JP2012252260A - Optical modulation circuit - Google Patents

Optical modulation circuit Download PDF

Info

Publication number
JP2012252260A
JP2012252260A JP2011126165A JP2011126165A JP2012252260A JP 2012252260 A JP2012252260 A JP 2012252260A JP 2011126165 A JP2011126165 A JP 2011126165A JP 2011126165 A JP2011126165 A JP 2011126165A JP 2012252260 A JP2012252260 A JP 2012252260A
Authority
JP
Japan
Prior art keywords
optical
circuit
modulation
optical modulation
branching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011126165A
Other languages
Japanese (ja)
Other versions
JP5466200B2 (en
Inventor
Yasushi Yamazaki
裕史 山崎
Takashi Saida
隆志 才田
Takashi Go
隆司 郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2011126165A priority Critical patent/JP5466200B2/en
Publication of JP2012252260A publication Critical patent/JP2012252260A/en
Application granted granted Critical
Publication of JP5466200B2 publication Critical patent/JP5466200B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical modulation circuit that achieves suppression of nonlinearity of an output optical signal.SOLUTION: An optical modulation circuit relating to one embodiment in the invention comprises: an optical branching circuit 401 for branching an input optical signal; a first optical modulation part 410 and a second optical modulation part 420 that are connected in parallel to the optical branching circuit; and an optical coupling circuit 402 for coupling optical signals that are modulated by each of the optical modulation parts. Each response period ratio of the first optical modulation part 410 and the second optical modulation part 420 is set as 1:1/3, and an electric field intensity ratio of branching to the first optical modulation part 410 and the second optical modulation part 420 by the optical branching circuit 401 is set as 1:1/3=9:1. And, the electric field intensity ratio of coupling by the optical coupling circuit 402 is set as 1:1/3=9:1. The response period ratio and the electric field intensity ratio are determined on the basis of Fourier expansion of a triangular wave. An addition of a secondary component and a high-order Fourier component to a primary component realizes suppression of nonlinearity of a response curve to a drive voltage.

Description

本発明は、光変調回路に関する。   The present invention relates to an optical modulation circuit.

光スペクトルの利用効率を向上させるため、QAM(Quadrature Amplitude Modulation)、OFDM(Orthogonal Frequency Division Multiplexing)等の多値変調の検討が盛んに行われている。   In order to improve the utilization efficiency of the optical spectrum, multi-level modulation such as QAM (Quadrature Amplitude Modulation) and OFDM (Orthogonal Frequency Division Multiplexing) has been actively studied.

多値光信号を得る方法の1つとして、駆動電圧を逆相で印加するプッシュプル駆動型のマッハツェンダ変調器(MZM)を多値電気信号で駆動する方法がある。図1に従来のMZMを示す。入力光信号が、方向性結合器、MMI、Y字型1×2カプラ等の光分岐回路101により第1の光導波路102及び第2の光導波路103に分岐される。φ=(π/Vπ)・Vとして、第1の電極104及び第2の電極105により、各光導波路に+φ/2及び−φ/2の位相変化が与えられる。ここで、Vは駆動電圧、Vπは光導波路中を伝搬する光信号の位相を半波長変化させる印加電圧である。各光導波路で変調を受けた光信号は、光結合回路106により結合され、出力光信号として出力される。このとき、出力光信号の電界Eはcos(φ/2)で表される。 One method for obtaining a multilevel optical signal is to drive a push-pull drive type Mach-Zehnder modulator (MZM) that applies a drive voltage in reverse phase with a multilevel electrical signal. FIG. 1 shows a conventional MZM. An input optical signal is branched into a first optical waveguide 102 and a second optical waveguide 103 by an optical branch circuit 101 such as a directional coupler, an MMI, or a Y-shaped 1 × 2 coupler. As φ = (π / V π ) · V, the first electrode 104 and the second electrode 105 give + φ / 2 and −φ / 2 phase changes to the respective optical waveguides. Here, V is a driving voltage, and is an applied voltage for changing the phase of an optical signal propagating through the optical waveguide by a half wavelength. The optical signals modulated by the respective optical waveguides are combined by the optical coupling circuit 106 and output as an output optical signal. At this time, the electric field E of the output optical signal is represented by cos (φ / 2).

