WO2013140476A1 - Optical transmitter, optical transmission/reception system, and drive circuit - Google Patents

Optical transmitter, optical transmission/reception system, and drive circuit Download PDF

Info

Publication number
WO2013140476A1
WO2013140476A1 PCT/JP2012/007109 JP2012007109W WO2013140476A1 WO 2013140476 A1 WO2013140476 A1 WO 2013140476A1 JP 2012007109 W JP2012007109 W JP 2012007109W WO 2013140476 A1 WO2013140476 A1 WO 2013140476A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
output
drive circuit
gradations
Prior art date
Application number
PCT/JP2012/007109
Other languages
French (fr)
Japanese (ja)
Inventor
栄実 野口
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2014505814A priority Critical patent/JP6032275B2/en
Publication of WO2013140476A1 publication Critical patent/WO2013140476A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure

Definitions

  • the present invention relates to an optical transmitter, an optical transmission / reception system, and a drive circuit, and more particularly to an optical transmitter, an optical transmission / reception system, and a drive circuit that perform multilevel modulation.
  • wavelength-division-multiplexed optical fiber communication systems With the explosive demand for broadband multimedia communication services such as the Internet and video distribution, long-distance, large-capacity and high-reliability high-density wavelength-division-multiplexed optical fiber communication systems are being introduced in trunk lines and metro lines.
  • optical fiber access services are rapidly spreading in subscriber systems.
  • it is important to reduce the installation cost of an optical fiber that is an optical transmission line and to increase the transmission band utilization efficiency per optical fiber. For this reason, a wavelength multiplexing technique that multiplexes and transmits optical signals having different wavelengths is widely used.
  • Optical transmitters for WDM optical fiber communication systems are capable of high-speed optical modulation, have small optical signal wavelength dependency, and unnecessary optical phase modulation components (modulation) that cause deterioration of the received optical waveform during long-distance signal transmission
  • an optical modulator in which the light intensity modulation component (when the method is a light intensity modulation method) or the light intensity modulation component (when the modulation method is an optical phase modulation method) is minimized.
  • an MZ light intensity modulator incorporating an optical waveguide type optical phase modulator similar to an optical waveguide type Mach-Zehnder (hereinafter, MZ) interferometer is practical.
  • the optical modulation spectrum is higher than that of the normal binary light intensity modulation method.
  • a multilevel optical modulation signaling scheme with a narrower bandwidth is advantageous. This multi-level optical modulation signal system is considered to become mainstream particularly in a trunk optical fiber communication system exceeding 40 Gb / s, where future demand is expected to increase.
  • a monolithic integrated multilevel optical modulator combining two MZ optical intensity modulators and an optical multiplexer / demultiplexer has been developed for such applications.
  • the length of the electrode provided in the optical phase modulator region of the optical modulator is set.
  • the propagation wavelength of the modulated electric signal is shortened to a level that cannot be ignored.
  • the potential distribution of the electrode structure which is a means for applying an electric field to the optical phase modulator, cannot be regarded as uniform in the optical signal propagation axis direction. Therefore, in order to accurately estimate the light modulation characteristics, it is necessary to treat the electrode itself as a distributed constant line and a modulated electric signal propagating through the optical phase modulator region as a traveling wave.
  • phase velocity vo of the modulated optical signal and the phase velocity vm of the modulated electrical signal are made as close as possible (phase velocity).
  • a so-called traveling wave type electrode structure is required which is devised.
  • An optical modulator module having a split electrode structure for realizing such a traveling wave electrode structure and a multilevel optical modulation signal system has already been proposed (Patent Documents 1 to 4).
  • an optical modulator module capable of multilevel control of the phase change of the modulated optical signal in each of the divided electrodes is a compact, wideband, and capable of generating an arbitrary multilevel optical modulation signal by inputting a digital signal while maintaining phase velocity matching and impedance matching required for traveling wave structure operation.
  • JP 7-13112 A Japanese Patent Laid-Open No. 5-289033 JP-A-5-257102 International Publication No. 2011/043079
  • the divided electrode structure has a problem that large-scale multi-level modulation is difficult because the number of divided electrodes is limited.
  • the number of divided electrodes can be increased by increasing the number of divided electrodes. Further, if the phase change of the modulated optical signal in each of the divided electrodes is controlled in multiple values, further multiple values can be achieved.
  • the number of divided electrodes that can be mounted on an actually manufactured optical modulator module is limited by the size of the optical modulator. For this reason, the number of gradation levels of multilevel modulation is actually limited, and it is difficult to realize an optical modulator module capable of large-scale multilevel modulation.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an optical transmitter, an optical transmission / reception system, and a drive circuit capable of adjusting the linearity of output light. .
  • An optical transmitter includes an optical modulator having a plurality of phase modulation regions and an optical transmission path through which an optical signal propagates, a signal corresponding to a decoded value, and an input digital signal Based on a signal corresponding to the decode value, a drive circuit for outputting a drive signal of three or more gradations including those having different numbers of gradations in each of the plurality of phase modulation regions, and the drive And a control circuit that specifies a correspondence relationship of the plurality of drive signals with respect to the decode value by controlling the circuit.
  • An optical transmission / reception system includes: an optical transmitter that transmits an optical signal; a transmission path through which the optical signal propagates; and an optical receiver that receives the optical signal through the transmission path.
  • An optical modulator having an optical transmission path through which an optical signal is propagated, and a decoder that decodes an input digital signal and outputs a signal corresponding to the decoded value
  • a drive circuit for outputting a drive signal of three or more gradations including those having different numbers of gradations to each of the plurality of phase modulation regions based on a signal corresponding to the decode value, and controlling the drive circuit And a control circuit for designating the correspondence relationship of the plurality of drive signals with respect to the decode value.
  • the number of gradations is set in each of the plurality of phase modulation regions formed in the optical waveguide provided in the optical modulator based on a signal corresponding to the decoded value of the input digital signal. It comprises a plurality of DACs that output drive signals of three or more gradation levels including different ones and that can specify an operation range for the decode value by an external control circuit.
  • an optical transmitter an optical transmission / reception system, and a drive circuit that can adjust the linearity of output light.
  • FIG. 6 is a diagram schematically showing a configuration of an optical multiplexer / demultiplexer 513.
  • FIG. 3 is a diagram schematically showing a configuration of an optical multiplexer / demultiplexer 514.
  • 5 is an operation table showing the operation of the optical transmitter 500.
  • FIG. 6 is a diagram schematically illustrating a light propagation mode in the optical transmitter 500.
  • FIG. 5 is a constellation diagram showing lights L1 and L2 when phase modulation is not performed by the phase modulation areas PM51_1 to 51_4 and the phase modulation areas PM52_1 to 52_4.
  • FIG. 5 is a constellation diagram showing lights L1 and L2 when phase modulation is not performed by the phase modulation areas PM51_1 to 51_4 and the phase modulation areas PM52_1 to 52_4.
  • FIG. 11 is a constellation diagram showing light L1 and light L2 when a binary code of an input digital signal is “0000” in the optical transmitter 500.
  • FIG. 4 is a constellation diagram showing lights L1 and L2 in the optical transmitter 500.
  • FIG. 11 is a constellation diagram showing the light intensity of output light OUT due to light L1 and L2 being combined in the optical transmitter 500.
  • 1 is a block diagram schematically showing a configuration of an optical transmitter 100 according to a first embodiment.
  • FIG. 4 is a diagram schematically showing the number of gradation levels of D / A converters DAC1 to DAC4.
  • 3 is an operation table illustrating an operation of the optical transmitter 100 according to the first embodiment.
  • FIG. 3 is a constellation diagram illustrating a modulation operation of the optical transmitter 100 according to the first embodiment.
  • FIG. 3 is a constellation diagram illustrating a modulation operation of the optical transmitter 100 according to the first embodiment.
  • FIG. 4 is a block diagram schematically showing a configuration of an optical transmitter 200 according to a second embodiment.
  • FIG. 6 is a block diagram schematically showing a configuration of an optical transmitter 300 according to a third embodiment.
  • FIG. 6 is a block diagram schematically showing a configuration of an optical transmission / reception system 400 according to a fourth exemplary embodiment. It is a figure which shows the waveform and appearance probability of a pre-equalized optical signal. It is a graph which shows the gradation change of 4-bit output light which has a general linear characteristic. It is a graph which shows the gradation change of 4-bit output light which has the nonlinear characteristic in which the gradation width
  • FIG. 1 is a block diagram schematically showing a configuration of a multi-value optical transmitter 500 having a general divided electrode structure.
  • the optical transmitter 500 includes an optical modulator 51, a decoder 52, and a drive circuit 53.
  • the optical modulator 51 outputs an output light OUT obtained by modulating the input light IN.
  • the optical modulator 51 includes optical waveguides 511 and 512, optical multiplexers / demultiplexers 513 and 514, and phase modulation regions PM51_1 to PM51_4, PM52_1 to PM52_4.
  • the optical waveguides 511 and 512 are arranged in parallel.
  • An optical multiplexer / demultiplexer 513 is inserted on the optical signal input (input light IN) side of the optical waveguides 511 and 512.
  • the input light IN is input to the input port P1, and the input port P2 is not input.
  • the optical waveguide 511 is connected to the output port P3, and the optical waveguide 512 is connected to the output port P4.
  • FIG. 2A is a diagram schematically showing the configuration of the optical multiplexer / demultiplexer 513.
  • the light incident on the input port P1 propagates to the output ports P3 and P4.
  • the phase of light propagating from the input port P1 to the output port P4 is delayed by 90 ° compared to the light propagating from the input port P1 to the output port P3.
  • the light incident on the input port P2 propagates to the output ports P3 and P4.
  • the phase of light propagating from the input port P2 to the output port P3 is delayed by 90 ° compared to the light propagating from the input port P2 to the output port P4.
  • An optical multiplexer / demultiplexer 514 is inserted on the optical signal output (output light OUT) side of the optical waveguides 511 and 512.
  • the optical waveguide 511 is connected to the input port P5
  • the optical waveguide 512 is connected to the input port P6.
  • the output light OUT is output from the output port P7.
  • FIG. 2B is a diagram schematically showing the configuration of the optical multiplexer / demultiplexer 514.
  • the optical multiplexer / demultiplexer 514 has the same configuration as the optical multiplexer / demultiplexer 513.
  • the input ports P5 and P6 correspond to the input ports P1 and P2 of the optical multiplexer / demultiplexer 513, respectively.
  • the output ports P7 and P8 correspond to the output ports P3 and P4 of the optical multiplexer / demultiplexer 513, respectively.
  • the light incident on the input port P5 propagates to the output ports P7 and P8.
  • phase of light propagating from the input port P5 to the output port P8 is delayed by 90 ° compared to the light propagating from the input port P5 to the output port P7.
  • the light incident on the input port P6 propagates to the output ports P7 and P8.
  • the phase of light propagating from the input port P6 to the output port P7 is delayed by 90 ° compared to the light propagating from the input port P6 to the output port P8.
  • Phase modulation regions PM51_1 to PM51_4 are arranged in the optical waveguide 511 between the optical multiplexer / demultiplexer 513 and the optical multiplexer / demultiplexer 514.
  • Phase modulation regions PM52_1 to PM52_4 are disposed in the optical waveguide 512 between the optical multiplexer / demultiplexer 513 and the optical multiplexer / demultiplexer 514.
  • the phase modulation region is a region having electrodes formed on the optical waveguide.
  • an electric signal for example, a voltage signal
  • the effective refractive index of the optical waveguide under the electrode changes.
  • the substantial optical path length of the optical waveguide in the phase modulation region can be changed.
  • the phase modulation region can change the phase of the optical signal propagating through the optical waveguide.
  • the optical signal can be modulated by giving a phase difference between the optical signals propagating between the two optical waveguides 511 and 512. That is, the optical modulator 51 constitutes a multi-value Mach-Zehnder optical modulator having two arms and an electrode division structure.
  • the decoder 52 decodes the 4-bit input digital signal D [3: 0] and outputs, for example, multi-bit signals D 1 to D 4 to the drive circuit 53.
  • the drive circuit 53 includes five-value D / A converters DAC51 to DAC54. Signals D1 to D4 are supplied to the D / A converters DAC51 to DAC54, respectively.
  • the D / A converters DAC51 to DAC54 output a pair of differential output signals according to the signals D1 to D4. At this time, the positive-phase output signals of the differential output signals output from the D / A converters DAC51 to DAC54 are output to the phase modulation regions PM51_1 to 51_4. Respective negative-phase output signals of the differential output signals output from the D / A converters DAC51 to DAC54 are output to the phase modulation areas PM52_1 to 52_4.
  • the D / A converter DAC 51 is a D / A converter with five values (0, 1, 2, 3, 4). That is, the DAC 51 increases the value of the positive phase output signal in the order of “0” ⁇ “1” ⁇ “2” ⁇ “3” ⁇ “4” in accordance with the increase in the value of the signal D1.
  • the DAC 51 outputs a signal obtained by inverting the normal phase output signal as a negative phase output signal. That is, the DAC 51 increases the value of the reverse phase output signal in the order of “4” ⁇ “3” ⁇ “2” ⁇ “1” ⁇ “0” in accordance with the increase in the value of the signal D1. It can also be understood that the value of the negative phase output signal is determined such that the sum of the values of the positive phase output signal and the negative phase output signal is equal to the maximum value “4” of the quinary output. .
  • FIG. 3 is an operation table showing the operation of the optical transmitter 500.
  • the D / A converter DAC 51 increases the value of the positive phase output signal to “0” as the input digital signal D [3: 0] increases from “0000” ⁇ “0001” ⁇ “0010” ⁇ “0011” ⁇ “0100”. ” ⁇ “ 1 ” ⁇ “ 2 ” ⁇ “ 3 ” ⁇ “ 4 ”and increase the value of the negative phase output signal from“ 4 ” ⁇ “ 3 ” ⁇ “ 2 ” ⁇ “ 1 ” ⁇ “ 0 ” Decrease in order. However, when the input digital signal D [3: 0] is “0101” or more, the value of the positive phase output signal of the D / A converter DAC 51 is “4” and the value of the negative phase output signal is “0”. .
  • the D / A converter DAC 52 increases the value of the positive phase output signal to “0” as the input digital signal D [3: 0] increases from “0100” ⁇ “0101” ⁇ “0110” ⁇ “0111” ⁇ “1000”. ” ⁇ “ 1 ” ⁇ “ 2 ” ⁇ “ 3 ” ⁇ “ 4 ”and increase the value of the negative phase output signal from“ 4 ” ⁇ “ 3 ” ⁇ “ 2 ” ⁇ “ 1 ” ⁇ “ 0 ” Decrease in order. However, when the input digital signal D [3: 0] is “0011” or less, the value of the positive phase output signal of the D / A converter DAC 52 is “0” and the value of the negative phase output signal is “4”. . When the input digital signal D [3: 0] is “1001” or more, the value of the positive phase output signal of the D / A converter DAC 52 is “4” and the value of the negative phase output signal is “0”. .
  • the D / A converter DAC 53 increases the value of the positive phase output signal to “0” as the input digital signal D [3: 0] increases from “1000” ⁇ “1001” ⁇ “1010” ⁇ “1011” ⁇ “1100”. ” ⁇ “ 1 ” ⁇ “ 2 ” ⁇ “ 3 ” ⁇ “ 4 ”and increase the value of the negative phase output signal from“ 4 ” ⁇ “ 3 ” ⁇ “ 2 ” ⁇ “ 1 ” ⁇ “ 0 ” Decrease in order.
  • the input digital signal D [3: 0] is “0111” or less, the value of the positive phase output signal of the D / A converter DAC 53 is “0” and the value of the negative phase output signal is “4”. .
  • the input digital signal D [3: 0] is “1101” or more, the value of the positive phase output signal of the D / A converter DAC 53 is “4”, and the value of the negative phase output signal is “0”. .
  • the D / A converter DAC 54 increases the value of the positive phase output signal from “0” to “1” as the input digital signal D [3: 0] increases from “1100” ⁇ “1101” ⁇ “1110” ⁇ “1111”. ” ⁇ “ 2 ” ⁇ “ 3 ”, and the value of the negative phase output signal is decreased in the order of“ 4 ” ⁇ “ 3 ” ⁇ “ 2 ” ⁇ “ 1 ” ⁇ .
  • the input digital signal D [3: 0] is “1011” or less, the value of the positive phase output signal of the D / A converter DAC 51 is “0”, and the value of the negative phase output signal is “4”. .
  • FIG. 4 is a diagram schematically illustrating a light propagation mode in the optical transmitter 500.
  • the input light IN is input to the input port P1 of the optical multiplexer / demultiplexer 513. Therefore, the phase of the light output from the output port P4 is delayed by 90 ° compared to the light output from the output port P3. Thereafter, the light output from the output port P3 passes through the phase modulation regions PM51_1 to 51_4 and reaches the input port P5 of the optical multiplexer / demultiplexer 514. The light that reaches the input port P5 reaches the output port P7 as it is.
  • the light output from the output port P4 passes through the phase modulation regions PM52_1 to 52_4 and reaches the input port P6 of the optical multiplexer / demultiplexer 514.
  • the light reaching the input port P6 reaches the output port P7 with a phase delay of 90 °.
  • the phase modulation regions PM51_1 to 51_4 and the phase modulation regions PM52_1 to 52_4 are not subjected to phase modulation, the light L2 reaching the output port P7 from the input port P6 is the light reaching the output port P7 from the input port P5. Compared to L1, the phase is delayed by 180 °.
