JP2012252068A - Optical scanner - Google Patents

Optical scanner Download PDF

Info

Publication number
JP2012252068A
JP2012252068A JP2011123046A JP2011123046A JP2012252068A JP 2012252068 A JP2012252068 A JP 2012252068A JP 2011123046 A JP2011123046 A JP 2011123046A JP 2011123046 A JP2011123046 A JP 2011123046A JP 2012252068 A JP2012252068 A JP 2012252068A
Authority
JP
Japan
Prior art keywords
scanning
light
movable plate
reflecting surface
scanning means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011123046A
Other languages
Japanese (ja)
Other versions
JP5702230B2 (en
Inventor
Tatsuya Matsubara
達也 松原
Hiroaki Inomata
宏明 猪俣
Mikiya Otsuka
幹也 大塚
Eiji Kawasaki
栄嗣 川崎
Norihito Tamura
法人 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP2011123046A priority Critical patent/JP5702230B2/en
Publication of JP2012252068A publication Critical patent/JP2012252068A/en
Application granted granted Critical
Publication of JP5702230B2 publication Critical patent/JP5702230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To increase a scanning field angle without decreasing image resolution and ranging accuracy and without increasing magnitude of a driving signal.SOLUTION: An optical scanner comprises: first scanning means 2 that comprises a first movable plate 2c including a first light reflecting surface 2a, is arranged so that a reflection point of the first light reflecting surface 2a, when projected to a reference plane including an ellipse, coincides with one focus F1 of the ellipse, and reflects and scans incident light entering the first reflecting surface 2a by oscillation of the first movable plate 2c; an elliptical mirror 4 that includes a reflecting surface 4a which is curved along the arc of the ellipse on the long axis side, and reflects incident light from the first scanning means 2; second scanning means 3 that comprises a second movable plate 3c including a second light reflecting surface 3a, and that is arranged so that a reflection point of the second light reflecting surface 3a, when projected to the reference plane, coincides with the other focus F2 between the focus F1 and the elliptical mirror 4 and so as to be located opposite to the first scanning means 2 with respect to the reference plane; and driving means 5 that supplies driving signals to each scanning means.

Description

本発明は、入射される光を対象領域内で二次元走査する光走査装置に関する。   The present invention relates to an optical scanning device that two-dimensionally scans incident light within a target region.

従来から、レーザ光を対象領域内で二次元走査する光走査装置が知られている。この種の光走査装置としては、例えば、二次元ガルバノミラー等で構成される走査手段と、この走査手段を揺動駆動する駆動手段とを備えて構成されたものがある(例えば、特許文献1参照)。この駆動手段は、走査手段に備える可動板の直交する二つの揺動軸(x軸、y軸)回りの共振周波数近傍の周波数を有する二つの駆動信号を所定の位相差を与えつつ走査手段に供給し、これにより、可動板をx軸回り及びy軸回りに、それぞれの駆動信号の大きさ(例えば、電流値の大きさ)に応じた機械角で揺動駆動している。   2. Description of the Related Art Conventionally, an optical scanning device that performs two-dimensional scanning with laser light within a target region is known. As this type of optical scanning device, for example, there is an optical scanning device configured to include a scanning unit configured by a two-dimensional galvanometer mirror or the like and a driving unit that drives the scanning unit to swing (for example, Patent Document 1). reference). This drive means applies two drive signals having frequencies near the resonance frequency around two swing axes (x-axis and y-axis) perpendicular to the movable plate included in the scanning means to the scanning means while giving a predetermined phase difference. As a result, the movable plate is driven to swing around the x-axis and the y-axis at a mechanical angle corresponding to the magnitude of each drive signal (for example, the magnitude of the current value).

ここで、この種の光走査装置は、例えば、レーザ光を対象領域内で二次元走査して測定対象領域内に存在する物体までの距離を計測する光測距装置や、レーザ走査型のプロジェクタ等における光走査手段として用いられており、それらの走査画角は可動板の各揺動軸回りの最大機械角(片側)の4倍である。すなわち、x軸回りの光走査方向の走査画角は、x軸回りの最大機械角の4倍であり、y軸回りの光走査方向の走査画角は、y軸回りの最大機械角の4倍である。   Here, this type of optical scanning device is, for example, an optical distance measuring device that measures a distance to an object existing in a measurement target region by two-dimensionally scanning laser light in the target region, or a laser scanning projector. The scanning angle of view is four times the maximum mechanical angle (one side) around each swing axis of the movable plate. That is, the scanning field angle in the optical scanning direction around the x axis is four times the maximum mechanical angle around the x axis, and the scanning field angle in the optical scanning direction around the y axis is 4 times the maximum mechanical angle around the y axis. Is double.

特開平7−175005JP-A-7-175005

ところで、特許文献1に記載された光走査装置において、広範囲な光走査が可能なように、光測距装置の対象領域やプロジェクタの投影面の走査画角、特に水平方向の走査画角を大きくすることが求められている。この要求を満たすように、従来の光走査装置は、例えば、可動板のx軸回りの光走査方向が、光測距装置においては対象領域の水平方向と一致し、プロジェクタにおいては投影面の水平方向と一致するように走査手段を配置し、駆動手段から走査手段に入力するx軸回り用の駆動信号の大きさ(例えば、駆動電流値の大きさ)を高めることにより可動板のx軸回りの機械角を大きくすることにより、走査画角を大きくさせている。   Incidentally, in the optical scanning device described in Patent Document 1, the scanning field angle of the target area of the optical distance measuring device and the projection surface of the projector, particularly the horizontal scanning field angle, is increased so that a wide range of optical scanning is possible. It is requested to do. In order to satisfy this requirement, in the conventional optical scanning device, for example, the optical scanning direction around the x-axis of the movable plate coincides with the horizontal direction of the target area in the optical distance measuring device, and the projection plane in the projector is horizontal. The scanning means is arranged so as to coincide with the direction, and the magnitude of the driving signal for rotating around the x axis (for example, the magnitude of the driving current value) inputted from the driving means to the scanning means is increased around the x axis of the movable plate. The scanning angle of view is increased by increasing the mechanical angle.

しかしながら、従来の光走査装置において、駆動信号の大きさを高めることで機械角を大きくして走査画角を大きくすると、二次元ガルバノミラーの揺動軸の機械的な強度を越えてその揺動軸回りの機械角を大きくすることができないため、走査画角を大きくするにも限度があるという課題がある。   However, in the conventional optical scanning device, when the mechanical angle is increased by increasing the magnitude of the drive signal to increase the scanning angle of view, the oscillation exceeds the mechanical strength of the oscillation shaft of the two-dimensional galvanometer mirror. Since the mechanical angle around the axis cannot be increased, there is a problem that there is a limit to increasing the scanning angle of view.

本発明は、このような課題に着目してなされたものであり、駆動信号の大きさを高めることなく走査画角を大きくすることが可能な光走査装置を提供することを目的とする。   The present invention has been made paying attention to such a problem, and an object of the present invention is to provide an optical scanning device capable of increasing a scanning field angle without increasing the magnitude of a drive signal.

本発明の一側面よる光走査装置は、第1光反射面を有し第1揺動軸回りに揺動可能に形成された第1可動板を備え、前記第1可動板が揺動することによって、光源から前記第1光反射面に入射される光を反射走査する第1走査手段と、前記第1走査手段の光走査方向については楕円の長軸側の円弧形状に湾曲し、前記第1走査手段の光走査方向と直交する方向については前記円弧形状を延設した形状の反射面を有し、前記第1走査手段から入射される光を反射する楕円ミラーと、第2光反射面を有し第2揺動軸回りに揺動可能に形成された第2可動板を備え、前記第2可動板が揺動することによって、前記楕円ミラーからの光を前記第1走査手段の光走査方向と直交する方向に反射走査する第2走査手段と、前記第1及び第2可動板を各揺動軸回りに揺動させる駆動信号を前記第1及び第2走査手段にそれぞれ供給する駆動手段と、を備え、前記楕円を含む基準平面の垂直方向から見て前記第1光反射面上の反射点を前記基準平面に投影した点が前記楕円の一方の焦点と一致するように前記第1走査手段を配置し、前記基準平面の垂直方向から見て前記第2光反射面上の反射点を前記基準平面に投影した点が前記一方の焦点と前記楕円ミラー間に位置する他方の焦点と一致し、かつ、前記基準平面に対して前記第1走査手段と反対側に位置するように前記第2走査手段を配置して構成されている。   An optical scanning device according to an aspect of the present invention includes a first movable plate that has a first light reflecting surface and is configured to be swingable about a first swing axis, and the first movable plate swings. The first scanning means for reflecting and scanning the light incident on the first light reflecting surface from the light source, the light scanning direction of the first scanning means is curved into an arc shape on the long axis side of the ellipse, An elliptic mirror that reflects the light incident from the first scanning means, and a second light reflecting surface that has a reflection surface extending from the arc shape in a direction orthogonal to the light scanning direction of the one scanning means And a second movable plate formed so as to be capable of swinging around a second swing shaft, and the second movable plate swings so that the light from the elliptical mirror is transmitted to the light of the first scanning means. Second scanning means for reflecting and scanning in a direction orthogonal to the scanning direction, and each of the first and second movable plates are swung. Drive means for supplying a drive signal for swinging around to the first and second scanning means, respectively, and a reflection point on the first light reflection surface as seen from a direction perpendicular to a reference plane including the ellipse. The first scanning means is arranged so that a point projected on the reference plane coincides with one focal point of the ellipse, and a reflection point on the second light reflection surface is viewed from the direction perpendicular to the reference plane. The second scan so that a point projected on a plane coincides with the other focus located between the one focal point and the elliptical mirror and is located on the opposite side of the first scanning means with respect to the reference plane. Means are arranged.

