網目構造を有する第1の負極集電体31Aと、第2の負極集電体31Bを重ね合わせて圧延機に通し、機械的に接合させ、さらに厚さを10μmにしたものを負極集電体31として使用した。
前記負極材ペーストを、長さ560mm、幅56mmに加工した負極集電体31の両面に塗布し、50℃の熱風炉と100℃の遠赤外炉を通過させた後、80℃の熱風炉と190℃の遠赤外炉を通すことで乾燥し、加圧ローラーでプレスすることで、負極合剤層32を負極集電体31の両面に形成した。
(2)リチウムイオン二次電池の作製
負極集電体31は、前記(1)の方法により作製し、正極材料、電池の作製については実施例1と同様の手順により作製した。
負極集電体31は、前記(1)の方法により作製し、正極材料、電池の作製については実施例1と同様の手順により作製した。
[実施例4]
「めっき」
(1)負極集電体の作製
負極材ペーストは、実施例1と同様の手順により作製した。
「めっき」
(1)負極集電体の作製
負極材ペーストは、実施例1と同様の手順により作製した。
負極集電体31として、第1の負極集電体31Aには、Niを2.2〜2.8%、Siを0.3〜0.7%、Znを1.5〜2.0%、Pを0.015〜0.06%を含む銅合金で、厚さが20μmの板を用意した。そのうちの片面に、電気めっきを用いて銅を10μm堆積させた後、圧延を行うことで10μmの負極集電体31を作製した。
前記負極材ペーストを、長さ560mm、幅56mmに加工した負極集電体31の両面に塗布し、50℃の熱風炉と100℃の遠赤外炉を通過させた後、80℃の熱風炉と190℃の遠赤外炉を通すことで乾燥し、加圧ローラーでプレスすることで、負極合剤層32を負極集電体31の両面に形成した。
(2)リチウムイオン二次電池の作製
負極集電体31は、前記(1)の方法により作製し、正極材料、電池の作製については実施例1と同様の手順により作製した。
負極集電体31は、前記(1)の方法により作製し、正極材料、電池の作製については実施例1と同様の手順により作製した。
[比較例1]
(1)負極集電体の作製
負極材ペーストは、実施例1と同様の手順により作製した。
(1)負極集電体の作製
負極材ペーストは、実施例1と同様の手順により作製した。
負極集電体として、銅を基材とし、Niを2.2〜2.8%、Siを0.3〜0.7%、Znを1.5〜2.0%、Pを0.015〜0.06%を含む銅合金で、厚さが10μmの圧延銅箔を用意した。
前記負極材ペーストを長さ560mm、幅56mmに加工した負極集電体の両面に塗布し、50℃の熱風炉と100℃の遠赤外炉を通過させた後、80℃の熱風炉と190℃の遠赤外炉を通すことで乾燥し、加圧ローラーでプレスすることで、負極合剤層を負極集電体の両面に形成した。
(2)リチウムイオン二次電池の作製
正極活物質としてLiMn1/3Ni1/3Co1/3O2を用い、導電助材としてカーボンブラック(CB2)と黒鉛(GF2)を用い、バインダーとしてPVDFを用いて、乾燥時の固形分重量を、LiMn1/3Ni1/3Co1/3O2:CB2:GF2:PVDF=86:2:9:3の比となるように、溶剤としてNMPを用いて正極材ペーストを調製した。
正極活物質としてLiMn1/3Ni1/3Co1/3O2を用い、導電助材としてカーボンブラック(CB2)と黒鉛(GF2)を用い、バインダーとしてPVDFを用いて、乾燥時の固形分重量を、LiMn1/3Ni1/3Co1/3O2:CB2:GF2:PVDF=86:2:9:3の比となるように、溶剤としてNMPを用いて正極材ペーストを調製した。
この正極材ペーストを、正極集電体となる長さ510mm、幅54mmのアルミ箔の両面に塗布し、80℃で乾燥、加圧ローラーでプレス、120℃で乾燥して正極合剤層を正極集電体の両面に形成した。
上記(1)で作製した負極と前記正極との間にセパレータを挟み込み、捲回電極群を形成した。その後、この捲回体を電池缶に挿入し、電解液を注入した。その後、ガスケットを取り付けた電池蓋を電池缶にかしめて密閉し、直径18mm、長さ65mmの捲回型電池を作製した。
電解液には、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)エチルメチルカーボネート(EMC)の体積比で2:4:4の混合溶媒に1.0モルパーセントのLiPF6と添加材としてビニレンカーボネート(VC)0.8モルパーセントを加えた溶液を用いた。
[比較例2]
(1)負極集電体の作製
負極材ペーストは、実施例1と同様の手順により作製した。負極集電体として、タフピッチ銅で、厚さが10μmの圧延銅箔を用意した。前記負極材ペーストを長さ560mm、幅56mmに加工した負極集電体の両面に塗布し、50℃の熱風炉と100℃の遠赤外炉を通過させた後、80℃の熱風炉と190℃の遠赤外炉を通すことで乾燥し、加圧ローラーでプレスすることで、負極合剤層を負極集電体の両面に形成した。
(1)負極集電体の作製
