JP2012251615A - Flow passage switching valve, internal combustion engine, and egr method of internal combustion engine - Google Patents

Flow passage switching valve, internal combustion engine, and egr method of internal combustion engine Download PDF

Info

Publication number
JP2012251615A
JP2012251615A JP2011125434A JP2011125434A JP2012251615A JP 2012251615 A JP2012251615 A JP 2012251615A JP 2011125434 A JP2011125434 A JP 2011125434A JP 2011125434 A JP2011125434 A JP 2011125434A JP 2012251615 A JP2012251615 A JP 2012251615A
Authority
JP
Japan
Prior art keywords
flow path
gas
inlet
outlet
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011125434A
Other languages
Japanese (ja)
Other versions
JP5982739B2 (en
Inventor
Yoshio Sekiyama
惠夫 関山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2011125434A priority Critical patent/JP5982739B2/en
Publication of JP2012251615A publication Critical patent/JP2012251615A/en
Application granted granted Critical
Publication of JP5982739B2 publication Critical patent/JP5982739B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Sliding Valves (AREA)
  • Fluid-Driven Valves (AREA)
  • Multiple-Way Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flow passage switching valve which quickly and selectively switches a plurality of inlet-side flow passages to lead to an outlet-side flow passage by using relatively high-pressure driving gas, and prevents breakage of a seal member for sealing the flow passages, and to provide an internal combustion engine, and an EGR (Exhaust Gas Recirculation) method of the internal combustion engine.SOLUTION: The flow passage switching valve 50A selectively opens/closes one or more of a plurality of inlet-side flow passages 51a, 51b to lead to a single or multiple outlet-side flow passages 52a. A shutter member 55 is provided which slides between the inlet-side flow passages 51a, 51b-side and the outlet-side flow passage 52a-side provided in the case 54. A seal member is arranged between the shutter member 55 and the case 54 for sealing the outlet-side flow passage 52a. A guide member 53 is provided to slide the shutter member 55 above an inner wall surface of the outlet-side flow passage 52a side of the case 54. A space P is formed between the shutter member 55 and the inner wall surface.

Description

本発明は、駆動用の高圧ガスを用いて、高圧側ガスの流路と低圧側ガスの流路とを高速で切り替えることができる流路切替弁、それを備えた内燃機関、及び内燃機関のEGR方法に関する。   The present invention relates to a flow path switching valve capable of switching at high speed between a flow path of a high-pressure side gas and a flow path of a low-pressure side gas using a high-pressure gas for driving, an internal combustion engine including the same, and an internal combustion engine It relates to the EGR method.

ディーゼルエンジン等の内燃機関の排気ガス中のNOx(窒素酸化物)を低減するEGR(排気再循環)においては、過給システムを備えた内燃機関では、高圧EGR方式と低圧EGR方式とがある。この高圧EGR方式では、例えば、図29に示すように、高圧EGRシステムを備えた内燃機関1Xでは、ターボ式過給機14よりもエンジン本体11側にEGR通路17が設けられており、エンジン本体11の排気マニホールド11bから吸気マニホールド11aにEGR通路17経由でEGRガスGeを還流している。また、低圧EGR方式では、例えば、図30に示すように、低圧EGRシステムを備えた内燃機関1Yでは、ターボ式過給機14よりもエンジン本体11とは反対側にEGR通路17が設けられており、タービン14bの下流側からコンプレッサ14aの上流側にEGR通路17経由でEGRガスGeを還流している。   In EGR (exhaust gas recirculation) for reducing NOx (nitrogen oxide) in exhaust gas of an internal combustion engine such as a diesel engine, there are a high pressure EGR method and a low pressure EGR method in an internal combustion engine equipped with a supercharging system. In this high pressure EGR system, for example, as shown in FIG. 29, in an internal combustion engine 1X equipped with a high pressure EGR system, an EGR passage 17 is provided closer to the engine body 11 than the turbocharger 14, and the engine body The EGR gas Ge is recirculated from the 11 exhaust manifolds 11 b to the intake manifold 11 a via the EGR passage 17. In the low pressure EGR system, for example, as shown in FIG. 30, in the internal combustion engine 1Y provided with the low pressure EGR system, an EGR passage 17 is provided on the opposite side of the engine body 11 from the turbocharger 14. The EGR gas Ge is recirculated from the downstream side of the turbine 14b to the upstream side of the compressor 14a via the EGR passage 17.

これらのいずれのEGR方式でも、EGRガス量の制御には、MAF制御方式が一般的に使用されている。このMAF制御方式では、EGR無しでエンジンのシリンダ内に吸入される新気量(空気量)をMoとし、EGRを行うことでシリンダ内に吸入される新気量をMeとすると、還流されるEGRガス量のMegrがMegr=Mo−Meとなるので、これに基づいて、EGR弁21の弁開度により新気量Meを制御することで、EGRガス量Megrを制御している。   In any of these EGR systems, the MAF control system is generally used to control the amount of EGR gas. In this MAF control method, if the amount of fresh air (air amount) sucked into the cylinder of the engine without EGR is Mo and the amount of fresh air sucked into the cylinder by performing EGR is Me, it is recirculated. Since the EGR gas amount Megr is Megr = Mo−Me, the EGR gas amount Megr is controlled by controlling the fresh air amount Me based on the valve opening degree of the EGR valve 21 based on this.

つまり、エンジンの回転速度Neと燃料負荷Qをパラメータにして、各エンジンの運転状態に対する新気量Meを予め設定して作成した新気量Meのデータマップを基に、実際のエンジン運転時の回転速度Neと燃料負荷Qから目標の新気量Metを算出して、実際の新気量Meをこの目標の新気量Metになるように制御することで、EGRガス量Megrを制御している。   That is, based on the data map of the fresh air amount Me created by setting the fresh air amount Me for each engine operating state in advance using the engine rotational speed Ne and the fuel load Q as parameters, The target fresh air amount Met is calculated from the rotational speed Ne and the fuel load Q, and the actual fresh air amount Me is controlled to become the target fresh air amount Met, thereby controlling the EGR gas amount Megr. Yes.

しかしながら、ターボ式過給機を使用する場合には排気ガスのエネルギー(エンタルピ)を用いて過給を行うため、ターボ式過給機の応答遅れ(ターボラグ)を無くすことは不可能であり、このMAF制御方式では、このターボラグに起因する次のような問題がある。ターボラグにより負荷が急激に増加する過渡運転状態では、過給圧が定常運転時に設定した圧力まで上昇しないため、エンジンの吸入空気量が低下する。つまり、ターボ式過給機付きエンジンでも無過給エンジンと同程度の吸気量となってしまう。   However, when a turbocharger is used, the exhaust gas energy (enthalpy) is used for supercharging, so it is impossible to eliminate the response delay (turbo lag) of the turbocharger. The MAF control method has the following problems due to the turbo lag. In a transient operation state in which the load increases rapidly due to the turbo lag, the supercharging pressure does not increase to the pressure set during steady operation, so the intake air amount of the engine decreases. In other words, even an engine with a turbo-type supercharger has the same intake air amount as a non-supercharged engine.

従って、定常運転条件で設定した目標のEGR量に達成することができず、図31に示すように、急激な過渡運転を行う際にNOxの排出量が増加する。また、煤の発生量を制限するために、過給圧があるレベルより上がらない場合には燃料の投入量が煤が増加しない領域内に抑えられるというスモークリミット制御が行われる。その結果、図32及び図33に示すように、燃料噴射量Qと空気量(Mo、Me)が共に点線で示されるように抑えられ、加速時のパワーが抑えられてしまうという問題がある。そのために、加速時等の負荷が急激に増加する過渡運転時には、NOx排出量の増加や燃費の悪化が発生する。   Therefore, the target EGR amount set in the steady operation condition cannot be achieved, and as shown in FIG. 31, the NOx emission amount increases when performing a rapid transient operation. Further, in order to limit the amount of soot generated, smoke limit control is performed in which the amount of fuel input is suppressed within a region where the soot does not increase when the supercharging pressure does not rise above a certain level. As a result, as shown in FIGS. 32 and 33, both the fuel injection amount Q and the air amount (Mo, Me) are suppressed as indicated by dotted lines, and there is a problem that power during acceleration is suppressed. For this reason, during transient operation in which the load increases rapidly during acceleration or the like, an increase in NOx emissions and a deterioration in fuel consumption occur.

一方、エンジンのクランクシャフト等によって、過給機を直接駆動して過給を行う機械式過給装置を使用する場合では、過給の応答遅れをなくす事ができるが、エンジンの回転速度が決まると燃料量の多少に関わらず、過給量が決まるために、また、駆動に要する仕事量が大きいために、燃費が悪化するという問題がある。   On the other hand, in the case of using a mechanical supercharger that performs supercharging by directly driving the supercharger by an engine crankshaft or the like, the delay in the supercharging response can be eliminated, but the engine speed is determined. However, there is a problem that fuel efficiency deteriorates because the amount of supercharging is determined regardless of the amount of fuel and the amount of work required for driving is large.

この対策として、近年では、図34に示すような蓄ガス供給システムを備えた内燃機関1Zが研究されており、この蓄ガス供給システムでは、内燃機関1Zから排出される排気ガスGの一部Gpを空気Aaと混合した混合ガスCを容積型コンプレッサ(排気圧縮器)25で圧縮して高圧化し、この高圧化した混合ガスCを蓄ガス容器(圧力容器)27内に溜め込み、過渡時に放出電磁弁36を開弁して混合ガスCを調圧弁29経由で吸気弁(吸気スロットル)35の下流の吸気通路12に放出し、これにより、内燃機関1Zのシリンダ内への吸気量を過給機付きエンジン並みに増加させると共に、EGRの効果によるNOxの低減を図り、ターボラグの問題を解消している過給制御装置が提案されている(例えば、特許文献1参照)。   As a countermeasure, in recent years, an internal combustion engine 1Z having a storage gas supply system as shown in FIG. 34 has been studied, and in this storage gas supply system, a part Gp of the exhaust gas G discharged from the internal combustion engine 1Z. The mixed gas C mixed with air Aa is compressed by a positive displacement compressor (exhaust compressor) 25 to increase the pressure, and the increased mixed gas C is stored in a gas storage container (pressure container) 27 to release electromagnetic waves in a transient state. The valve 36 is opened and the mixed gas C is discharged to the intake passage 12 downstream of the intake valve (intake throttle) 35 via the pressure regulating valve 29, whereby the amount of intake air into the cylinder of the internal combustion engine 1Z is supercharged. There has been proposed a supercharging control device that increases the same level as an attached engine, reduces NOx by the effect of EGR, and solves the problem of turbo lag (see, for example, Patent Document 1).

この蓄ガス供給システムを採用した場合は、過渡時に加圧された混合ガスCをエンジン1Zの吸気通路12内に放出することで過給圧を上げて、シリンダ内への空気量を増加させることができるので燃料量も増やすことができる。その結果、加速性能が向上し、煤の排出も抑えることができる。また、過給圧は排気マニホールド11bの内圧よりも高くなるので、内燃機関1Zのポンピング損失が低下し燃費の向上を図ることができる。   When this storage gas supply system is adopted, the supercharging pressure is increased by releasing the gas mixture C pressurized during the transition into the intake passage 12 of the engine 1Z, thereby increasing the amount of air into the cylinder. Can increase the amount of fuel. As a result, acceleration performance is improved and soot discharge can be suppressed. Further, since the supercharging pressure is higher than the internal pressure of the exhaust manifold 11b, the pumping loss of the internal combustion engine 1Z is reduced, and the fuel efficiency can be improved.

この蓄ガス供給システムにおける技術的に最も重要な点の一つに、蓄ガス供給通路側と吸気通路との合流部で、蓄ガス供給通路側と吸気通路の下流側との連通から、吸気通路の上流側と吸気通路の下流側との連通へ、または、逆に、切り替えるための流路切替弁がある。   One of the technically most important points in this gas storage supply system is that at the junction of the gas storage supply passage side and the intake passage, the communication between the gas storage supply passage side and the downstream side of the intake passage leads to the intake passage. There is a flow path switching valve for switching to the communication between the upstream side and the downstream side of the intake passage, or conversely.