本発明による光走査装置によれば、楕円ミラーの反射面の湾曲形状を形成する楕円を含む基準平面に第1光反射面の反射点を投影した点が楕円の一方の焦点と一致するように第1走査手段を配置すると共に、基準平面に第2光反射面の反射点を投影した点が一方の焦点と楕円ミラー間に位置する他方の焦点と一致し、かつ、基準平面に対して第1走査手段と反対側に位置するように第2走査手段を配置する構成であるため、楕円ミラーの一方の焦点から楕円ミラーの反射面に向かって入射される光を楕円ミラーの他方の焦点に収光するという楕円ミラーの特性を利用することで、第2光反射面で反射される光の走査画角を、第1走査手段の機械角によって定まる走査画角よりも大きくすることができる。このように、駆動信号の大きさは従来と同じでよいため、駆動信号の大きさを高めることなく走査画角を大きくすることができる。また、従来と同じ走査画角でよい場合は、駆動信号の大きさを従来よりも小さくすることができるため、省電力化することもできる。   According to the optical scanning device of the present invention, the point obtained by projecting the reflection point of the first light reflection surface onto the reference plane including the ellipse that forms the curved shape of the reflection surface of the elliptical mirror coincides with one focal point of the ellipse. The first scanning means is disposed, the point where the reflection point of the second light reflecting surface is projected on the reference plane coincides with the one focal point and the other focal point located between the ellipsoidal mirrors, and the first scanning means is located with respect to the reference plane. Since the second scanning unit is arranged so as to be located on the side opposite to the one scanning unit, the light incident from one focal point of the elliptical mirror toward the reflection surface of the elliptical mirror is directed to the other focal point of the elliptical mirror. By utilizing the characteristic of the elliptical mirror that collects light, the scanning field angle of the light reflected by the second light reflecting surface can be made larger than the scanning field angle determined by the mechanical angle of the first scanning means. Thus, since the magnitude of the drive signal may be the same as the conventional one, the scanning angle of view can be increased without increasing the magnitude of the drive signal. In addition, when the same scanning angle of view as in the prior art may be used, the drive signal can be made smaller than in the prior art, so that power can be saved.

本発明に係る光走査装置の第1実施形態の概略構成を示す斜視図である。1 is a perspective view showing a schematic configuration of a first embodiment of an optical scanning device according to the present invention. 上記実施形態の光走査装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the optical scanning device of the said embodiment. 上記実施形態の楕円ミラーの斜視図である。It is a perspective view of the elliptical mirror of the said embodiment. 上記実施形態の走査装置の走査画角の拡大状況を説明する図で、図1に示すB方向から見たときの、光の収光状況を示した図である。It is a figure explaining the expansion condition of the scanning angle of view of the scanning apparatus of the said embodiment, and is the figure which showed the light collection condition when it sees from the B direction shown in FIG. 図1に示す光走査装置1の部分拡大図であり、第1可動部の揺動中に収光点がずれる状況を示した図である。It is the elements on larger scale of the optical scanning device 1 shown in FIG. 1, and is the figure which showed the condition where the light collecting point shifted | deviated during the rocking | fluctuation of the 1st movable part. 上記実施形態の第1可動部、第2可動部としての一次元ガルバノミラーの構成を示す図である。It is a figure which shows the structure of the one-dimensional galvanometer mirror as a 1st movable part of the said embodiment, and a 2nd movable part. 本発明に係る光走査装置の第2実施形態の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of 2nd Embodiment of the optical scanning device based on this invention. 上記第2実施形態の光走査装置のC―C’矢視断面図である。It is C-C 'arrow sectional drawing of the optical scanning device of the said 2nd Embodiment. 上記実施形態の光走査装置の変形例を示す斜視図である。It is a perspective view which shows the modification of the optical scanning device of the said embodiment.

以下、本発明の実施形態を図面に基づいて詳細に説明する。
図1は、本発明の第1実施形態による光走査装置の概略構成を示す斜視図であり、図2は、本実施形態の光走査装置の概略構成を示すブロック図である。この光走査装置1は、入射されたレーザ光を反射走査して二次元走査するものである。以下の説明では、光走査装置1を、レーザ光を対象領域内で二次元走査して対象領域内に存在する物体までの距離を計測する光測距装置の光走査手段として用いる場合で説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a perspective view showing a schematic configuration of the optical scanning device according to the first embodiment of the present invention, and FIG. 2 is a block diagram showing a schematic configuration of the optical scanning device of the present embodiment. The optical scanning device 1 performs two-dimensional scanning by reflecting and scanning incident laser light. In the following description, the case where the optical scanning device 1 is used as an optical scanning unit of an optical distance measuring device that measures the distance to an object existing in the target region by two-dimensionally scanning the laser light in the target region will be described. .

図1に示すように、本実施形態による光走査装置1は、入射されるレーザ光を反射走査する電磁駆動型の第1走査手段2と、入射されるレーザ光を第1走査手段2の光走査方向と直交する方向に反射走査する電磁駆動型の第2走査手段3と、楕円ミラー4と、第1走査手段2及び第2走査手段3を駆動する駆動手段5(図2参照、図1では図示省略)と、を備える。図2に示す光走査ユニット6は、上記第1走査手段2、第2走査手段3及び楕円ミラー4を備えて構成されたものであり、レーザ光を走査する主要部である。なお、図1においては、図の簡略化のため、後述する図6に示した固定部31は省略している。   As shown in FIG. 1, the optical scanning device 1 according to the present embodiment includes an electromagnetically driven first scanning means 2 that reflects and scans incident laser light, and incident laser light that is emitted from the first scanning means 2. Electromagnetically driven second scanning means 3 that performs reflection scanning in a direction orthogonal to the scanning direction, an elliptical mirror 4, and driving means 5 that drives the first scanning means 2 and the second scanning means 3 (see FIG. 2, FIG. 1) Is omitted). The optical scanning unit 6 shown in FIG. 2 includes the first scanning unit 2, the second scanning unit 3, and the elliptical mirror 4, and is a main part that scans the laser beam. In FIG. 1, for the sake of simplification, the fixing portion 31 shown in FIG. 6 described later is omitted.

上記第1走査手段2は、図1に示すように、平板状の第1光反射面2aを有し第1揺動軸2b回りに揺動可能に形成された第1可動板2cを備え、第1可動板2cが揺動することによって、光源から第1光反射面2aに入射される光を走査角θで反射走査して楕円ミラー3に入射するように構成されている。このような第1走査手段2としては、例えば、本出願人により提案された特許第2722314号公報に記載の一次元走査型の半導体ガルバノミラー(以下単に、「一次元ガルバノミラー」と言う)を用いることができる。そして、第1走査手段2は、図1及び後述する図4に示すように、楕円を含む基準平面の垂直方向から見て第1光反射面2a上の反射点である中心点2dを基準平面に投影した点が楕円の一方の焦点F1と一致するように配置されている。なお、本実施形態においては、第1走査手段2は、第1揺動軸2b回りの光走査方向(X方向)が光測距装置の対象領域の水平方向と一致するように配置されている。 As shown in FIG. 1, the first scanning means 2 includes a first movable plate 2c having a flat plate-like first light reflecting surface 2a and swingable about a first swing shaft 2b. by first movable plate 2c is swung, and is configured to be incident on the ellipsoidal mirror 3 light incident from the light source to the first light reflecting surface 2a is reflected scanning at a scan angle theta 1. As such first scanning means 2, for example, a one-dimensional scanning semiconductor galvanometer mirror (hereinafter simply referred to as “one-dimensional galvanometer mirror”) described in Japanese Patent No. 2722314 proposed by the present applicant is used. Can be used. Then, as shown in FIG. 1 and FIG. 4 to be described later, the first scanning unit 2 uses the center point 2d, which is a reflection point on the first light reflection surface 2a, as viewed from the vertical direction of the reference plane including the ellipse. Is arranged so that the point projected onto the point coincides with one of the focal points F1 of the ellipse. In the present embodiment, the first scanning means 2 is arranged so that the light scanning direction (X direction) around the first swing axis 2b coincides with the horizontal direction of the target area of the optical distance measuring device. .