負極材ペーストは、実施例1と同様の手順により作製した。負極集電体として、タフピッチ銅で、厚さが10μmの圧延銅箔を用意した。前記負極材ペーストを長さ560mm、幅56mmに加工した負極集電体の両面に塗布し、50℃の熱風炉と100℃の遠赤外炉を通過させた後、80℃の熱風炉と190℃の遠赤外炉を通すことで乾燥し、加圧ローラーでプレスすることで、負極合剤層を負極集電体の両面に形成した。
(2)リチウムイオン二次電池の作製
負極板は前記(1)の方法により作製し、正極材料、電池の作製については比較例1と同様の手順により作製した。
負極板は前記(1)の方法により作製し、正極材料、電池の作製については比較例1と同様の手順により作製した。
〔評価方法〕
充放電装置を用いて、上記の実施例1〜5及び比較例1、2で作製した各電池について、25℃における充放電サイクルに伴う容量維持率の評価と、電流を変えて充放電を行うレート試験による容量変化の評価を行った。
充放電装置を用いて、上記の実施例1〜5及び比較例1、2で作製した各電池について、25℃における充放電サイクルに伴う容量維持率の評価と、電流を変えて充放電を行うレート試験による容量変化の評価を行った。
(初期放電容量の評価)
容量維持率の評価の前に、この捲回型電池の設計容量を1時間で放電する電流を1Cとした時の30%の電流量(0.3C)で上限電圧4.2V、5時間の定電流定電圧充電を行った後、下限電圧3.0Vまでの0.3Cで定電流放電をするという充放電を3回繰り返して初期化した。
容量維持率の評価の前に、この捲回型電池の設計容量を1時間で放電する電流を1Cとした時の30%の電流量(0.3C)で上限電圧4.2V、5時間の定電流定電圧充電を行った後、下限電圧3.0Vまでの0.3Cで定電流放電をするという充放電を3回繰り返して初期化した。
(容量維持率の評価)
初期放電容量の評価の後、1Cにおける最大放電容量を100%として、3Cでの充電、放電を500サイクル繰り返し、サイクル試験前後における容量変化率として容量維持率を評価した。
初期放電容量の評価の後、1Cにおける最大放電容量を100%として、3Cでの充電、放電を500サイクル繰り返し、サイクル試験前後における容量変化率として容量維持率を評価した。
(レート試験による容量変化の評価)
レート試験は、捲回型電池の設計容量を1時間で放電する電流を1Cと設定し、3.0Vから4.2Vまで1Cで定電流定電圧充電を行い、1時間の休止後に、4.2Vから3.0Vまでの放電を0.1C、0.5C、1C、3C、7Cと電流値を変えて充放電した時の放電容量を、1Cの時の容量を100%として、容量の変化を測定した。
レート試験は、捲回型電池の設計容量を1時間で放電する電流を1Cと設定し、3.0Vから4.2Vまで1Cで定電流定電圧充電を行い、1時間の休止後に、4.2Vから3.0Vまでの放電を0.1C、0.5C、1C、3C、7Cと電流値を変えて充放電した時の放電容量を、1Cの時の容量を100%として、容量の変化を測定した。
(活物質の剥がれの評価)
サイクル試験終了後の電池を解体し、活物質の剥れを目視にて確認した。初期放電容量・サイクル試験後の容量維持率・目視による剥れの評価結果を表1に示す。また、レート試験における容量変化を表2に示す。
サイクル試験終了後の電池を解体し、活物質の剥れを目視にて確認した。初期放電容量・サイクル試験後の容量維持率・目視による剥れの評価結果を表1に示す。また、レート試験における容量変化を表2に示す。
表1の結果から、負極活物質が同じであるため、初期の放電容量はすべて同じ値になっていた。
500サイクル経過後の容量維持率を比較すると、高強度の集電体の割合が高くなる実施例2、3、比較例1で、容量維持率が高く保たれていた。強度の低い銅箔を用いた比較例2では、容量維持率が他よりも低く、また、解体後の目視による剥れが見られており、本発明による効果があることが明らかとなった。
表2による各レートでの放電容量の変化で比較すると、高強度の集電体の割合が高い比較例1の電池において、高レートでの容量が小さくなった。一方、実施例1〜4では比較例2に近い容量が得られており、大電流での充放電を必要とする用途において、本発明による負極集電体31を用いたリチウムイオン二次電池D1が優れた特性を有していることが明らかとなった。
以上の結果から本発明の負極集電体31を用いたリチウムイオン二次電池D1は、優れたサイクル特性と、大電流での充放電という高い出力特性を両立させた電池であることが確かめられた。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。二次電池の電解質の種類で区別した場合には、上記した実施例では非水溶液系電解質型電池であったが、その他にも高分子ゲル電解質型電池及び固体高分子電解質、全固体電解質型電池のいずれにも適用しうるものである。これらの電解質は単独で使用することもできるし、電解液、高分子ゲル電解質、固体高分子電解質、全固体電解質をセパレータや不織布に含浸させて使用することもできるため、特に制限されるべきものではない。さらに支持塩(リチウム塩)、電解質、その他必要に応じて添加される化合物の選択については、特に制限はなく、使用用途に応じ、従来公知の知見を参照して適宜選択することができる。