この流路切替弁では、蓄ガス容器からエンジンのシリンダ内へ加圧されたガスを供給する場合には、吸気通路の上流側を確実に閉じる必要があり、蓄ガス供給通路側の弁が開き出したときに吸気通路の上流側の弁が高速で閉まらないと、つまり、二箇所の弁が同時に開いている時間が長い程、加圧されたガスが吸気通路の上流側の弁の隙間を通じて大気側に逃げてしまうので、エンジンの吸気通路の下流側の過給圧が上がらなくなってしまう。   In this flow path switching valve, when supplying pressurized gas from the gas storage container into the engine cylinder, it is necessary to securely close the upstream side of the intake passage, and the valve on the storage gas supply passage side opens. When the valve on the upstream side of the intake passage does not close at high speed when it is discharged, that is, the longer the two valves are open at the same time, the longer the pressurized gas will flow through the clearance of the valve on the upstream side of the intake passage. Because it escapes to the atmosphere side, the boost pressure on the downstream side of the intake passage of the engine will not increase.

また、蓄ガス容器のガスを用いた過給条件が解除されて、通常の吸気通路の上流側と吸気通路の下流側を連通させた状態に戻る場合には、蓄ガス供給通路側の弁が閉じたときに吸気通路の上流側の弁がまだ全開にならないと、吸気通路の上流側の吸気抵抗が増加してエンジンの吸気量が大幅に低下するので、エンジンのパワー、燃費、排ガス等に関するエンジン性能が悪化する。   In addition, when the supercharging condition using the gas in the gas storage container is released and the state returns to the state where the upstream side of the normal intake passage and the downstream side of the intake passage are in communication, the valve on the storage gas supply passage side is If the valve on the upstream side of the intake passage is not fully opened when closed, the intake resistance on the upstream side of the intake passage will increase and the intake air of the engine will drop significantly. Engine performance deteriorates.

流路切替弁でこれらの状態が、車両が他の車線に合流するために加速したときに発生すると、車両の加速性能が低下してしまうので、これを回避する必要がある。このように、蓄ガス供給通路側と吸気通路の上流側のラインを遮断する二箇所の弁の切替を高速で行うことが重要な課題となっている。   If these conditions occur when the vehicle accelerates in order to join another lane with the flow path switching valve, the acceleration performance of the vehicle will deteriorate, and this must be avoided. As described above, it is an important issue to switch the two valves that shut off the lines on the storage gas supply passage side and the upstream side of the intake passage at high speed.

なお、三方切替弁として、例えば、一つの駆動手段と複数の三方切替手段の弁体を連結し、駆動手段により複数の弁体を連動して動かす一体式切替弁がある(例えば、特許文献2参照。)。   Note that, as the three-way switching valve, for example, there is an integrated switching valve in which a valve body of one driving means and a plurality of three-way switching means is connected and a plurality of valve bodies are moved in conjunction with the driving means (for example, Patent Document 2). reference.).

特開2011−21558号公報JP 2011-21558 A 特開2000−193127号公報JP 2000-193127 A

一方、本発明者は、次のような知見を得た。つまり、実際の車両に、蓄ガス供給システムを搭載する場合に、流路切替弁の駆動を高速で行うためには、圧縮空気等の比較的高圧のガスを用いることが有効であり、駆動源となるガスとして過給に用いる蓄ガス容器内に蓄圧されたガスを用いることが有効である。   On the other hand, the present inventor has obtained the following knowledge. In other words, when the gas storage system is installed in an actual vehicle, it is effective to use a relatively high pressure gas such as compressed air in order to drive the flow path switching valve at a high speed. It is effective to use the gas stored in the gas storage container used for supercharging as the gas to be used.

この場合に、蓄ガス供給通路からガスをエンジンのシリンダ内に供給するときには蓄ガス容器内は高圧であるが、このガスの供給を終了するときには蓄ガス容器内のガスがシリンダ内に供給された後であり、相当量のガスが消費されているので、蓄ガス容器内の圧力は降下して比較的低圧になっている。   In this case, when the gas is supplied from the gas storage gas supply passage into the cylinder of the engine, the pressure in the gas storage container is high, but when the gas supply is finished, the gas in the gas storage container is supplied into the cylinder. Later, since a considerable amount of gas is consumed, the pressure in the gas storage container is lowered to a relatively low pressure.

従って、この低圧のガスでも二箇所の連通と閉鎖を行う切替部材を高速で作動させる必要がある。なお、ここで述べる高速作動とは、二箇所の連通と閉鎖の切替開始から切替完了までの時間が約30/1000秒(30ms)程度の短時間で完了することをいう。   Therefore, it is necessary to operate the switching member that performs communication and closing at two locations at high speed even with this low-pressure gas. Note that the high-speed operation described here means that the time from the start of switching between two communication points and closing to the completion of switching is completed in a short time of about 30/1000 seconds (30 ms).

この流路切替弁に関して、本発明者は、本発明に関する技術の一環として、第1流路と第2流路を切り替えて、第1流路側のガスと第2流路側のガスのいずれか一方を第3流路に流す流路切替弁において、前記第1流路と前記第2流路をケース内の一方側に設け、前記第3流路を前記第1流路と前記第2流路の両方に対向して前記ケース内の他方側に設けると共に、前記第1流路と前記第3流路との間と、前記第2流路と前記第3流路との間を交互に連通及び閉鎖するようにスライドするシャッター部材を設け、前記シャッター部材を駆動用ガスで駆動するピストンでスライドさせるように構成される流路切替弁を考えた。   With regard to this flow path switching valve, the present inventor switches the first flow path and the second flow path as one part of the technology related to the present invention, and either the first flow path side gas or the second flow path side gas. In the flow path switching valve for flowing the first flow path to the third flow path, the first flow path and the second flow path are provided on one side of the case, and the third flow path is provided to the first flow path and the second flow path. Is provided on the other side of the case so as to face both of the first flow path and the third flow path, and alternately communicates between the second flow path and the third flow path. Further, a flow path switching valve is provided which is provided with a shutter member that slides so as to be closed, and is configured to be slid by a piston that is driven by a driving gas.

しかしながら、ケースに挿入されたシャッター部材を高速で移動させ、二つ以上の入口側流路(ポート)の切り替えを同時に切り替えるシャッター部材を用いた構造で一つ以上の入口側流路に高圧が付加されるような場合には、シャッター部材は片側に押し付けられた状態で静止し、この静止状態からシャッター部材が高速で動きだすと、高圧を受けるシャッター部材は、図35〜図37に示すように、ケース54の一方側の内壁部54gに押し付けられたままであるので、シャッター部材55の端部が同じ一方側の内壁部54gのOリング等のシール部材54fの部分を通過する際に、シール部材54fを噛み込んで破損させる可能性が生じる。   However, the shutter member inserted in the case is moved at high speed, and a structure using a shutter member that simultaneously switches between two or more inlet-side channels (ports) applies high pressure to one or more inlet-side channels. In such a case, the shutter member is stopped in a state where it is pressed to one side, and when the shutter member starts to move at a high speed from this stationary state, the shutter member that receives high pressure, as shown in FIGS. Since it remains pressed against the inner wall portion 54g on one side of the case 54, when the end portion of the shutter member 55 passes through the portion of the sealing member 54f such as an O-ring on the same inner wall portion 54g, the sealing member 54f. May be damaged by biting.

このOリング等のシール部材の破損は、蓄ガス供給システムの場合では、高圧の蓄ガス容器からエンジンのシリンダ内に吸入されるべきガスが吸気系通路から大気側へ漏れ出ることに繋がるため、過給補助の機能が失われる。更に、破損したシール部材の断片はエンジンの吸気バルブの破損の原因になる。また、蓄ガス供給通路がターボ式過給機のコンプレッサの上流側に接続されている場合には、このコンプレッサの翼を破損させる原因にもなる。   In the case of the storage gas supply system, the damage of the seal member such as the O-ring leads to leakage of gas to be sucked into the cylinder of the engine from the high-pressure storage container into the atmosphere from the intake passage. The supercharging assistance function is lost. Furthermore, the broken pieces of the seal member cause damage to the intake valve of the engine. In addition, when the stored gas supply passage is connected to the upstream side of the compressor of the turbocharger, the blades of the compressor may be damaged.

本発明は、上記の状況を鑑みてなされたものであり、その目的は、比較的高圧の駆動用ガスを用いて、複数の入口側流路を高速で選択的に切り替えて出口側流路に連通させることができると共に、流路をシールするシール部材の破損を防止でき、ガス圧縮装置を用いて、排気ガスの一部と空気とこれらの混合ガスのいずれかのガスを蓄ガス容器に溜め込み、負荷が急激に増加する過渡運転時に前記ガスをシリンダ内に一時的に供給して過渡運転時のNOxの排出を抑制するとともに加速性能を向上させる蓄圧ガス供給システムを備えた内燃機関等で使用できる流路切替弁を提供することにある。   The present invention has been made in view of the above situation, and an object of the present invention is to selectively switch a plurality of inlet-side flow paths at high speed to a outlet-side flow path using a relatively high-pressure driving gas. It is possible to communicate with each other and to prevent damage to the seal member that seals the flow path. Using a gas compression device, a part of the exhaust gas, air, and one of these mixed gases are stored in the gas storage container. Used in an internal combustion engine equipped with a pressure-accumulated gas supply system that temporarily suppresses NOx emission during transient operation and improves acceleration performance during transient operation when the load increases rapidly It is in providing the flow-path switching valve which can be performed.

本発明の更なる目的は、蓄圧ガス供給システムを備えた内燃機関において、急加速時においてターボラグに起因する加速性能の低下を防止し、PM(粒子状物質)とNOx(窒素酸化物)の低減が可能となると共に、上記の流路切替弁を備えて、流路切替弁の損傷、及び、この損傷に起因する吸気弁やコンプレッサの故障を回避できる内燃機関及び内燃機関のEGR方法を提供することにある。   A further object of the present invention is to prevent reduction in acceleration performance due to turbo lag during sudden acceleration in an internal combustion engine equipped with an accumulator gas supply system, and to reduce PM (particulate matter) and NOx (nitrogen oxide). An internal combustion engine and an EGR method for an internal combustion engine are provided that include the above-described flow path switching valve and can avoid damage to the flow path switching valve and failure of an intake valve and a compressor due to the damage. There is.

上記の目的を達成するための本発明の流路切替弁は、複数の入口側流路のいずれか一つ又は複数を選択的に単数又は複数の出口側流路に連通させたり、遮断したりする流路切替弁において、前記入口側流路をケース内の一方側に設け、前記入口側流路の一部又は全部に対向して前記出口側流路を前記ケース内の他方側に設けると共に、前記入口側流路と前記出口側流路との間でスライドして、前記入口側流路と前記出口側流路との間の連通及び遮断を選択的に行うシャッター部材を設け、駆動用ガスで駆動するピストンで前記シャッター部材をスライドさせるように構成すると共に、前記出口側流路のシールのために前記シャッター部材と前記ケースの間にシール部材を配置し、更に、前記シャッター部材を前記ケースの前記出口側流路側の内壁面から浮かせてスライドさせるための案内部材を設けて、前記シャッター部材と前記内壁面との間に隙間を形成する。   In order to achieve the above object, the flow path switching valve of the present invention selectively connects or blocks any one or a plurality of inlet side flow paths to one or more outlet side flow paths. In the flow path switching valve, the inlet side flow path is provided on one side in the case, and the outlet side flow path is provided on the other side in the case so as to face a part or all of the inlet side flow path. A shutter member that is slid between the inlet-side channel and the outlet-side channel and selectively performs communication and blocking between the inlet-side channel and the outlet-side channel; A gas-driven piston is configured to slide the shutter member, and a seal member is disposed between the shutter member and the case for sealing the outlet-side flow path. On the outlet side flow path side of the case It provided guide members for sliding float from the wall, to form a gap between the shutter member and the inner wall surface.

この構成によれば、比較的高圧の駆動用ガスを用いて、複数の入口側流路を高速で選択的に切り替えて出口側流路に連通されることができる。しかも、複数の入口側流路を一つのシャッター部材で交互に開閉するので、高速で且つ両方の開閉が同期した動きを与えることができる。その結果、複数の入口側流路を切り替える条件下で、この流路切替弁を備えた装置の性能悪化を防止することができる。   According to this configuration, a plurality of inlet-side flow paths can be selectively switched at high speed and communicated with the outlet-side flow path using a relatively high-pressure driving gas. In addition, since the plurality of inlet-side flow paths are alternately opened and closed by one shutter member, it is possible to give a movement at high speed and in which both opening and closing are synchronized. As a result, it is possible to prevent deterioration of the performance of the apparatus provided with this flow path switching valve under the condition of switching a plurality of inlet-side flow paths.