図2に、駆動電圧に対する出力光信号の応答曲線を示す。駆動電圧に対する応答曲線が非線形であるため、多値電気信号による駆動時に、応答曲線が線形の三角波である場合に得られる理想的な等間隔の出力光信号からのズレが生じる。   FIG. 2 shows a response curve of the output optical signal with respect to the drive voltage. Since the response curve with respect to the drive voltage is non-linear, a deviation from the ideal equally spaced output optical signal obtained when the response curve is a linear triangular wave occurs when driving with a multi-valued electrical signal.

一方、この信号歪みを抑えるために駆動電圧の振幅を光損失が最小となる2Vπから絞ると、図3に示すように光損失が生じてしまう(非特許文献1参照)。 On the other hand, squeeze the amplitude of the drive voltage in order to suppress the signal distortion from 2V [pi optical loss is minimized, (see Non-Patent Document 1) that occur loss of light as shown in FIG.

Shogo Yamanaka, Takayuki Kobayashi, Akihide Sano, Hiroji Masuda, Eiji Yoshida, Yutaka Miyamoto, Tadao Nakagawa, Munehiko Nagatani, and Hideyuki Nosaka, “11 x 171 Gb/s PDM 16-QAM Transmission over 1440 km with a Spectral Efficiency of 6.4 b/s/Hz using High-Speed DAC,” Proc. ECOC 2010, paper We. 8. C. 1 (2010).Shogo Yamanaka, Takayuki Kobayashi, Akihide Sano, Hiroji Masuda, Eiji Yoshida, Yutaka Miyamoto, Tadao Nakagawa, Munehiko Nagatani, and Hideyuki Nosaka, “11 x 171 Gb / s PDM 16-QAM Transmission over 1440 km with a Spectral Efficiency of 6.4 b / s / Hz using High-Speed DAC, ”Proc. ECOC 2010, paper We. 8. C. 1 (2010).

本発明は、このような問題点に鑑みてなされたものであり、その目的は、出力光信号の非線形性が抑制された光変調回路を提供することにある。   The present invention has been made in view of such problems, and an object thereof is to provide an optical modulation circuit in which nonlinearity of an output optical signal is suppressed.

このような目的を達成するために、本発明の第1の態様は、入力光信号を分岐する光分岐回路と、前記光分岐回路に並列に接続されたN個(Nは2以上の整数)の光変調部と、各光変調部で変調を受けた光信号を結合する光結合回路とを備え、第1番目の光変調部と第n番目(nは2以上N以下の任意の整数)の光変調部の応答周期比は、1:1/(2n−1)であり、前記光分岐回路は、第1番目の光変調部と第n番目の光変調部に、前記入力光信号を電界強度比1:1/(2n−1)2で分岐し、前記光結合回路は、第1番目の光変調部と第n番目の光変調部からの光信号を電界強度比1:1/(2n−1)2で結合することを特徴とする光変調回路である。 In order to achieve such an object, according to a first aspect of the present invention, there is provided an optical branch circuit for branching an input optical signal and N pieces (N is an integer of 2 or more) connected in parallel to the optical branch circuit. And an optical coupling circuit that combines the optical signals modulated by the respective optical modulation units, the first optical modulation unit and the nth (n is an arbitrary integer between 2 and N) The response period ratio of the optical modulation unit is 1: 1 / (2n−1), and the optical branching circuit supplies the input optical signal to the first optical modulation unit and the nth optical modulation unit. The optical coupling circuit branches at an electric field intensity ratio of 1: 1 / (2n−1) 2 , and the optical coupling circuit converts the optical signals from the first and nth optical modulators into an electric field intensity ratio of 1: 1 /. (2n-1) 2 is an optical modulation circuit characterized by coupling.

また、本発明の第2の態様は、第1の態様において、各光変調部がプッシュプル駆動型のマッハツェンダ変調器であることを特徴とする。   According to a second aspect of the present invention, in the first aspect, each optical modulator is a push-pull drive type Mach-Zehnder modulator.