  • FIG. 5A is a constellation diagram showing the lights L1 and L2 when the phase modulation regions PM51_1 to 51_4 and the phase modulation regions PM52_1 to 52_4 are not subjected to phase modulation.
  • the phase of the light L2 reaching the output port P7 from the input port P6 is delayed by 180 ° compared to the light L1 reaching the output port P7 from the input port P5.
  • FIG. 5B is a constellation diagram showing the lights L1 and L2 when the binary code of the input digital signal D [3: 0] is “0000” in the optical transmitter 500. For example, if the binary code of the input digital signal D [3: 0] is “0000”, “0” that is a positive phase output signal is input to the phase modulation regions PM51_1 to 51_4. On the other hand, “4” that is an anti-phase output signal is input to the phase modulation regions PM52_1 to 52_4. Thereby, the phase of the light passing through the phase modulation regions PM52_1 to 52_4 is further delayed by 180 °.
  • the light L2 reaching the output port P7 from the input port P6 is added with 180 °, which is the phase delay due to the phase modulation regions PM52_1 to 52_4, in addition to the original 180 ° phase delay.
  • a 360 ° phase lag occurs in the light L2 reaching the output port P7 from the input port P6, so that the phase lag with respect to the light L1 reaching the output port P7 from the input port P5 is substantially eliminated.
  • the negative phase output signal decreases.
  • FIG. 5C is a constellation diagram showing the lights L1 and L2 in the optical transmitter 500.
  • the light reaching the output port P4 from the input port P1 and the output port P7 from the input port P6 according to the change of the input digital signal D [3: 0].
  • each of L1 / L2 changes the phase of the light in contrast to the Re axis, and optical D / A conversion in the optical transmitter becomes possible.
  • the phase modulation amount of the light L1 is 0 to 15 ⁇ and the phase modulation amount of the light L2 is 0 to ⁇ 15 ⁇ according to the value of the input digital signal D [3: 0]. It can be changed in 16 stages.
  • the optical transmitter 500 functions as a 4-bit optical transmitter with the above configuration.
  • FIG. 5D is a constellation diagram illustrating the light intensity of the output light OUT due to the light L1 and L2 being combined in the optical transmitter 500.
  • the phase of the optical signal is shifted at equal intervals, the gradation interval of the light intensity of the output light becomes non-uniform, and the linearity of the signal intensity of the output light with respect to the input digital signal is reduced. It cannot be secured.
  • the optical transmitter 100 is configured as an optical transmitter having a function of adjusting the linearity of output light in order to solve the problem in the optical transmitter 500 described above. Further, although the optical transmitter 100 is a multi-level modulation optical transmitter, here, the optical transmitter 100 is described as a 4-bit optical transmitter for simplification of description.
  • FIG. 6 is a block diagram schematically illustrating the configuration of the optical transmitter 100 according to the first embodiment.
  • the optical transmitter 100 includes an optical modulator 11, a decoder 12, a drive circuit 13, and a control circuit 14.
  • the optical modulator 11 outputs an output light OUT obtained by modulating the input light IN.
  • the optical modulator 11 includes optical waveguides 111 and 112, optical multiplexers / demultiplexers 113 and 114, and phase modulation regions PM11_1 to PM11_4 and PM12_1 to 12_4.
  • the optical waveguides 111 and 112 are arranged in parallel.
  • An optical multiplexer / demultiplexer 113 is inserted on the optical signal input (input light IN) side of the optical waveguides 111 and 112.
  • the optical multiplexer / demultiplexer 113 has the same configuration as the optical multiplexer / demultiplexer 513 described above.
  • the input light IN is input to the input port P1, and the input port P2 is not input.
  • the optical waveguide 111 is connected to the output port P3, and the optical waveguide 112 is connected to the output port P4.
  • An optical multiplexer / demultiplexer 114 is inserted on the optical signal output (output light OUT) side of the optical waveguides 111 and 112.
  • the optical multiplexer / demultiplexer 114 has the same configuration as the optical multiplexer / demultiplexer 514 described above.
  • the optical waveguide 111 is connected to the input port P5
  • the optical waveguide 112 is connected to the input port P6.
  • the output light OUT is output from the output port P7.
  • phase modulation regions PM11_1 to PM11_4 are arranged in the optical waveguide 112 between the optical multiplexer / demultiplexer 113 and the optical multiplexer / demultiplexer 114.
  • the phase modulation region has electrodes formed on the optical waveguide.
  • an electric signal for example, a voltage signal is applied to the electrode
  • the effective refractive index of the optical waveguide under the electrode changes.
  • the substantial optical path length of the optical waveguide in the phase modulation region can be changed.
  • the phase modulation region can change the phase of the optical signal propagating through the optical waveguide.
  • the optical signal can be modulated by providing a phase difference between the optical signals propagating between the two optical waveguides 111 and 112. That is, the optical modulator 11 constitutes a multi-value Mach-Zehnder optical modulator having two arms and an electrode division structure.
  • the drive circuit 13 includes D / A converters DAC1 to DAC4.
  • the D / A converters DAC1 to DAC4 have the same full-scale amplitude FSA. However, the D / A converters DAC1 to DAC4 have different gradation numbers. In this example, it is assumed that the number of gradations of the D / A converters DAC1 and DAC4 is smaller than the number of gradations of the D / A converters DAC2 and DAC3.
  • FIG. 7 is a diagram schematically showing the number of gradations of the D / A converters DAC1 to DAC4. Here, the number of gradations of the D / A converters DAC1 and DAC4 is 3, and the number of gradations of the D / A converters DAC2 and DAC3 is 5.
  • the D / A converters DAC1 to DAC4 output a pair of differential output signals according to the signals D1 to D4. At this time, the positive phase output signals of the differential output signals output from the D / A converters DAC1 to DAC4 are output to the phase modulation regions PM11_1 to 11_4. Respective negative-phase output signals of the differential output signals output from the D / A converters DAC1 to DAC4 are output to the phase modulation areas PM12_1 to 12_4.
  • the differential output signals output from the D / A converters DAC1 to DAC4 will be described.
  • the D / A converters DAC1 and DAC4 are four-value (3-gradation) output D / A converters.
  • the positive phase output signals of the D / A converters DAC1 and DAC4 are “0 (0 ⁇ FSA / 3)” ⁇ “1 ⁇ FSA / 3” ⁇ “2 ⁇ FSA / 3” ⁇ “3 ⁇ FSA / 3”.
  • the negative phase output signal decreases in the order of “3 ⁇ FSA / 3” ⁇ “2 ⁇ FSA / 3” ⁇ “1 ⁇ FSA / 3” ⁇ “0 (0 ⁇ FSA / 3)”.
  • the D / A converters DAC2 and DAC3 are 6-value (5-gradation) output D / A converters.
  • the positive phase output signals of the D / A converters DAC2 and DAC3 are “0 (0 ⁇ FSA / 5)” ⁇ “1 ⁇ FSA / 5” ⁇ “2 ⁇ FSA / 5” ⁇ “3 ⁇ FSA / 5”.
  • the decoder 12 decodes the 4-bit input digital signal D [3: 0] and outputs the signals D 1 to D 4 to the drive circuit 13.
  • the control circuit 14 controls the decoder 12 to output the signals D1 to D4 to any of the D / A converters DAC1 to DAC4.
  • the decode 12 outputs signals D1 to D4 to the D / A converters DAC1 to DAC4, respectively. That is, the control circuit 14 specifies the correspondence between the signals D1 to D4 and the D / A converters DAC1 to DAC4. In other words, the control circuit 14 specifies the correspondence relationship between the decode value and the D / A converters DAC1 to DAC4, that is, the operation range of the DAC1 to DAC4 with respect to the decode value.
  • FIG. 8 is an operation table showing the operation of the optical transmitter 100 according to the first embodiment.
  • the D / A converter DAC1 sets the positive phase output signal to “0 (0 ⁇ FSA / 3). ) ” ⁇ “ 1 ⁇ FSA / 3 ” ⁇ “ 2 ⁇ FSA / 3 ” ⁇ “ 3 ⁇ FSA / 3 ”.
  • the D / A converter DAC1 outputs the reverse phase output signal in the order of “3 ⁇ FSA / 3” ⁇ “2 ⁇ FSA / 3” ⁇ “1 ⁇ FSA / 3” ⁇ “0 (0 ⁇ FSA / 3)”. Decrease with. However, when the input digital signal D [3: 0] is “0100” or more, the positive phase output signal of the D / A converter DAC1 is “3 ⁇ FSA / 3”, and the negative phase output signal is “0 (0 ⁇ FSA / 3) ”.
  • the D / A converter DAC2 outputs the positive phase output signal as the input digital signal D [3: 0] increases from “0011” ⁇ “0100” ⁇ “0101” ⁇ “0110” ⁇ “0111” ⁇ “1000”. “0 (0 ⁇ FSA / 5)” ⁇ “1 ⁇ FSA / 5” ⁇ “2 ⁇ FSA / 5” ⁇ “3 ⁇ FSA / 5” ⁇ “4 ⁇ FSA / 5” ⁇ “5 ⁇ FSA / 5” Increase in the order.
  • the D / A converter DAC2 converts the reverse phase output signal from “5 ⁇ FSA / 5” ⁇ “4 ⁇ FSA / 5” ⁇ “3 ⁇ FSA / 5” ⁇ “2 ⁇ FSA / 5” ⁇ “1 ⁇ FSA”. / 5 ” ⁇ “ 0 (0 ⁇ FSA / 5) ”.
  • the positive phase output signal of the D / A converter DAC2 is “0 (0 ⁇ FSA / 5)”, and the negative phase output signal is “ 5 ⁇ FSA / 5 ”.
  • the positive phase output signal of the D / A converter DAC2 is “5 ⁇ FSA / 5”, and the negative phase output signal is “0 (0 ⁇ FSA). / 5) ".
  • the D / A converter DAC3 outputs the positive phase output signal as the input digital signal D [3: 0] increases from “1000” ⁇ “1001” ⁇ “1010” ⁇ “1011” ⁇ “1100” ⁇ “1101”. “0 (0 ⁇ FSA / 5)” ⁇ “1 ⁇ FSA / 5” ⁇ “2 ⁇ FSA / 5” ⁇ “3 ⁇ FSA / 5” ⁇ “4 ⁇ FSA / 5” ⁇ “5 ⁇ FSA / 5” Increase in the order.
  • the D / A converter DAC3 converts the reverse phase output signal from “5 ⁇ FSA / 5” ⁇ “4 ⁇ FSA / 5” ⁇ “3 ⁇ FSA / 5” ⁇ “2 ⁇ FSA / 5” ⁇ “1 ⁇ FSA”. / 5 ” ⁇ “ 0 (0 ⁇ FSA / 5) ”.
  • the positive phase output signal of the D / A converter DAC3 is “0 (0 ⁇ FSA / 5)”, and the negative phase output signal is “ 5 ⁇ FSA / 5 ”.
  • the positive phase output signal of the D / A converter DAC3 is “5 ⁇ FSA / 5”, and the negative phase output signal is “0 (0 ⁇ FSA). / 5) ".
  • the D / A converter DAC4 changes the positive phase output signal from “0 (0 ⁇ FSA / 3)” ⁇ “ Increase in the order of “1 ⁇ FSA / 3” ⁇ “2 ⁇ FSA / 3”.
  • the D / A converter DAC4 decreases the reverse phase output signal in the order of “3 ⁇ FSA / 3” ⁇ “2 ⁇ FSA / 3” ⁇ “1 ⁇ FSA / 3”.
  • the positive phase output signal of the D / A converter DAC 4 is “0 (0 ⁇ FSA / 3)”, and the negative phase output signal is “ 3 ⁇ FSA / 3 ”.
  • FIGS. 9A and 9B are constellation diagrams showing the modulation operation of the optical transmitter 100.
  • the D / A converters DAC1 and DAC4 can change the phase modulation amount of the light L1 by FSA / 3 ⁇ ⁇ and the phase modulation amount of the light L2 by ⁇ FSA / 3 ⁇ ⁇ .
  • the D / A converters DAC2 and DAC3 can change the phase modulation amount of the light L1 by FSA / 5 ⁇ ⁇ and the phase modulation amount of the light L2 by ⁇ FSA / 5 ⁇ ⁇ .
  • the D / A converters DAC1 and DAC4 have fewer gradations than the D / A converters DAC2 and DAC3. Therefore, the gradation intervals of the D / A converters DAC1 and DAC4 are wider than those of the D / A converters DAC2 and DAC3. As a result, the phase change of the optical signal by the D / A converters DAC1 and DAC4 is larger than the phase change of the optical signal by the D / A converters DAC2 and DAC3.
  • a D / A converter having a large number of gradations is assigned to a D / A converter that handles gradations close to the center gradation of output light
  • a D / A converter that handles gradations away from the center gradation of output light is assigned to the D / A converter.
  • the optical transmitter 100 can make the gradation intervals of the output light uniform. As described above, according to this configuration, it is possible to provide an optical transmitter capable of adjusting the linearity of the signal intensity of output light.
  • FIG. 10 is a block diagram schematically illustrating a configuration of the optical transmitter 200 according to the second embodiment.
  • the optical transmitter 200 has a configuration in which a storage device 15 is added to the optical transmitter 100 according to the first embodiment.
  • the storage device 15 has a DAC selection table 16.
  • the control circuit 14 reads the DAC selection table 16 stored in the storage device 15 and outputs the signals D1 to D4 to any of the D / A converters DAC1 to DAC4 based on the DAC selection information in the DAC selection table 16. .
  • the DAC selection table 16 may be a fixed value stored in advance in the storage device 15. Further, the DAC selection table 16 may be input from the outside to the storage device 15 as initial setting information when the optical transmitter 200 is incorporated into the optical transmission / reception system. Furthermore, it is possible to update the DAC selection table 16 of the storage device 15 from the outside while the optical transmitter 200 is transmitting an optical signal.
  • control circuit 14 can refer to the DAC selection table 16 and assign the respective operation ranges of the D / A converters DAC1 to DAC4 having different gradation numbers to suitable decode values. Become.
  • FIG. 11 is a block diagram schematically illustrating a configuration of the optical transmitter 300 according to the third embodiment.
  • the optical transmitter 300 has a configuration in which an optical monitor circuit 17 and an arithmetic device 18 are added to the optical transmitter 100 according to the first embodiment.
  • the optical monitor circuit 17 monitors the output light OUT of the optical modulator 11 and detects the light intensity of the output light OUT. Then, the light monitor circuit 17 outputs a detection signal S d corresponding to the detected light intensity to the arithmetic device 18.
  • the computing device 18 calculates the difference between the light intensity of the output light OUT obtained from the detection signal Sd and the expected value of the light intensity corresponding to the value of the input digital signal D [3: 0]. Then, an adjustment instruction signal So corresponding to the calculated difference is output to the control circuit 14.
  • the adjustment instruction signal So includes DAC selection information.
  • the control circuit 14 outputs signals D1 to D4 to the DAC specified by the adjustment instruction signal So.
  • the optical transmission / reception system 400 is an optical transmission / reception system using any one of the optical transmitters 100, 200, and 300 described above.
  • the optical transmission / reception system 400 includes the optical transmitter 100 will be described.
  • FIG. 12 is a block diagram schematically illustrating a configuration of the optical transmission / reception system 400 according to the fourth embodiment.
  • the optical transmission / reception system 400 includes an optical transmitter 100, an optical receiver 401, a transmission path 402, and an optical amplifier 403.
  • the optical transmitter 100 outputs, as an optical signal, a QPSK optical signal that has been subjected to, for example, quadrature phase shift keying (hereinafter, referred to as QPSK).
  • QPSK quadrature phase shift keying
  • the optical transmitter 100 and the optical receiver 401 are optically connected by an optical transmission path 402, and a QPSK optical signal propagates.
  • An optical amplifier 403 is inserted into the transmission line 402 and amplifies a QPSK optical signal propagating through the transmission line 403.
  • the optical receiver 401 demodulates the QPSK optical signal into an electrical signal.
  • the optical transmission / reception system 400 can transmit an optical signal using the optical transmitter 100 with the above configuration.
  • the optical transmitter 100 can be appropriately replaced with the optical transmitter 100 or 200.
  • Embodiment 5 Next, a fifth embodiment of the present invention will be described.
  • the example of improving the linearity of the output light has been described, but the method for adjusting the linearity of the output light is not limited to this.
  • another method of adjusting the linearity of output light using the optical transmitters 100, 200, and 300 according to the first to third embodiments will be described.
  • pre-equalization processing may be performed on an optical signal transmitted from an optical transmitter when performing long-distance transmission.
  • the optical signal subjected to the pre-equalization process has a high probability that a component having a medium amplitude appears.
  • signal processing with a small number of bits by processing a component with a high appearance probability with high accuracy and a component with a low appearance probability with low accuracy.
  • FIG. 13 is a diagram showing the waveform and appearance probability of the pre-equalized optical signal.
  • the pre-equalization signal as shown in FIG. 13 is subjected to optical signal processing with, for example, 4-bit gradation, the appearance probability near the center of the signal, that is, near “1000” increases.
  • the appearance probabilities near both ends of the signal that is, near “0000” and “1111” are reduced.
  • FIG. 14A is a graph showing a gradation change of 4-bit output light having general linear characteristics.
  • FIG. 14B is a graph showing a gradation change of 4-bit output light having nonlinear characteristics in which the gradation width near “1000” becomes narrow.
  • the gradation change of the output light is not quantized with the linear state characteristic shown in FIG. 14A, but nonlinear characteristics such that the gradation width near “1000” shown in FIG.
  • the processing near “1000” can be performed with high accuracy.
  • the linearity with respect to the signal intensity of the output light can be adjusted by using the adjustment method of the present invention even for the purpose of giving the signal nonlinearity. Therefore, the optical transmitters 100, 200, and 300 according to the first to third embodiments give the output light OUT non-linearity as shown in FIG. 13 to reduce processing bits depending on the communication method. And high-precision processing can be realized.
  • the present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit of the present invention.
  • the selection pattern of the D / A converter is not limited to the above example.
  • the order of the D / A converters DAC1 to DAC4 can be arbitrarily changed.
  • the optical transmitters 100, 200, and 300 have been described as 4-bit optical transmitters, but this is merely an example. That is, it goes without saying that an optical transmitter capable of higher-order multilevel modulation can be configured by increasing the number of phase modulation regions (divided electrodes), the number of D / A converters, and the number of gradations.
  • the example in which the light intensity of the output light is monitored and the signal to be supplied to the D / A converter is selected, but this is only an example. That is, the light intensity of the output light may be monitored by the optical receiver, and the light intensity information may be fed back from the optical receiver to the optical transmitter. Further, the arithmetic device 18 may be incorporated in the optical transmitter.
  • Optical monitor circuit Arithmetic device 100, 200, 300, 500 Optical transmitters 111, 112, 511, 512 Optical Waveguide 113, 114, 513, 514 Optical multiplexer / demultiplexer 400 Optical transceiver system 401 Optical receiver 402 Transmission path 403 Optical amplifiers DAC1 to DAC4, DAC51 to DAC54 D / A converter OUT Output light PM11_1 to PM11_4, PM12_1 to PM12_4, PM51_1 to PM51_4, PM52_1 ⁇ PM52_4 the phase modulation region S d detection signal So adjustment instruction signal