従って、ガス圧縮装置を用いて、排気ガスの一部と空気とこれらの混合ガスのいずれかのガスを蓄ガス容器に溜め込み、負荷が急激に増加する過渡運転時に前記ガスをシリンダ内に一時的に供給して過渡運転時のNOxの排出を抑制するとともに加速性能を向上させる蓄圧ガス供給システムを備えた内燃機関等で使用できる。   Therefore, a part of the exhaust gas, air, and any of these mixed gases are stored in a gas storage container using a gas compression device, and the gas is temporarily stored in the cylinder during transient operation when the load increases rapidly. It can be used in an internal combustion engine or the like equipped with a stored gas supply system that suppresses NOx emission during transient operation and improves acceleration performance.

更に、案内部材を設けているので、シャッター部材とケースの内壁面との接触が無くなり、摩擦が減少し、より少ない力でシャッター部材の高速移動が可能になると共に、Oリング等のシール部材が損傷するのを防止できる。   Further, since the guide member is provided, the contact between the shutter member and the inner wall surface of the case is eliminated, the friction is reduced, the shutter member can be moved at a high speed with less force, and a seal member such as an O-ring is provided. It can be prevented from being damaged.

そして、上記の流路切替弁のより具体的な形状の流路切替弁は、前記入口側流路を第1入口側流路と第2入口側流路で形成すると共に、前記出口側流路を第1出口側流路で形成し、第1流路切替で、前記第1入口側流路と前記第1出口側流路との間を連通すると共に前記第2入口側流路と前記第1出口側流路との間を遮断し、第2流路切替で、前記第1入口側流路と前記第1出口側流路との間を遮断すると共に前記第2入口側流路と前記第1出口側流路との間を連通するように構成される。   The flow path switching valve having a more specific shape of the flow path switching valve includes forming the inlet-side flow path by a first inlet-side flow path and a second inlet-side flow path, and the outlet-side flow path. Is formed by the first outlet side flow path, and the first flow path switching allows the first inlet side flow path and the first outlet side flow path to communicate with each other and the second inlet side flow path and the first flow path. The first outlet side flow path is shut off, and the second flow path switching is used to shut off the first inlet side flow path and the first outlet side flow path and the second inlet side flow path and the It is comprised so that between the 1st exit side flow paths may be connected.

あるいは、前記入口側流路を第1入口側流路と第2入口側流路と第3入口側流路で形成すると共に、前記出口側流路を第1出口側流路で形成し、第1流路切替で、前記第1入口側流路と前記第1出口側流路との間と前記第3入口側流路と前記第1出口側流路の間を連通すると共に前記第2入口側流路と前記第1出口側流路との間を遮断し、第2流路切替で、前記第1入口側流路と前記第1出口側流路との間と前記第3入口側流路と前記第1出口側流路の間を遮断すると共に前記第2入口側流路と前記第1出口側流路との間を連通するように構成される。   Alternatively, the inlet side channel is formed by a first inlet side channel, a second inlet side channel, and a third inlet side channel, and the outlet side channel is formed by a first outlet side channel, By switching one channel, the second inlet port communicates between the first inlet side channel and the first outlet side channel and between the third inlet side channel and the first outlet side channel. Between the side flow path and the first outlet side flow path, and by switching the second flow path, between the first inlet side flow path and the first outlet side flow path and the third inlet side flow A path and the first outlet side channel are blocked, and the second inlet side channel and the first outlet side channel are communicated.

あるいは、前記入口側流路を第1入口側流路と第2入口側流路と第3入口側流路で形成すると共に、前記出口側流路を第1出口側流路と第2出口側流路で形成し、第1流路切替で、前記第1入口側流路と前記第1出口側流路との間と前記第3入口側流路と前記第2出口側流路の間を連通すると共に前記第2入口側流路と前記第1出口側流路との間を遮断し、第2流路切替で、前記第1入口側流路と前記第1出口側流路との間と前記第3入口側流路と前記第2出口側流路の間を遮断すると共に前記第2入口側流路と前記第1出口側流路との間を連通するように構成される。   Alternatively, the inlet side channel is formed by a first inlet side channel, a second inlet side channel, and a third inlet side channel, and the outlet side channel is formed by the first outlet side channel and the second outlet side. Formed by a flow path, and by switching the first flow path, between the first inlet-side flow path and the first outlet-side flow path and between the third inlet-side flow path and the second outlet-side flow path. Communicating and blocking between the second inlet side flow path and the first outlet side flow path, and switching between the first inlet side flow path and the first outlet side flow path by switching the second flow path And the third inlet side flow path and the second outlet side flow path are blocked, and the second inlet side flow path and the first outlet side flow path are communicated.

そして、上記の目的を達成するための内燃機関は、内燃機関の排気ガスの一部をシリンダ内に再循環するためのEGR通路と、内燃機関の排気ガスの一部と空気とこれらの混合ガスのいずれかのガスを圧縮するガス圧縮装置と、該ガス圧縮装置で圧縮された前記ガスを貯蓄する蓄ガス容器と、該蓄ガス容器と吸気系通路を接続する蓄ガス供給通路を備えた内燃機関において、上記の流路切替弁の前記第1入口側流路に前記吸気系通路の上流側を接続し、前記第2入口側流路に前記蓄ガス供給通路を接続し、前記第1出口側流路に前記吸気系通路の下流側を接続して、前記流路切替弁を介して前記吸気系通路と前記蓄ガス供給通路とを接続し、内燃機関が過渡運転でないときは、前記吸気系通路の新気と前記EGRガス通路のEGRガスを前記吸気系通路に供給し、内燃機関が過渡運転であるときは、前記蓄ガス供給通路の前記ガスを前記吸気系通路に一時的に供給するように構成される。   An internal combustion engine for achieving the above object includes an EGR passage for recirculating a part of the exhaust gas of the internal combustion engine into the cylinder, a part of the exhaust gas of the internal combustion engine, air, and a mixed gas thereof. An internal combustion engine comprising: a gas compression device that compresses any of the gas; a gas storage container that stores the gas compressed by the gas compression device; and a gas storage supply passage that connects the gas storage container and an intake system passage In the engine, the upstream side of the intake system passage is connected to the first inlet-side passage of the passage switching valve, the gas storage supply passage is connected to the second inlet-side passage, and the first outlet A downstream side of the intake system passage is connected to a side flow passage, and the intake system passage and the stored gas supply passage are connected via the flow passage switching valve. The fresh air in the system passage and the EGR gas in the EGR gas passage Is supplied to the exhaust system path, when the internal combustion engine is in a transient operation, it constituted the gas in the gas storage supply passage to temporarily supplied to the intake system passage.

この構成によれば、流路切替弁で、比較的高圧の駆動用ガスを用いて、上流側の吸気通路に接続する第1入口側流路と蓄ガス供給通路に接続する第2入口側流路とを、高速で選択的に切り替えて、下流側の吸気通路に接続する第1出口側流路に連通させることができる。更に、上記の流路切替弁を備えることで、流路切替弁の損傷、及び、この損傷に起因する吸気弁やコンプレッサの故障を回避できる。   According to this configuration, the flow path switching valve uses the relatively high pressure driving gas, and the second inlet side flow connected to the first inlet side flow path connected to the upstream intake passage and the stored gas supply passage. The passage can be selectively switched at a high speed to communicate with the first outlet side flow passage connected to the downstream intake passage. Furthermore, by providing the above-described flow path switching valve, it is possible to avoid damage to the flow path switching valve and failure of the intake valve and the compressor due to the damage.

また、上記の流路切替弁において、前記流路切替弁の前記ピストンの駆動用ガスとして、前記蓄ガス容器の前記ガスを用いると、ピストンの駆動用ガスを供給するための装置が不要になり、内燃機関の構造が複雑化するのを防止できる。   In the above flow path switching valve, if the gas in the gas storage container is used as the piston driving gas of the flow path switching valve, a device for supplying the piston driving gas is not necessary. Therefore, it is possible to prevent the structure of the internal combustion engine from becoming complicated.

そして、上記の目的を達成するための内燃機関のEGR方法は、内燃機関の排気系通路の排気ガスの一部と空気とこれらの混合ガスのいずれかのガスを圧縮して貯蓄すると共に、EGRでは、内燃機関が過渡運転でないときには、内燃機関の排気ガスの一部をEGR通路を経由してシリンダ内に再循環し、内燃機関が過渡運転であるときには、記ガスを一時的に蓄ガス供給通路から吸気系通路に供給する内燃機関のEGR方法において、上記の流路切替弁を用いて、内燃機関が過渡運転でないときには、前記流路切替弁の第1流路切替で、前記ガスを前記流路切替弁で遮断して、新気とEGRガスを前記吸気系通路に供給し、内燃機関が過渡運転であるときには、前記流路切替弁の第2流路切替で、新気とEGRガスを前記流路切替弁で遮断して、前記ガスのみを前記吸気系通路に一時的に供給することを特徴とする方法である。 An EGR method for an internal combustion engine for achieving the above object compresses and stores a part of the exhaust gas in the exhaust system passage of the internal combustion engine, air, and any one of these mixed gases, and stores the compressed EGR. so when the internal combustion engine is not in the transient operation, a portion of the exhaust gas of an internal combustion engine via the EGR passage recycled into the cylinder, when the internal combustion engine is in a transient operation, temporarily gas storage previous SL gas In the EGR method of an internal combustion engine that supplies an intake system passage from a supply passage, when the internal combustion engine is not in a transient operation using the flow passage switching valve, the gas is supplied by switching the first flow passage of the flow passage switching valve. When the internal combustion engine is in a transient operation, the fresh air and EGR are switched by the second flow path switching of the flow path switching valve when the flow path switching valve shuts off and supplies fresh air and EGR gas to the intake system passage. Gas is blocked by the flow path switching valve. To a method characterized by temporarily supplying only the gas into the intake system passage.

この方法によれば、流路切替弁で、比較的高圧の駆動用ガスを用いて、上流側の吸気通路に接続する第1入口側流路と蓄ガス供給通路に接続する第2入口側流路とを、高速で選択的に切り替えて、下流側の吸気通路に接続する第1出口側流路に連通させることができる。   According to this method, the flow path switching valve uses a relatively high-pressure driving gas, and the second inlet side flow connected to the first inlet side flow path connected to the upstream intake passage and the stored gas supply passage. The passage can be selectively switched at a high speed to communicate with the first outlet side flow passage connected to the downstream intake passage.

従って、ガス圧縮装置を用いて、排気ガスの一部と空気とこれらの混合ガスのいずれかのガスを蓄ガス容器に溜め込み、負荷が急激に増加する過渡運転時に前記ガスをシリンダ内に一時的に供給して過渡運転時のNOxの排出を抑制するとともに加速性能を向上させることができる。更に、上記の流路切替弁を用いることで、流路切替弁の損傷、及び、この損傷に起因する吸気弁やコンプレッサの故障を回避できる。   Therefore, a part of the exhaust gas, air, and any of these mixed gases are stored in a gas storage container using a gas compression device, and the gas is temporarily stored in the cylinder during transient operation when the load increases rapidly. To suppress NOx emission during transient operation and improve acceleration performance. Further, by using the above-described flow path switching valve, it is possible to avoid damage to the flow path switching valve and failure of the intake valve and the compressor due to the damage.

本発明に係る流路切替弁によれば、比較的高圧の駆動用ガスを用いて、複数の入口側流路を高速で選択的に切り替えて出口側流路に連通させることができると共に、流路をシールするシール部材の破損を防止できる。   According to the flow path switching valve according to the present invention, a plurality of inlet side flow paths can be selectively switched at a high speed and communicated with the outlet side flow path using a relatively high pressure driving gas. Breakage of the seal member that seals the path can be prevented.