また、本発明の第3の態様は、第2の態様において、各マッハツェンダ変調器が変調電極を有し、各変調電極が縦続に接続されていることを特徴とする。   According to a third aspect of the present invention, in the second aspect, each Mach-Zehnder modulator has a modulation electrode, and each modulation electrode is connected in cascade.

また、本発明の第4の態様は、第1から第3のいずれかの態様の光変調回路が並列に2個接続され、各光変調回路からの光信号に光位相差π/2を付与する光位相差付与部を有することを特徴とするベクトル変調器である。   In the fourth aspect of the present invention, two optical modulation circuits according to any of the first to third aspects are connected in parallel, and an optical phase difference π / 2 is given to the optical signal from each optical modulation circuit. The vector modulator includes an optical phase difference providing unit.

本発明によれば、高次のフーリエ成分を生成して一次のフーリエ成分に加えることにより、出力光信号の非線形性が抑制された光変調回路を提供することができる。   According to the present invention, it is possible to provide an optical modulation circuit in which nonlinearity of an output optical signal is suppressed by generating a high-order Fourier component and adding it to the primary Fourier component.

従来のMZMを示す図である。It is a figure which shows the conventional MZM. 従来のMZMで生じる信号歪みを説明するための図である。It is a figure for demonstrating the signal distortion which arises in the conventional MZM. 従来のMZMで生じる光損失を説明するための図である。It is a figure for demonstrating the optical loss which arises in the conventional MZM. 本発明による光変調回路を示す図である。It is a figure which shows the optical modulation circuit by this invention. 図4の光変調回路により得られる応答曲線を示す図である。It is a figure which shows the response curve obtained by the light modulation circuit of FIG. 信号レベルの理想点からのズレの評価値Dを説明するための図である。It is a figure for demonstrating the deviation evaluation value D from the ideal point of a signal level. 光変調部の並列数Nと評価値Dとの関係を示す図である。It is a figure which shows the relationship between the parallel number N and the evaluation value D of a light modulation part. 実施例1の光変調回路を示す図である。1 is a diagram illustrating an optical modulation circuit according to a first embodiment. 図8の光変調回路により得られる応答曲線を示す図である。It is a figure which shows the response curve obtained by the light modulation circuit of FIG. 実施例2の光変調回路を示す図である。6 is a diagram illustrating an optical modulation circuit according to a second embodiment. FIG. 実施例3の光変調回路を示す図である。6 is a diagram illustrating an optical modulation circuit according to a third embodiment. FIG. 図11の光変調回路により得られる応答曲線を示す図である。It is a figure which shows the response curve obtained by the light modulation circuit of FIG. 実施例2の光変調回路を2並列としたベクトル変調器を示す図である。It is a figure which shows the vector modulator which made the optical modulation circuit of Example 2 2 parallel. 従来の2並列MZMを用いたベクトル変調器を示す図である。It is a figure which shows the vector modulator using the conventional 2 parallel MZM. ベクトル変調器の4値駆動時の出力信号ダイアグラムである。It is an output signal diagram at the time of 4-value drive of a vector modulator.

以下、図面を参照して本発明の実施形態について詳細に説明する。まず、本発明の基本的考え方について説明する。その後、具体的実施例について説明を行う。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, the basic concept of the present invention will be described. Thereafter, specific examples will be described.

(本発明の基本的考え方)
図4を参照して、本発明の基本的考え方を説明する。本発明の一実施形態に係る光変調回路は、入力光信号を分岐する光分岐回路401と、光分岐回路に並列に接続された第1の光変調部410及び第2の光変調部420と、各光変調部で変調を受けた光信号を結合する光結合回路402とを備える。第1の光変調部410と第2の光変調部420の応答周期比を1:1/3とし、かつ、光分岐回路401による第1の光変調部410と第2の光変調部420への分岐の電界強度比を1:1/32=9:1とする。そして、光結合回路402による結合の電界強度比を1:1/32=9:1とする。当該応答周期比および電界強度比は三角波のフーリエ展開である次式による。
(Basic concept of the present invention)
The basic concept of the present invention will be described with reference to FIG. An optical modulation circuit according to an embodiment of the present invention includes an optical branch circuit 401 that branches an input optical signal, and a first optical modulation unit 410 and a second optical modulation unit 420 that are connected in parallel to the optical branch circuit. And an optical coupling circuit 402 for coupling optical signals modulated by the respective optical modulation units. The response cycle ratio of the first light modulation unit 410 and the second light modulation unit 420 is 1: 1/3, and the first light modulation unit 410 and the second light modulation unit 420 are separated by the optical branch circuit 401. The branching electric field strength ratio is 1: 1/3 2 = 9: 1. The electric field strength ratio of coupling by the optical coupling circuit 402 is 1: 1/3 2 = 9: 1. The response period ratio and the electric field strength ratio are based on the following expression which is a Fourier expansion of a triangular wave.