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

The present invention provides an optical transmitter, an optical transmission/reception system, and a drive circuit which are capable of adjusting the linearity of output light. An optical modulator (11) includes optical transmission paths (111, 112) in which phase modulation areas (PM11_1 to PM11_4, PM12_1 to PM12_4) are formed and through which optical signals propagate. A decoder (12) decodes an input digital signal (D[3:0]) and outputs signals (D1 to D4) corresponding to decoded values. On the basis of said signals (D1 to D4), a drive circuit (13) outputs drive signals having three or more tones, including signals having different numbers of tones, to each of said phase modulation areas (PM11_1 to PM11_4, PM12_1 to PM12_4). A control circuit (14) designates the correlation between the decoded values and the respective drive signals by controlling the drive circuit (13).

Description

光送信器、光送受信システム及び駆動回路Optical transmitter, optical transmission / reception system, and drive circuit
 本発明は光送信器、光送受信システム及び駆動回路に関し、特に多値変調を行う光送信器、光送受信システム及び駆動回路に関する。 The present invention relates to an optical transmitter, an optical transmission / reception system, and a drive circuit, and more particularly to an optical transmitter, an optical transmission / reception system, and a drive circuit that perform multilevel modulation.
 インターネットや映像配信等の広帯域マルチメディア通信サービスの爆発的な需要増加に伴い、幹線系やメトロ系ではより長距離大容量かつ高信頼な高密度波長多重光ファイバ通信システムの導入が進んでいる。また、加入者系においても、光ファイバアクセスサービスの普及が急速に進んでいる。こうした光ファイバを使用した通信システムでは、光伝送路である光ファイバの敷設コスト低減や、光ファイバ1本当たりの伝送帯域利用効率を高めることが重要である。このため、複数の異なる波長の光信号を多重化して伝送する、波長多重技術が広く用いられている。 With the explosive demand for broadband multimedia communication services such as the Internet and video distribution, long-distance, large-capacity and high-reliability high-density wavelength-division-multiplexed optical fiber communication systems are being introduced in trunk lines and metro lines. In addition, optical fiber access services are rapidly spreading in subscriber systems. In a communication system using such an optical fiber, it is important to reduce the installation cost of an optical fiber that is an optical transmission line and to increase the transmission band utilization efficiency per optical fiber. For this reason, a wavelength multiplexing technique that multiplexes and transmits optical signals having different wavelengths is widely used.
 波長多重光ファイバ通信システム向け光送信機には、高速光変調が可能で、その光信号波長依存性が小さく、さらに長距離信号伝送時の受信光波形劣化を招く不要な光位相変調成分(変調方式が光強度変調方式の場合)または光強度変調成分(変調方式が光位相変調方式の場合)が極力抑えられた光変調器が要求される。こうした用途には、光導波路型マッハツェンダ(以下MZ:Mach-Zehnder)干渉計と同様の光導波路型の光位相変調器を組み込んだ、MZ光強度変調器が実用的である。 Optical transmitters for WDM optical fiber communication systems are capable of high-speed optical modulation, have small optical signal wavelength dependency, and unnecessary optical phase modulation components (modulation) that cause deterioration of the received optical waveform during long-distance signal transmission There is a need for an optical modulator in which the light intensity modulation component (when the method is a light intensity modulation method) or the light intensity modulation component (when the modulation method is an optical phase modulation method) is minimized. For such applications, an MZ light intensity modulator incorporating an optical waveguide type optical phase modulator similar to an optical waveguide type Mach-Zehnder (hereinafter, MZ) interferometer is practical.
 また、1波長チャンネル当りの伝送容量拡大にあたっては、課題となるスペクトル利用効率および光ファイバの波長分散や偏波モード分散に対する耐性の観点から、通常の2値光強度変調方式に比べて光変調スペクトル帯域幅がより狭い、多値光変調信号方式が有利である。この多値光変調信号方式は、特に今後の需要増加が見込まれる40Gb/sを越える幹線系光ファイバ通信システムでは主流になると考えられる。現在、こうした用途向けに、上述のMZ光強度変調器2個と光合分波器を組み合わせたモノリシック集積多値光変調器が開発されている。 In addition, when expanding the transmission capacity per wavelength channel, from the viewpoint of spectrum utilization efficiency and resistance to chromatic dispersion and polarization mode dispersion of the optical fiber, the optical modulation spectrum is higher than that of the normal binary light intensity modulation method. A multilevel optical modulation signaling scheme with a narrower bandwidth is advantageous. This multi-level optical modulation signal system is considered to become mainstream particularly in a trunk optical fiber communication system exceeding 40 Gb / s, where future demand is expected to increase. Currently, a monolithic integrated multilevel optical modulator combining two MZ optical intensity modulators and an optical multiplexer / demultiplexer has been developed for such applications.
 こうした光変調器を用いて、特に変調電気信号の周波数が1GHzを超えるような高周波領域で高速光変調を行う場合には、光変調器の光位相変調器領域に設けられた電極の長さに対して、変調電気信号の伝搬波長は無視できない程度にまで短くなる。このため、光位相変調器に電場を印加する手段である電極構造の電位分布は、光信号伝搬軸方向で均一と見なすことはできない。よって、光変調特性を正しく見積もるためには、この電極自体を分布定数線路として、かつ、光位相変調器領域を伝搬する変調電気信号を進行波として取り扱う必要がある。この場合、被変調光信号と変調電気信号との実効的な相互作用長をできるだけ稼ぐために、被変調光信号の位相速度voと変調電気信号の位相速度vmとを可能な限り近づける(位相速度整合させる)工夫を施した、いわゆる進行波型電極構造が必要となる。 When such an optical modulator is used to perform high-speed optical modulation particularly in a high-frequency region where the frequency of the modulated electrical signal exceeds 1 GHz, the length of the electrode provided in the optical phase modulator region of the optical modulator is set. On the other hand, the propagation wavelength of the modulated electric signal is shortened to a level that cannot be ignored. For this reason, the potential distribution of the electrode structure, which is a means for applying an electric field to the optical phase modulator, cannot be regarded as uniform in the optical signal propagation axis direction. Therefore, in order to accurately estimate the light modulation characteristics, it is necessary to treat the electrode itself as a distributed constant line and a modulated electric signal propagating through the optical phase modulator region as a traveling wave. In this case, in order to obtain the effective interaction length between the modulated optical signal and the modulated electrical signal as much as possible, the phase velocity vo of the modulated optical signal and the phase velocity vm of the modulated electrical signal are made as close as possible (phase velocity). A so-called traveling wave type electrode structure is required which is devised.
 このような進行波型電極構造と多値光変調信号方式とを実現するための分割電極構造を有する光変調器モジュールがすでに提案されている(特許文献1~4)。また、分割電極のそれぞれにおける被変調光信号の位相変化を多値制御することができる光変調器モジュールが提案されている。この光変調器モジュールは、ディジタル信号を入力することにより、進行波構造動作に要する位相速度整合及びインピーダンス整合を維持しつつ任意の多値光変調信号を発生させることが可能な、小型、広帯域及び低駆動電圧の光変調器モジュールである。 An optical modulator module having a split electrode structure for realizing such a traveling wave electrode structure and a multilevel optical modulation signal system has already been proposed (Patent Documents 1 to 4). In addition, there has been proposed an optical modulator module capable of multilevel control of the phase change of the modulated optical signal in each of the divided electrodes. This optical modulator module is a compact, wideband, and capable of generating an arbitrary multilevel optical modulation signal by inputting a digital signal while maintaining phase velocity matching and impedance matching required for traveling wave structure operation. This is an optical modulator module with a low driving voltage.
特開平7-13112号公報JP 7-13112 A 特開平5-289033号公報Japanese Patent Laid-Open No. 5-289033 特開平5-257102号公報JP-A-5-257102 国際公開第2011/043079号公報International Publication No. 2011/043079
 ところが発明者は、上述の光変調器モジュールでは、以下に示す問題点があることを見出した。分割電極構造では、分割電極の設置数が制限されるため、大規模な多値変調が困難であるという問題を有する。 However, the inventor has found that the above-described optical modulator module has the following problems. The divided electrode structure has a problem that large-scale multi-level modulation is difficult because the number of divided electrodes is limited.
 分割電極構造においては、理論上は分割電極の個数を増やすことにより、分割電極の個数分だけの多値化が可能である。さらに、分割電極のそれぞれにおける被変調光信号の位相変化を多値制御すれば、さらなる多値化も可能である。しかし、実際に作製される光変調器モジュールに搭載できる分割電極数は、光変調器のサイズにより制限される。そのため、多値変調の階調数には実際には制約されてしまい、大規模な多値変調が可能な光変調器モジュールを実現することは困難である。 In the divided electrode structure, theoretically, the number of divided electrodes can be increased by increasing the number of divided electrodes. Further, if the phase change of the modulated optical signal in each of the divided electrodes is controlled in multiple values, further multiple values can be achieved. However, the number of divided electrodes that can be mounted on an actually manufactured optical modulator module is limited by the size of the optical modulator. For this reason, the number of gradation levels of multilevel modulation is actually limited, and it is difficult to realize an optical modulator module capable of large-scale multilevel modulation.
 そこで、それぞれの分割電極に与える信号を多値化することが考えられる。ところが、等間隔に位相を変化させると、変調された出力光の信号強度の階調間隔が不均一になってしまう。つまり、入力デジタル信号に対する出力光の線形性が確保できなくなる。つまり、上述のような分割電極構造を有する多値変調光送信器を運用するには、出力光の線形性を調整できる機能を付与する必要がある。 Therefore, it is conceivable to multi-value the signal given to each divided electrode. However, if the phase is changed at equal intervals, the gradation interval of the signal intensity of the modulated output light becomes non-uniform. That is, the linearity of the output light with respect to the input digital signal cannot be ensured. That is, in order to operate the multilevel modulated optical transmitter having the above-described divided electrode structure, it is necessary to provide a function capable of adjusting the linearity of the output light.
 本発明は上記の課題に鑑みてなされたものであり、本発明の目的は、出力光の線形性を調整することができる光送信器、光送受信システム及び駆動回路を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an optical transmitter, an optical transmission / reception system, and a drive circuit capable of adjusting the linearity of output light. .
 本発明の一態様である光送信器は、複数の位相変調領域が形成された、光信号が伝搬する光伝送路を有する光変調器と、入力デジタル信号をデコードし、デコード値に応じた信号を出力するデコーダと、前記デコード値に応じた信号に基づき、前記複数の位相変調領域のそれぞれに、階調数が異なるものを含む3階調以上の駆動信号を出力する駆動回路と、前記駆動回路を制御することにより、前記デコード値に対する複数の前記駆動信号の対応関係を指定する制御回路と、を備えるものである。 An optical transmitter according to one embodiment of the present invention includes an optical modulator having a plurality of phase modulation regions and an optical transmission path through which an optical signal propagates, a signal corresponding to a decoded value, and an input digital signal Based on a signal corresponding to the decode value, a drive circuit for outputting a drive signal of three or more gradations including those having different numbers of gradations in each of the plurality of phase modulation regions, and the drive And a control circuit that specifies a correspondence relationship of the plurality of drive signals with respect to the decode value by controlling the circuit.
 本発明の一態様である光送受信システムは、光信号を送出する光送信器と、前記光信号が伝搬する伝送路と、前記伝送路を介して前記光信号を受信する光受信器と、を備え、前記光送信器は、複数の位相変調領域が形成された、光信号が伝搬する光伝送路を有する光変調器と、入力デジタル信号をデコードし、デコード値に応じた信号を出力するデコーダと、前記デコード値に応じた信号に基づき、前記複数の位相変調領域のそれぞれに、階調数が異なるものを含む3階調以上の駆動信号を出力する駆動回路と、前記駆動回路を制御することにより、前記デコード値に対する複数の前記駆動信号の対応関係を指定する制御回路と、を備えるものである。 An optical transmission / reception system according to an aspect of the present invention includes: an optical transmitter that transmits an optical signal; a transmission path through which the optical signal propagates; and an optical receiver that receives the optical signal through the transmission path. An optical modulator having an optical transmission path through which an optical signal is propagated, and a decoder that decodes an input digital signal and outputs a signal corresponding to the decoded value And a drive circuit for outputting a drive signal of three or more gradations including those having different numbers of gradations to each of the plurality of phase modulation regions based on a signal corresponding to the decode value, and controlling the drive circuit And a control circuit for designating the correspondence relationship of the plurality of drive signals with respect to the decode value.
 本発明の一態様である駆動回路は、入力デジタル信号のデコード値に応じた信号に基づき、光変調器に設けられた光導波路に形成された複数の位相変調領域のそれぞれに、階調数が異なるものを含む3階調以上の駆動信号を出力する、外部の制御回路によって前記デコード値に対する動作範囲が指定可能な複数のDACを備えるものである。 In the driver circuit which is one embodiment of the present invention, the number of gradations is set in each of the plurality of phase modulation regions formed in the optical waveguide provided in the optical modulator based on a signal corresponding to the decoded value of the input digital signal. It comprises a plurality of DACs that output drive signals of three or more gradation levels including different ones and that can specify an operation range for the decode value by an external control circuit.
 本発明によれば、出力光の線形性を調整することができる光送信器、光送受信システム及び駆動回路を提供することができる。 According to the present invention, it is possible to provide an optical transmitter, an optical transmission / reception system, and a drive circuit that can adjust the linearity of output light.
一般的な分割電極構造の多値の光送信器500の構成を模式的に示すブロック図である。It is a block diagram which shows typically the structure of the multi-value optical transmitter 500 of a general division | segmentation electrode structure. 光合分波器513の構成を模式的に示す図である。FIG. 6 is a diagram schematically showing a configuration of an optical multiplexer / demultiplexer 513. 光合分波器514の構成を模式的に示す図である。FIG. 3 is a diagram schematically showing a configuration of an optical multiplexer / demultiplexer 514. 光送信器500の動作を示す動作表である。5 is an operation table showing the operation of the optical transmitter 500. 光送信器500での光の伝搬態様を模式的に示す図である。FIG. 6 is a diagram schematically illustrating a light propagation mode in the optical transmitter 500. 位相変調領域PM51_1~51_4及び位相変調領域PM52_1~52_4により位相変調を受けなかった場合の光L1及びL2を示すコンスタレーション図である。FIG. 5 is a constellation diagram showing lights L1 and L2 when phase modulation is not performed by the phase modulation areas PM51_1 to 51_4 and the phase modulation areas PM52_1 to 52_4. 光送信器500において入力デジタル信号の2進コードが「0000」である場合の光L1及びL2を示すコンスタレーション図である。FIG. 11 is a constellation diagram showing light L1 and light L2 when a binary code of an input digital signal is “0000” in the optical transmitter 500. 光送信器500における光L1及びL2を示すコンスタレーション図である。FIG. 4 is a constellation diagram showing lights L1 and L2 in the optical transmitter 500. 光送信器500において光L1及びL2が合波されることによる出力光OUTの光強度を示すコンスタレーション図である。FIG. 11 is a constellation diagram showing the light intensity of output light OUT due to light L1 and L2 being combined in the optical transmitter 500. 実施の形態1にかかる光送信器100の構成を模式的に示すブロック図である。1 is a block diagram schematically showing a configuration of an optical transmitter 100 according to a first embodiment. D/AコンバータDAC1~DAC4の階調数を模式的に示す図である。FIG. 4 is a diagram schematically showing the number of gradation levels of D / A converters DAC1 to DAC4. 実施の形態1にかかる光送信器100の動作を示す動作表である。3 is an operation table illustrating an operation of the optical transmitter 100 according to the first embodiment. 実施の形態1にかかる光送信器100の変調動作を示すコンスタレーション図である。FIG. 3 is a constellation diagram illustrating a modulation operation of the optical transmitter 100 according to the first embodiment. 実施の形態1にかかる光送信器100の変調動作を示すコンスタレーション図である。FIG. 3 is a constellation diagram illustrating a modulation operation of the optical transmitter 100 according to the first embodiment. 実施の形態2にかかる光送信器200の構成を模式的に示すブロック図である。FIG. 4 is a block diagram schematically showing a configuration of an optical transmitter 200 according to a second embodiment. 実施の形態3にかかる光送信器300の構成を模式的に示すブロック図である。FIG. 6 is a block diagram schematically showing a configuration of an optical transmitter 300 according to a third embodiment. 実施の形態4にかかる光送受信システム400の構成を模式的に示すブロック図である。FIG. 6 is a block diagram schematically showing a configuration of an optical transmission / reception system 400 according to a fourth exemplary embodiment. 予等化された光信号の波形と出現確率を示す図である。It is a figure which shows the waveform and appearance probability of a pre-equalized optical signal. 一般的な線形特性を有する4ビットの出力光の階調変化を示すグラフである。It is a graph which shows the gradation change of 4-bit output light which has a general linear characteristic. 「1000」付近の階調幅が狭くなる非線形特性を有する4ビットの出力光の階調変化を示すグラフである。It is a graph which shows the gradation change of 4-bit output light which has the nonlinear characteristic in which the gradation width | variety near "1000" becomes narrow.
 以下、図面を参照して本発明の実施の形態について説明する。各図面においては、同一要素には同一の符号が付されており、必要に応じて重複説明は省略される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted as necessary.