また、ガス圧縮装置を用いて、排気ガスの一部と空気とこれらの混合ガスのいずれかのガスを蓄ガス容器に溜め込み、負荷が急激に増加する過渡運転時に前記ガスをシリンダ内に一時的に供給して過渡運転時のNOxの排出を抑制するとともに加速性能を向上させる蓄圧ガス供給システムを備えた内燃機関等で使用できる。   In addition, a part of the exhaust gas, air, and any of these mixed gases are stored in a gas storage container using a gas compression device, and the gas is temporarily stored in the cylinder during transient operation when the load increases rapidly. It can be used in an internal combustion engine or the like equipped with a stored gas supply system that suppresses NOx emission during transient operation and improves acceleration performance.

また、本発明に係る内燃機関及び内燃機関のEGR方法によれば、急加速時等の過渡運転において、ターボラグに起因する加速性能の低下を防止することができ、PM(粒子状物質)とNOx(窒素酸化物)の排出量の低減が可能となると共に、流路切替弁の損傷、及び、この損傷に起因する吸気弁やコンプレッサの故障を回避できる。   Further, according to the internal combustion engine and the EGR method of the internal combustion engine according to the present invention, it is possible to prevent a decrease in acceleration performance due to the turbo lag in transient operation such as during rapid acceleration, and PM (particulate matter) and NOx The amount of (nitrogen oxide) discharged can be reduced, and damage to the flow path switching valve and failure of the intake valve and compressor due to this damage can be avoided.

本発明に係る第1の実施の形態の流路切替弁の構成を示す図で、第1入口側流路が第1出口側流路に連通している状態を示す図である。It is a figure which shows the structure of the flow-path switching valve of 1st Embodiment which concerns on this invention, and is a figure which shows the state which the 1st inlet side flow path is connected to the 1st outlet side flow path. 図1の流路切替弁で、第2入口側流路が第1出口側流路に連通している状態を示す図である。It is a figure which shows the state which the 2nd inlet side flow path is connecting with the 1st outlet side flow path by the flow-path switching valve of FIG. 図1の流路切替弁のケースの図1のX1−X1断面を示す平断面図である。FIG. 2 is a cross-sectional plan view showing the X1-X1 cross section of FIG. 1 of the flow path switching valve case of FIG. 1. 案内部材の構成を示す、図3のZ1−Z1断面におけるY1−Y1側の部分の側断面図である。FIG. 4 is a side sectional view of a portion on the Y1-Y1 side in a Z1-Z1 cross section of FIG. 3 showing a configuration of a guide member. 案内部材の別の構成を示す、図3のZ1−Z1断面におけるY1−Y1側の部分の側断面図である。It is a sectional side view of the part by the side of Y1-Y1 in the Z1-Z1 cross section of FIG. 3 which shows another structure of a guide member. 流路切替弁のシャッター部材の構成を示す平面図である。It is a top view which shows the structure of the shutter member of a flow-path switching valve. 流路切替弁のシャッター部材の構成を示す図6のY2−Y2断面図である。It is Y2-Y2 sectional drawing of FIG. 6 which shows the structure of the shutter member of a flow-path switching valve. 第1入口側流路が連通する場合のシャッター部材とケースの位置関係を示す横断面図である。It is a cross-sectional view showing the positional relationship between the shutter member and the case when the first inlet-side flow path communicates. 第2入口側流路が連通する場合のシャッター部材とケースの位置関係を示す横断面図である。It is a cross-sectional view showing the positional relationship between the shutter member and the case when the second inlet side flow path communicates. ピストンとシリンダの構成を示す横断面図である。It is a transverse cross section showing the composition of a piston and a cylinder. 緩衝部材の構成を示す図である。It is a figure which shows the structure of a buffer member. ピストンの駆動を説明するための図である。It is a figure for demonstrating the drive of a piston. 本発明に係る第2の実施の形態の流路切替弁の構成を示す図で、第1入口側流路と第3入口側流路が第1出口側流路に連通している状態を示す図である。It is a figure which shows the structure of the flow-path switching valve of 2nd Embodiment which concerns on this invention, and shows the state which the 1st inlet side flow path and the 3rd inlet side flow path are connected to the 1st outlet side flow path. FIG. 図13の流路切替弁で、第2入口側流路が第1出口側流路に連通している状態を示す図である。It is a figure which shows the state which the 2nd inlet side flow path is connecting with the 1st outlet side flow path by the flow-path switching valve of FIG. 図13の流路切替弁のケースの図13のX2−X2断面を示す平断面図である。FIG. 14 is a cross-sectional plan view illustrating the X2-X2 cross section of FIG. 13 of the case of the flow path switching valve of FIG. 13. 図15の流路切替弁のケースにおける、第1入口側流路と第3入口側流路が連通する場合のシャッター部材とケースの位置関係を示す横断面図である。FIG. 16 is a cross-sectional view showing the positional relationship between the shutter member and the case when the first inlet-side flow path and the third inlet-side flow path communicate with each other in the flow path switching valve case of FIG. 15. 図15の流路切替弁のケースにおける、第2入口側流路が連通する場合のシャッター部材とケースの位置関係を示す横断面図である。FIG. 16 is a transverse cross-sectional view showing the positional relationship between the shutter member and the case when the second inlet side flow path communicates in the case of the flow path switching valve in FIG. 15. 本発明に係る第3の実施の形態の流路切替弁の構成を示す図で、第1入口側流路が第1出口側流路に連通し、第3入口側流路が第2出口流路に連通している状態を示す図である。It is a figure which shows the structure of the flow-path switching valve of 3rd Embodiment which concerns on this invention, a 1st inlet-side flow path is connected to a 1st outlet-side flow path, and a 3rd inlet-side flow path is a 2nd outlet flow. It is a figure which shows the state connected to the path. 図18の流路切替弁で、第2入口側流路が第1出口側流路に連通している状態を示す図である。It is a figure which shows the state which the 2nd inlet side flow path is connecting with the 1st outlet side flow path by the flow-path switching valve of FIG. シャッター部材の端部とシール部材が離間している状態を示す図である。It is a figure which shows the state which the edge part and shutter member of the shutter member are spaced apart. シャッター部材の端部とシール部材が接近している状態を示す図である。It is a figure which shows the state which the edge part and shutter member of the shutter member have approached. シャッター部材の端部とシール部材が接触している状態を示す図である。It is a figure which shows the state which the edge part and shutter member of a shutter member are contacting. 本発明に係る第1の実施の形態の内燃機関の構成を示す図である。It is a figure showing composition of an internal-combustion engine of a 1st embodiment concerning the present invention. 蓄ガス用のガス圧縮装置の駆動を説明するための図である。It is a figure for demonstrating the drive of the gas compression apparatus for stored gas. 本発明に係る第2の実施の形態の内燃機関の構成を示す図である。It is a figure which shows the structure of the internal combustion engine of 2nd Embodiment which concerns on this invention. 本発明に係る第3の実施の形態の内燃機関の構成を示す図である。It is a figure which shows the structure of the internal combustion engine of 3rd Embodiment which concerns on this invention. 本発明に係る第4の実施の形態の内燃機関の構成を示す図である。It is a figure which shows the structure of the internal combustion engine of 4th Embodiment which concerns on this invention. 本発明に係る第5の実施の形態の内燃機関の構成を示す図である。It is a figure which shows the structure of the internal combustion engine of 5th Embodiment which concerns on this invention. 従来技術の高圧EGR方式の内燃機関の構成を示す図である。It is a figure which shows the structure of the internal combustion engine of a high pressure EGR system of a prior art. 従来技術の低圧EGR方式の内燃機関の構成を示す図である。It is a figure which shows the structure of the low pressure EGR type internal combustion engine of a prior art. 車速の変化と瞬時NOx排出量の関係を示す図である。It is a figure which shows the relationship between the change of a vehicle speed, and instantaneous NOx discharge | emission amount. 全負荷における燃料噴射量の特性と過渡時の動きを示す図である。It is a figure which shows the characteristic of the fuel injection quantity in a full load, and the movement at the time of transition. 過渡時のターボ式過給機の応答遅れとEGRの関係を示す図である。It is a figure which shows the response delay of the turbo supercharger at the time of transition, and the relationship of EGR. 先行技術の内燃機関の構成を示す図である。It is a figure which shows the structure of the internal combustion engine of a prior art. 先行技術の流路切替弁におけるシャッター部材の端部とシール部材が離間している状態を示す図である。It is a figure which shows the state which the edge part and shutter member of the shutter member in the flow-path switching valve of a prior art are spaced apart. 先行技術の流路切替弁におけるシャッター部材の端部とシール部材が接近している状態を示す図である。It is a figure which shows the state which the edge part and shutter member of the shutter member in the flow-path switching valve of a prior art are approaching. 先行技術の流路切替弁におけるシャッター部材の端部とシール部材が接触している状態を示す図である。It is a figure which shows the state which the edge part and shutter member of the shutter member in the flow-path switching valve of a prior art are contacting.

以下、本発明に係る実施の形態の流路切替弁、内燃機関及び内燃機関のEGR方法について、図面を参照しながら説明する。   Hereinafter, a flow path switching valve, an internal combustion engine, and an EGR method for an internal combustion engine according to embodiments of the present invention will be described with reference to the drawings.

最初に、本発明に係る実施の形態の流路切替弁について3つの実施の形態で説明する。本発明に係る第1の実施の形態の流路切替弁50Aは、図1及び図2に示すように、入口側流路を第1入口側流路51aと第2入口側流路51bで形成し、出口側流路を第1出口側流路52aで形成する。   First, the flow path switching valve according to the embodiment of the present invention will be described in three embodiments. In the flow path switching valve 50A according to the first embodiment of the present invention, as shown in FIGS. 1 and 2, the inlet-side flow path is formed by a first inlet-side flow path 51a and a second inlet-side flow path 51b. The outlet side flow path is formed by the first outlet side flow path 52a.

そして、第1流路切替で、第1入口側流路51aと第1出口側流路52aとの間を連通すると共に第2入口側流路51bと第1出口側流路52aとの間を遮断し、第2流路切替で、第1入口側流路51aと第1出口側流路52aとの間を遮断すると共に第2入口側流路51bと第1出口側流路52aとの間を連通するように構成される。 つまり、この第1の実施形態の流路切替弁50Aは、第1入口側流路51aと第2入口側流路51bを切り替えて、第1入口側流路51a側のガス(吸気)Aと第2入口流路51b側のガスCのいずれか一方を第1出口側流路52aに流す流路切替弁である。   And by the 1st channel change, while connecting between the 1st entrance side channel 51a and the 1st exit side channel 52a, between 2nd entrance side channel 51b and the 1st exit side channel 52a Blocking and switching between the first inlet side flow path 51a and the first outlet side flow path 52a by switching the second flow path and between the second inlet side flow path 51b and the first outlet side flow path 52a It is comprised so that it may communicate. That is, the flow path switching valve 50A of the first embodiment switches between the first inlet side flow path 51a and the second inlet side flow path 51b, and the gas (intake air) A on the first inlet side flow path 51a side. This is a flow path switching valve for flowing one of the gases C on the second inlet flow path 51b side to the first outlet flow path 52a.

この第1入口側流路51aと第2入口側流路51bをケース54内の一方側に設け、第1出口側流路52aを第1入口側流路51aと第2入口側流路51bの両方に対向してケース54内の他方側に設ける。それと共に、第1入口側流路51aと第1出口側流路52aとの間と、第2入口側流路51bと第1出口側流路52aとの間を交互に連通及び閉鎖するようにスライドするシャッター部材55を設ける。このシャッター部材55を駆動用ガスApで駆動するピストン56でスライドさせるように構成する。更に、ピストン56を収納し、ピストン56を駆動させるための第1ガス室57aと第2ガス室57bを有するシリンダ57を有して、ピストン駆動部を構成する。   The first inlet side channel 51a and the second inlet side channel 51b are provided on one side in the case 54, and the first outlet side channel 52a is formed between the first inlet side channel 51a and the second inlet side channel 51b. It is provided on the other side in the case 54 so as to face both. At the same time, the first inlet side channel 51a and the first outlet side channel 52a and the second inlet side channel 51b and the first outlet side channel 52a are alternately communicated and closed. A sliding shutter member 55 is provided. The shutter member 55 is configured to be slid by a piston 56 driven by a driving gas Ap. Further, the piston 56 is housed and a cylinder 57 having a first gas chamber 57a and a second gas chamber 57b for driving the piston 56 is provided to constitute a piston drive unit.