1 捲回電極群
2 電池容器
10 セパレータ
20 正極
21 正極集電体
22 正極合剤層
30 負極
31 負極集電体
31A 第1の負極集電体
31B 第2の負極集電体
32 負極合剤層
D1 リチウムイオン二次電池
2 電池容器
10 セパレータ
20 正極
21 正極集電体
22 正極合剤層
30 負極
31 負極集電体
31A 第1の負極集電体
31B 第2の負極集電体
32 負極合剤層
D1 リチウムイオン二次電池
Claims (8)
- 負極集電体の両面に負極合剤層が形成されて湾曲された負極を有するリチウムイオン二次電池であって、
前記負極集電体は、第1の負極集電体と第2の負極集電体とを積層した積層構造を有し、前記第1の負極集電体は、前記第2の負極集電体よりも引張強度が高い高強度金属材料により構成され、前記第2の負極集電体は、第1の負極集電体よりも導電率が高い高導電金属材料により構成されていることを特徴とするリチウムイオン二次電池。 - 前記負極集電体は、湾曲内側に前記第1の負極集電体が配置され、湾曲外側に前記第2の負極集電体が配置されていることを特徴とする請求項1に記載のリチウムイオン二次電池。
- 前記第1の負極集電体は、銅を基材とし、クロム、スズ、亜鉛、シリコン、鉄、チタン、コバルト、ジルコニウムのうち、少なくとも1種類以上の元素を含む銅合金により構成されており、引張強度が500N/mm2以上1000N/mm2以下であることを特徴とする請求項1または2に記載のリチウムイオン二次電池。
- 前記第2の負極集電体は、銅を基材とし、銀、スズ、ジルコニウムのうち、少なくとも1種類以上の元素を含む銅合金、または純銅により構成されており、導電率が5×107S/m以上1×108S/m以下であることを特徴とする請求項1から請求項3のいずれか一項に記載のリチウムイオン二次電池。
- 前記負極集電体は、前記第1の負極集電体と前記第2の負極集電体を物理的に張り合わせることによって構成されていることを特徴とする請求項1から請求項4のいずれか一項に記載のリチウムイオン二次電池。
- 前記負極集電体は、前記第1の負極集電体に対して前記第2の負極集電体を、めっき、蒸着、スパッタのいずれか一つの方法によって堆積させることによって構成されていることを特徴とする請求項1から請求項4のいずれか一項に記載のリチウムイオン二次電池。
- 前記第2の負極集電体が膜状あるいは箔状に広がる平面形状を有し、
前記第1の負極集電体が前記第2の負極集電体の表面の一部を露出させた状態で前記第2の負極集電体の表面に沿って広がる網目状あるいは格子状の形状を有することを特徴とする請求項1から請求項6のいずれか一項に記載のリチウムイオン二次電池。 - 正極集電体の両面に正極合剤層が形成された正極と前記負極との間にセパレータを介在させて巻回することにより形成された捲回電極群を有し、
前記負極集電体は、湾曲内側となる捲回内周側に前記第1の負極集電体が配置され、湾曲外側となる捲回外周側に前記第2の負極集電体が配置されることを有することを特徴とする請求項1から請求項7のいずれか一項に記載のリチウムイオン二次電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011126619A JP2012252961A (ja) | 2011-06-06 | 2011-06-06 | リチウムイオン二次電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011126619A JP2012252961A (ja) | 2011-06-06 | 2011-06-06 | リチウムイオン二次電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012252961A true JP2012252961A (ja) | 2012-12-20 |
Family
ID=47525583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011126619A Withdrawn JP2012252961A (ja) | 2011-06-06 | 2011-06-06 | リチウムイオン二次電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012252961A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5739044B1 (ja) * | 2014-06-16 | 2015-06-24 | 株式会社Shカッパープロダクツ | 二次電池の負極集電体用銅合金箔、二次電池の負極集電体用銅合金箔の製造方法、二次電池用の負極、及び二次電池 |
JP2016126896A (ja) * | 2014-12-26 | 2016-07-11 | 三星エスディアイ株式会社Samsung SDI Co., Ltd. | 巻回型リチウムイオン二次電池用正極、巻回型リチウムイオン二次電池用負極、及び巻回型リチウムイオン二次電池 |