Figure 2012252260
Figure 2012252260

このように、二次のフーリエ成分を加えることで、駆動電圧に対する応答曲線の非線形性を抑えることができる。図5に示すように、線形性が改善されている。   In this way, by adding a second-order Fourier component, nonlinearity of the response curve with respect to the drive voltage can be suppressed. As shown in FIG. 5, the linearity is improved.

上記の説明では二次の成分のみを検討して説明したが、同様に高次のフーリエ成分を一次の成分に加えていくことによって、駆動電圧に対する応答曲線の非線形性を抑えることができる。一般化すると、本発明による光変調回路は、N個(Nは2以上の整数)の並列に接続された光変調部を有する。第n番目の光変調部は、駆動電圧Vに対して当該光変調部に光分岐回路により分岐された光信号の電界E0を以下のように変化させる。 In the above description, only the second-order component has been examined and described, but similarly, by adding a higher-order Fourier component to the first-order component, nonlinearity of the response curve with respect to the drive voltage can be suppressed. When generalized, the optical modulation circuit according to the present invention has N (N is an integer of 2 or more) optical modulation units connected in parallel. The nth optical modulation unit changes the electric field E 0 of the optical signal branched to the optical modulation unit by the optical branch circuit with respect to the driving voltage V as follows.

Figure 2012252260
Figure 2012252260

そして、光結合回路により、各光変調部で変調された光信号を結合する。ここで、第1番目と第n番目の光変調部に、光信号が電界強度比1:1/(2n−1)2で分岐されるように光分岐回路を設計し、第1番目と第n番目の光変調部からの光信号が電界強度比1:1/(2n−1)2で結合されるように光結合回路を設計する。式(2)から分かるように、第1番目と第n番目の光変調部の応答周期比は1:1/(2n−1)である。 Then, the optical signals modulated by the respective optical modulation units are coupled by the optical coupling circuit. Here, an optical branch circuit is designed in the first and n-th optical modulators so that the optical signal is branched at an electric field strength ratio of 1: 1 / (2n-1) 2 . The optical coupling circuit is designed so that the optical signals from the nth optical modulation unit are coupled at an electric field intensity ratio of 1: 1 / (2n-1) 2 . As can be seen from Equation (2), the response period ratio of the first and nth light modulation units is 1: 1 / (2n−1).

なお、本発明は、基板材料の選択(XカットLNもしくはZカットLN、または、EO効果を有する酸化物結晶、半導体もしくはポリマ等)や、シングル駆動またはデュアル駆動の選択には依存せず同様の効果を奏することに留意されたい。   Note that the present invention does not depend on the selection of the substrate material (X-cut LN or Z-cut LN, or an oxide crystal having an EO effect, a semiconductor, a polymer, or the like), or the selection of single drive or dual drive. Note that it is effective.

ここで、信号レベルの理想点からのズレの評価値について説明する。ズレの評価値を以下のように定義する。   Here, the evaluation value of the deviation from the ideal point of the signal level will be described. The evaluation value of deviation is defined as follows.

Figure 2012252260
Figure 2012252260

ここで、Mは変調多値数、Ekは実際の出力光信号レベル、Ek,idealは理想レベル、EMAXは最大信号レベルである。EMAXは本明細書では1.00に規格化している(図6参照)。 Here, M modulation level, E k the actual output optical signal level, E k, ideal is the ideal level, E MAX is the maximum signal level. E MAX is normalized to 1.00 in this specification (see FIG. 6).