そして、図1に示すように、第1圧力の駆動用ガスApを第2ガス室57bに供給すると共に第1ガス室57aのガスAeを抜くことで、第1入口側流路51aと第1出口側流路52aとの間を連通し、第2入口側流路51bと第1出口側流路52aとの間を遮断する第1切替操作を行うように構成する。また、図2に示すように、第1圧力より高い第2圧力の駆動用ガスApを第1ガス室57aに供給すると共に第2ガス室57bのガスAeを抜くことで、第1入口側流路51aと第1出口側流路52aとの間を遮断し、第2入口側流路51bと第1出口側流路52aとの間を連通する第2切替操作を行うように構成する。   Then, as shown in FIG. 1, the first pressure driving gas Ap is supplied to the second gas chamber 57b and the gas Ae in the first gas chamber 57a is removed, so that the first inlet-side flow path 51a and the first gas are discharged. The first switching operation is performed so as to communicate with the outlet-side channel 52a and to block between the second inlet-side channel 51b and the first outlet-side channel 52a. Further, as shown in FIG. 2, the first inlet side stream is supplied by supplying the driving gas Ap having a second pressure higher than the first pressure to the first gas chamber 57a and removing the gas Ae from the second gas chamber 57b. The second switching operation is performed to block between the path 51a and the first outlet side flow path 52a and to communicate between the second inlet side flow path 51b and the first outlet side flow path 52a.

図3に示すように、この流路切替弁50Aのケース54は、第1入口側流路51aと第1出口側流路52aとを連通するための第1孔54aと、第2入口側流路51bと第1出口側流路52aとを連通するための第2孔54bを設けて形成する。これらの第1孔54aの周囲と第2孔54bの周囲にはOリング溝54dと必要に応じてグリス溜り54eが設けられ、組み付け時にはそのリング溝54eにOリング54fを挿入する。つまり、第1出口側流路52aのシールのためにシャッター部材55とケース54の間にシール部材であるOリング54fを配置する。   As shown in FIG. 3, the case 54 of the flow path switching valve 50A includes a first hole 54a for communicating the first inlet side flow path 51a and the first outlet side flow path 52a, and a second inlet side flow. A second hole 54b for communicating the path 51b and the first outlet side flow path 52a is provided and formed. An O-ring groove 54d and, if necessary, a grease reservoir 54e are provided around the first hole 54a and the second hole 54b, and an O-ring 54f is inserted into the ring groove 54e when assembled. In other words, an O-ring 54 f that is a sealing member is disposed between the shutter member 55 and the case 54 for sealing the first outlet-side flow path 52 a.

更に、図3、図4及び図5に示すように、シャッター部材55をケース54の第1出口側流路52a側の壁54gの内表面(内壁面)から浮かせてスライドさせるための案内部材53、53Aを設けて、シャッター部材55と壁54gの内表面との間に隙間Pを形成する。   Further, as shown in FIGS. 3, 4, and 5, a guide member 53 for floating and sliding the shutter member 55 from the inner surface (inner wall surface) of the wall 54 g on the first outlet side flow path 52 a side of the case 54. , 53A, and a gap P is formed between the shutter member 55 and the inner surface of the wall 54g.

図4の構成では、シャッター部材55のスライド方向に対して垂直な方向の隅部に帯状の案内部材53を設けて、この上面をシャッター部材55が摺動するように構成する。また、図5の他の構成では、シャッター部材55のスライド方向に対して垂直な方向の壁部54hにレール状の案内部材53Aを設けて、シャッター部材55の溝部がこの案内部材53Aと係合して摺動するように構成する。   In the configuration of FIG. 4, a strip-shaped guide member 53 is provided at a corner in a direction perpendicular to the sliding direction of the shutter member 55, and the shutter member 55 is configured to slide on this upper surface. In another configuration of FIG. 5, a rail-shaped guide member 53A is provided on the wall portion 54h in a direction perpendicular to the sliding direction of the shutter member 55, and the groove portion of the shutter member 55 is engaged with the guide member 53A. And configured to slide.

この流路切替弁50Aでは、図6及び図7に示すように、シャッター部材55は、貫通孔55aを設けて形成される。このシャッター部材55は、図8及び図9に示すようにケース54の間に挿入され、図8に示すように、シャッター部材55がスライドして第1流路切替の状態になったときには、シャッター部材55の端部が第1入口側流路51aに接続される第1孔54aから外れて第1孔54aを連通すると共に、シャッター部材55が第2入口側流路52bに接続される第2孔54bを遮断し、また、図9に示すように、シャッター部材55が逆方向にスライドして第2流路切替の状態になったときには、シャッター部材55が第1孔54aを遮断すると共に、シャッター部材55の貫通孔55aが第2孔54bに重なり、第2孔54bを連通するように構成される。   In this flow path switching valve 50A, as shown in FIGS. 6 and 7, the shutter member 55 is formed with a through hole 55a. The shutter member 55 is inserted between the cases 54 as shown in FIGS. 8 and 9, and when the shutter member 55 slides to the first flow path switching state as shown in FIG. The end of the member 55 is disconnected from the first hole 54a connected to the first inlet-side flow path 51a to communicate with the first hole 54a, and the shutter member 55 is connected to the second inlet-side flow path 52b. As shown in FIG. 9, when the shutter member 55 slides in the reverse direction and enters the second flow path switching state, the shutter member 55 blocks the first hole 54a. The through hole 55a of the shutter member 55 is configured to overlap the second hole 54b and communicate with the second hole 54b.

ピストン駆動部は、シャッター部材55の高速移動を行うためのものであり、図10に示すように、ピストン56、第1ガス室57aと第2ガス室57bを有するシリンダ57を有して構成される。ピストン56はピストンロッド56aと受圧部56bを一体化して形成し、この受圧部56bをシリンダ57内を摺動可能に構成する。また、第1ガス室57aと第2ガス室57bとの間のシールを行うために、受圧部56bにはOリング溝56cを設け、Oリング56dを挿入する。   The piston drive unit is for performing high-speed movement of the shutter member 55, and as shown in FIG. 10, includes a piston 57, a cylinder 57 having a first gas chamber 57a and a second gas chamber 57b. The The piston 56 is formed by integrating a piston rod 56a and a pressure receiving portion 56b, and the pressure receiving portion 56b is configured to be slidable in the cylinder 57. Further, in order to seal between the first gas chamber 57a and the second gas chamber 57b, an O-ring groove 56c is provided in the pressure receiving portion 56b, and an O-ring 56d is inserted.

また、ピストン56が高速で移動するとピストン56の移動先のガス室57b(又は57a)ではガス室57b(又は57a)内のガスAeが圧縮されて、ピストン56の動きを阻害するので、圧力抜きの経路として、第1ガス室57aには第1連通路57cを、第2ガス室57bには第2連通路57dをそれぞれ形成する。   Further, when the piston 56 moves at a high speed, the gas Ae in the gas chamber 57b (or 57a) is compressed in the gas chamber 57b (or 57a) to which the piston 56 is moved, and the movement of the piston 56 is obstructed. The first gas passage 57c is formed in the first gas chamber 57a, and the second communication passage 57d is formed in the second gas chamber 57b.

ピストン56が高速で移動することで大きな慣性力が生じ、ロッド56aを必要なストローク動かした後に停止させるためには大きな制動力が必要になり、機械的に止めることは難しくなる。そのため、緩衝部材57eをストッパーとして、第1ガス室57aの内側と第2ガス室57bの内側にそれぞれ配設する。この緩衝部材57eにピストン56の受圧部56bを衝突させることで、ピストン56の制動に必要なエネルギーを緩衝部材57eで吸収して強制停止させる。   When the piston 56 moves at a high speed, a large inertia force is generated, and a large braking force is required to stop the rod 56a after moving the rod 56a by a necessary stroke, and it is difficult to mechanically stop the rod 56a. For this reason, the buffer member 57e is used as a stopper and disposed inside the first gas chamber 57a and inside the second gas chamber 57b. By causing the pressure receiving portion 56b of the piston 56 to collide with the buffer member 57e, energy required for braking the piston 56 is absorbed by the buffer member 57e and forcibly stopped.

つまり、高速で動くシャッター部材55を必要量動かした後では、ピストン56とシャッター部材55に大きな慣性力が付くので、非駆動側にゴム等の柔らかい衝突部となる緩衝部材57eを設けて、流路切替弁50Aが破損しないように、緩衝部材57eに受圧部56bを衝突させて停止させる。   That is, after moving the shutter member 55 that moves at a high speed by a necessary amount, a large inertial force is applied to the piston 56 and the shutter member 55. Therefore, a buffer member 57e serving as a soft collision portion such as rubber is provided on the non-driving side. The pressure receiving portion 56b is caused to collide with the buffer member 57e and stopped so that the path switching valve 50A is not damaged.

この緩衝部材57eは、ゴム等の軟質材で形成し、図11に示すようにリング形状に形成する。また、この緩衝部材57eには、第1連通路57c、又は、第2連通路57dに対向する部分に切り欠き57eaを設ける。なお、この緩衝部材57eに使用するゴム等軟質材の厚さは実験的に設定する。   The buffer member 57e is formed of a soft material such as rubber and is formed in a ring shape as shown in FIG. The buffer member 57e is provided with a notch 57ea at a portion facing the first communication path 57c or the second communication path 57d. The thickness of the soft material such as rubber used for the buffer member 57e is set experimentally.

更に、ピストン56を第1ガス室57a側に移動するように付勢するスプリング(弾性体)58を設けて、第1切替操作をする際に、ピストン56の移動を助ける方向に弾性力を付勢する。これにより、比較的低い圧力の駆動用ガスApで第1切替操作をする際に、比較的高い圧力の駆動用ガスApで第2切替操作をする際と同様な速度で、シャッター部材55をスライドさせて、流路を切り替えることができるようになる。   In addition, a spring (elastic body) 58 that biases the piston 56 to move toward the first gas chamber 57a is provided, and an elastic force is applied in a direction that assists the movement of the piston 56 during the first switching operation. Rush. Thus, when the first switching operation is performed with the driving gas Ap having a relatively low pressure, the shutter member 55 is slid at the same speed as when the second switching operation is performed with the driving gas Ap having a relatively high pressure. Thus, the flow path can be switched.

また、シャッター部材55とピストン56等の可動部分に、ジュラルミン、超ジュラルミン、超超ジュラルミン、窒素ケイ素等の低比重で強度の高い材料を用いると、シャッター部材55を軽量に形成できるので、小さい駆動力で、且つ、高速でシャッター部材55をスライドさせて、高速で流路を切り替えることができるようになる。   In addition, when a material having a low specific gravity and high strength such as duralumin, super-duralumin, super-super duralumin, or silicon nitride is used for the movable parts such as the shutter member 55 and the piston 56, the shutter member 55 can be formed in a light weight, so that a small drive The flow path can be switched at high speed by sliding the shutter member 55 at high speed with force.

図12に示すように、このピストン56を駆動させる駆動システム60は、駆動用ガスApを貯蔵する蓄ガス容器61を設けて構成する。更に、第2切替操作時に駆動用ガスApを第1ガス室57aに供給するために、第1駆動用ガス供給路62と第1三方弁63と第1駆動用ガス供給補助路62aと第1大気解放補助路62bを設ける。また、第1切替操作時に駆動用ガスApを第2ガス室57bに供給するために、第2駆動用ガス供給路64と第2三方弁65と第2駆動用ガス供給補助路64aと第2大気解放補助路64bを設ける。   As shown in FIG. 12, the drive system 60 for driving the piston 56 is configured by providing a gas storage container 61 for storing the drive gas Ap. Further, in order to supply the driving gas Ap to the first gas chamber 57a during the second switching operation, the first driving gas supply path 62, the first three-way valve 63, the first driving gas supply auxiliary path 62a, and the first An air release auxiliary path 62b is provided. Further, in order to supply the driving gas Ap to the second gas chamber 57b during the first switching operation, the second driving gas supply path 64, the second three-way valve 65, the second driving gas supply auxiliary path 64a, and the second An air release auxiliary path 64b is provided.