上記第2走査手段3は、図1に示すように、平板状の第2光反射面3aを有し第1揺動軸2bと直交する第2揺動軸3b回りに揺動可能に形成された第2可動板3cを備え、第2可動板3cが揺動することによって、楕円ミラー4からの光を第1走査手段2の光走査方向(X方向)と直交する方向(Y方向)に反射走査するように構成されている。このような第2走査手段3としては、例えば、第1走査手段2と同様に前述した一次元ガルバノミラーを用いることができる。この第2走査手段3は、図1及び図4に示すように、基準平面の垂直方向から見て第2光反射面3a上の反射点である中心点3dを基準平面に投影した点が一方の焦点F1と楕円ミラー4間に位置する他方の焦点F2と一致し、かつ、図1に示すように、基準平面に対して第1走査手段2と反対側に位置するように配置されている。   As shown in FIG. 1, the second scanning means 3 has a flat plate-like second light reflecting surface 3a and is formed to be swingable around a second swing shaft 3b orthogonal to the first swing shaft 2b. The second movable plate 3c is provided, and the second movable plate 3c swings so that the light from the elliptical mirror 4 is in a direction (Y direction) orthogonal to the light scanning direction (X direction) of the first scanning means 2. It is configured to perform reflection scanning. As the second scanning unit 3, for example, the above-described one-dimensional galvanometer mirror can be used similarly to the first scanning unit 2. As shown in FIGS. 1 and 4, the second scanning unit 3 has a point in which a center point 3 d that is a reflection point on the second light reflecting surface 3 a as viewed from the direction perpendicular to the reference plane is projected on the reference plane. Is arranged so as to coincide with the other focal point F2 located between the focal point F1 and the elliptical mirror 4 and on the opposite side of the first scanning means 2 with respect to the reference plane as shown in FIG. .

上記楕円ミラー4は、第1走査手段2から入射される光を反射するものであり、第1走査手段2の光走査方向については楕円の長軸A1側の円弧形状に湾曲し、第1走査手段2の光走査方向と直交する方向については円弧形状を延設した形状の反射面4aを有している。すなわち、反射面4aは、図1に示すように、楕円を含む基準平面に対して垂直方向に、楕円の長軸A1側の円弧の一部A(図1に太線で示した破線部、以下において、単に「円弧A」と言う)をシフトさせたときに得られる形状でその表面が形成される。この楕円ミラー4は、2つの焦点を有しており、一方の焦点F1から反射面2aに向けて出射される光を楕円ミラー4側の焦点である他方の焦点F2に収光させるという特性を有している。なお、図1において、楕円ミラー4は、図の簡略化のため、反射面4aのみ示したが、実際には、図3に示すように厚みを有している。   The elliptical mirror 4 reflects the light incident from the first scanning means 2, and the optical scanning direction of the first scanning means 2 is curved into an arc shape on the long axis A1 side of the ellipse, and the first scanning is performed. About the direction orthogonal to the optical scanning direction of the means 2, it has the reflective surface 4a of the shape which extended circular arc shape. That is, as shown in FIG. 1, the reflecting surface 4a is perpendicular to the reference plane including the ellipse, with a part A of the arc on the major axis A1 side of the ellipse (the broken line portion indicated by a thick line in FIG. The surface is formed in a shape obtained when the arc is simply shifted. The elliptical mirror 4 has two focal points, and collects light emitted from one focal point F1 toward the reflecting surface 2a at the other focal point F2 which is a focal point on the elliptical mirror 4 side. Have. In FIG. 1, the elliptical mirror 4 shows only the reflecting surface 4a for simplification of the drawing, but actually has a thickness as shown in FIG.

ここで、楕円ミラー4の前述した収光特性を利用するためには、反射面4aに向けて光を出射する点と、反射面4aによって反射された光が収光する点とを、楕円を含む基準平面と同一平面上に位置させることが一般的な前提条件であるが、同一平面上に出射点及び収光点が位置していなくても、以下の位置関係を満足すれば、楕円ミラー4の収光特性を利用することができる。すなわち、基準平面の垂直方向から見て出射点を基準平面に投影した点が楕円の一方の焦点F1と一致し、基準平面の垂直方向から見て収光点を基準平面に投影した点が一方の焦点F1と楕円ミラー4間に位置する他方の焦点F2と一致し、かつ、基準平面が出射点と収光点間に位置するという位置関係を満足すれば、この場合においても楕円ミラー4の収光特性を利用することができる。   Here, in order to use the above-mentioned light collecting characteristics of the elliptical mirror 4, the point where light is emitted toward the reflecting surface 4a and the point where the light reflected by the reflecting surface 4a is collected are represented by an ellipse. Although it is a general precondition that it is positioned on the same plane as the reference plane that includes it, an elliptical mirror can be used as long as the following positional relationship is satisfied even if the emission point and the light collection point are not positioned on the same plane: 4 light collecting characteristics can be used. That is, the point where the exit point is projected onto the reference plane when viewed from the vertical direction of the reference plane coincides with one of the focal points F1 of the ellipse, and the point where the light collection point is projected onto the reference plane when viewed from the vertical direction of the reference plane In this case, the elliptical mirror 4 also has a positional relationship that coincides with the other focal point F2 located between the focal point F1 and the elliptical mirror 4 and satisfies the positional relationship that the reference plane is located between the emission point and the light collecting point. Light collecting characteristics can be used.

本実施形態において、図1及び図4に示すように、反射面2aに向けて光を出射する点としての第1光反射面2aの中心点2dを基準平面に投影した点が一方の焦点F1と一致し、反射面2aによって反射された光が収光する点としての第2光反射面3aの中心点3dを基準平面に投影した点が一方の焦点F1と楕円ミラー4間に位置する他方の焦点F2と一致し、かつ、第1光反射面2aの中心点2dと第2光反射面3aの中心点3dの間に基準平面が位置するように、第1走査手段2と第2走査手段を配置している。これにより、第1走査手段2の中心点2dで反射された光は、楕円ミラー4を介して第2走査手段3の中心点3dに収光される。   In this embodiment, as shown in FIGS. 1 and 4, a point obtained by projecting the center point 2d of the first light reflecting surface 2a on the reference plane as a point for emitting light toward the reflecting surface 2a is one focal point F1. The point where the center point 3d of the second light reflecting surface 3a as the point where the light reflected by the reflecting surface 2a is collected is projected on the reference plane is the other located between the one focal point F1 and the elliptical mirror 4 Of the first scanning means 2 and the second scanning so that the reference plane is located between the center point 2d of the first light reflecting surface 2a and the center point 3d of the second light reflecting surface 3a. Means are arranged. Thereby, the light reflected at the center point 2 d of the first scanning means 2 is collected at the center point 3 d of the second scanning means 3 via the elliptical mirror 4.

図4は、本実施形態における光走査装置1の走査画角θの拡大状況を説明する図で、第1走査手段2の第1揺動軸2b回りの機械角φが最大(φmax)のときに、基準平面に対して垂直方向を示す図1のB方向から見たときの、光の収光状況を示した図である。この図から分かるように、第1光反射面2aの中心点2dに入射された光は、第1可動板2cが揺動することにより、反射走査され楕円ミラー4に入射される。そして、この楕円ミラー4に入射された光は、第2光反射面3aの中心点3dに収光される。このとき、第1走査手段2から楕円ミラー4に向かう光の光路が楕円ミラー4の長軸A1に対して成す角度θは最大機械角φmaxの2倍と等しく、この最大機械角φmaxの4倍が第1走査手段2の走査角θ(図1参照)となる。そして、楕円ミラー4から第2走査手段3までの光の光路が楕円ミラー4の長軸A1に対して成す角度θ’の2倍が対象領域における水平方向の走査画角θ(図1参照)となる。すなわち、θ、θ及びφmax、並びにθとθ’は、それぞれ下記の(1)式、(2)式を満たす関係にある。
θ=2θ=4φmax ・・・(1)
θ=2θ’ ・・・(2)
ここで、図4から分かるように、角度θ’は、角度θよりも大きくなる。これにより、第2光反射面4aで反射され、対象領域内に出射される光の水平方向の走査画角θ(=2θ’)を、第1揺動軸2b回りの最大機械角φmaxによって定まる走査画角、すなわち、走査角θ(=2θ)よりも大きくすることができる。
FIG. 4 is a diagram for explaining an enlarged state of the scanning angle of view θ 2 of the optical scanning device 1 in the present embodiment. The mechanical angle φ around the first swing axis 2 b of the first scanning means 2 is the maximum (φ max ). It is the figure which showed the light collection condition when it sees from the B direction of FIG. 1 which shows a perpendicular | vertical direction with respect to a reference plane at the time. As can be seen from this figure, the light incident on the center point 2d of the first light reflecting surface 2a is reflected and scanned and incident on the elliptical mirror 4 when the first movable plate 2c swings. The light incident on the elliptical mirror 4 is collected at the center point 3d of the second light reflecting surface 3a. In this case, the angle θ of the optical path of light traveling from the first scanning unit 2 into an elliptical mirror 4 makes with the long axis A1 of the ellipsoidal mirror 4 equal to twice the maximum mechanical angle phi max, the maximum mechanical angle phi max Four times is the scanning angle θ 1 (see FIG. 1) of the first scanning means 2. Then, twice the angle θ ′ formed by the optical path of light from the elliptical mirror 4 to the second scanning means 3 with respect to the major axis A1 of the elliptical mirror 4 is the horizontal scanning field angle θ 2 in the target area (see FIG. 1). ) That is, θ 1 , θ and φ max , and θ 2 and θ ′ are in a relationship satisfying the following expressions (1) and (2), respectively.
θ 1 = 2θ = 4φ max (1)
θ 2 = 2θ ′ (2)
Here, as can be seen from FIG. 4, the angle θ ′ is larger than the angle θ. As a result, the horizontal scanning angle of view θ 2 (= 2θ ′) of the light reflected by the second light reflecting surface 4a and emitted into the target region is set to the maximum mechanical angle φ max around the first swing axis 2b. Can be made larger than the scanning field angle determined by, that is, the scanning angle θ 1 (= 2θ).