 以下の実施の形態にかかる光送信器の構成及び動作を理解するための前提として、一般的な分割電極構造の多値の光送信器500について説明する。光送信器500は、多値変調光送信器であるが、ここでは説明の簡略化のため、光送信器500を4ビットの光送信器として説明する。図1は、一般的な分割電極構造の多値の光送信器500の構成を模式的に示すブロック図である。光送信器500は、光変調器51、デコーダ52及び駆動回路53を有する。 As a premise for understanding the configuration and operation of an optical transmitter according to the following embodiment, a general multi-value optical transmitter 500 having a divided electrode structure will be described. The optical transmitter 500 is a multi-level modulation optical transmitter, but here, for the sake of simplicity of description, the optical transmitter 500 will be described as a 4-bit optical transmitter. FIG. 1 is a block diagram schematically showing a configuration of a multi-value optical transmitter 500 having a general divided electrode structure. The optical transmitter 500 includes an optical modulator 51, a decoder 52, and a drive circuit 53.
 光変調器51は、入力光INを変調した出力光OUTを出力する。光変調器51は、光導波路511及び512、光合分波器513及び514、位相変調領域PM51_1~PM51_4、PM52_1~PM52_4を有する。光導波路511及び512は並列に配置される。 The optical modulator 51 outputs an output light OUT obtained by modulating the input light IN. The optical modulator 51 includes optical waveguides 511 and 512, optical multiplexers / demultiplexers 513 and 514, and phase modulation regions PM51_1 to PM51_4, PM52_1 to PM52_4. The optical waveguides 511 and 512 are arranged in parallel.
 光導波路511及び512の光信号入力(入力光IN)側には、光合分波器513が挿入される。光合分波器513の入力側では、入力ポートP1に入力光INが入力され、入力ポートP2は無入力とする。光合分波器513の出力側では、光導波路511は出力ポートP3と接続され、光導波路512は出力ポートP4と接続される。 An optical multiplexer / demultiplexer 513 is inserted on the optical signal input (input light IN) side of the optical waveguides 511 and 512. On the input side of the optical multiplexer / demultiplexer 513, the input light IN is input to the input port P1, and the input port P2 is not input. On the output side of the optical multiplexer / demultiplexer 513, the optical waveguide 511 is connected to the output port P3, and the optical waveguide 512 is connected to the output port P4.
 図2Aは、光合分波器513の構成を模式的に示す図である。光合分波器513では、入力ポートP1に入射した光は、出力ポートP3及びP4に伝搬する。ただし、入力ポートP1から出力ポートP4に伝搬する光は、入力ポートP1から出力ポートP3に伝搬する光に比べて、位相が90°遅延する。また、入力ポートP2に入射した光は、出力ポートP3及びP4に伝搬する。ただし、入力ポートP2から出力ポートP3に伝搬する光は、入力ポートP2から出力ポートP4に伝搬する光に比べて、位相が90°遅延する。 FIG. 2A is a diagram schematically showing the configuration of the optical multiplexer / demultiplexer 513. In the optical multiplexer / demultiplexer 513, the light incident on the input port P1 propagates to the output ports P3 and P4. However, the phase of light propagating from the input port P1 to the output port P4 is delayed by 90 ° compared to the light propagating from the input port P1 to the output port P3. Further, the light incident on the input port P2 propagates to the output ports P3 and P4. However, the phase of light propagating from the input port P2 to the output port P3 is delayed by 90 ° compared to the light propagating from the input port P2 to the output port P4.
 光導波路511及び512の光信号出力(出力光OUT)側には、光合分波器514が挿入される。光合分波器514の入力側では、光導波路511は入力ポートP5と接続され、光導波路512は入力ポートP6と接続される。光合分波器514の出力側では、出力ポートP7から出力光OUTが出力される。 An optical multiplexer / demultiplexer 514 is inserted on the optical signal output (output light OUT) side of the optical waveguides 511 and 512. On the input side of the optical multiplexer / demultiplexer 514, the optical waveguide 511 is connected to the input port P5, and the optical waveguide 512 is connected to the input port P6. On the output side of the optical multiplexer / demultiplexer 514, the output light OUT is output from the output port P7.
 図2Bは、光合分波器514の構成を模式的に示す図である。光合分波器514は、光合分波器513と同様の構成を有する。入力ポートP5及びP6は、それぞれ光合分波器513の入力ポートP1及びP2に対応する。出力ポートP7及びP8は、それぞれ光合分波器513の出力ポートP3及びP4に対応する。入力ポートP5に入射した光は、出力ポートP7及びP8に伝搬する。ただし、入力ポートP5から出力ポートP8に伝搬する光は、入力ポートP5から出力ポートP7に伝搬する光に比べて、位相が90°遅延する。また、入力ポートP6に入射した光は、出力ポートP7及びP8に伝搬する。ただし、入力ポートP6から出力ポートP7に伝搬する光は、入力ポートP6から出力ポートP8に伝搬する光に比べて、位相が90°遅延する。 FIG. 2B is a diagram schematically showing the configuration of the optical multiplexer / demultiplexer 514. The optical multiplexer / demultiplexer 514 has the same configuration as the optical multiplexer / demultiplexer 513. The input ports P5 and P6 correspond to the input ports P1 and P2 of the optical multiplexer / demultiplexer 513, respectively. The output ports P7 and P8 correspond to the output ports P3 and P4 of the optical multiplexer / demultiplexer 513, respectively. The light incident on the input port P5 propagates to the output ports P7 and P8. However, the phase of light propagating from the input port P5 to the output port P8 is delayed by 90 ° compared to the light propagating from the input port P5 to the output port P7. Further, the light incident on the input port P6 propagates to the output ports P7 and P8. However, the phase of light propagating from the input port P6 to the output port P7 is delayed by 90 ° compared to the light propagating from the input port P6 to the output port P8.
 光合分波器513と光合分波器514との間の光導波路511には、位相変調領域PM51_1~PM51_4が配置される。光合分波器513と光合分波器514との間の光導波路512には、位相変調領域PM52_1~PM52_4が配置される。 Phase modulation regions PM51_1 to PM51_4 are arranged in the optical waveguide 511 between the optical multiplexer / demultiplexer 513 and the optical multiplexer / demultiplexer 514. Phase modulation regions PM52_1 to PM52_4 are disposed in the optical waveguide 512 between the optical multiplexer / demultiplexer 513 and the optical multiplexer / demultiplexer 514.
 ここで、位相変調領域とは、光導波路上に形成された電極を有する領域である。そして、電極に電気信号、例えば電圧信号が印加されることにより、電極の下の光導波路の実効屈折率が変化する。その結果、位相変調領域の光導波路の実質的な光路長を変化させることができる。これにより、位相変調領域は、光導波路を伝搬する光信号の位相を変化させることができる。そして、2本の光導波路511及び512の間を伝搬する光信号間に位相差を与えることで、光信号を変調することができる。すなわち、光変調器51は、2本のアームと電極分割構造を有する、多値のマッハツェンダ光変調器を構成する。 Here, the phase modulation region is a region having electrodes formed on the optical waveguide. When an electric signal, for example, a voltage signal is applied to the electrode, the effective refractive index of the optical waveguide under the electrode changes. As a result, the substantial optical path length of the optical waveguide in the phase modulation region can be changed. Thereby, the phase modulation region can change the phase of the optical signal propagating through the optical waveguide. The optical signal can be modulated by giving a phase difference between the optical signals propagating between the two optical waveguides 511 and 512. That is, the optical modulator 51 constitutes a multi-value Mach-Zehnder optical modulator having two arms and an electrode division structure.
 デコーダ52は、4ビットの入力デジタル信号D[3:0]をデコードし、例えば多ビットの信号D1~D4を駆動回路53に出力する。 The decoder 52 decodes the 4-bit input digital signal D [3: 0] and outputs, for example, multi-bit signals D 1 to D 4 to the drive circuit 53.
 駆動回路53は、5値のD/AコンバータDAC51~DAC54を有する。D/AコンバータDAC51~DAC54のそれぞれには、信号D1~D4が供給される。D/AコンバータDAC51~DAC54は、信号D1~D4に応じて一対の差動出力信号を出力する。このとき、D/AコンバータDAC51~DAC54から出力される差動出力信号の正相出力信号のそれぞれは、位相変調領域PM51_1~51_4に出力される。D/AコンバータDAC51~DAC54から出力される差動出力信号の逆相出力信号のそれぞれは、位相変調領域PM52_1~52_4に出力される。 The drive circuit 53 includes five-value D / A converters DAC51 to DAC54. Signals D1 to D4 are supplied to the D / A converters DAC51 to DAC54, respectively. The D / A converters DAC51 to DAC54 output a pair of differential output signals according to the signals D1 to D4. At this time, the positive-phase output signals of the differential output signals output from the D / A converters DAC51 to DAC54 are output to the phase modulation regions PM51_1 to 51_4. Respective negative-phase output signals of the differential output signals output from the D / A converters DAC51 to DAC54 are output to the phase modulation areas PM52_1 to 52_4.
 ここで、D/AコンバータDAC51~DAC54が出力する差動出力信号について説明する。D/AコンバータDAC51は、上述のように、5値出力(0、1、2、3、4)のD/Aコンバータである。つまり、DAC51は、信号D1の値の増大に応じて、正相出力信号の値を「0」→「1」→「2」→「3」→「4」の順に増加させる。 Here, the differential output signals output from the D / A converters DAC51 to DAC54 will be described. As described above, the D / A converter DAC 51 is a D / A converter with five values (0, 1, 2, 3, 4). That is, the DAC 51 increases the value of the positive phase output signal in the order of “0” → “1” → “2” → “3” → “4” in accordance with the increase in the value of the signal D1.
 一方、DAC51は、正相出力信号を反転させた信号を、逆相出力信号として出力する。つまり、DAC51は、信号D1の値の増大に応じて、逆相出力信号の値を「4」→「3」→「2」→「1」→「0」の順に増加させる。なお、正相出力信号及び逆相出力信号の値の和が、5値出力の最大値「4」と等しくなるように、逆相出力信号の値が決定されると理解することも可能である。 On the other hand, the DAC 51 outputs a signal obtained by inverting the normal phase output signal as a negative phase output signal. That is, the DAC 51 increases the value of the reverse phase output signal in the order of “4” → “3” → “2” → “1” → “0” in accordance with the increase in the value of the signal D1. It can also be understood that the value of the negative phase output signal is determined such that the sum of the values of the positive phase output signal and the negative phase output signal is equal to the maximum value “4” of the quinary output. .
 図3は、光送信器500の動作を示す動作表である。D/AコンバータDAC51は、入力デジタル信号D[3:0]が「0000」→「0001」→「0010」→「0011」→「0100」と増加するに従って、正相出力信号の値を「0」→「1」→「2」→「3」→「4」の順で増加させ、逆相出力信号の値を「4」→「3」→「2」→「1」→「0」の順で減少させる。ただし、入力デジタル信号D[3:0]が「0101」以上の場合には、D/AコンバータDAC51の正相出力信号の値は「4」、逆相出力信号の値は「0」となる。 FIG. 3 is an operation table showing the operation of the optical transmitter 500. The D / A converter DAC 51 increases the value of the positive phase output signal to “0” as the input digital signal D [3: 0] increases from “0000” → “0001” → “0010” → “0011” → “0100”. ”→“ 1 ”→“ 2 ”→“ 3 ”→“ 4 ”and increase the value of the negative phase output signal from“ 4 ”→“ 3 ”→“ 2 ”→“ 1 ”→“ 0 ” Decrease in order. However, when the input digital signal D [3: 0] is “0101” or more, the value of the positive phase output signal of the D / A converter DAC 51 is “4” and the value of the negative phase output signal is “0”. .
 D/AコンバータDAC52は、入力デジタル信号D[3:0]が「0100」→「0101」→「0110」→「0111」→「1000」と増加するに従って、正相出力信号の値を「0」→「1」→「2」→「3」→「4」の順で増加させ、逆相出力信号の値を「4」→「3」→「2」→「1」→「0」の順で減少させる。ただし、入力デジタル信号D[3:0]が「0011」以下の場合には、D/AコンバータDAC52の正相出力信号の値は「0」、逆相出力信号の値は「4」となる。また、入力デジタル信号D[3:0]が「1001」以上の場合には、D/AコンバータDAC52の正相出力信号の値は「4」、逆相出力信号の値は「0」となる。 The D / A converter DAC 52 increases the value of the positive phase output signal to “0” as the input digital signal D [3: 0] increases from “0100” → “0101” → “0110” → “0111” → “1000”. ”→“ 1 ”→“ 2 ”→“ 3 ”→“ 4 ”and increase the value of the negative phase output signal from“ 4 ”→“ 3 ”→“ 2 ”→“ 1 ”→“ 0 ” Decrease in order. However, when the input digital signal D [3: 0] is “0011” or less, the value of the positive phase output signal of the D / A converter DAC 52 is “0” and the value of the negative phase output signal is “4”. . When the input digital signal D [3: 0] is “1001” or more, the value of the positive phase output signal of the D / A converter DAC 52 is “4” and the value of the negative phase output signal is “0”. .
 D/AコンバータDAC53は、入力デジタル信号D[3:0]が「1000」→「1001」→「1010」→「1011」→「1100」と増加するに従って、正相出力信号の値を「0」→「1」→「2」→「3」→「4」の順で増加させ、逆相出力信号の値を「4」→「3」→「2」→「1」→「0」の順で減少させる。ただし、入力デジタル信号D[3:0]が「0111」以下の場合には、D/AコンバータDAC53の正相出力信号の値は「0」、逆相出力信号の値は「4」となる。また、入力デジタル信号D[3:0]が「1101」以上の場合には、D/AコンバータDAC53の正相出力信号の値は「4」、逆相出力信号の値は「0」となる。 The D / A converter DAC 53 increases the value of the positive phase output signal to “0” as the input digital signal D [3: 0] increases from “1000” → “1001” → “1010” → “1011” → “1100”. ”→“ 1 ”→“ 2 ”→“ 3 ”→“ 4 ”and increase the value of the negative phase output signal from“ 4 ”→“ 3 ”→“ 2 ”→“ 1 ”→“ 0 ” Decrease in order. However, when the input digital signal D [3: 0] is “0111” or less, the value of the positive phase output signal of the D / A converter DAC 53 is “0” and the value of the negative phase output signal is “4”. . When the input digital signal D [3: 0] is “1101” or more, the value of the positive phase output signal of the D / A converter DAC 53 is “4”, and the value of the negative phase output signal is “0”. .
 D/AコンバータDAC54は、入力デジタル信号D[3:0]が「1100」→「1101」→「1110」→「1111」と増加するに従って、正相出力信号の値を「0」→「1」→「2」→「3」の順で増加させ、逆相出力信号の値を「4」→「3」→「2」→「1」→の順で減少させる。ただし、入力デジタル信号D[3:0]が「1011」以下の場合には、D/AコンバータDAC51の正相出力信号の値は「0」、逆相出力信号の値は「4」となる。 The D / A converter DAC 54 increases the value of the positive phase output signal from “0” to “1” as the input digital signal D [3: 0] increases from “1100” → “1101” → “1110” → “1111”. ”→“ 2 ”→“ 3 ”, and the value of the negative phase output signal is decreased in the order of“ 4 ”→“ 3 ”→“ 2 ”→“ 1 ”→. However, when the input digital signal D [3: 0] is “1011” or less, the value of the positive phase output signal of the D / A converter DAC 51 is “0”, and the value of the negative phase output signal is “4”. .
 ここで、光送信器500の位相変調動作について説明する。図4は、光送信器500での光の伝搬態様を模式的に示す図である。この例では、図1に示すように、光合分波器513の入力ポートP1に入力光INが入力する。そのため、出力ポートP3から出力される光に比べて、出力ポートP4から出力される光は、位相が90°遅れる。その後、出力ポートP3から出力された光は、位相変調領域PM51_1~51_4を通過し、光合分波器514の入力ポートP5に到達する。入力ポートP5に到達した光は、そのまま出力ポートP7に到達する。一方、出力ポートP4から出力された光は、位相変調領域PM52_1~52_4を通過し、光合分波器514の入力ポートP6に到達する。入力ポートP6に到達した光は、さらに位相が90°遅延して、出力ポートP7に到達する。 Here, the phase modulation operation of the optical transmitter 500 will be described. FIG. 4 is a diagram schematically illustrating a light propagation mode in the optical transmitter 500. In this example, as shown in FIG. 1, the input light IN is input to the input port P1 of the optical multiplexer / demultiplexer 513. Therefore, the phase of the light output from the output port P4 is delayed by 90 ° compared to the light output from the output port P3. Thereafter, the light output from the output port P3 passes through the phase modulation regions PM51_1 to 51_4 and reaches the input port P5 of the optical multiplexer / demultiplexer 514. The light that reaches the input port P5 reaches the output port P7 as it is. On the other hand, the light output from the output port P4 passes through the phase modulation regions PM52_1 to 52_4 and reaches the input port P6 of the optical multiplexer / demultiplexer 514. The light reaching the input port P6 reaches the output port P7 with a phase delay of 90 °.
 つまり、位相変調領域PM51_1~51_4及び位相変調領域PM52_1~52_4により位相変調を受けなかった場合でも、入力ポートP6から出力ポートP7に到達する光L2は、入力ポートP5から出力ポートP7に到達する光L1に比べて、位相が180°遅延することとなる。 That is, even when the phase modulation regions PM51_1 to 51_4 and the phase modulation regions PM52_1 to 52_4 are not subjected to phase modulation, the light L2 reaching the output port P7 from the input port P6 is the light reaching the output port P7 from the input port P5. Compared to L1, the phase is delayed by 180 °.
 図5Aは、位相変調領域PM51_1~51_4及び位相変調領域PM52_1~52_4により位相変調を受けなかった場合の光L1及びL2を示すコンスタレーション図である。上述したように、入力ポートP6から出力ポートP7に到達する光L2は、入力ポートP5から出力ポートP7に到達する光L1に比べて、位相が180°遅延する。 FIG. 5A is a constellation diagram showing the lights L1 and L2 when the phase modulation regions PM51_1 to 51_4 and the phase modulation regions PM52_1 to 52_4 are not subjected to phase modulation. As described above, the phase of the light L2 reaching the output port P7 from the input port P6 is delayed by 180 ° compared to the light L1 reaching the output port P7 from the input port P5.
 これに対し、光送信器500では、位相変調領域PM51_1~51_4には正相出力信号が入力し、位相変調領域PM52_1~52_4には逆相出力信号が入力する。これにより、入力ポートP6から出力ポートP7に到達する光L2の位相遅れを補償する。図5Bは、光送信器500において入力デジタル信号D[3:0]の2進コードが「0000」である場合の光L1及びL2を示すコンスタレーション図である。例えば、入力デジタル信号D[3:0]の2進コードが「0000」であれば、位相変調領域PM51_1~51_4には正相出力信号である「0」が入力される。一方、位相変調領域PM52_1~52_4には逆相出力信号である「4」が入力される。これにより、位相変調領域PM52_1~52_4を通過する光は、更に位相が180°遅れる。 In contrast, in the optical transmitter 500, the normal phase output signal is input to the phase modulation regions PM51_1 to 51_4, and the negative phase output signal is input to the phase modulation regions PM52_1 to 52_4. Thereby, the phase delay of the light L2 reaching the output port P7 from the input port P6 is compensated. FIG. 5B is a constellation diagram showing the lights L1 and L2 when the binary code of the input digital signal D [3: 0] is “0000” in the optical transmitter 500. For example, if the binary code of the input digital signal D [3: 0] is “0000”, “0” that is a positive phase output signal is input to the phase modulation regions PM51_1 to 51_4. On the other hand, “4” that is an anti-phase output signal is input to the phase modulation regions PM52_1 to 52_4. Thereby, the phase of the light passing through the phase modulation regions PM52_1 to 52_4 is further delayed by 180 °.