次に、本発明に係る第2の実施の形態の流路切替弁について説明する。この第2の実施の形態の流路切替弁50Bは、図13及び図14に示すように、入口側流路を第1入口側流路51aと第2入口側流路51bと第3入口側流路51cで形成し、出口側流路を第1出口側流路52aで形成する。   Next, the flow path switching valve according to the second embodiment of the present invention will be described. As shown in FIGS. 13 and 14, the flow path switching valve 50B according to the second embodiment is configured such that the inlet side flow path is the first inlet side flow path 51a, the second inlet side flow path 51b, and the third inlet side. The channel 51c is formed, and the outlet channel is formed by the first outlet channel 52a.

そして、第1流路切替で、図13に示すように、第1入口側流路51aと第1出口側流路52aとの間と第3入口側流路51cと第1出口側流路52aとの間を連通すると共に第2入口側流路51bと第1出口側流路52aとの間を遮断し、第2流路切替で、図14に示すように、第1入口側流路51aと第1出口側流路52aとの間と第3入口側流路51cと第1出口側流路52aとの間を遮断すると共に第2入口側流路51bと第1出口側流路52aとの間を連通するように構成される。   Then, in the first flow path switching, as shown in FIG. 13, between the first inlet side flow path 51a and the first outlet side flow path 52a, the third inlet side flow path 51c, and the first outlet side flow path 52a. 14 and the second inlet side flow path 51b and the first outlet side flow path 52a are blocked, and by switching the second flow path, as shown in FIG. 14, the first inlet side flow path 51a Between the first outlet side flow path 52a, the third inlet side flow path 51c and the first outlet side flow path 52a, and the second inlet side flow path 51b and the first outlet side flow path 52a. Are configured to communicate with each other.

図15に示すように、この流路切替弁50Bのケース54は、第1入口側流路51aと第1出口側流路52aとを連通するための第1孔54aと、第2入口側流路51bと第1出口側流路52aとを連通するための第2孔54bと第3入口側流路51cと第1出口側流路52aとを連通するための第3孔54cを設けて形成する。これらの第1孔54a、第2孔54b、第3孔54cの各周囲にはOリング溝54dと必要に応じてグリス溜り54eが設けられ、組み付け時にはそのリング溝54eにOリング54fを挿入する。つまり、第1出口側流路52aのシールのためにシャッター部材55とケース54の間にシール部材であるOリング54fを配置する。   As shown in FIG. 15, the case 54 of the flow path switching valve 50B includes a first hole 54a for communicating the first inlet side flow path 51a and the first outlet side flow path 52a, and a second inlet side flow. A second hole 54b for communicating the channel 51b and the first outlet side channel 52a, a third hole 54c for communicating the third inlet side channel 51c and the first outlet side channel 52a are provided. To do. An O-ring groove 54d and, if necessary, a grease reservoir 54e are provided around each of the first hole 54a, the second hole 54b, and the third hole 54c, and an O-ring 54f is inserted into the ring groove 54e when assembled. . In other words, an O-ring 54 f that is a sealing member is disposed between the shutter member 55 and the case 54 for sealing the first outlet-side flow path 52 a.

この流路切替弁50Bでは、シャッター部材55は、第1の実施の形態の流路切替弁50Aと同じく、図6及び図7に示すように、貫通孔55aを設けて形成される。このシャッター部材55は、図16及び図17に示すようにケース54の間に挿入され、図16に示すように、シャッター部材55がスライドして第1流路切替の状態になったときには、シャッター部材55の端部が第1入口側流路51aに接続される第1孔54aから外れて第1孔54aを連通すると共に、シャッター部材55が第2入口側流路52bに接続される第2孔54bを遮断し、更に、シャッター部材55の第1孔55aが第3入口側流路52cに接続される第3孔54cに重なり、第3孔54cを連通するように構成される。   In this flow path switching valve 50B, the shutter member 55 is formed by providing a through hole 55a, as shown in FIGS. 6 and 7, similar to the flow path switching valve 50A of the first embodiment. The shutter member 55 is inserted between the cases 54 as shown in FIGS. 16 and 17, and when the shutter member 55 slides to the first flow path switching state as shown in FIG. The end of the member 55 is disconnected from the first hole 54a connected to the first inlet-side flow path 51a to communicate with the first hole 54a, and the shutter member 55 is connected to the second inlet-side flow path 52b. The hole 54b is blocked, and further, the first hole 55a of the shutter member 55 overlaps with the third hole 54c connected to the third inlet-side flow path 52c, and communicates with the third hole 54c.

また、図17に示すように、シャッター部材55が逆方向にスライドして第2流路切替の状態になったときには、シャッター部材55が第1孔54aを遮断すると共に、シャッター部材55の貫通孔55aが第2孔54bに重なり、第2孔54bを連通し、更に、シャッター部材55が第3孔54cを遮断するように構成される。   As shown in FIG. 17, when the shutter member 55 slides in the reverse direction and the second flow path is switched, the shutter member 55 blocks the first hole 54a and the through hole of the shutter member 55. 55a overlaps with the second hole 54b, communicates with the second hole 54b, and the shutter member 55 is configured to block the third hole 54c.

上記の構成以外は、第1の実施の形態の流路切替弁50Aと同じ構成をしており、同じ作用効果を奏することができる。   Except for the configuration described above, the same configuration as the flow path switching valve 50A of the first embodiment is provided, and the same operational effects can be achieved.

次に、本発明に係る第3の実施の形態の流路切替弁について説明する。この第3の実施の形態の流路切替弁50Cは、図18及び図19に示すように、入口側流路を第1入口側流路51aと第2入口側流路51bと第3入口側流路51cで形成し、出口側流路を第1出口側流路52aと第2出口側流路52bで形成する。   Next, a flow path switching valve according to a third embodiment of the present invention will be described. As shown in FIGS. 18 and 19, the flow path switching valve 50C according to the third embodiment has an inlet side flow path as a first inlet side flow path 51a, a second inlet side flow path 51b, and a third inlet side. The channel 51c is formed, and the outlet channel is formed by the first outlet channel 52a and the second outlet channel 52b.

この第1入口側流路51aと第2入口側流路51bと第3入口側流路51cをケース54内の一方側に設け、第1出口側流路52aを第1入口側流路51aと第2入口側流路51bの両方に対向してケース54内の他方側に設け、更に、第2出口側流路52bを第3入口側流路51cに対向してケース54内の他方側に設ける。   The first inlet side channel 51a, the second inlet side channel 51b, and the third inlet side channel 51c are provided on one side in the case 54, and the first outlet side channel 52a is connected to the first inlet side channel 51a. It is provided on the other side in the case 54 so as to face both of the second inlet-side flow paths 51b, and further, the second outlet-side flow path 52b is opposed to the third inlet-side flow path 51c on the other side in the case 54. Provide.

そして、第1流路切替で、図18に示すように、第1入口側流路51aと第1出口側流路52aとの間と第3入口側流路51cと第2出口側流路52bとの間を連通すると共に第2入口側流路51bと第1出口側流路52aとの間を遮断し、第2流路切替で、図19に示すように、第1入口側流路51aと第1出口側流路52aとの間と第3入口側流路51cと第2出口側流路52bとの間を遮断すると共に第2入口側流路51bと第1出口側流路52aとの間を連通するように構成される。   Then, in the first flow path switching, as shown in FIG. 18, between the first inlet side flow path 51a and the first outlet side flow path 52a, the third inlet side flow path 51c, and the second outlet side flow path 52b. And the second inlet side flow path 51b and the first outlet side flow path 52a are blocked, and by switching the second flow path, as shown in FIG. 19, the first inlet side flow path 51a And the first outlet side flow path 52a, the third inlet side flow path 51c and the second outlet side flow path 52b, and the second inlet side flow path 51b and the first outlet side flow path 52a. Are configured to communicate with each other.

つまり、この第3の実施形態の流路切替弁50Cは、第1入口側流路51aと第2入口側流路51bを切り替えて、第1入口側流路51a側のガス(吸気)Aと第2入口流路51b側のガスCのいずれか一方を第1出口側流路52aに流すと共に、第3入口側流路51cのガス(EGRガス)Geの連通と遮断を行う流路切替弁である。   That is, the flow path switching valve 50C of the third embodiment switches between the first inlet side flow path 51a and the second inlet side flow path 51b, and the gas (intake air) A on the first inlet side flow path 51a side. A flow path switching valve that allows any one of the gas C on the second inlet flow path 51b side to flow to the first outlet flow path 52a and communicates and blocks the gas (EGR gas) Ge in the third inlet flow path 51c. It is.

上記の構成以外は、第2の実施の形態の流路切替弁50Bと同じ構成をしており、同じ作用効果を奏することができる。   Except for the configuration described above, the same configuration as the flow path switching valve 50B of the second embodiment is provided, and the same operational effects can be achieved.

上述したように、本発明に係る実施の形態の流路切替弁は、上記の第1〜第3の実施の形態の流路切替弁50A、50B、50C(以下50iとする)であり、複数の入口側流路51a、51b(又は、51a、51b、51c:以下51iとする)のいずれか一つ又は複数を選択的に単数又は複数の出口側流路52a(又は、52a、52b、以下52iとする)に連通させたり、遮断したりする流路切替弁である。   As described above, the flow path switching valve according to the embodiment of the present invention is the flow path switching valves 50A, 50B, and 50C (hereinafter referred to as 50i) according to the first to third embodiments, Any one or more of the inlet-side flow paths 51a, 51b (or 51a, 51b, 51c: hereinafter referred to as 51i) are selectively used as a single or a plurality of outlet-side flow paths 52a (or 52a, 52b, hereinafter). 52i) is a flow path switching valve that communicates with or shuts off.

これらの流路切替弁50iでは、入口側流路51iをケース54内の一方側に設け、入口側流路51iの一部又は全部に対向して出口側流路52iをケース54内の他方側に設ける。それと共に、入口側流路51iと出口側流路52iとの間でスライドして、入口側流路51iと出口側流路52iとの間の連通及び遮断を選択的に行うシャッター部材55を設け、駆動用ガスApで駆動するピストン58でシャッター部材55をスライドさせるように構成する。   In these flow path switching valves 50 i, the inlet side flow path 51 i is provided on one side in the case 54, and the outlet side flow path 52 i is opposed to part or all of the inlet side flow path 51 i on the other side in the case 54. Provided. At the same time, a shutter member 55 is provided that slides between the inlet-side channel 51i and the outlet-side channel 52i to selectively communicate and block between the inlet-side channel 51i and the outlet-side channel 52i. The shutter member 55 is slid by the piston 58 driven by the driving gas Ap.

そして、出口側流路52iのシールのためにシャッター部材55とケース54の間にシール部材54fを配置し、更に、シャッター部材55をケース54の出口側流路52i側の壁54gの内表面(内壁面)から浮かせてスライドさせるための案内部材53(又は、53A)を設けて、シャッター部材55と壁54gの内表面との間に隙間Pを形成する。   Then, a seal member 54f is disposed between the shutter member 55 and the case 54 for sealing the outlet-side flow path 52i. Further, the shutter member 55 is disposed on the inner surface of the wall 54g on the outlet-side flow path 52i side ( A guide member 53 (or 53A) for floating and sliding from the inner wall surface is provided, and a gap P is formed between the shutter member 55 and the inner surface of the wall 54g.

そして、この案内部材53(又は、53A)を設けた構成により、ケース54に挿入されたシャッター部材55を高速で移動させ、二つ以上の入口側流路(ポート)51iの切り替えを同時に切り替えるシャッター部材55を用いた構造で一つ以上の入口側流路51iに高圧が付加されるような場合には、図20に示すように、シャッター部材55は片側に押し付けられた状態で静止するが、案内部材53により隙間Pがあるので、図21に示すように、この静止状態からシャッター部材が高速で動きだしても、高圧を受けるシャッター部材は、ケース54の一方側の壁54gの内表面との間に隙間Pがあるまま移動するので、摩擦が非常に少ないと共に、図22に示すように、シャッター部材55の端部が同じ一方側の壁54gの内表面に配置されるOリング等のシール部材54fの部分を通過してもシール部材54fを噛み込まなくなり、シール部材54fの破損を防止できる。   Then, with the configuration in which the guide member 53 (or 53A) is provided, the shutter member 55 inserted into the case 54 is moved at a high speed, and the shutters for simultaneously switching the two or more inlet-side flow paths (ports) 51i. When high pressure is applied to one or more inlet-side flow paths 51i in the structure using the member 55, as shown in FIG. 20, the shutter member 55 is stationary while being pressed to one side. Since there is a gap P due to the guide member 53, as shown in FIG. 21, even if the shutter member starts to move at high speed from this stationary state, the shutter member that receives high pressure is in contact with the inner surface of the wall 54g on one side of the case 54. Since there is a gap P between them, there is very little friction, and as shown in FIG. 22, the end of the shutter member 55 is located on the inner surface of the same wall 54g. Even through a portion of the sealing member 54f such as an O-ring which is location no longer pinched seal member 54f, thereby preventing damage to the sealing member 54f.