ここで、中心点2d,3d並びに焦点F1,F2が前述した位置関係を満足する場合、走査角θと走査画角θとの間には、下記の(3)式を満たす関係が成りたつ。
L1×tan(θ/2)=L2×tan(θ/2)・・・(3)
但し、L1は、図4に示すように、第1走査手段2の機械角φが最大(φmax)のときに第1走査手段2から楕円ミラー4に向かう光の光路長の長軸A1方向の成分の長さであり、L2は、第1走査手段2の機械角φが最大(φmax)のときに楕円ミラー4から第2走査手段3に向かう光の光路長の長軸A1方向の成分の長さである。例えば、第1走査手段2の走査角θが30°の場合であって、このときの、L1とL2の比がL1:L2=2:1になるように反射面2aの湾曲形状が設計された楕円ミラー4を用いた場合は、走査画角θは、上記(3)式より、約56.3°となり、第1揺動軸2b回りの最大機械角φmaxによって定まる走査画角(すなわち、θ=30°)の約1.8倍に拡大される。
Here, if the center point 2d, 3d and focus F1, F2 satisfy the positional relationship described above, between the scanning angle theta 1 and the scanning field angle theta 2, comprises the relationship satisfying the following equation (3) Tatsu.
L1 × tan (θ 1/2 ) = L2 × tan (θ 2/2) ··· (3)
However, as shown in FIG. 4, L1 is the direction of the long axis A1 of the optical path length of the light from the first scanning means 2 toward the elliptical mirror 4 when the mechanical angle φ of the first scanning means 2 is maximum (φ max ). L2 is the length of the optical path length of the light from the elliptical mirror 4 toward the second scanning means 3 when the mechanical angle φ of the first scanning means 2 is maximum (φ max ). The length of the component. For example, the scanning angle theta 1 of the first scanning means 2 in the case of 30 °, in this case, the ratio of L1 and L2 is L1: L2 = 2: the curved shape of the reflecting surface 2a is designed to be 1 When the elliptical mirror 4 is used, the scanning field angle θ 2 is about 56.3 ° from the above equation (3), and is determined by the maximum mechanical angle φ max around the first swing axis 2b. (Ie, θ 1 = 30 °) is enlarged about 1.8 times.

なお、走査画角の拡大率K(=θ/θ)は、約1.8倍の場合で説明したが、拡大率Kは、これに限らず、楕円ミラー4の形状が、下記の(4)式で示される楕円の公式を満たし、かつ、θとθとが、2つの焦点から楕円までの距離の和は楕円の長径の2倍であるという下記の(5)式で示される楕円の定理を満たせば、どのような拡大率Kでも実現することができる。
/a+y/b=1・・・(4)
W/(2sinθ)+W/(2sinθ)=2a・・・(5)
但し、xは、長軸A1と短軸A2の交点を原点とする2次元座標における長軸A1側の座標であり、yは、長軸A1と短軸A2の交点を原点とする2次元座標における短軸A2側の座標であり、aは、楕円の長径であり、bは、楕円の短径である。また、Wは、楕円ミラー4の有効幅であり、第1走査手段2の第1揺動軸2b回りの機械角φが最大(φmax)のときに、第1走査手段2から楕円ミラー4への光が入射する点のy座標の2倍(すなわち、y=W/2)である。
The scanning field angle magnification factor K (= θ 2 / θ 1 ) has been described in the case of about 1.8 times. However, the magnification factor K is not limited to this, and the shape of the elliptical mirror 4 is as follows. In the following equation (5), which satisfies the ellipse formula shown in equation (4) and θ 1 and θ 2 are the sum of the distances from the two focal points to the ellipse is twice the major axis of the ellipse: Any enlargement ratio K can be realized as long as the ellipse theorem shown is satisfied.
x 2 / a 2 + y 2 / b 2 = 1 (4)
W / (2 sin θ 1 ) + W / ( 2 sin θ 2 ) = 2a (5)
Where x is a coordinate on the long axis A1 side in a two-dimensional coordinate having the origin at the intersection of the major axis A1 and the minor axis A2, and y is a two-dimensional coordinate having the origin at the intersection of the major axis A1 and the minor axis A2. Are the coordinates on the short axis A2 side, a is the major axis of the ellipse, and b is the minor axis of the ellipse. W is the effective width of the elliptical mirror 4, and when the mechanical angle φ around the first swing axis 2b of the first scanning means 2 is the maximum ( φmax ), the first scanning means 2 to the elliptical mirror 4 This is twice the y coordinate of the point where the light enters (ie, y = W / 2).

図5は、図1に示す光走査装置1の部分拡大図であり、第1走査手段2の揺動中に、楕円ミラー4による収光点がずれる状況を誇張して示した図である。図1においては、第1走査手段2で反射走査された光が楕円ミラー4の反射面2aに沿う走査軌跡は、楕円の長軸A1側の一部の円弧A(太線で示した破線部)と一致するものとして示したが、実際の走査軌跡は、図5に一点鎖線で示した実円弧A’のようになり、円弧Aと完全に一致しない。このように、実際の走査軌跡が円弧Aとずれているため、楕円ミラー4から第2走査手段3に向かう光は、第1走査手段2の機械角φに応じた距離だけ、中心点3dからずれて収光される。すなわち、例えば、第1走査手段2の機械角φが最大(φmax)のとき、第1走査手段2から楕円ミラー4に入射された光(図5のa1又はa2)の収光点と、第2走査手段3の中心点3dとのずれ量は最大となり、第1走査手段2の機械角φが小さくなるに従い、そのずれ量は小さくなり、第1走査手段2の機械角φがゼロのとき、第1走査手段2から楕円ミラー4に入射された光(図4のa3)の収光点は、第2走査手段3の中心点3dと一致する。このように、第1走査手段2の揺動中に第2光反射面3aにおける収光点がずれるため、対象領域における二次元走査の走査軌跡は、このずれに応じて定まる。また、二次元走査可能な範囲も収光点のずれに応じて定まる。例えば、光走査装置1を光測距装置の光走査手段に用いる場合は、収光点のずれに応じて定まる二次元走査可能な範囲を対象領域よりも広くなるように設定すると共に、対象領域に設定する各画素にレーザ光を照射できるように、収光点のずれに応じて定まる走査軌跡に基づいて、光走査装置1に入射するレーザ光の投光タイミングを設定すればよい。 FIG. 5 is a partially enlarged view of the optical scanning device 1 shown in FIG. 1, and shows an exaggerated view of the situation in which the light collecting point by the elliptical mirror 4 is shifted while the first scanning means 2 is oscillating. In FIG. 1, the scanning locus of the light reflected and scanned by the first scanning means 2 along the reflecting surface 2a of the elliptical mirror 4 is a partial arc A on the major axis A1 side of the ellipse (broken line portion indicated by a thick line). However, the actual scanning locus is like a real arc A ′ indicated by a one-dot chain line in FIG. 5 and does not completely match the arc A. Thus, since the actual scanning locus is deviated from the arc A, the light traveling from the elliptical mirror 4 toward the second scanning unit 3 is separated from the center point 3d by a distance corresponding to the mechanical angle φ of the first scanning unit 2. It is shifted and collected. That is, for example, when the mechanical angle φ of the first scanning unit 2 is the maximum (φ max ), the light collecting point of the light (a1 or a2 in FIG. 5) incident on the elliptical mirror 4 from the first scanning unit 2; The amount of deviation from the center point 3d of the second scanning means 3 becomes the maximum, and as the mechanical angle φ of the first scanning means 2 becomes smaller, the amount of deviation becomes smaller and the mechanical angle φ of the first scanning means 2 becomes zero. At this time, the light collecting point of the light (a3 in FIG. 4) incident on the elliptical mirror 4 from the first scanning unit 2 coincides with the center point 3d of the second scanning unit 3. Thus, since the light collecting point on the second light reflecting surface 3a is shifted while the first scanning means 2 is oscillating, the scanning trajectory of the two-dimensional scanning in the target region is determined according to this shift. Further, the range in which two-dimensional scanning is possible is also determined according to the shift of the light collecting point. For example, when the optical scanning device 1 is used as an optical scanning unit of an optical distance measuring device, a two-dimensional scanable range determined according to the shift of the light collecting point is set to be wider than the target region, and the target region The projection timing of the laser light incident on the optical scanning device 1 may be set on the basis of the scanning locus determined according to the shift of the light collecting point so that each pixel set to 1 can be irradiated with the laser light.