 すなわち、入力ポートP6から出力ポートP7に到達する光L2には、元々の180°位相遅れに加えて、位相変調領域PM52_1~52_4による位相遅れである180°が加算される。これにより、入力ポートP6から出力ポートP7に到達する光L2には、360°の位相遅れが生じるため、入力ポートP5から出力ポートP7に到達する光L1に対する位相遅れが実質的に解消される。また、入力デジタル信号D[3:0]の2進コードが増加して、DAC51~54から出力される正相出力信号が増加するごとに、逆相出力信号が減少する。 That is, the light L2 reaching the output port P7 from the input port P6 is added with 180 °, which is the phase delay due to the phase modulation regions PM52_1 to 52_4, in addition to the original 180 ° phase delay. As a result, a 360 ° phase lag occurs in the light L2 reaching the output port P7 from the input port P6, so that the phase lag with respect to the light L1 reaching the output port P7 from the input port P5 is substantially eliminated. Further, every time the binary code of the input digital signal D [3: 0] increases and the normal phase output signal output from the DACs 51 to 54 increases, the negative phase output signal decreases.
 図5Cは、光送信器500における光L1及びL2を示すコンスタレーション図である。図5Cに示すように、差動出力信号を用いることで、入力デジタル信号D[3:0]の変化に応じて、入力ポートP1から出力ポートP4及び入力ポートP6から出力ポートP7に到達する光L2の位相遅れを補償しつつ、L1/L2の各々がRe軸に対して対照的に光の位相が変化することとなり、光送信器における光D/A変換が可能となる。これにより、図3の動作表に示すように、入力デジタル信号D[3:0]の値に応じて、光L1の位相変調量を0~15Δθ、光L2の位相変調量を0~-15Δθの16段階に変化させることができる。 FIG. 5C is a constellation diagram showing the lights L1 and L2 in the optical transmitter 500. As shown in FIG. 5C, by using the differential output signal, the light reaching the output port P4 from the input port P1 and the output port P7 from the input port P6 according to the change of the input digital signal D [3: 0]. While compensating for the phase delay of L2, each of L1 / L2 changes the phase of the light in contrast to the Re axis, and optical D / A conversion in the optical transmitter becomes possible. Thereby, as shown in the operation table of FIG. 3, the phase modulation amount of the light L1 is 0 to 15Δθ and the phase modulation amount of the light L2 is 0 to −15Δθ according to the value of the input digital signal D [3: 0]. It can be changed in 16 stages.
 なお、図5B及び図5Cでは、入力デジタル信号D[3:0]の2進コードが「0000」又は「1111」のときに、光L1及びL2の位置が一致していないが、これは、図面を見やするために過ぎない。つまり、入力デジタル信号D[3:0]の2進コードが「0000」又は「1111」のときに、光L1及びL2の位置が一致していてもよい。また、ここでは、位相変調領域で変調される位相変化量は、入力デジタル信号に応じて0~180度変化する場合について説明したが、これに限ったことではない。 In FIGS. 5B and 5C, when the binary code of the input digital signal D [3: 0] is “0000” or “1111”, the positions of the lights L1 and L2 do not match. It is only for reviewing the drawing. That is, when the binary code of the input digital signal D [3: 0] is “0000” or “1111”, the positions of the lights L1 and L2 may match. In addition, here, a case has been described in which the amount of phase change modulated in the phase modulation region changes from 0 to 180 degrees in accordance with the input digital signal. However, the present invention is not limited to this.
 光送信器500は、以上の構成により、4ビットの光送信器として機能する。ところが、駆動回路53によって位相変調されたL1およびL2の位相の階調が等間隔である場合には、以下の問題が生じる。図5Dは、光送信器500において光L1及びL2が合波されることによる出力光OUTの光強度を示すコンスタレーション図である。図5Dに示すように、光信号の位相を等間隔にずらしてゆくと、出力光の光強度の階調間隔は不均一になってしまい、入力デジタル信号に対する出力光の信号強度の線形性が確保できない。 The optical transmitter 500 functions as a 4-bit optical transmitter with the above configuration. However, when the gray levels of the phases of L1 and L2 phase-modulated by the drive circuit 53 are equally spaced, the following problem occurs. FIG. 5D is a constellation diagram illustrating the light intensity of the output light OUT due to the light L1 and L2 being combined in the optical transmitter 500. As shown in FIG. 5D, when the phase of the optical signal is shifted at equal intervals, the gradation interval of the light intensity of the output light becomes non-uniform, and the linearity of the signal intensity of the output light with respect to the input digital signal is reduced. It cannot be secured.
 実施の形態1
 次に、本発明の実施の形態1にかかる光送信器100について説明する。光送信器100は、上記の光送信器500におけるような問題を解決するため、出力光の線形性の調整機能を有する光送信器として構成される。また、光送信器100は多値変調光送信器であるが、ここでは説明の簡略化のため、光送信器100を4ビットの光送信器として説明する。図6は、実施の形態1にかかる光送信器100の構成を模式的に示すブロック図である。光送信器100は、光変調器11、デコーダ12、駆動回路13及び制御回路14を有する。
Embodiment 1
Next, the optical transmitter 100 according to the first embodiment of the present invention will be described. The optical transmitter 100 is configured as an optical transmitter having a function of adjusting the linearity of output light in order to solve the problem in the optical transmitter 500 described above. Further, although the optical transmitter 100 is a multi-level modulation optical transmitter, here, the optical transmitter 100 is described as a 4-bit optical transmitter for simplification of description. FIG. 6 is a block diagram schematically illustrating the configuration of the optical transmitter 100 according to the first embodiment. The optical transmitter 100 includes an optical modulator 11, a decoder 12, a drive circuit 13, and a control circuit 14.
 光変調器11は、入力光INを変調した出力光OUTを出力する。光変調器11は、光導波路111及び112、光合分波器113及び114、位相変調領域PM11_1~PM11_4、PM12_1~12_4を有する。光導波路111及び112は並列に配置される。 The optical modulator 11 outputs an output light OUT obtained by modulating the input light IN. The optical modulator 11 includes optical waveguides 111 and 112, optical multiplexers / demultiplexers 113 and 114, and phase modulation regions PM11_1 to PM11_4 and PM12_1 to 12_4. The optical waveguides 111 and 112 are arranged in parallel.
 光導波路111及び112の光信号入力(入力光IN)側には、光合分波器113が挿入される。光合分波器113は、上述の光合分波器513と同様の構成を有する。光合分波器113の入力側では、入力ポートP1に入力光INが入力され、入力ポートP2は無入力とする。光合分波器113の出力側では、光導波路111は出力ポートP3と接続され、光導波路112は出力ポートP4と接続される。 An optical multiplexer / demultiplexer 113 is inserted on the optical signal input (input light IN) side of the optical waveguides 111 and 112. The optical multiplexer / demultiplexer 113 has the same configuration as the optical multiplexer / demultiplexer 513 described above. On the input side of the optical multiplexer / demultiplexer 113, the input light IN is input to the input port P1, and the input port P2 is not input. On the output side of the optical multiplexer / demultiplexer 113, the optical waveguide 111 is connected to the output port P3, and the optical waveguide 112 is connected to the output port P4.
 光導波路111及び112の光信号出力(出力光OUT)側には、光合分波器114が挿入される。光合分波器114は、上述の光合分波器514と同様の構成を有する。光合分波器114の入力側では、光導波路111は入力ポートP5と接続され、光導波路112は入力ポートP6と接続される。光合分波器114の出力側では、出力ポートP7から出力光OUTが出力される。 An optical multiplexer / demultiplexer 114 is inserted on the optical signal output (output light OUT) side of the optical waveguides 111 and 112. The optical multiplexer / demultiplexer 114 has the same configuration as the optical multiplexer / demultiplexer 514 described above. On the input side of the optical multiplexer / demultiplexer 114, the optical waveguide 111 is connected to the input port P5, and the optical waveguide 112 is connected to the input port P6. On the output side of the optical multiplexer / demultiplexer 114, the output light OUT is output from the output port P7.
 光合分波器113と光合分波器114との間の光導波路111には、位相変調領域PM11_1~PM11_4が配置される。光合分波器113と光合分波器114との間の光導波路112には、位相変調領域PM12_1~PM12_4が配置される。 In the optical waveguide 111 between the optical multiplexer / demultiplexer 113 and the optical multiplexer / demultiplexer 114, phase modulation regions PM11_1 to PM11_4 are arranged. Phase modulation regions PM12_1 to PM12_4 are arranged in the optical waveguide 112 between the optical multiplexer / demultiplexer 113 and the optical multiplexer / demultiplexer 114.
 ここで、位相変調領域は、光送信器500と同様に、光導波路上に形成された電極を有する。そして、電極に電気信号、例えば電圧信号が印加されることにより、電極の下の光導波路の実効屈折率が変化する。その結果、位相変調領域の光導波路の実質的な光路長を変化させることができる。これにより、位相変調領域は、光導波路を伝搬する光信号の位相を変化させることができる。そして、2本の光導波路111及び112の間を伝搬する光信号間に位相差を与えることで、光信号を変調することができる。すなわち、光変調器11は、2本のアームと電極分割構造を有する、多値のマッハツェンダ光変調器を構成する。 Here, similarly to the optical transmitter 500, the phase modulation region has electrodes formed on the optical waveguide. When an electric signal, for example, a voltage signal is applied to the electrode, the effective refractive index of the optical waveguide under the electrode changes. As a result, the substantial optical path length of the optical waveguide in the phase modulation region can be changed. Thereby, the phase modulation region can change the phase of the optical signal propagating through the optical waveguide. The optical signal can be modulated by providing a phase difference between the optical signals propagating between the two optical waveguides 111 and 112. That is, the optical modulator 11 constitutes a multi-value Mach-Zehnder optical modulator having two arms and an electrode division structure.
 駆動回路13は、D/AコンバータDAC1~DAC4を有する。D/AコンバータDAC1~DAC4は、同じフルスケール振幅FSAを有する。ただし、D/AコンバータDAC1~DAC4は、階調数が異なる。この例ではD/AコンバータDAC1及びDAC4の階調数は、D/AコンバータDAC2及びDAC3の階調数よりも少ないものとする。図7は、D/AコンバータDAC1~DAC4の階調数を模式的に示す図である。ここでは、D/AコンバータDAC1及びDAC4の階調数を3とし、D/AコンバータDAC2及びDAC3の階調数を5する。 The drive circuit 13 includes D / A converters DAC1 to DAC4. The D / A converters DAC1 to DAC4 have the same full-scale amplitude FSA. However, the D / A converters DAC1 to DAC4 have different gradation numbers. In this example, it is assumed that the number of gradations of the D / A converters DAC1 and DAC4 is smaller than the number of gradations of the D / A converters DAC2 and DAC3. FIG. 7 is a diagram schematically showing the number of gradations of the D / A converters DAC1 to DAC4. Here, the number of gradations of the D / A converters DAC1 and DAC4 is 3, and the number of gradations of the D / A converters DAC2 and DAC3 is 5.
 D/AコンバータDAC1~DAC4は、信号D1~D4に応じて一対の差動出力信号を出力する。このとき、D/AコンバータDAC1~DAC4から出力される差動出力信号の正相出力信号のそれぞれは、位相変調領域PM11_1~11_4に出力される。D/AコンバータDAC1~DAC4から出力される差動出力信号の逆相出力信号のそれぞれは、位相変調領域PM12_1~12_4に出力される。 The D / A converters DAC1 to DAC4 output a pair of differential output signals according to the signals D1 to D4. At this time, the positive phase output signals of the differential output signals output from the D / A converters DAC1 to DAC4 are output to the phase modulation regions PM11_1 to 11_4. Respective negative-phase output signals of the differential output signals output from the D / A converters DAC1 to DAC4 are output to the phase modulation areas PM12_1 to 12_4.
 ここで、D/AコンバータDAC1~DAC4が出力する差動出力信号について説明する。D/AコンバータDAC1及びDAC4は、上述のように、4値(3階調)出力のD/Aコンバータである。このとき、D/AコンバータDAC1及びDAC4の正相出力信号は「0(0×FSA/3)」→「1×FSA/3」→「2×FSA/3」→「3×FSA/3」の順で増加し、逆相出力信号は「3×FSA/3」→「2×FSA/3」→「1×FSA/3」→「0(0×FSA/3)」の順で減少する。D/AコンバータDAC2及びDAC3は、上述のように、6値(5階調)出力のD/Aコンバータである。このとき、D/AコンバータDAC2及びDAC3の正相出力信号は「0(0×FSA/5)」→「1×FSA/5」→「2×FSA/5」→「3×FSA/5」→「4×FSA/5」→「5×FSA/5」の順で増加し、逆相出力信号は「5×FSA/5」→「4×FSA/5」→「3×FSA/3」→「2×FSA/3」→「1×FSA/3」→「0(0×FSA/3)」の順で減少する。なお、正相出力信号及び逆相出力信号の値の和が、DAC1~DAC4の出力の最大値と等しくなるように、逆相出力信号の値が決定されると理解することも可能である。 Here, the differential output signals output from the D / A converters DAC1 to DAC4 will be described. As described above, the D / A converters DAC1 and DAC4 are four-value (3-gradation) output D / A converters. At this time, the positive phase output signals of the D / A converters DAC1 and DAC4 are “0 (0 × FSA / 3)” → “1 × FSA / 3” → “2 × FSA / 3” → “3 × FSA / 3”. The negative phase output signal decreases in the order of “3 × FSA / 3” → “2 × FSA / 3” → “1 × FSA / 3” → “0 (0 × FSA / 3)”. . As described above, the D / A converters DAC2 and DAC3 are 6-value (5-gradation) output D / A converters. At this time, the positive phase output signals of the D / A converters DAC2 and DAC3 are “0 (0 × FSA / 5)” → “1 × FSA / 5” → “2 × FSA / 5” → “3 × FSA / 5”. → "4xFSA / 5" → "5xFSA / 5" increases in this order, and the reverse phase output signal is "5xFSA / 5" → "4xFSA / 5" → "3xFSA / 3" → “2 × FSA / 3” → “1 × FSA / 3” → “0 (0 × FSA / 3)”. It can also be understood that the value of the negative phase output signal is determined such that the sum of the values of the positive phase output signal and the negative phase output signal is equal to the maximum value of the outputs of DAC1 to DAC4.
 デコーダ12は、4ビットの入力デジタル信号D[3:0]をデコードし、信号D1~D4を、駆動回路13に出力する。 The decoder 12 decodes the 4-bit input digital signal D [3: 0] and outputs the signals D 1 to D 4 to the drive circuit 13.
 制御回路14は、デコーダ12に対して、信号D1~D4をD/AコンバータDAC1~DAC4のいずれに出力させるかを制御する。この例では、制御回路14による制御を受けて、デコード12は、信号D1~D4を、それぞれD/AコンバータDAC1~DAC4に出力する。つまり、制御回路14は、信号D1~D4とD/AコンバータDAC1~DAC4との対応関係を指定する。また、換言すれば、制御回路14は、デコード値にとD/AコンバータDAC1~DAC4との対応関係、すなわち、デコード値に対するDAC1~DAC4の動作範囲を指定する。 The control circuit 14 controls the decoder 12 to output the signals D1 to D4 to any of the D / A converters DAC1 to DAC4. In this example, under the control of the control circuit 14, the decode 12 outputs signals D1 to D4 to the D / A converters DAC1 to DAC4, respectively. That is, the control circuit 14 specifies the correspondence between the signals D1 to D4 and the D / A converters DAC1 to DAC4. In other words, the control circuit 14 specifies the correspondence relationship between the decode value and the D / A converters DAC1 to DAC4, that is, the operation range of the DAC1 to DAC4 with respect to the decode value.
 図8は、実施の形態1にかかる光送信器100の動作を示す動作表である。D/AコンバータDAC1は、入力デジタル信号D[3:0]が「0000」→「0001」→「0010」→「0011」と増加するに従って、正相出力信号を「0(0×FSA/3)」→「1×FSA/3」→「2×FSA/3」→「3×FSA/3」の順で増加させる。一方、D/AコンバータDAC1は、逆相出力信号を「3×FSA/3」→「2×FSA/3」→「1×FSA/3」→「0(0×FSA/3)」の順で減少させる。ただし、入力デジタル信号D[3:0]が「0100」以上の場合には、D/AコンバータDAC1の正相出力信号は「3×FSA/3」となり、逆相出力信号は「0(0×FSA/3)」となる。 FIG. 8 is an operation table showing the operation of the optical transmitter 100 according to the first embodiment. As the input digital signal D [3: 0] increases in the order of “0000” → “0001” → “0010” → “0011”, the D / A converter DAC1 sets the positive phase output signal to “0 (0 × FSA / 3). ) ”→“ 1 × FSA / 3 ”→“ 2 × FSA / 3 ”→“ 3 × FSA / 3 ”. On the other hand, the D / A converter DAC1 outputs the reverse phase output signal in the order of “3 × FSA / 3” → “2 × FSA / 3” → “1 × FSA / 3” → “0 (0 × FSA / 3)”. Decrease with. However, when the input digital signal D [3: 0] is “0100” or more, the positive phase output signal of the D / A converter DAC1 is “3 × FSA / 3”, and the negative phase output signal is “0 (0 × FSA / 3) ”.
 D/AコンバータDAC2は、入力デジタル信号D[3:0]が「0011」→「0100」→「0101」→「0110」→「0111」→「1000」と増加するに従って、正相出力信号を「0(0×FSA/5)」→「1×FSA/5」→「2×FSA/5」→「3×FSA/5」→「4×FSA/5」→「5×FSA/5」の順で増加させる。一方、D/AコンバータDAC2は、逆相出力信号を「5×FSA/5」→「4×FSA/5」→「3×FSA/5」→「2×FSA/5」→「1×FSA/5」→「0(0×FSA/5)」の順で減少させる。ただし、入力デジタル信号D[3:0]が「0010」以下の場合には、D/AコンバータDAC2の正相出力信号は「0(0×FSA/5)」となり、逆相出力信号は「5×FSA/5」となる。入力デジタル信号D[3:0]が「1001」以上の場合には、D/AコンバータDAC2の正相出力信号は「5×FSA/5」となり、逆相出力信号は「0(0×FSA/5)」となる。 The D / A converter DAC2 outputs the positive phase output signal as the input digital signal D [3: 0] increases from “0011” → “0100” → “0101” → “0110” → “0111” → “1000”. “0 (0 × FSA / 5)” → “1 × FSA / 5” → “2 × FSA / 5” → “3 × FSA / 5” → “4 × FSA / 5” → “5 × FSA / 5” Increase in the order. On the other hand, the D / A converter DAC2 converts the reverse phase output signal from “5 × FSA / 5” → “4 × FSA / 5” → “3 × FSA / 5” → “2 × FSA / 5” → “1 × FSA”. / 5 ”→“ 0 (0 × FSA / 5) ”. However, when the input digital signal D [3: 0] is “0010” or less, the positive phase output signal of the D / A converter DAC2 is “0 (0 × FSA / 5)”, and the negative phase output signal is “ 5 × FSA / 5 ”. When the input digital signal D [3: 0] is “1001” or more, the positive phase output signal of the D / A converter DAC2 is “5 × FSA / 5”, and the negative phase output signal is “0 (0 × FSA). / 5) ".
 D/AコンバータDAC3は、入力デジタル信号D[3:0]が「1000」→「1001」→「1010」→「1011」→「1100」→「1101」と増加するに従って、正相出力信号を「0(0×FSA/5)」→「1×FSA/5」→「2×FSA/5」→「3×FSA/5」→「4×FSA/5」→「5×FSA/5」の順で増加させる。一方、D/AコンバータDAC3は、逆相出力信号を「5×FSA/5」→「4×FSA/5」→「3×FSA/5」→「2×FSA/5」→「1×FSA/5」→「0(0×FSA/5)」の順で減少させる。ただし、入力デジタル信号D[3:0]が「0111」以下の場合には、D/AコンバータDAC3の正相出力信号は「0(0×FSA/5)」となり、逆相出力信号は「5×FSA/5」となる。入力デジタル信号D[3:0]が「1110」以上の場合には、D/AコンバータDAC3の正相出力信号は「5×FSA/5」となり、逆相出力信号は「0(0×FSA/5)」となる。 The D / A converter DAC3 outputs the positive phase output signal as the input digital signal D [3: 0] increases from “1000” → “1001” → “1010” → “1011” → “1100” → “1101”. “0 (0 × FSA / 5)” → “1 × FSA / 5” → “2 × FSA / 5” → “3 × FSA / 5” → “4 × FSA / 5” → “5 × FSA / 5” Increase in the order. On the other hand, the D / A converter DAC3 converts the reverse phase output signal from “5 × FSA / 5” → “4 × FSA / 5” → “3 × FSA / 5” → “2 × FSA / 5” → “1 × FSA”. / 5 ”→“ 0 (0 × FSA / 5) ”. However, when the input digital signal D [3: 0] is “0111” or less, the positive phase output signal of the D / A converter DAC3 is “0 (0 × FSA / 5)”, and the negative phase output signal is “ 5 × FSA / 5 ”. When the input digital signal D [3: 0] is “1110” or more, the positive phase output signal of the D / A converter DAC3 is “5 × FSA / 5”, and the negative phase output signal is “0 (0 × FSA). / 5) ".