次に、上記の本発明に係る実施の形態の流路切替弁50iを備えたエンジン(内燃機関)1A、1B、1C、1D、1Eについて図23〜図28を参照しながら説明する。図23に示すように、この第1の実施の形態のエンジン1Aは、第1の実施の形態の流路切替弁50Aを備えたエンジンであり、エンジン本体11と吸気マニホールド11aに接続する吸気通路12と排気マニホールド11bに接続する排気通路13を有して構成する。この吸気マニホールド11aと吸気通路12とで吸気系通路を形成し、排気マニホールド11bと排気通路13とで排気系通路を形成する。   Next, engines (internal combustion engines) 1A, 1B, 1C, 1D, and 1E including the flow path switching valve 50i according to the embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 23, the engine 1A of the first embodiment is an engine including the flow path switching valve 50A of the first embodiment, and an intake passage connected to the engine body 11 and the intake manifold 11a. 12 and an exhaust passage 13 connected to the exhaust manifold 11b. The intake manifold 11a and the intake passage 12 form an intake system passage, and the exhaust manifold 11b and the exhaust passage 13 form an exhaust system passage.

吸気通路12には、ターボ式過給機14のコンプレッサ14aを設け、排気通路13には、ターボ式過給機14のタービン14bと、ディーゼルパティキュレートフィルタ(DPF)装置15とNOx吸蔵還元型触媒等で形成されるNOx浄化触媒16を設ける。   The intake passage 12 is provided with a compressor 14a of a turbocharger 14, and the exhaust passage 13 is provided with a turbine 14b of a turbocharger 14, a diesel particulate filter (DPF) device 15, and a NOx storage reduction catalyst. A NOx purification catalyst 16 formed by the above method is provided.

また、タービン14bの上流側の排気通路13からEGR通路17を分岐し、コンプレッサ14aの上流側の吸気通路12にEGR合流部18で合流させる。このEGR通路17に、上流側から、ディーゼルパティキュレートフィルタ(DPF)装置19とEGRクーラ20とEGR弁21を設ける。   Further, the EGR passage 17 is branched from the exhaust passage 13 on the upstream side of the turbine 14b, and is joined to the intake passage 12 on the upstream side of the compressor 14a by the EGR merging portion 18. A diesel particulate filter (DPF) device 19, an EGR cooler 20, and an EGR valve 21 are provided in the EGR passage 17 from the upstream side.

更に、NOx浄化触媒16の下流側の排気通路13から分岐して、排気ガス導入通路22を設ける。この排気ガス導入通路22にはEGRクーラ23と三方弁24を設け、この排気ガス導入通路22を機械式の容積型過給機(往復動式が望ましい)等で形成されるガス圧縮装置25に接続する。このガス圧縮装置25を、圧縮ガス供給通路26で圧力容器等で形成される蓄ガス容器27に接続する。また、この蓄ガス容器27を蓄ガス供給通路28で吸気通路12に接続する。この排気ガス導入通路22と圧縮ガス供給通路26と蓄ガス供給通路28で蓄圧ガス系通路を形成する。   Further, an exhaust gas introduction passage 22 is provided by branching from the exhaust passage 13 on the downstream side of the NOx purification catalyst 16. The exhaust gas introduction passage 22 is provided with an EGR cooler 23 and a three-way valve 24. The exhaust gas introduction passage 22 is connected to a gas compression device 25 formed by a mechanical positive displacement turbocharger (preferably a reciprocating type). Connecting. The gas compression device 25 is connected to a gas storage container 27 formed of a pressure container or the like through a compressed gas supply passage 26. Further, the gas storage container 27 is connected to the intake passage 12 through a storage gas supply passage 28. The exhaust gas introduction passage 22, the compressed gas supply passage 26 and the stored gas supply passage 28 form a pressure accumulation gas system passage.

図24に示すように、このガス圧縮装置25は、エンジン1を搭載した車両の車軸31から歯車32、33と、電磁クラッチ34を経由してガス圧縮装置25の駆動軸に動力を伝達する。この電磁クラッチ34をONにして接続することにより、ガス圧縮装置25を駆動して、排気ガスGの一部Gpと空気Aaとこれらの混合ガスのいずれかのガスCを、圧縮して高圧化して蓄ガス容器27に供給し、貯蔵する。   As shown in FIG. 24, the gas compression device 25 transmits power from the axle 31 of the vehicle on which the engine 1 is mounted to the drive shaft of the gas compression device 25 via gears 32 and 33 and an electromagnetic clutch 34. When the electromagnetic clutch 34 is turned on and connected, the gas compression device 25 is driven to compress a part Gp of the exhaust gas G, the air Aa, and any one of these mixed gases C to increase the pressure. Then, the gas is supplied to the gas storage container 27 and stored.

なお、図23に示すように、蓄ガス供給通路28には、調圧弁29を配置し、流路切替弁50Aに供給されるガスCの圧力を調整する。このとき、三方弁24で、排気ガスGの一部Gpの量と空気Aaの量を調整して、蓄ガス容器27で貯蔵されるガスCにおける酸素濃度を略一定に保つことが好ましく、これにより、EGRを行うときの制御を単純化することができる。   In addition, as shown in FIG. 23, the pressure regulation valve 29 is arrange | positioned in the stored gas supply path 28, and the pressure of the gas C supplied to 50 A of flow-path switching valves is adjusted. At this time, the three-way valve 24 preferably adjusts the amount of part Gp of the exhaust gas G and the amount of air Aa to keep the oxygen concentration in the gas C stored in the gas storage container 27 substantially constant. Thus, the control when performing EGR can be simplified.

そして、上記の機器類の制御を行うために、エンジンコントロールユニット(ECU)と呼ばれるエンジン1の運転の全般を制御する制御装置40を設け、図24に示すように、この制御装置40で蓄ガス容器27内の圧力P0やエンジン回転速度Neやアクセル開度Ac等を検出して、その結果に基づいて電磁クラッチ34や三方弁24を制御して、蓄ガス容器27内のガスCの量(圧力)と排気ガスGpと空気Aaの混合比率を調整制御する。   In order to control the above-described devices, a control device 40 called an engine control unit (ECU) that controls the overall operation of the engine 1 is provided. As shown in FIG. The pressure P0, the engine rotational speed Ne, the accelerator opening degree Ac, and the like in the container 27 are detected, and the electromagnetic clutch 34 and the three-way valve 24 are controlled based on the results to determine the amount of gas C in the gas storage container 27 ( Pressure), the exhaust gas Gp, and the mixing ratio of the air Aa are adjusted and controlled.

なお、図23に示すように、この蓄ガス容器27の内部の最大圧を調整する調整弁27aを、蓄ガス容器27に設けて、ガス圧縮装置25を駆動している時には、常に仕事が発生するように調整弁27aを調整する。なお、図23では、調整弁27aを蓄ガス容器27に設けているが、調整弁27aを蓄ガス容器27とガス圧縮装置25の間の圧縮ガス供給通路26に設けてもよい。   As shown in FIG. 23, when the gas storage device 27 is provided with an adjustment valve 27a for adjusting the maximum pressure inside the gas storage container 27 and the gas compression device 25 is driven, work always occurs. The adjustment valve 27a is adjusted as follows. In FIG. 23, the adjustment valve 27 a is provided in the gas storage container 27, but the adjustment valve 27 a may be provided in the compressed gas supply passage 26 between the gas storage container 27 and the gas compression device 25.

つまり、エンジン1は、排気ガスGの一部Geをシリンダ内に再循環するためのEGR通路17と、エンジン1の排気ガスGの一部Gpと空気Aaとこれらの混合ガスのいずれかのガスCを圧縮するガス圧縮装置25と、このガス圧縮装置25で圧縮されたガスCを貯蓄する蓄ガス容器27と、この蓄ガス容器27と吸気通路12を接続する蓄ガス供給通路28を備えて構成される。   That is, the engine 1 has an EGR passage 17 for recirculating a part Ge of the exhaust gas G into the cylinder, a part Gp of the exhaust gas G of the engine 1, the air Aa, and any one of these mixed gases. A gas compression device 25 that compresses C, a gas storage container 27 that stores the gas C compressed by the gas compression device 25, and a gas storage supply passage 28 that connects the gas storage container 27 and the intake passage 12 are provided. Composed.

そして、吸気通路12と蓄ガス供給通路28を、上記の第1の実施の形態の流路切替弁50Aを介して接続する。この流路切替弁50Aでは、吸気通路12の上流側の通路が第1入口側流路51aに、蓄ガス供給通路28が第2入口側流路51bに、吸気通路12の下流側の通路側が第1出口側流路52aにそれぞれ接続され、吸気通路12の下流側の通路側を開放したまま、蓄ガス供給通路28側と吸気通路12の上流側の通路側とを切り替えるように構成される。   Then, the intake passage 12 and the stored gas supply passage 28 are connected via the flow path switching valve 50A of the first embodiment. In this flow path switching valve 50A, the upstream side passage of the intake passage 12 is the first inlet side flow passage 51a, the stored gas supply passage 28 is the second inlet side flow passage 51b, and the downstream side of the intake passage 12 is the downstream side. The first outlet side flow path 52a is connected to each other, and is configured to switch between the stored gas supply path 28 side and the upstream side of the intake path 12 while the downstream side of the intake path 12 is open. .

この流路切替弁50Aの図12に示す蓄ガス容器61を図23に示す蓄ガス容器27で兼用して、第1ガス室57aと第2ガス室57bを第1駆動用ガス供給路62等と第2駆動用ガス供給路64等で接続する。これにより、蓄ガス容器27からのガスCを、駆動用ガスApとして使用する。なお、詳細は図12のような構成になるが、図23では、図面が複雑になるのを避けるため、簡略化して示してある。   The gas storage container 61 shown in FIG. 12 of the flow path switching valve 50A is also used as the gas storage container 27 shown in FIG. 23, and the first gas chamber 57a and the second gas chamber 57b are used as the first driving gas supply path 62 and the like. And the second driving gas supply path 64 and the like. Thereby, the gas C from the gas storage container 27 is used as the driving gas Ap. The details are as shown in FIG. 12, but in FIG. 23, the configuration is simplified to avoid the complexity of the drawing.

また、図25に示すように、第2の実施の形態のエンジン1Bは、第1の実施の形態の流路切替弁50Aを備えたエンジンであり、EGR通路17が排気通路13のタービン14bより下流側のNOx浄化触媒16よりも下流側から分岐している点が第1の実施の形態のエンジン1Aと異なるだけで他の構成は同じである。   Further, as shown in FIG. 25, the engine 1B of the second embodiment is an engine including the flow path switching valve 50A of the first embodiment, and the EGR passage 17 is more than the turbine 14b of the exhaust passage 13. The other configuration is the same except that the downstream branching of the NOx purification catalyst 16 is different from the engine 1A of the first embodiment.

また、図26に示すように、第3の実施の形態のエンジン1Cは、第2の実施の形態の流路切替弁50Bを備えたエンジンであり、第1の実施の形態の流路切替弁50Aの代わりに第2の実施の形態の流路切替弁50Bを備えている点と、第1の実施の形態のエンジン1Aでは、EGR通路17が流路切替弁50Aよりも上流側の吸気通路12に接続しているのに対して、EGR通路17が流路切替弁50Bの第3入口側流路51cに接続している点が、第1の実施の形態のエンジン1Aと異なるだけで他の構成は同じである。   As shown in FIG. 26, the engine 1C of the third embodiment is an engine including the flow path switching valve 50B of the second embodiment, and the flow path switching valve of the first embodiment. The point that the flow path switching valve 50B of the second embodiment is provided instead of 50A, and in the engine 1A of the first embodiment, the EGR passage 17 is an intake passage on the upstream side of the flow path switching valve 50A. 12 is different from the engine 1A of the first embodiment in that the EGR passage 17 is connected to the third inlet side flow passage 51c of the flow passage switching valve 50B. The configuration of is the same.