図6は、各走査手段2,3の具体例としての一次元ガルバノミラー30,30’の構成を示している。本実施形態において、第1走査手段2としての一次元ガルバノミラー30(以下において「第1ガルバノミラー30」と言う)と、第2走査手段3としての一次元ガルバノミラー30’(以下において「第2ガルバノミラー30’」と言う)はそれぞれ別体で形成されているが、それぞれの基本構成は同じである。各ガルバノミラー30,30’は、それぞれ枠状の固定部31と、固定部31の内側に配置されて第1揺動軸2b又は第2揺動軸3bとしての一対のトーションバー32,32によって揺動可能に支持された可動板33と、を備える。但し、各ガルバノミラー30,30’のトーションバー32,32等の寸法等は設計仕様に応じてそれぞれ設定されている。本実施形態において、第1ガルバノミラー30は、第1ガルバノミラー30の光走査方向が対象領域の水平方向と一致するように配置され、第2ガルバノミラー30’は、第2ガルバノミラー30’のトーションバー32,32が第1ガルバノミラー30のトーションバー32,32と直交するように配置されている。   FIG. 6 shows the configuration of one-dimensional galvanometer mirrors 30 and 30 ′ as specific examples of the scanning means 2 and 3. In the present embodiment, a one-dimensional galvanometer mirror 30 (hereinafter referred to as “first galvanometer mirror 30”) as the first scanning means 2 and a one-dimensional galvanometer mirror 30 ′ (hereinafter referred to as “first galvanometer mirror 30”) as the second scanning means 3. The two galvanometer mirrors 30 '") are formed as separate bodies, but their basic configurations are the same. Each of the galvanometer mirrors 30 and 30 ′ is constituted by a frame-like fixed portion 31 and a pair of torsion bars 32 and 32 disposed inside the fixed portion 31 as the first swing shaft 2b or the second swing shaft 3b. And a movable plate 33 supported to be swingable. However, the dimensions and the like of the torsion bars 32 and 32 of the galvanometer mirrors 30 and 30 'are set according to the design specifications. In the present embodiment, the first galvanometer mirror 30 is arranged so that the optical scanning direction of the first galvanometer mirror 30 coincides with the horizontal direction of the target region, and the second galvanometer mirror 30 ′ is the second galvanometer mirror 30 ′. The torsion bars 32 and 32 are arranged so as to be orthogonal to the torsion bars 32 and 32 of the first galvanometer mirror 30.

可動板33の中央部には第1光反射面2a又は第2光反射面3aとしてのミラー34が形成され、可動板33の周縁部には駆動コイル35が形成されている。駆動コイル35の端部は、固定部31に形成された電極端子36,36に接続されている。   A mirror 34 as the first light reflecting surface 2 a or the second light reflecting surface 3 a is formed at the center of the movable plate 33, and a drive coil 35 is formed at the peripheral portion of the movable plate 33. The end of the drive coil 35 is connected to electrode terminals 36 and 36 formed on the fixed portion 31.

また、駆動コイル35に磁界を作用させる一対の第1永久磁石37,37が固定部31を挟んでそれぞれ対向配置されている。なお、固定部31、トーションバー32,32及び可動板33は、半導体基板から一体的に形成されている。   Further, a pair of first permanent magnets 37, 37 that cause a magnetic field to act on the drive coil 35 are disposed to face each other with the fixed portion 31 interposed therebetween. The fixed portion 31, the torsion bars 32, 32, and the movable plate 33 are integrally formed from a semiconductor substrate.

各ガルバノミラー30,30’は、駆動コイル35に流れる電流(例えば、交流電流)と、永久磁石37,37による磁界と、によって可動板33にローレンツ力が作用し、その結果、可動板33が一次元方向に揺動する。第1ガルバノミラー30では、可動板33が揺動することによってミラー34に入射されるレーザ光が第1揺動軸2bとしてのトーションバー32,32の軸回り方向に走査角θで反射走査されて楕円ミラー4に入射される。第2ガルバノミラー30’では、可動板33が揺動することによって入射されるレーザ光が第2揺動軸3bとしてのトーションバー32,32の軸回り方向に反射走査されて対象領域に出射される。これにより、第1ガルバノミラー30のミラー34に入射されたレーザ光が対象領域内で二次元走査される。このとき、対象領域の水平方向の走査画角θは、走査角θよりも大きくなっている。 Each galvanometer mirror 30, 30 ′ has a Lorentz force acting on the movable plate 33 due to an electric current (for example, an alternating current) flowing through the drive coil 35 and a magnetic field generated by the permanent magnets 37, 37. Swing in one dimension. In the first galvanometer mirror 30, the laser beam incident on the mirror 34 when the movable plate 33 oscillates is reflected and scanned at a scanning angle θ 1 in the direction around the axis of the torsion bars 32, 32 as the first oscillating shaft 2 b. Is incident on the elliptical mirror 4. In the second galvanometer mirror 30 ′, the laser beam incident upon the swing of the movable plate 33 is reflected and scanned around the axis of the torsion bars 32, 32 as the second swing shaft 3b and emitted to the target region. The Thereby, the laser beam incident on the mirror 34 of the first galvanometer mirror 30 is two-dimensionally scanned in the target region. At this time, the horizontal scanning field angle θ 2 of the target region is larger than the scanning angle θ 1 .

図2に戻って、前記駆動手段5は、各ガルバノミラー30,30’をそれぞれのトーションバー32,32の軸回りに揺動させる駆動信号を、各ガルバノミラー30,30’に供給するものであり、例えば、駆動回路5aによって構成されている。この駆動回路5aは、各ガルバノミラー30,30’用の駆動信号(例えば、交流電流)を、各ガルバノミラー30,30’の可動板33が有するトーションバー32,32回りの共振周波数にそれぞれ合わせて設定された駆動周波数で、電極端子36,36を介して駆動コイル35に供給する。以下において、第1ガルバノミラー30用の駆動信号を第1駆動信号と言い、第2ガルバノミラー30’用の駆動信号を第2駆動信号と言う。   Returning to FIG. 2, the drive means 5 supplies a drive signal for swinging the galvanometer mirrors 30 and 30 ′ around the axes of the torsion bars 32 and 32 to the galvanometer mirrors 30 and 30 ′. For example, the driving circuit 5a is used. This drive circuit 5a matches the drive signal (for example, alternating current) for each galvanometer mirror 30, 30 'with the resonance frequency around the torsion bars 32, 32 of the movable plate 33 of each galvanometer mirror 30, 30'. Is supplied to the drive coil 35 via the electrode terminals 36 and 36 at the drive frequency set in the above. Hereinafter, the drive signal for the first galvanometer mirror 30 is referred to as a first drive signal, and the drive signal for the second galvanometer mirror 30 ′ is referred to as a second drive signal.

次に、以上のような構成を有する光走査装置1の動作について、図1〜図3に基づいて説明する。なお、以下の説明では、第1ガルバノミラー30の走査角θは30°であり、L1とL2の比はL1:L2=2:1である場合を一例として説明する。 Next, the operation of the optical scanning device 1 having the above configuration will be described with reference to FIGS. In the following description, the scanning angle theta 1 of the first galvano mirror 30 is 30 °, the ratio of L1 and L2 is L1: L2 = 2: described as an example the case 1.