 D/AコンバータDAC4は、入力デジタル信号D[3:0]が「1101」→「1110」→「1111」と増加するに従って、正相出力信号を「0(0×FSA/3)」→「1×FSA/3」→「2×FSA/3」の順で増加させる。一方、D/AコンバータDAC4は、逆相出力信号を「3×FSA/3」→「2×FSA/3」→「1×FSA/3」の順で減少させる。ただし、入力デジタル信号D[3:0]が「1100」以下の場合には、D/AコンバータDAC4の正相出力信号は「0(0×FSA/3)」となり、逆相出力信号は「3×FSA/3」となる。 As the input digital signal D [3: 0] increases from “1101” → “1110” → “1111”, the D / A converter DAC4 changes the positive phase output signal from “0 (0 × FSA / 3)” → “ Increase in the order of “1 × FSA / 3” → “2 × FSA / 3”. On the other hand, the D / A converter DAC4 decreases the reverse phase output signal in the order of “3 × FSA / 3” → “2 × FSA / 3” → “1 × FSA / 3”. However, when the input digital signal D [3: 0] is “1100” or less, the positive phase output signal of the D / A converter DAC 4 is “0 (0 × FSA / 3)”, and the negative phase output signal is “ 3 × FSA / 3 ”.
 図9A及びBは、光送信器100の変調動作を示すコンスタレーション図である。図9Aに示すように、D/AコンバータDAC1及びDAC4は、光L1の位相変調量をFSA/3×Δθずつ、光L2の位相変調量を-FSA/3×Δθずつ変化させることができる。D/AコンバータDAC2及びDAC3は、光L1の位相変調量をFSA/5×Δθずつ、光L2の位相変調量を-FSA/5×Δθずつ変化させることができる。 FIGS. 9A and 9B are constellation diagrams showing the modulation operation of the optical transmitter 100. FIG. As shown in FIG. 9A, the D / A converters DAC1 and DAC4 can change the phase modulation amount of the light L1 by FSA / 3 × Δθ and the phase modulation amount of the light L2 by −FSA / 3 × Δθ. The D / A converters DAC2 and DAC3 can change the phase modulation amount of the light L1 by FSA / 5 × Δθ and the phase modulation amount of the light L2 by −FSA / 5 × Δθ.
 この例では、D/AコンバータDAC1及びDAC4は、D/AコンバータDAC2及びDAC3よりも、階調数が少ない。よってD/AコンバータDAC1及びDAC4は、D/AコンバータDAC2及びDAC3よりも、階調間隔が広くなる。その結果、D/AコンバータDAC1及びDAC4による光信号の位相変化は、D/AコンバータDAC2及びDAC3による光信号の位相変化よりも、大きくなる。 In this example, the D / A converters DAC1 and DAC4 have fewer gradations than the D / A converters DAC2 and DAC3. Therefore, the gradation intervals of the D / A converters DAC1 and DAC4 are wider than those of the D / A converters DAC2 and DAC3. As a result, the phase change of the optical signal by the D / A converters DAC1 and DAC4 is larger than the phase change of the optical signal by the D / A converters DAC2 and DAC3.
 つまり、出力光の中心階調に近い階調を受け持つD/Aコンバータに階調数の多いD/Aコンバータを割り当て、出力光の中心階調から離れた階調を受け持つD/Aコンバータに階調数の少ないD/Aコンバータを割り当てることにより、図9Bに示すように、出力光の信号強度の階調間隔を均一化することができる。 That is, a D / A converter having a large number of gradations is assigned to a D / A converter that handles gradations close to the center gradation of output light, and a D / A converter that handles gradations away from the center gradation of output light is assigned to the D / A converter. By assigning a D / A converter with a small number of exponents, as shown in FIG. 9B, the gradation intervals of the signal intensity of the output light can be made uniform.
 その結果、光送信器500のように等間隔で位相を変化させる場合と比べて、光送信器100は、出力光の階調間隔を均一化することが可能となる。以上より、本構成によれば、出力光の信号強度の線形性を調整することができる光送信器を提供することができる。 As a result, compared to the case where the phase is changed at equal intervals as in the optical transmitter 500, the optical transmitter 100 can make the gradation intervals of the output light uniform. As described above, according to this configuration, it is possible to provide an optical transmitter capable of adjusting the linearity of the signal intensity of output light.
 実施の形態2
 次に、本発明の実施の形態2にかかる光送信器200について説明する。光送信器200は、実施の形態1にかかる光送信器100の変形例である。図10は、実施の形態2にかかる光送信器200の構成を模式的に示すブロック図である。光送信器200は、実施の形態1にかかる光送信器100に記憶装置15を追加した構成を有する。
Embodiment 2
Next, an optical transmitter 200 according to the second embodiment of the present invention will be described. An optical transmitter 200 is a modification of the optical transmitter 100 according to the first embodiment. FIG. 10 is a block diagram schematically illustrating a configuration of the optical transmitter 200 according to the second embodiment. The optical transmitter 200 has a configuration in which a storage device 15 is added to the optical transmitter 100 according to the first embodiment.
 記憶装置15は、DAC選択テーブル16を有する。制御回路14は、記憶装置15に格納されたDAC選択テーブル16を読み込み、DAC選択テーブル16のDAC選択情報に基づき、信号D1~D4のそれぞれ、D/AコンバータDAC1~DAC4のいずれかに出力する。 The storage device 15 has a DAC selection table 16. The control circuit 14 reads the DAC selection table 16 stored in the storage device 15 and outputs the signals D1 to D4 to any of the D / A converters DAC1 to DAC4 based on the DAC selection information in the DAC selection table 16. .
 なお、DAC選択テーブル16は、記憶装置15に予め格納された固定値としてもよい。また、DAC選択テーブル16は、光送信器200を光送受信システムに組み込む際の初期設定情報として、外部から記憶装置15に入力されてもよい。さらに、光送信器200が光信号を送出している間に、外部から記憶装置15のDAC選択テーブル16を更新することも可能である。 Note that the DAC selection table 16 may be a fixed value stored in advance in the storage device 15. Further, the DAC selection table 16 may be input from the outside to the storage device 15 as initial setting information when the optical transmitter 200 is incorporated into the optical transmission / reception system. Furthermore, it is possible to update the DAC selection table 16 of the storage device 15 from the outside while the optical transmitter 200 is transmitting an optical signal.
 本構成によれば、制御回路14がDAC選択テーブル16を参照して、異なる階調数を有するD/AコンバータDAC1~DAC4のそれぞれの動作範囲を、それぞれ好適なデコード値に割り当てることが可能となる。 According to this configuration, the control circuit 14 can refer to the DAC selection table 16 and assign the respective operation ranges of the D / A converters DAC1 to DAC4 having different gradation numbers to suitable decode values. Become.
 実施の形態3
 次に、本発明の実施の形態3にかかる光送信器300について説明する。光送信器300は、実施の形態1にかかる光送信器100の変形例である。図11は、実施の形態3にかかる光送信器300の構成を模式的に示すブロック図である。光送信器300は、実施の形態1にかかる光送信器100に、光モニタ回路17及び演算装置18を追加した構成を有する。
Embodiment 3
Next, an optical transmitter 300 according to the third embodiment of the present invention will be described. An optical transmitter 300 is a modification of the optical transmitter 100 according to the first embodiment. FIG. 11 is a block diagram schematically illustrating a configuration of the optical transmitter 300 according to the third embodiment. The optical transmitter 300 has a configuration in which an optical monitor circuit 17 and an arithmetic device 18 are added to the optical transmitter 100 according to the first embodiment.
 光モニタ回路17は、光変調器11の出力光OUTをモニタし、出力光OUTの光強度を検出する。そして、光モニタ回路17は、検出した光強度に対応する検出信号Sを、演算装置18に出力する。 The optical monitor circuit 17 monitors the output light OUT of the optical modulator 11 and detects the light intensity of the output light OUT. Then, the light monitor circuit 17 outputs a detection signal S d corresponding to the detected light intensity to the arithmetic device 18.
 演算装置18は、検出信号Sdから得られる出力光OUTの光強度と、入力デジタル信号D[3:0]の値に対応する光強度の期待値との差分を算出する。そして、算出した差分に応じた調整指示信号Soを、制御回路14に出力する。調整指示信号Soは、DAC選択情報を含む。 The computing device 18 calculates the difference between the light intensity of the output light OUT obtained from the detection signal Sd and the expected value of the light intensity corresponding to the value of the input digital signal D [3: 0]. Then, an adjustment instruction signal So corresponding to the calculated difference is output to the control circuit 14. The adjustment instruction signal So includes DAC selection information.
 制御回路14は、調整指示信号Soで指定されたDACに対して、信号D1~D4をそれぞれ出力する。 The control circuit 14 outputs signals D1 to D4 to the DAC specified by the adjustment instruction signal So.
 本構成によれば、実際の出力光OUTの光強度をモニタしながら、D/AコンバータDAC1~DAC4を適切にかつ自動的に選択することが可能である。したがって、より出力光OUTの信号強度に対する線形性を精密に調整することができる光送信器を提供することができる。 According to this configuration, it is possible to appropriately and automatically select the D / A converters DAC1 to DAC4 while monitoring the light intensity of the actual output light OUT. Therefore, it is possible to provide an optical transmitter capable of precisely adjusting the linearity with respect to the signal intensity of the output light OUT.
 実施の形態4
 次に、本発明の実施の形態4にかかる光送受信システム400について説明する。光送受信システム400は、上述の光送信器100、200及び300のいずれかを用いた光送受信システムである。ここでは、光送受信システム400が光送信器100を有する例について説明する。図12は、実施の形態4にかかる光送受信システム400の構成を模式的に示すブロック図である。
Embodiment 4
Next, an optical transmission / reception system 400 according to Embodiment 4 of the present invention will be described. The optical transmission / reception system 400 is an optical transmission / reception system using any one of the optical transmitters 100, 200, and 300 described above. Here, an example in which the optical transmission / reception system 400 includes the optical transmitter 100 will be described. FIG. 12 is a block diagram schematically illustrating a configuration of the optical transmission / reception system 400 according to the fourth embodiment.
 光送受信システム400は、光送信器100、光受信器401、伝送路402、光増幅器403を有する。 The optical transmission / reception system 400 includes an optical transmitter 100, an optical receiver 401, a transmission path 402, and an optical amplifier 403.
 光送信器100は、光信号として、例えば四位相偏移変調(Quadrature Phase Shift Keying:以下、QPSKと表記する)された、QPSK光信号を出力する。 The optical transmitter 100 outputs, as an optical signal, a QPSK optical signal that has been subjected to, for example, quadrature phase shift keying (hereinafter, referred to as QPSK).
 光送信器100と光受信器401との間は、光伝送路402により光学的に接続され、QPSK光信号が伝搬する。伝送路402には、光増幅器403が挿入され、伝送路403を伝搬するQPSK光信号を増幅する。光受信器401は、QPSK光信号を電気信号に復調する。 The optical transmitter 100 and the optical receiver 401 are optically connected by an optical transmission path 402, and a QPSK optical signal propagates. An optical amplifier 403 is inserted into the transmission line 402 and amplifies a QPSK optical signal propagating through the transmission line 403. The optical receiver 401 demodulates the QPSK optical signal into an electrical signal.
 光送受信システム400は、以上の構成により、光送信器100を用いた光信号の伝送が可能である。なお、光送信器100を、適宜、光送信器100又は200に置換できることは勿論である。 The optical transmission / reception system 400 can transmit an optical signal using the optical transmitter 100 with the above configuration. Of course, the optical transmitter 100 can be appropriately replaced with the optical transmitter 100 or 200.
 実施の形態5
 次に、本発明の実施の形態5について説明する。上述の実施の形態1~3では、出力光の線形性を向上させる例について説明したが、出力光の線形性の調整方法はこれに限られるものではない。本実施の形態では、実施の形態1~3にかかる光送信器100、200及び300を用いた、他の出力光の線形性の調整方法について説明する。
Embodiment 5
Next, a fifth embodiment of the present invention will be described. In the first to third embodiments described above, the example of improving the linearity of the output light has been described, but the method for adjusting the linearity of the output light is not limited to this. In the present embodiment, another method of adjusting the linearity of output light using the optical transmitters 100, 200, and 300 according to the first to third embodiments will be described.
 例えば、光送受信システムなどでは、長距離伝送を行うに際し、光送信器から送出される光信号に対して予等化処理を行う場合がある。この場合、予等化処理をされた光信号は、中程度の振幅を有する成分が出現する確率が大きい。このような場合、出現確率が大きい成分については高精度に、出現確率が小さい成分については低精度に処理することで、少ないビット数で信号処理が可能となる。 For example, in an optical transmission / reception system or the like, pre-equalization processing may be performed on an optical signal transmitted from an optical transmitter when performing long-distance transmission. In this case, the optical signal subjected to the pre-equalization process has a high probability that a component having a medium amplitude appears. In such a case, it is possible to perform signal processing with a small number of bits by processing a component with a high appearance probability with high accuracy and a component with a low appearance probability with low accuracy.
 図13は、予等化された光信号の波形と出現確率を示す図である。図13に示すような予等化信号を、例えば4ビットの階調で光信号処理した場合には、信号の中心付近、すなわち「1000」付近の出現確率が大きくなる。一方、信号の両端、すなわち「0000」及び「1111」付近の出現確率が小さくなる。 FIG. 13 is a diagram showing the waveform and appearance probability of the pre-equalized optical signal. When the pre-equalization signal as shown in FIG. 13 is subjected to optical signal processing with, for example, 4-bit gradation, the appearance probability near the center of the signal, that is, near “1000” increases. On the other hand, the appearance probabilities near both ends of the signal, that is, near “0000” and “1111” are reduced.
 図14Aは、一般的な線形特性を有する4ビットの出力光の階調変化を示すグラフである。図14Bは、「1000」付近の階調幅が狭くなる非線形特性を有する4ビットの出力光の階調変化を示すグラフである。図14Bに示すように、出力光の階調変化を、図14Aで示した線形状態特性を有する量子化ではなく、図12Bで示した「1000」付近の階調幅が狭くなるような非線形特性を有する量子化を行うことで、「1000」付近の処理を高精度に行うことが可能となる。その結果、図13に示すような信号を扱う場合、同じ4ビット階調でも、図14Bに示すような非線形特性を持たせることで、高精度な信号処理を行うことが可能となる。 FIG. 14A is a graph showing a gradation change of 4-bit output light having general linear characteristics. FIG. 14B is a graph showing a gradation change of 4-bit output light having nonlinear characteristics in which the gradation width near “1000” becomes narrow. As shown in FIG. 14B, the gradation change of the output light is not quantized with the linear state characteristic shown in FIG. 14A, but nonlinear characteristics such that the gradation width near “1000” shown in FIG. By performing the quantization, the processing near “1000” can be performed with high accuracy. As a result, when a signal as shown in FIG. 13 is handled, it is possible to perform highly accurate signal processing by giving a nonlinear characteristic as shown in FIG. 14B even with the same 4-bit gradation.
 このように、敢えて信号に非線形性を持たせる用途に対しても、本発明の調整手法を用いることで、出力光の信号強度に対する線形性を調整することが可能となる。よって、実施の形態1~3にかかる光送信器100、200及び300により、出力光OUTに対して、図13に示すような非線形性を持たせることにより、通信方式によっては、処理ビットの削減や高精度処理を実現することができる。 As described above, the linearity with respect to the signal intensity of the output light can be adjusted by using the adjustment method of the present invention even for the purpose of giving the signal nonlinearity. Therefore, the optical transmitters 100, 200, and 300 according to the first to third embodiments give the output light OUT non-linearity as shown in FIG. 13 to reduce processing bits depending on the communication method. And high-precision processing can be realized.
 その他の実施の形態
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、光の位相変化は、変化の順序に関係なく加算することができるので、D/Aコンバータの選択パターンは、上述の例には限られない。換言すれば、D/AコンバータDAC1~DAC4の順序を任意に入れ換えることが可能である。
Other Embodiments The present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit of the present invention. For example, since the phase change of light can be added regardless of the order of the change, the selection pattern of the D / A converter is not limited to the above example. In other words, the order of the D / A converters DAC1 to DAC4 can be arbitrarily changed.
 上述の実施の形態では、光送信器100、200及び300を4ビットの光送信器として説明したが、これは例示に過ぎない。すなわち、位相変調領域(分割電極)、D/Aコンバータの個数及び階調数を増加させることにより、さらに高次の多値変調が可能な光送信器を構成できることは、言うまでもない。 In the above-described embodiment, the optical transmitters 100, 200, and 300 have been described as 4-bit optical transmitters, but this is merely an example. That is, it goes without saying that an optical transmitter capable of higher-order multilevel modulation can be configured by increasing the number of phase modulation regions (divided electrodes), the number of D / A converters, and the number of gradations.
 実施の形態3では、出力光の光強度をモニタしてD/Aコンバータに与える信号を選択する例について説明したが、これは例示に過ぎない。すなわち、出力光の光強度のモニタを光受信器にて行い、光受信器から光送信器へ光強度情報をフィードバックする構成としてもよい。また、演算装置18を、光送信器に組み込んでもよい。 In the third embodiment, the example in which the light intensity of the output light is monitored and the signal to be supplied to the D / A converter is selected, but this is only an example. That is, the light intensity of the output light may be monitored by the optical receiver, and the light intensity information may be fed back from the optical receiver to the optical transmitter. Further, the arithmetic device 18 may be incorporated in the optical transmitter.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiment, but the present invention is not limited to the above. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the invention.
 この出願は、2012年3月22日に出願された日本出願特願2012-064769を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-064769 filed on Mar. 22, 2012, the entire disclosure of which is incorporated herein.
11、51 光変調器
12、52 デコーダ
13、53 駆動回路
14 制御回路
15 記憶装置
16 DAC選択テーブル
17 光モニタ回路
18 演算装置
100、200、300、500 光送信器
111、112、511、512 光導波路
113、114、513、514 光合分波器
400 光送受信システム
401 光受信器
402 伝送路
403 光増幅器
DAC1~DAC4、DAC51~DAC54 D/Aコンバータ
OUT  出力光
PM11_1~PM11_4、PM12_1~PM12_4、PM51_1~PM51_4、PM52_1~PM52_4 位相変調領域
 検出信号
So 調整指示信号
11, 51 Optical modulator 12, 52 Decoder 13, 53 Drive circuit 14 Control circuit 15 Storage device 16 DAC selection table 17 Optical monitor circuit 18 Arithmetic device 100, 200, 300, 500 Optical transmitters 111, 112, 511, 512 Optical Waveguide 113, 114, 513, 514 Optical multiplexer / demultiplexer 400 Optical transceiver system 401 Optical receiver 402 Transmission path 403 Optical amplifiers DAC1 to DAC4, DAC51 to DAC54 D / A converter OUT Output light PM11_1 to PM11_4, PM12_1 to PM12_4, PM51_1 to PM51_4, PM52_1 ~ PM52_4 the phase modulation region S d detection signal So adjustment instruction signal