CN114784222A (zh) * | 2021-03-29 | 2022-07-22 | 宁德新能源科技有限公司 | 电化学装置和电子装置 |
CN115516691A (zh) * | 2021-04-22 | 2022-12-23 | 宁德时代新能源科技股份有限公司 | 电极组件及其制造方法和制造系统、电池单体以及电池 |
-
2011
- 2011-06-06 JP JP2011126619A patent/JP2012252961A/ja not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5739044B1 (ja) * | 2014-06-16 | 2015-06-24 | 株式会社Shカッパープロダクツ | 二次電池の負極集電体用銅合金箔、二次電池の負極集電体用銅合金箔の製造方法、二次電池用の負極、及び二次電池 |
JP2016126896A (ja) * | 2014-12-26 | 2016-07-11 | 三星エスディアイ株式会社Samsung SDI Co., Ltd. | 巻回型リチウムイオン二次電池用正極、巻回型リチウムイオン二次電池用負極、及び巻回型リチウムイオン二次電池 |
CN114784222A (zh) * | 2021-03-29 | 2022-07-22 | 宁德新能源科技有限公司 | 电化学装置和电子装置 |
US12002964B2 (en) | 2021-03-29 | 2024-06-04 | Ningde Amperex Technology Limited | Electrochemical device and electronic device |
CN115516691A (zh) * | 2021-04-22 | 2022-12-23 | 宁德时代新能源科技股份有限公司 | 电极组件及其制造方法和制造系统、电池单体以及电池 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7120307B2 (ja) | 電池用電極およびその製造方法 | |
US10629890B2 (en) | Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of producing negative electrode active material particles | |
KR101891013B1 (ko) | 전기 디바이스 | |
KR101689496B1 (ko) | 비수 전해액계 이차 전지 | |
US20160240843A1 (en) | Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of producing negative electrode material for a non-aqueous electrolyte secondary battery | |
JP6020584B2 (ja) | 非水電解質二次電池用正極活物質の製造方法 | |
KR101511895B1 (ko) | 전기 디바이스용 부극 활물질, 전기 디바이스용 부극 및 전기 디바이스 | |
US10096870B2 (en) | Non-aqueous electrolyte secondary battery | |
CN105934847B (zh) | 电器件 | |
CN111095618B (zh) | 蓄电装置用电极和其制造方法 | |
JP2007257862A (ja) | 二次電池用電極および二次電池 | |
JPWO2012077176A1 (ja) | リチウムイオン二次電池及びリチウムイオン二次電池の製造方法 | |
JP6834950B2 (ja) | リチウムイオン二次電池 | |
JP6252600B2 (ja) | 電気デバイス | |
JPWO2016194733A1 (ja) | リチウムイオン二次電池 | |
CN105934845B (zh) | 电器件 | |
CN111954952B (zh) | 非水电解质二次电池 | |
JP2012252961A (ja) | リチウムイオン二次電池 | |
JP2018170099A (ja) | 活物質、電極及びリチウムイオン二次電池 | |
WO2017094719A1 (ja) | リチウムイオン二次電池 | |
CN111435729B (zh) | 锂离子二次电池 | |
WO2016181927A1 (ja) | リチウムイオン電池 | |
WO2014199781A1 (ja) | 電気デバイス用負極活物質、およびこれを用いた電気デバイス | |
JP2013008707A (ja) | リチウムイオン二次電池用電極 | |
JP2012146398A (ja) | リチウム二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140902 |