まず、駆動回路5aは、第1ガルバノミラー30用に初期設定された駆動周波数で第1駆動信号を、駆動コイル35に供給することにより、第1ガルバノミラー30をトーションバー32,32の軸回り方向(水平方向)に揺動させる。同時に、駆動回路5aは、第2ガルバノミラー30’用に初期設定された駆動周波数で第2駆動信号を、駆動コイル35に供給することにより、第2ガルバノミラー30’をトーションバー32,32の軸回り方向(垂直方向)に揺動させる。ここで、第1ガルバノミラー30のミラー34の中心点2dに入射された光は、この可動板33が揺動することにより、反射走査され楕円ミラー4に入射され、この楕円ミラー4に入射された光は、第2ガルバノミラー30’のミラー34のほぼ中心点3dに収光される。そして、この収光された光は、第2ガルバノミラー30’の可動板33が揺動することにより、ミラー34で反射走査され対象領域に出射される。ここで、楕円ミラー4から第2ガルバノミラー30’までの光の光路が楕円ミラー4の長軸A1に対して成す角度θ’は、第1ガルバノミラー30から楕円ミラー4までの光の光路が楕円ミラー4の長軸A1に対して成す角度θよりも大きくなる。このとき、出射光の水平方向の走査画角θは、前述した(3)式より、約56.3°となり、走査画角θは、第1ガルバノミラー30の最大機械角φmaxによって定まる走査画角(すなわち、θ=30°)の約1.8倍に拡大される。 First, the drive circuit 5a supplies the first drive signal to the drive coil 35 at the drive frequency initially set for the first galvanometer mirror 30, thereby causing the first galvanometer mirror 30 to rotate around the axes of the torsion bars 32, 32. Swing in the direction (horizontal direction). At the same time, the drive circuit 5 a supplies the second galvanometer mirror 30 ′ to the torsion bars 32, 32 by supplying the second drive signal to the drive coil 35 at the drive frequency initially set for the second galvanometer mirror 30 ′. Swing in the direction around the axis (vertical direction). Here, the light incident on the center point 2d of the mirror 34 of the first galvanometer mirror 30 is reflected and scanned and incident on the elliptical mirror 4 and incident on the elliptical mirror 4 as the movable plate 33 swings. The collected light is collected at substantially the center point 3d of the mirror 34 of the second galvanometer mirror 30 ′. The collected light is reflected and scanned by the mirror 34 and emitted to the target area when the movable plate 33 of the second galvanometer mirror 30 ′ is swung. Here, the angle θ ′ formed by the optical path of light from the elliptical mirror 4 to the second galvanometer mirror 30 ′ with respect to the major axis A 1 of the elliptical mirror 4 is determined by the optical path of light from the first galvanometer mirror 30 to the elliptical mirror 4. It becomes larger than the angle θ formed with respect to the long axis A1 of the elliptical mirror 4. At this time, the horizontal scanning field angle θ 2 of the emitted light is about 56.3 ° from the above-described equation (3), and the scanning field angle θ 2 depends on the maximum mechanical angle φ max of the first galvanometer mirror 30. The image is enlarged to about 1.8 times the fixed scanning angle of view (that is, θ 1 = 30 °).

このように、本実施形態による光走査装置1によれば、駆動信号の大きさは従来と同じでよいため、駆動信号の大きさを高めることなく走査画角θを大きくすることができる。また、従来と同じ走査画角θでよい場合は、駆動信号の大きさを従来よりも小さくすることができるため、省電力化することもできる。なお、本実施形態においては、第1走査手段2の光走査方向が対象領域の水平方向と一致するように第1走査手段2を配置させ、対象領域の水平方向の走査画角を大きくさせた場合で説明したが、対象領域の垂直方向と一致するように第1走査手段2を配置させた場合は、垂直方向の走査画角を大きくすることができる。 As described above, according to the optical scanning device 1 according to the present embodiment, since the magnitude of the drive signal may be the same as the conventional one, the scanning field angle θ 2 can be increased without increasing the magnitude of the drive signal. In addition, when the same scanning angle of view θ 2 as in the prior art is sufficient, the drive signal can be made smaller than in the prior art, so that power can be saved. In the present embodiment, the first scanning unit 2 is arranged so that the optical scanning direction of the first scanning unit 2 coincides with the horizontal direction of the target region, and the horizontal scanning angle of view of the target region is increased. As described above, when the first scanning unit 2 is arranged so as to coincide with the vertical direction of the target region, the scanning field angle in the vertical direction can be increased.

次に、本発明の第2実施形態による光走査装置について説明する。
図7は、本発明に係る光走査装置の第2実施形態の概略構成を示す斜視図である。なお、図1の第1実施形態と同様の要素には同一の符号を付して説明を省略し、異なる部分についてのみ説明する。また、本実施形態における光走査装置1の動作は、第1実施形態と同じであるため、説明を省略する。
Next, an optical scanning device according to a second embodiment of the present invention will be described.
FIG. 7 is a perspective view showing a schematic configuration of a second embodiment of the optical scanning device according to the present invention. The same elements as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals, description thereof is omitted, and only different portions are described. The operation of the optical scanning device 1 in the present embodiment is the same as that in the first embodiment, and a description thereof will be omitted.

本実施形態において、第1走査手段2と第2走査手段3は、1個のチップ上に一体形成されている。各走査手段2,3の具体例としては、図6に示した第1ガルバノミラー30及び第2ガルバノミラー30’を用いて構成する。但し、本実施形態においては、図7に示すように、各走査手段2,3の固定部31は共通化されている。なお、図7においては、図の簡略化のため、各走査手段2,3の駆動コイル35、電極端子36,36及び永久磁石37,37は、図示省略している。   In the present embodiment, the first scanning means 2 and the second scanning means 3 are integrally formed on one chip. A specific example of each scanning means 2 and 3 is configured using the first galvanometer mirror 30 and the second galvanometer mirror 30 'shown in FIG. However, in this embodiment, as shown in FIG. 7, the fixing part 31 of each scanning means 2 and 3 is shared. In FIG. 7, the drive coil 35, the electrode terminals 36 and 36, and the permanent magnets 37 and 37 of the scanning units 2 and 3 are not shown for simplification of the drawing.

図8は、図7に示した光走査装置1のC―C’矢視断面図である。図8から分かるように、本実施形態においても、例えば、第1光反射面2aの中心点2dを基準平面に投影した点が楕円の一方の焦点F1と一致し、第2光反射面3aの中心点3dを基準平面に投影した点が一方の焦点F1と楕円ミラー4間に位置する他方の焦点F2と一致し、かつ、中心点2dと中心点3dの間に基準平面が位置するという位置関係を満足させることができるため、第1実施形態と同様に、楕円ミラー4の収光特性を利用することができる。   8 is a cross-sectional view of the optical scanning device 1 shown in FIG. As can be seen from FIG. 8, also in the present embodiment, for example, a point obtained by projecting the center point 2d of the first light reflecting surface 2a onto the reference plane coincides with one focal point F1 of the ellipse, and the second light reflecting surface 3a A position where a point obtained by projecting the center point 3d on the reference plane coincides with the other focus F2 located between the one focus F1 and the elliptical mirror 4, and the reference plane is located between the center point 2d and the center point 3d. Since the relationship can be satisfied, the light collecting characteristic of the elliptical mirror 4 can be used as in the first embodiment.

このように構成された本実施形態による光走査装置1によれば、第1実施形態と同様に、駆動信号の大きさを高めることなく走査画角θを大きくすることができる。さらに、本実施形態による光走査装置1によれば、1個のチップ上に各走査手段2,3を一体形成する構成であるため、組立時に、第1走査手段2に対する第2走査手段3の配置位置を調整する必要がない。したがって、第1走査手段2と第2走査手段3を別体で形成する第1実施形態と比較して、組立調整を簡素化することができる。 According to the optical scanning device 1 according to the present embodiment configured as described above, similarly to the first embodiment, the scanning field angle θ 2 can be increased without increasing the magnitude of the drive signal. Further, according to the optical scanning device 1 according to the present embodiment, since the scanning means 2 and 3 are integrally formed on one chip, the second scanning means 3 with respect to the first scanning means 2 is assembled at the time of assembly. There is no need to adjust the placement position. Therefore, as compared with the first embodiment in which the first scanning unit 2 and the second scanning unit 3 are formed separately, assembly adjustment can be simplified.

図9は、上記第2実施形態の光走査装置1の変形例を示す図である。図9に示すように、本変形例では、第1走査手段2は、第1揺動軸2bと直交する方向で第1可動板2cを均等に分割して形成した複数の第1分割可動板2c’を備え、各第1分割可動板2c’は、それぞれの第1揺動軸2b’,2b’を有して形成され、第2走査手段3は、第2揺動軸3bと直交する方向で第2可動板3cを均等に分割して形成した複数の第2分割可動板3c’を備え、各第2分割可動板3c’は、それぞれの第2揺動軸2b’,2b’を有して形成されている。   FIG. 9 is a diagram illustrating a modification of the optical scanning device 1 according to the second embodiment. As shown in FIG. 9, in this modification, the first scanning means 2 has a plurality of first divided movable plates formed by equally dividing the first movable plate 2c in the direction orthogonal to the first swing shaft 2b. 2c ′, each divided first movable plate 2c ′ is formed to have a respective first swing shaft 2b ′, 2b ′, and the second scanning means 3 is orthogonal to the second swing shaft 3b. A plurality of second divided movable plates 3c ′ formed by equally dividing the second movable plate 3c in the direction, and each second divided movable plate 3c ′ has a second swing shaft 2b ′, 2b ′. It is formed.

このように構成することにより、各分割可動板2c’、3c’の重さが分割前の各可動板2c、3cよりも軽くなるため、各分割可動板2c’、3c’の共振周波数が高くなる。したがって、駆動手段5から各走査手段2,3に供給する駆動信号の周波数を高くすることにより、光を高速走査することができる。   With this configuration, the weight of each of the movable movable plates 2c ′ and 3c ′ is lighter than that of each of the movable plates 2c and 3c before the division, so that the resonance frequency of each of the movable movable plates 2c ′ and 3c ′ is high. Become. Therefore, the light can be scanned at high speed by increasing the frequency of the drive signal supplied from the drive means 5 to each of the scanning means 2 and 3.