Claims (17)

  1.  複数の位相変調領域が形成された、光信号が伝搬する光伝送路を有する光変調器と、
     入力デジタル信号をデコードし、デコード値に応じた信号を出力するデコーダと、
     前記デコード値に応じた信号に基づき、前記複数の位相変調領域のそれぞれに、階調数が異なるものを含む3階調以上の駆動信号を出力する駆動回路と、
     前記駆動回路を制御することにより、前記デコード値に対する複数の前記駆動信号の対応関係を指定する制御回路と、を備える、
     光送信器。
    An optical modulator having an optical transmission path through which an optical signal propagates, in which a plurality of phase modulation regions are formed;
    A decoder that decodes the input digital signal and outputs a signal corresponding to the decoded value;
    A drive circuit that outputs a drive signal of three or more gradations including a different number of gradations to each of the plurality of phase modulation regions based on a signal according to the decode value;
    A control circuit that specifies a correspondence relationship of the plurality of drive signals with respect to the decode value by controlling the drive circuit;
    Optical transmitter.
  2.  前記制御回路は、前記駆動回路から出力される複数の前記駆動信号のうち、前記入力デジタル信号が表す変調階調数の中央に近い階調での変調を行う位相変調領域に出力されるものほど、階調数が多くなるように前記駆動回路を制御することを特徴とする、
     請求項1に記載の光送信器。
    Among the plurality of drive signals output from the drive circuit, the control circuit is output to a phase modulation region that performs modulation at a gradation close to the center of the modulation gradation number represented by the input digital signal. The drive circuit is controlled to increase the number of gradations,
    The optical transmitter according to claim 1.
  3.  前記制御回路は、前記駆動回路から出力される複数の前記駆動信号のうち、前記入力デジタル信号が表す変調階調数の中で出現確率が大きい階調での変調を行う位相変調領域に出力されるものほど、階調数が多くなるように前記駆動回路を制御することを特徴とする、
     請求項1に記載の光送信器。
    The control circuit is output to a phase modulation region that performs modulation at a gradation having a high appearance probability among the modulation gradation numbers represented by the input digital signal among the plurality of drive signals output from the drive circuit. The drive circuit is controlled so that the number of gradations increases as
    The optical transmitter according to claim 1.
  4.  前記駆動回路は、
     前記複数の位相変調領域のそれぞれに前記駆動信号を出力する、階調数が異なるものを含む複数の多値DACを備え、
     前記制御回路は、前記デコード値に対する前記複数の多値DACの動作範囲を指定する
    ことを特徴とする、
     請求項1乃至3のいずれか一項に記載の光送信器。
    The drive circuit is
    A plurality of multi-level DACs that output the drive signal to each of the plurality of phase modulation regions, including ones having different numbers of gradations,
    The control circuit specifies an operation range of the plurality of multi-level DACs with respect to the decoded value,
    The optical transmitter according to any one of claims 1 to 3.
  5.  前記複数のDACのそれぞれの前記デコード値に対する動作範囲の指定情報が記憶された記憶装置を更に備え、
     前記制御回路は、前記指定情報に基づいて、前記複数のDACの前記デコード値に対する動作範囲を指定することを特徴とする、
     請求項4に記載の光送信器。
    A storage device storing operation range specification information for each of the decode values of the plurality of DACs;
    The control circuit designates an operation range for the decode values of the plurality of DACs based on the designation information.
    The optical transmitter according to claim 4.
  6.  前記光変調器からの出力光の光強度を検出する光モニタ回路と、
     前記光モニタ回路で検出した光強度と、前記入力デジタル信号から得られる光強度の期待値との差分に基づいて、調整指示信号を出力する演算装置と、を更に備え、
     前記制御回路は、前記調整指示信号に基づいて、前記複数のDACの前記デコード値に対する動作範囲を指定することを特徴とする、
     請求項4に記載の光送信器。
    An optical monitor circuit for detecting the light intensity of the output light from the optical modulator;
    An arithmetic unit that outputs an adjustment instruction signal based on the difference between the light intensity detected by the light monitor circuit and the expected value of the light intensity obtained from the input digital signal;
    The control circuit designates an operation range for the decoded values of the plurality of DACs based on the adjustment instruction signal.
    The optical transmitter according to claim 4.
  7.  光信号を送出する光送信器と、
     前記光信号が伝搬する伝送路と、
     前記伝送路を介して前記光信号を受信する光受信器と、を備え、
     前記光送信器は、
     複数の位相変調領域が形成された、光信号が伝搬する光伝送路を有する光変調器と、
     入力デジタル信号をデコードし、デコード値に応じた信号を出力するデコーダと、
     前記デコード値に応じた信号に基づき、前記複数の位相変調領域のそれぞれに、階調数が異なるものを含む3階調以上の駆動信号を出力する駆動回路と、
     前記駆動回路を制御することにより、前記デコード値に対する複数の前記駆動信号の対応関係を指定する制御回路と、を備える、
     光送受信システム。
    An optical transmitter for transmitting an optical signal;
    A transmission path through which the optical signal propagates;
    An optical receiver for receiving the optical signal via the transmission path,
    The optical transmitter is
    An optical modulator having an optical transmission path through which an optical signal propagates, in which a plurality of phase modulation regions are formed;
    A decoder that decodes the input digital signal and outputs a signal corresponding to the decoded value;
    A drive circuit that outputs a drive signal of three or more gradations including a different number of gradations to each of the plurality of phase modulation regions based on a signal according to the decode value;
    A control circuit that specifies a correspondence relationship of the plurality of drive signals with respect to the decode value by controlling the drive circuit;
    Optical transmission / reception system.
  8.  前記制御回路は、前記駆動回路から出力される複数の前記駆動信号のうち、前記入力デジタル信号が表す変調階調数の中央に近い階調での変調を行う位相変調領域に出力されるものほど、階調数が多くなるように前記駆動回路を制御することを特徴とする、
     請求項7に記載の光送受信システム。
    Among the plurality of drive signals output from the drive circuit, the control circuit is output to a phase modulation region that performs modulation at a gradation close to the center of the modulation gradation number represented by the input digital signal. The drive circuit is controlled to increase the number of gradations,
    The optical transmission / reception system according to claim 7.
  9.  前記制御回路は、前記駆動回路から出力される複数の前記駆動信号のうち、前記入力デジタル信号が表す変調階調数の中で出現確率が大きい階調での変調を行う位相変調領域に出力されるものほど、階調数が多くなるように前記駆動回路を制御することを特徴とする、
     請求項7に記載の光送受信システム。
    The control circuit is output to a phase modulation region that performs modulation at a gradation having a high appearance probability among the modulation gradation numbers represented by the input digital signal among the plurality of drive signals output from the drive circuit. The drive circuit is controlled so that the number of gradations increases as
    The optical transmission / reception system according to claim 7.
  10.  前記駆動回路は、
     前記複数の位相変調領域のそれぞれに前記駆動信号を出力する、階調数が異なるものを含む複数の多値DACを備え、
     前記制御回路は、前記デコード値に対する前記複数の多値DACの動作範囲を指定する
    ことを特徴とする、
     請求項7乃至9のいずれか一項に記載の光送受信システム。
    The drive circuit is
    A plurality of multi-level DACs that output the drive signal to each of the plurality of phase modulation regions, including ones having different numbers of gradations,
    The control circuit specifies an operation range of the plurality of multi-level DACs with respect to the decoded value,
    The optical transmission / reception system according to any one of claims 7 to 9.
  11.  前記複数のDACのそれぞれの前記デコード値に対する動作範囲の指定情報が記憶された記憶装置を更に備え、
     前記制御回路は、前記指定情報に基づいて、前記複数のDACの前記デコード値に対する動作範囲を指定することを特徴とする、
     請求項10に記載の光送受信システム。
    A storage device storing operation range specification information for each of the decode values of the plurality of DACs;
    The control circuit designates an operation range for the decode values of the plurality of DACs based on the designation information.
    The optical transmission / reception system according to claim 10.
  12.  前記光変調器からの出力光の光強度を検出する光モニタ回路と、
     前記光モニタ回路で検出した光強度と、前記入力デジタル信号から得られる光強度の期待値との差分に基づいて、調整指示信号を出力する演算装置と、を更に備え、
     前記制御回路は、前記調整指示信号に基づいて、前記複数のDACの前記デコード値に対する動作範囲を指定することを特徴とする、
     請求項10に記載の光送受信システム。
    An optical monitor circuit for detecting the light intensity of the output light from the optical modulator;
    An arithmetic unit that outputs an adjustment instruction signal based on the difference between the light intensity detected by the light monitor circuit and the expected value of the light intensity obtained from the input digital signal;
    The control circuit designates an operation range for the decoded values of the plurality of DACs based on the adjustment instruction signal.
    The optical transmission / reception system according to claim 10.
  13.  入力デジタル信号のデコード値に応じた信号に基づき、光変調器に設けられた光導波路に形成された複数の位相変調領域のそれぞれに、階調数が異なるものを含む3階調以上の駆動信号を出力する、外部の制御回路によって前記デコード値に対する動作範囲が指定可能な複数のDACを備える、
     駆動回路。
    Based on a signal corresponding to the decoded value of the input digital signal, a drive signal of three or more gradations including a plurality of gradations in each of the plurality of phase modulation regions formed in the optical waveguide provided in the optical modulator A plurality of DACs that can specify an operation range for the decoded value by an external control circuit,
    Driving circuit.
  14.  前記複数のDACのうち、前記入力デジタル信号が表す変調階調数の中央に近い階調での変調を行う位相変調領域に駆動信号を出力するものほど、階調数が多くなることを特徴とする、
     請求項13に記載の駆動回路。
    Among the plurality of DACs, the number of gradations increases as the drive signal is output to a phase modulation region that performs modulation at a gradation close to the center of the modulation gradation number represented by the input digital signal. To
    The drive circuit according to claim 13.
  15.  前記複数のDACのうち、前記入力デジタル信号が表す変調階調数の中で出現確率が大きい階調での変調を行う位相変調領域に駆動信号を出力するものほど、階調数が多くなることを特徴とする、
     請求項13に記載の駆動回路。
    Of the plurality of DACs, the number of gradations increases as the drive signal is output to the phase modulation region that performs modulation at a gradation having a high appearance probability among the modulation gradations represented by the input digital signal. Characterized by the
    The drive circuit according to claim 13.
  16.  外部の記憶装置に記憶された前記複数のDACの前記デコード値に対する指定情報に基づいて、前記複数のDACのそれぞれの前記デコード値に対する動作範囲が指定されることを特徴とする、
     請求項13乃至15のいずれか一項に記載の駆動回路。
    An operation range for each of the decode values of the plurality of DACs is designated based on designation information for the decode values of the plurality of DACs stored in an external storage device.
    The drive circuit according to any one of claims 13 to 15.
  17.  光モニタ回路が検出した前記光変調器からの出力光の光強度と前記入力デジタル信号から得られる光強度の期待値との差分に基づいて演算装置から出力された調整指示信号に基づいて、前記複数のDACのそれぞれの前記デコード値に対する動作範囲が指定されることを特徴とする、
     請求項13乃至15のいずれか一項に記載の駆動回路。
    Based on the adjustment instruction signal output from the arithmetic unit based on the difference between the light intensity of the output light from the optical modulator detected by the optical monitor circuit and the expected value of the light intensity obtained from the input digital signal, An operation range for each of the decode values of a plurality of DACs is designated.
    The drive circuit according to any one of claims 13 to 15.
PCT/JP2012/007109 2012-03-22 2012-11-06 Optical transmitter, optical transmission/reception system, and drive circuit WO2013140476A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014505814A JP6032275B2 (en) 2012-03-22 2012-11-06 Optical transmitter, optical transmission / reception system, and drive circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012064769 2012-03-22
JP2012-064769 2012-03-22