変調多値数M=4、8、16について、光変調部の並列数Nに対する評価値Dの変化をプロットしたものが図7である。基本的には、並列数N増加に伴い評価値Dは減少。つまり、並列数Nを増やすことで線形性が向上し、レベルズレが減少する。   FIG. 7 is a plot of changes in the evaluation value D against the parallel number N of the light modulation units for the modulation multi-level number M = 4, 8, and 16. Basically, the evaluation value D decreases as the parallel number N increases. That is, increasing the parallel number N improves the linearity and reduces the level shift.

ただし、変調多値数が小さい場合、必ずしも単調減少にならない。例えばM=4の場合、D(N=2)=0.8%に対し、D(N=3)=1.1%となる。すなわち、4値変調に対してはN=2が最適なのである。8値変調、16値変調に対しては、並列数N増加によるレベルズレ減少と構成複雑化のトレードオフを勘案して構成を選択する必要がある。   However, when the modulation multi-level number is small, it does not necessarily decrease monotonously. For example, when M = 4, D (N = 2) = 0.8%, whereas D (N = 3) = 1.1%. That is, N = 2 is optimal for quaternary modulation. For 8-level modulation and 16-level modulation, it is necessary to select a configuration in consideration of a trade-off between a level shift decrease due to an increase in the parallel number N and a configuration complexity.

以下、実施例を説明する。   Examples will be described below.

実施例1
XカットLN基板上に図8の光変調回路を形成した。第1の光変調部及び第2の光変調部は、それぞれシングル電極型のMZMである。第2の変調電極は、第1の変調電極の約3倍の長さとし、第1の光変調部の応答E1、第2の光変調部の応答E2が以下を満たすように設計した。
Example 1
The light modulation circuit shown in FIG. 8 was formed on an X-cut LN substrate. The first light modulation unit and the second light modulation unit are each a single electrode type MZM. The second modulation electrode was designed to be about three times as long as the first modulation electrode, so that the response E 1 of the first light modulation unit and the response E 2 of the second light modulation unit satisfy the following.

Figure 2012252260
Figure 2012252260

第1の光変調部と第2の光変調部は、強度分岐比9:1の光カプラを光分岐回路、強度結合比9:1の光カプラを光結合回路として用いて接続した。実施例1に係る光変調回路全体の応答はE=0.9E1+0.1E2となる。位相調整部は、2つの光変調部の位相差をゼロにするために設けた。 The first optical modulator and the second optical modulator were connected using an optical coupler with an intensity branching ratio of 9: 1 as an optical branch circuit and an optical coupler with an intensity coupling ratio of 9: 1 as an optical coupling circuit. The response of the entire optical modulation circuit according to the first embodiment is E = 0.9E 1 + 0.1E 2 . The phase adjustment unit was provided in order to make the phase difference between the two light modulation units zero.

駆動電圧を等間隔、振幅2Vπの4値で駆動した場合、理想的な出力光信号レベル−1.00、−0.33、+0.33、+1.00に対し、従来の単独MZMでは、−1.00、−0.50、+0.50、+1.00となる一方、本実施例では、−1.00、−0.35、+0.35、+1.00となり、応答の線形性が向上し、より理想に近い信号レベルが得られた(図9参照)。 Equally spaced drive voltage, when driven in the four-level amplitude 2V [pi, ideal output optical signal level -1.00, -0.33, + 0.33, to + 1.00, in the conventional single MZM, -1.00, -0.50, +0.50, +1.00, while in this example, -1.00, -0.35, +0.35, +1.00, and the response linearity is The signal level was improved and a signal level closer to the ideal was obtained (see FIG. 9).

実施例2
実施例1との違いは、変調電極を縦続に接続して一本とした点である(図10参照)。これにより、駆動系を一系統化することができる。当然、第2の変調電極に多値電気信号が先に入力される構成としてもよい。また、第2の変調電極の長さが第1の変調電極の約3倍であれば、分割して配置してもよい。
Example 2
The difference from the first embodiment is that the modulation electrodes are connected in cascade to form one (see FIG. 10). As a result, the drive system can be integrated. Of course, a configuration may be adopted in which a multi-valued electrical signal is first input to the second modulation electrode. Further, if the length of the second modulation electrode is about three times that of the first modulation electrode, they may be arranged separately.