また、本変形例において、複数の第1反射面2a’の面積の総和は、図7に示した分割前の第1反射面2aの面積と同じになるように形成されており、複数の第2反射面3a’の面積の総和は、分割前の第2反射面3aの面積と同じになるように形成されている。これにより、光走査装置1を光測距装置の対象領域からの反射光を受光する手段としても利用する場合、受光の光量を維持したまま光を高速走査することができる。   In the present modification, the total area of the plurality of first reflecting surfaces 2a ′ is formed to be the same as the area of the first reflecting surface 2a before the division shown in FIG. The total area of the two reflecting surfaces 3a ′ is formed to be the same as the area of the second reflecting surface 3a before the division. As a result, when the optical scanning device 1 is also used as means for receiving reflected light from the target area of the optical distance measuring device, light can be scanned at high speed while the amount of received light is maintained.

なお、上記第1及び第2実施形態においては、光走査装置1を光測距装置の光走査手段として用いた場合で説明したが、光走査装置1は、これに限らず、レーザ走査型のプロジェクタにおける光走査手段としても用いることができる。この場合でも、従来と同じ駆動信号の大きさで、走査画角を大きくすることができるため、駆動信号の大きさを高めることなく走査画角を大きくすることができる。   In the first and second embodiments, the case where the optical scanning device 1 is used as the optical scanning unit of the optical distance measuring device has been described. However, the optical scanning device 1 is not limited to this and is a laser scanning type. It can also be used as light scanning means in a projector. Even in this case, since the scanning angle of view can be increased with the same driving signal size as in the prior art, the scanning angle of view can be increased without increasing the size of the driving signal.

1・・・・光走査装置
2・・・・第1走査手段
2a・・・第1光反射面
2b・・・第1揺動軸
2c・・・第1可動板
2d・・・第1光反射面上の反射点(中心点)
2c’・・第1分割可動板
3・・・・第2走査手段
3a・・・第2光反射面
3b・・・第2揺動軸
3c・・・第2可動板
3c’・・第2分割可動板
3d・・・第2光反射面上の反射点(中心点)
4・・・・楕円ミラー
4a・・・反射面
5・・・・駆動手段
L1・・・楕円の長軸
F1・・・一方の焦点
F2・・・他方の焦点
DESCRIPTION OF SYMBOLS 1 ... Optical scanning apparatus 2 ... 1st scanning means 2a ... 1st light reflection surface 2b ... 1st rocking | fluctuation shaft 2c ... 1st movable plate 2d ... 1st light Reflection point on reflection surface (center point)
2c ′ ·· the first divided movable plate 3 ··· second scanning means 3a ··· the second light reflecting surface 3b ··· the second swinging shaft 3c ··· the second movable plate 3c '··· the second Dividing movable plate 3d: Reflection point (center point) on the second light reflecting surface
4 ... Elliptical mirror 4a ... Reflecting surface 5 ... Driving means L1 ... Ellipse long axis F1 ... One focus F2 ... Other focus

Claims (3)

第1光反射面を有し第1揺動軸回りに揺動可能に形成された第1可動板を備え、前記第1可動板が揺動することによって、光源から前記第1光反射面に入射される光を反射走査する第1走査手段と、
前記第1走査手段の光走査方向については楕円の長軸側の円弧形状に湾曲し、前記第1走査手段の光走査方向と直交する方向については前記円弧形状を延設した形状の反射面を有し、前記第1走査手段から入射される光を反射する楕円ミラーと、
第2光反射面を有し第2揺動軸回りに揺動可能に形成された第2可動板を備え、前記第2可動板が揺動することによって、前記楕円ミラーからの光を前記第1走査手段の光走査方向と直交する方向に反射走査する第2走査手段と、
前記第1及び第2可動板を各揺動軸回りに揺動させる駆動信号を前記第1及び第2走査手段にそれぞれ供給する駆動手段と、
を備え、
前記楕円を含む基準平面の垂直方向から見て前記第1光反射面上の反射点を前記基準平面に投影した点が前記楕円の一方の焦点と一致するように前記第1走査手段を配置し、前記基準平面の垂直方向から見て前記第2光反射面上の反射点を前記基準平面に投影した点が前記一方の焦点と前記楕円ミラー間に位置する他方の焦点と一致し、かつ、前記基準平面に対して前記第1走査手段と反対側に位置するように前記第2走査手段を配置して構成することを特徴とする光走査装置。
A first movable plate having a first light reflecting surface and swingable about a first swing axis is provided. When the first movable plate swings, the light source moves from the light source to the first light reflecting surface. First scanning means for reflecting and scanning incident light;
The light scanning direction of the first scanning means is curved in an arc shape on the long axis side of the ellipse, and the reflecting surface is formed by extending the arc shape in the direction orthogonal to the light scanning direction of the first scanning means. An elliptical mirror that reflects light incident from the first scanning means;
A second movable plate having a second light reflecting surface and swingable about a second swing axis is provided, and the light from the elliptical mirror is transmitted by the second movable plate swinging. Second scanning means for performing reflection scanning in a direction orthogonal to the optical scanning direction of the one scanning means;
Drive means for supplying drive signals for swinging the first and second movable plates about the swing axes to the first and second scanning means, respectively;
With
The first scanning means is arranged so that a point obtained by projecting a reflection point on the first light reflection surface onto the reference plane when viewed from a direction perpendicular to the reference plane including the ellipse coincides with one focal point of the ellipse. A point obtained by projecting a reflection point on the second light reflecting surface onto the reference plane when viewed from a direction perpendicular to the reference plane coincides with the other focus located between the one focal point and the elliptical mirror, and An optical scanning apparatus comprising: the second scanning unit arranged so as to be opposite to the first scanning unit with respect to the reference plane.
前記第1走査手段と前記第2走査手段は、1個のチップ上に一体形成されていることを特徴とする請求項1に記載の光走査装置。   The optical scanning device according to claim 1, wherein the first scanning unit and the second scanning unit are integrally formed on one chip. 前記第1走査手段は、前記第1揺動軸と直交する方向で前記第1可動板を均等に分割して形成した複数の第1分割可動板を備え、各第1分割可動板は、それぞれの前記第1揺動軸を有して形成され、前記第2走査手段は、前記第2揺動軸と直交する方向で前記第2可動板を均等に分割して形成した複数の第2分割可動板を備え、各第2分割可動板は、それぞれの前記第2揺動軸を有して形成されていることを特徴とする請求項1又は2に記載の光走査装置。   The first scanning means includes a plurality of first divided movable plates formed by equally dividing the first movable plate in a direction orthogonal to the first swing axis, and each first divided movable plate is respectively A plurality of second divisions formed by equally dividing the second movable plate in a direction orthogonal to the second oscillation axis. 3. The optical scanning device according to claim 1, further comprising a movable plate, wherein each of the second divided movable plates has the second swing shaft.
JP2011123046A 2011-06-01 2011-06-01 Optical scanning device Active JP5702230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011123046A JP5702230B2 (en) 2011-06-01 2011-06-01 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011123046A JP5702230B2 (en) 2011-06-01 2011-06-01 Optical scanning device

Publications (2)

Publication Number Publication Date
JP2012252068A true JP2012252068A (en) 2012-12-20
JP5702230B2 JP5702230B2 (en) 2015-04-15

Family

ID=47524965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011123046A Active JP5702230B2 (en) 2011-06-01 2011-06-01 Optical scanning device

Country Status (1)