Publications (1)

Publication Number Publication Date
WO2013140476A1 true WO2013140476A1 (en) 2013-09-26

Family

ID=49221972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007109 WO2013140476A1 (en) 2012-03-22 2012-11-06 Optical transmitter, optical transmission/reception system, and drive circuit

Country Status (2)

Country Link
JP (1) JP6032275B2 (en)
WO (1) WO2013140476A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007082094A (en) * 2005-09-16 2007-03-29 Fujitsu Ltd Optical transmitter and optical communication system
JP2008292985A (en) * 2007-04-23 2008-12-04 Opnext Japan Inc Optical transmitter
WO2011043079A1 (en) * 2009-10-09 2011-04-14 日本電気株式会社 Optical modulator module and method for modulating optical signal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007082094A (en) * 2005-09-16 2007-03-29 Fujitsu Ltd Optical transmitter and optical communication system
JP2008292985A (en) * 2007-04-23 2008-12-04 Opnext Japan Inc Optical transmitter
WO2011043079A1 (en) * 2009-10-09 2011-04-14 日本電気株式会社 Optical modulator module and method for modulating optical signal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOMOAKI KATO ET AL.: "InP MZ modulator with linear-accelerator-type tiny in-line centipede electrode structure for directly driving with CMOS-IC", IEICE TECHNICAL REPORT, vol. 111, no. 111(OP, 23 June 2011 (2011-06-23), pages 59 - 64 *

Also Published As

Publication number Publication date
JP6032275B2 (en) 2016-11-24
JPWO2013140476A1 (en) 2015-08-03

Similar Documents

Publication Publication Date Title
JP6032276B2 (en) Optical transmitter, optical transmission / reception system, and drive circuit
JP5215857B2 (en) Light modulator
CN107924074B (en) Reduction of electrical crosstalk in high order digital light modulators
US9479191B2 (en) Linearized optical digital-to-analog modulator
WO2013161196A1 (en) Mach-zehnder type optical modulator, optical transmitting/receiving system, and mach-zehnder type optical modulator control method
WO2014141337A1 (en) Optical modulator, optical transmitter, optical transmitting and receiving system, and control method for optical modulator
US20060159466A1 (en) Offset quadrature phase-shift-keying method and optical transmitter using the same
JP6032274B2 (en) Optical transmitter, optical transmission / reception system, and drive circuit
EP1404036B1 (en) Duobinary optical transmission apparatus
JP3984220B2 (en) Duobinary optical transmission equipment
EP1416654B1 (en) Duobinary optical transmission
WO2014097503A1 (en) Optical modulator, light transmitter, optical transmission and reception system, and optical modulator control method
JP6032275B2 (en) Optical transmitter, optical transmission / reception system, and drive circuit
US7277646B2 (en) Duobinary optical transmitter
US9425898B2 (en) Optical transmission system, optical phase modulator, and optical modulation method
US20170054509A1 (en) Digital-to-Analog Optical Modulator Electrical Crosstalk Reduction
JP2014122964A (en) Optical modulator, optical transmitter, optical transmission/reception system, and control method of optical modulator
US20220311534A1 (en) Optical transmitter and transmission device
JP2014122965A (en) Optical modulator, optical transmitter, optical transmission/reception system, and control method of optical modulator
KR20040046381A (en) Duobinary optical transmitter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871638

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014505814

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871638

Country of ref document: EP

Kind code of ref document: A1