実施例3
N=3の例として、図11に示す光変調回路を作製した。第1、第2、第3の光変調部の変調電極長の比を約1:3:5とし、応答が以下を満たすように設計した。
Example 3
As an example of N = 3, the light modulation circuit shown in FIG. 11 was manufactured. The ratio of the modulation electrode lengths of the first, second, and third light modulation units was set to about 1: 3: 5, and the response was designed to satisfy the following.

Figure 2012252260
Figure 2012252260

強度分岐比225:25:9(=1:1/9:1/25)の光カプラを光分岐回路、強度結合比225:25:9の光カプラを光結合回路として用いて接続した。実施例3に係る光変調回路全体の応答はE=(225E1+25E2+9E3)/259となり、実施例1、2よりもさらに線形に近い応答が得られた(図12参照)。 An optical coupler having an intensity branching ratio of 225: 25: 9 (= 1: 1/9: 1/25) was connected as an optical branching circuit, and an optical coupler having an intensity coupling ratio of 225: 25: 9 was used as an optical coupling circuit. The response of the entire optical modulation circuit according to Example 3 was E = (225E 1 + 25E 2 + 9E 3 ) / 259, and a response closer to linear than those of Examples 1 and 2 was obtained (see FIG. 12).

実施例4
実施例2の光変調回路を2並列とし、図13に示すベクトル変調器(IQ変調器)を構成した。比較のため、従来の2並列MZMを用いたベクトル変調器を図14に示す。
Example 4
A vector modulator (IQ modulator) shown in FIG. 13 was configured by arranging two optical modulation circuits of Example 2 in parallel. For comparison, FIG. 14 shows a vector modulator using a conventional two-parallel MZM.

従来のベクトル変調器に比べ、図15に示すように、多値駆動時の信号点の理想点からのズレが少ない。   Compared with the conventional vector modulator, as shown in FIG. 15, there is little deviation from the ideal point of the signal point at the time of multilevel driving.

例えば、各々4値のI、Qチャネル信号(振幅2Vπ)で駆動すると、図15の○で示す16QAMの信号ダイアグラムが得られる。線形性向上により、従来のベクトル変調器で得られる結果(△)に比べて理想点(◆)に近い。 For example, when driven by four-valued I and Q channel signals (amplitude 2V π ), a 16QAM signal diagram indicated by ◯ in FIG. 15 is obtained. Due to the improved linearity, it is closer to the ideal point (♦) than the result (Δ) obtained with the conventional vector modulator.

401 光分岐回路
402 光結合回路
410 第1の光変調部
420 第2の光変調部
401 optical branching circuit 402 optical coupling circuit 410 first optical modulation unit 420 second optical modulation unit

Claims (4)

入力光信号を分岐する光分岐回路と、
前記光分岐回路に並列に接続されたN個(Nは2以上の整数)の光変調部と、
各光変調部で変調を受けた光信号を結合する光結合回路と
を備え、
第1番目の光変調部と第n番目(nは2以上N以下の任意の整数)の光変調部の応答周期比は、1:1/(2n−1)であり、
前記光分岐回路は、第1番目の光変調部と第n番目の光変調部に、前記入力光信号を電界強度比1:1/(2n−1)2で分岐し、
前記光結合回路は、第1番目の光変調部と第n番目の光変調部からの光信号を電界強度比1:1/(2n−1)2で結合することを特徴とする光変調回路。
An optical branch circuit for branching an input optical signal;
N optical modulation units (N is an integer of 2 or more) connected in parallel to the optical branch circuit;
An optical coupling circuit for coupling optical signals modulated by each optical modulation unit,
The response period ratio of the first light modulation unit and the nth light modulation unit (n is an arbitrary integer of 2 or more and N or less) is 1: 1 / (2n−1),
The optical branching circuit branches the input optical signal into a first optical modulation unit and an nth optical modulation unit with an electric field intensity ratio of 1: 1 / (2n-1) 2 ,
The optical coupling circuit couples optical signals from the first and n-th optical modulation sections with an electric field intensity ratio of 1: 1 / (2n-1) 2. .
各光変調部がプッシュプル駆動型のマッハツェンダ変調器であることを特徴とする請求項1記載の光変調回路。   2. The optical modulation circuit according to claim 1, wherein each optical modulation unit is a push-pull drive type Mach-Zehnder modulator. 各マッハツェンダ変調器が変調電極を有し、各変調電極が縦続に接続されていることを特徴とする請求項2記載の光変調回路。   3. The optical modulation circuit according to claim 2, wherein each Mach-Zehnder modulator has a modulation electrode, and each modulation electrode is connected in cascade. 請求項1から3のいずれかに記載の光変調回路が並列に2個接続され、
各光変調回路からの光信号に光位相差π/2を付与する光位相差付与部を有することを特徴とするベクトル変調器。
Two optical modulation circuits according to any one of claims 1 to 3 are connected in parallel,
A vector modulator comprising: an optical phase difference providing unit that applies an optical phase difference π / 2 to an optical signal from each optical modulation circuit.
JP2011126165A 2011-06-06 2011-06-06 Optical modulation circuit Active JP5466200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011126165A JP5466200B2 (en) 2011-06-06 2011-06-06 Optical modulation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011126165A JP5466200B2 (en) 2011-06-06 2011-06-06 Optical modulation circuit