Country Link
JP (1) JP5702230B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013097137A (en) * 2011-10-31 2013-05-20 Kyushu Univ Optical scanner
JP2014202775A (en) * 2013-04-01 2014-10-27 富士電機株式会社 Optical scanner and endoscope device
WO2019010425A1 (en) 2017-07-07 2019-01-10 Aeye, Inc. Ladar transmitter with reimager
US10203660B2 (en) 2013-07-19 2019-02-12 Boe Technology Group Co., Ltd. Holographic reproducing apparatus and method, holographic implementing device and method
US11092676B2 (en) 2017-02-17 2021-08-17 Aeye, Inc. Method and system for optical data communication via scanning ladar
US11175386B2 (en) 2016-02-18 2021-11-16 Aeye, Inc. Ladar system with adaptive receiver
WO2022050047A1 (en) * 2020-09-07 2022-03-10 ソニーセミコンダクタソリューションズ株式会社 Lidar device, lidar system, distance measurement method, and program
US11300667B1 (en) 2021-03-26 2022-04-12 Aeye, Inc. Hyper temporal lidar with dynamic laser control for scan line shot scheduling
US11300779B2 (en) 2016-02-18 2022-04-12 Aeye, Inc. Ladar transmitter with ellipsoidal reimager
US11467263B1 (en) 2021-03-26 2022-10-11 Aeye, Inc. Hyper temporal lidar with controllable variable laser seed energy
US11480680B2 (en) 2021-03-26 2022-10-25 Aeye, Inc. Hyper temporal lidar with multi-processor return detection
US11500093B2 (en) 2021-03-26 2022-11-15 Aeye, Inc. Hyper temporal lidar using multiple matched filters to determine target obliquity
US11604264B2 (en) 2021-03-26 2023-03-14 Aeye, Inc. Switchable multi-lens Lidar receiver
US11630188B1 (en) 2021-03-26 2023-04-18 Aeye, Inc. Hyper temporal lidar with dynamic laser control using safety models
US11635495B1 (en) 2021-03-26 2023-04-25 Aeye, Inc. Hyper temporal lidar with controllable tilt amplitude for a variable amplitude scan mirror
US11693099B2 (en) 2016-02-18 2023-07-04 Aeye, Inc. Method and apparatus for an adaptive ladar receiver
CN116909014A (en) * 2023-09-11 2023-10-20 之江实验室 Elliptic surface-based galvanometer plane scanning device and scanning method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03248044A (en) * 1990-02-26 1991-11-06 Shimadzu Corp Optical scanning apparatus
JPH0626841A (en) * 1991-07-19 1994-02-04 Hitachi Ltd One-dimensional scanning type surface displacement meter
JP2005352488A (en) * 2004-06-09 2005-12-22 Samsung Electronics Co Ltd Optical system for scanning angle expansion, and scanning apparatus provided with the same
JP2008139886A (en) * 2006-12-01 2008-06-19 Samsung Electronics Co Ltd Two-dimensional micro optical scanner
JP2009251004A (en) * 2008-04-01 2009-10-29 Seiko Epson Corp Image display apparatus
JP2010537241A (en) * 2007-08-19 2010-12-02 ビーテンド リミテッド Optical device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03248044A (en) * 1990-02-26 1991-11-06 Shimadzu Corp Optical scanning apparatus
JPH0626841A (en) * 1991-07-19 1994-02-04 Hitachi Ltd One-dimensional scanning type surface displacement meter
JP2005352488A (en) * 2004-06-09 2005-12-22 Samsung Electronics Co Ltd Optical system for scanning angle expansion, and scanning apparatus provided with the same
JP2008139886A (en) * 2006-12-01 2008-06-19 Samsung Electronics Co Ltd Two-dimensional micro optical scanner
JP2010537241A (en) * 2007-08-19 2010-12-02 ビーテンド リミテッド Optical device
JP2009251004A (en) * 2008-04-01 2009-10-29 Seiko Epson Corp Image display apparatus

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013097137A (en) * 2011-10-31 2013-05-20 Kyushu Univ Optical scanner
JP2014202775A (en) * 2013-04-01 2014-10-27 富士電機株式会社 Optical scanner and endoscope device
US10203660B2 (en) 2013-07-19 2019-02-12 Boe Technology Group Co., Ltd. Holographic reproducing apparatus and method, holographic implementing device and method
US11175386B2 (en) 2016-02-18 2021-11-16 Aeye, Inc. Ladar system with adaptive receiver
US11300779B2 (en) 2016-02-18 2022-04-12 Aeye, Inc. Ladar transmitter with ellipsoidal reimager
US11726315B2 (en) 2016-02-18 2023-08-15 Aeye, Inc. Ladar transmitter with ellipsoidal reimager
US11693099B2 (en) 2016-02-18 2023-07-04 Aeye, Inc. Method and apparatus for an adaptive ladar receiver
US11092676B2 (en) 2017-02-17 2021-08-17 Aeye, Inc. Method and system for optical data communication via scanning ladar
US11835658B2 (en) 2017-02-17 2023-12-05 Aeye, Inc. Method and system for ladar pulse deconfliction
WO2019010425A1 (en) 2017-07-07 2019-01-10 Aeye, Inc. Ladar transmitter with reimager
EP3649480A4 (en) * 2017-07-07 2021-02-24 Aeye, Inc. Ladar transmitter with reimager
WO2022050047A1 (en) * 2020-09-07 2022-03-10 ソニーセミコンダクタソリューションズ株式会社 Lidar device, lidar system, distance measurement method, and program
US11474214B1 (en) 2021-03-26 2022-10-18 Aeye, Inc. Hyper temporal lidar with controllable pulse bursts to resolve angle to target
US11604264B2 (en) 2021-03-26 2023-03-14 Aeye, Inc. Switchable multi-lens Lidar receiver
US11460552B1 (en) 2021-03-26 2022-10-04 Aeye, Inc. Hyper temporal lidar with dynamic control of variable energy laser source
US11467263B1 (en) 2021-03-26 2022-10-11 Aeye, Inc. Hyper temporal lidar with controllable variable laser seed energy
US11474212B1 (en) 2021-03-26 2022-10-18 Aeye, Inc. Hyper temporal lidar with dynamic laser control and shot order simulation
US11474213B1 (en) 2021-03-26 2022-10-18 Aeye, Inc. Hyper temporal lidar with dynamic laser control using marker shots
US11460553B1 (en) 2021-03-26 2022-10-04 Aeye, Inc. Hyper temporal lidar with dynamic laser control using different mirror motion models for shot scheduling and shot firing
US11480680B2 (en) 2021-03-26 2022-10-25 Aeye, Inc. Hyper temporal lidar with multi-processor return detection
US11486977B2 (en) 2021-03-26 2022-11-01 Aeye, Inc. Hyper temporal lidar with pulse burst scheduling
US11493610B2 (en) 2021-03-26 2022-11-08 Aeye, Inc. Hyper temporal lidar with detection-based adaptive shot scheduling
US11500093B2 (en) 2021-03-26 2022-11-15 Aeye, Inc. Hyper temporal lidar using multiple matched filters to determine target obliquity
US11460556B1 (en) 2021-03-26 2022-10-04 Aeye, Inc. Hyper temporal lidar with shot scheduling for variable amplitude scan mirror
US11619740B2 (en) 2021-03-26 2023-04-04 Aeye, Inc. Hyper temporal lidar with asynchronous shot intervals and detection intervals
US11630188B1 (en) 2021-03-26 2023-04-18 Aeye, Inc. Hyper temporal lidar with dynamic laser control using safety models
US11635495B1 (en) 2021-03-26 2023-04-25 Aeye, Inc. Hyper temporal lidar with controllable tilt amplitude for a variable amplitude scan mirror
US11675059B2 (en) 2021-03-26 2023-06-13 Aeye, Inc. Hyper temporal lidar with elevation-prioritized shot scheduling
US11686845B2 (en) 2021-03-26 2023-06-27 Aeye, Inc. Hyper temporal lidar with controllable detection intervals based on regions of interest
US11686846B2 (en) 2021-03-26 2023-06-27 Aeye, Inc. Bistatic lidar architecture for vehicle deployments
US11448734B1 (en) 2021-03-26 2022-09-20 Aeye, Inc. Hyper temporal LIDAR with dynamic laser control using laser energy and mirror motion models
US11442152B1 (en) 2021-03-26 2022-09-13 Aeye, Inc. Hyper temporal lidar with dynamic laser control using a laser energy model
US11300667B1 (en) 2021-03-26 2022-04-12 Aeye, Inc. Hyper temporal lidar with dynamic laser control for scan line shot scheduling
US11822016B2 (en) 2021-03-26 2023-11-21 Aeye, Inc. Hyper temporal lidar using multiple matched filters to orient a lidar system to a frame of reference
CN116909014B (en) * 2023-09-11 2023-12-01 之江实验室 Elliptic surface-based galvanometer plane scanning device and scanning method
CN116909014A (en) * 2023-09-11 2023-10-20 之江实验室 Elliptic surface-based galvanometer plane scanning device and scanning method

Also Published As

Publication number Publication date
JP5702230B2 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP5702230B2 (en) Optical scanning device
JP4574396B2 (en) Optical deflector
JP4673115B2 (en) Optical scanning device and image forming apparatus using the same
US7760227B2 (en) Deflector, optical scanning unit, and image forming apparatus
JP2015514228A (en) Gimbal scanning mirror array
KR20140145074A (en) Optical device, optical scanner, and image display apparatus
JP5400925B2 (en) Oscillator device, optical deflector, and optical apparatus using the same
KR20130100693A (en) Illumination optical system, light irradiation apparatus for spectrometory, and spectrometer
JP2009145515A (en) Optical scanning device and color image forming apparatus
JP2022159464A (en) Ranging device
US10845688B2 (en) Actuator, optical device, and projector
JP6686480B2 (en) Optical deflector and image projection device
JP2011232589A (en) Optical scanner
JP2008262186A (en) Optical scanner and image forming apparatus
JP5041835B2 (en) Optical scanning apparatus and image forming apparatus
JP6485013B2 (en) Optical deflector, image display device, and object device
JP2009251596A (en) Light scanning unit, image forming apparatus employing the same, and light scanning method
JP4970865B2 (en) Deflection device, optical scanning device, and image forming apparatus
JP2007183574A (en) Oscillating system and optical deflector
TW200844478A (en) MEMS oscillating laser scanning unit and assembly method of the same
JP4447963B2 (en) Optical deflector control device
JP2017097203A (en) Optical scanning device
JP2013225081A (en) Optical scanning device and image forming apparatus
JP2015175984A (en) Actuator, optical deflector, optical scanner, image formation device, and image projection device
JP2022022390A (en) Ranging device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140528

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150219

R150 Certificate of patent or registration of utility model

Ref document number: 5702230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150