Publications (2)

Publication Number Publication Date
JP2012252260A true JP2012252260A (en) 2012-12-20
JP5466200B2 JP5466200B2 (en) 2014-04-09

Family

ID=47525110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011126165A Active JP5466200B2 (en) 2011-06-06 2011-06-06 Optical modulation circuit

Country Status (1)

Country Link
JP (1) JP5466200B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018039A (en) * 2014-07-07 2016-02-01 日本電信電話株式会社 Mach-zehnder amplitude modulator, optical multilevel signal modulation device, and optical multilevel signal modulation method
JP2016033546A (en) * 2014-07-31 2016-03-10 日本電信電話株式会社 Tree type optical switch constitution
JP2017083607A (en) * 2015-10-27 2017-05-18 住友大阪セメント株式会社 Optical modulator
JP2017083608A (en) * 2015-10-27 2017-05-18 住友大阪セメント株式会社 Optical modulator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018039A (en) * 2014-07-07 2016-02-01 日本電信電話株式会社 Mach-zehnder amplitude modulator, optical multilevel signal modulation device, and optical multilevel signal modulation method
JP2016033546A (en) * 2014-07-31 2016-03-10 日本電信電話株式会社 Tree type optical switch constitution
JP2017083607A (en) * 2015-10-27 2017-05-18 住友大阪セメント株式会社 Optical modulator
JP2017083608A (en) * 2015-10-27 2017-05-18 住友大阪セメント株式会社 Optical modulator

Also Published As

Publication number Publication date
JP5466200B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
US11716148B2 (en) Linearized optical digital-to-analog modulator
US9977310B2 (en) Multi-electrode photonic digital to analog converting vector modulator
CN107210821B (en) Digital generation of multi-level phase shift using Mach-Zehnder modulators (MZMs)
JP5860159B2 (en) Optical modulation circuit
US20140153075A1 (en) Optical signal modulation
JP6032276B2 (en) Optical transmitter, optical transmission / reception system, and drive circuit
JP5466200B2 (en) Optical modulation circuit
JP2016218190A (en) Optical two-tone signal generating method, and dp-mzm type optical modulator control method
JP5823927B2 (en) Optical modulation circuit
JP5643037B2 (en) Light modulator
WO2013140475A1 (en) Optical transmitter, optical transmission/reception system, and drive circuit
US8873896B1 (en) Dual polarization optical modulator using dual broadband multi-electrode weighted direct analog phase modulators
Li et al. A novel 64-QAM optical transmitter driven by binary signals
JP6122334B2 (en) Light modulator
JP2016151594A (en) Optical modulator
Li Investigation of 64-QAM optical modulator with paralleled dual-drive MZMs driven by binary signals
WO2013140476A1 (en) Optical transmitter, optical transmission/reception system, and drive circuit
JP2017083608A (en) Optical modulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130530

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140123

R150 Certificate of patent or registration of utility model

Ref document number: 5466200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150