また、図27に示すように、第4の実施の形態のエンジン1Dは、第2の実施の形態の流路切替弁50Bを備えたエンジンであり、EGR通路17が排気通路13のタービン14bより下流側のNOx浄化触媒16よりも下流側から分岐している点が、第3の実施の形態のエンジン1Cと異なるだけで他の構成は同じである。   As shown in FIG. 27, the engine 1D of the fourth embodiment is an engine including the flow path switching valve 50B of the second embodiment, and the EGR passage 17 is more than the turbine 14b of the exhaust passage 13. The only difference from the engine 1C of the third embodiment is that the branching from the downstream side of the downstream side NOx purification catalyst 16 is the same as that of the engine 1C of the third embodiment.

また、図28に示すように、第5の実施の形態のエンジン1Eは、第3の実施の形態の流路切替弁50Cを備えたエンジンであり、第2の実施の形態の流路切替弁50Bの代わりに第3の実施の形態の流路切替弁50Cを備えている点と、EGR通路17が流路切替弁50Cで終了せず、コンプレッサ14aより下流側の吸気通路12に接続している点が、第3の実施の形態のエンジン1Cと異なるだけで他の構成は同じである。   As shown in FIG. 28, the engine 1E of the fifth embodiment is an engine including the flow path switching valve 50C of the third embodiment, and the flow path switching valve of the second embodiment. The flow path switching valve 50C of the third embodiment is provided instead of 50B, and the EGR passage 17 does not end with the flow path switching valve 50C, but is connected to the intake passage 12 downstream of the compressor 14a. The other configuration is the same except that it is different from the engine 1C of the third embodiment.

次に、本発明に係る内燃機関のEGR方法について説明する。このEGR方法は、上記の構成のエンジン(内燃機関)1A、1B、1C、1D、1E(以下1iとする)で実施できる方法である。このEGR方法は、エンジン1iの排気通路(排気系通路)13の排気ガスGの一部Gpと空気Aaとこれらの混合ガスのいずれかのガスCを圧縮して貯蓄する。   Next, an EGR method for an internal combustion engine according to the present invention will be described. This EGR method is a method that can be implemented by the engine (internal combustion engine) 1A, 1B, 1C, 1D, 1E (hereinafter referred to as 1i) having the above-described configuration. In this EGR method, a part of the exhaust gas G in the exhaust passage (exhaust system passage) 13 of the engine 1i, the air Aa, and any one of these mixed gases C are compressed and stored.

それと共に、EGRでは、エンジン1iの過渡運転でないときには、エンジン1iの排気ガスGの一部Geを、EGR通路17を経由してシリンダ内に再循環し、過渡運転であるときには、ガスCを一時的に蓄ガス供給通路28から吸気通路(吸気系通路)12に供給する。   At the same time, in the EGR, when the engine 1i is not in a transient operation, part of the exhaust gas G of the engine 1i is recirculated into the cylinder via the EGR passage 17, and when in the transient operation, the gas C is temporarily supplied. Thus, the gas is supplied from the stored gas supply passage 28 to the intake passage (intake system passage) 12.

また、上記の第1〜第3の実施の形態の流路切替弁50A、50B、50C(以下、50iとする)を用いて、エンジン1iが過渡運転でないときには、流路切替弁50iの第1流路切替で、ガスCを流路切替弁50iで遮断して、新気AとEGRガスGeを吸気系通路12、11aに供給し、エンジン1iが過渡運転であるときには、流路切替弁50iの第2流路切替で、新気AとEGRガスGeを流路切替弁50iで遮断して、ガスCのみを吸気系通路12、11aに一時的に供給する。   When the engine 1i is not in transient operation using the flow path switching valves 50A, 50B, 50C (hereinafter referred to as 50i) of the first to third embodiments, the first of the flow path switching valve 50i. When the flow path is switched, the gas C is shut off by the flow path switching valve 50i, fresh air A and EGR gas Ge are supplied to the intake system passages 12 and 11a, and when the engine 1i is in a transient operation, the flow path switching valve 50i. In this second flow path switching, the fresh air A and the EGR gas Ge are shut off by the flow path switching valve 50i, and only the gas C is temporarily supplied to the intake system passages 12 and 11a.

これらの制御においては制御装置40で、エンジン回転速度Ne、エンジン空気量Mo、エンジン燃料量(燃料噴射量)Q、蓄ガス容器27の内部の圧力等の検出値等に基づいて、調圧弁29とEGR弁21と流路切替弁50iを制御する。   In these controls, the control device 40 controls the pressure adjusting valve 29 based on the detected value of the engine rotational speed Ne, the engine air amount Mo, the engine fuel amount (fuel injection amount) Q, the pressure inside the gas storage container 27, and the like. And the EGR valve 21 and the flow path switching valve 50i are controlled.

上記のエンジン(内燃機関)1i及び上記の内燃機関のEGR方法によれば、急加速等の過渡運転時においてターボラグに起因するEGR不足を解消し、過渡運転時のNOx排出を低減することができると共に加速性能の向上とPMの低減を図ることができる。更に、上記の流路切替弁50iを備えることで、流路切替弁50iの損傷、及び、この損傷に起因する吸気弁やコンプレッサ14aの故障を回避できる。   According to the above-described engine (internal combustion engine) 1i and the above-described EGR method for an internal combustion engine, EGR deficiency caused by turbo lag during transient operation such as rapid acceleration can be resolved, and NOx emissions during transient operation can be reduced. At the same time, acceleration performance can be improved and PM can be reduced. Furthermore, by providing the above-described flow path switching valve 50i, it is possible to avoid damage to the flow path switching valve 50i and failure of the intake valve and the compressor 14a due to the damage.

本発明の流路切替弁は、比較的高圧の駆動用ガスを用いて、入口側流路を高速で選択的に切り替えて出口側流路に連通させることができるので、ガス圧縮装置を用いて、排気ガスの一部と空気とこれらの混合ガスのいずれかのガスを蓄ガス容器に溜め込み、負荷が急激に増加する過渡運転時に前記ガスをシリンダ内に一時的に供給するような、トラックやバスや乗用車等に搭載する内燃機関で利用できる。   Since the flow path switching valve of the present invention can selectively switch the inlet side flow path at high speed and communicate with the outlet side flow path using a relatively high pressure driving gas, , A truck or the like that stores a part of the exhaust gas, air, and one of these mixed gases in a gas storage container, and temporarily supplies the gas into the cylinder during transient operation when the load suddenly increases. It can be used in internal combustion engines mounted on buses and passenger cars.

また、本発明の流路切替弁を備えた内燃機関及び内燃機関のEGR方法によれば、急加速時等の過渡運転において、ターボラグに起因する加速性能の低下を防止することができ、PM(粒子状物質)とNOx(窒素酸化物)の排出量の低減が可能となると共に、流路切替弁の損傷、及び、この損傷に起因する吸気弁やコンプレッサの故障を回避できるので、トラックやバスや乗用車等に搭載する内燃機関及び内燃機関のEGR方法として利用できる。   Further, according to the internal combustion engine provided with the flow path switching valve of the present invention and the EGR method of the internal combustion engine, in transient operation such as during rapid acceleration, it is possible to prevent a decrease in acceleration performance due to the turbo lag. (Particulate matter) and NOx (nitrogen oxide) emissions can be reduced, damage to the flow path switching valve, and failure of the intake valve and compressor due to this damage can be avoided. It can be used as an EGR method for an internal combustion engine and an internal combustion engine mounted on a passenger car or the like.

1A、1B、1C、1D、1E、1X、1Y、1Z エンジン(内燃機関)
11 エンジン本体
11a 吸気マニホールド(吸気系通路)
11b 排気マニホールド(排気系通路)
12 吸気通路(吸気系通路)
13 排気通路(排気系通路)
14 ターボ式過給機
14a コンプレッサ
14b タービン
17 EGR通路
21 EGR弁
22 排気ガス導入通路
24 三方弁
25 ガス圧縮装置
26 圧縮ガス供給通路
27、61 蓄ガス容器
28 蓄ガス供給通路
40 制御装置
50A、50B、50C 流路切替弁
51a 第1入口側流路
51b 第2入口側流路
51c 第3入口側流路
52a 第1出口側流路
52b 第2出口側流路
53、53A 案内部材
54 ケース
54g 内壁面
54f、56d Oリング(シール部材)
55 シャッター部材
56 ピストン
57 シリンダ
57a 第1ガス室
57b 第2ガス室
57c 第1連通路
57d 第2連通路
57e 緩衝部材
58 スプリング(弾性体)
60 駆動システム
A 新気
Aa 空気
Ae 抜きガス
Ap 駆動用ガス
C ガス
G 排気ガス
Ge EGRガス
Gp 排気ガスの一部
P 隙間
1A, 1B, 1C, 1D, 1E, 1X, 1Y, 1Z engine (internal combustion engine)
11 Engine body 11a Intake manifold (intake system passage)
11b Exhaust manifold (exhaust system passage)
12 Intake passage (intake system passage)
13 Exhaust passage (exhaust system passage)
14 Turbo-type supercharger 14a Compressor 14b Turbine 17 EGR passage 21 EGR valve 22 Exhaust gas introduction passage 24 Three-way valve 25 Gas compression device 26 Compressed gas supply passage 27, 61 Storage gas container 28 Storage gas supply passage 40 Control devices 50A, 50B , 50C channel switching valve 51a first inlet side channel 51b second inlet side channel 51c third inlet side channel 52a first outlet side channel 52b second outlet side channel 53, 53A guide member 54 case 54g Wall surface 54f, 56d O-ring (seal member)
55 Shutter member 56 Piston 57 Cylinder 57a First gas chamber 57b Second gas chamber 57c First communication passage 57d Second communication passage 57e Buffer member 58 Spring (elastic body)
60 Drive System A Fresh Air Aa Air Ae Exhaust Gas Ap Drive Gas C Gas G Exhaust Gas Ge EGR Gas Gp Exhaust Gas Part P Clearance

Claims (7)

複数の入口側流路のいずれか一つ又は複数を選択的に単数又は複数の出口側流路に連通させたり、遮断したりする流路切替弁において、
前記入口側流路をケース内の一方側に設け、前記入口側流路の一部又は全部に対向して前記出口側流路を前記ケース内の他方側に設けると共に、前記入口側流路と前記出口側流路との間でスライドして、前記入口側流路と前記出口側流路との間の連通及び遮断を選択的に行うシャッター部材を設け、駆動用ガスで駆動するピストンで前記シャッター部材をスライドさせるように構成すると共に、前記出口側流路のシールのために前記シャッター部材と前記ケースの間にシール部材を配置し、
更に、前記シャッター部材を前記ケースの前記出口側流路側の内壁面から浮かせてスライドさせるための案内部材を設けて、前記シャッター部材と前記内壁面との間に隙間を形成したことを特徴とする流路切替弁。
In the flow path switching valve that selectively connects one or more of the plurality of inlet-side flow paths to one or more outlet-side flow paths, or shuts off,
The inlet side flow path is provided on one side in the case, and the outlet side flow path is provided on the other side in the case so as to face a part or all of the inlet side flow path. A shutter member that slides between the outlet side channel and selectively connects and blocks the inlet side channel and the outlet side channel is provided. The shutter member is configured to slide, and a seal member is disposed between the shutter member and the case for sealing the outlet-side flow path,
Further, a guide member is provided for floating and sliding the shutter member from the inner wall surface on the outlet side flow path side of the case, and a gap is formed between the shutter member and the inner wall surface. Flow path switching valve.
前記入口側流路を第1入口側流路と第2入口側流路で形成すると共に、前記出口側流路を第1出口側流路で形成し、第1流路切替で、前記第1入口側流路と前記第1出口側流路との間を連通すると共に前記第2入口側流路と前記第1出口側流路との間を遮断し、第2流路切替で、前記第1入口側流路と前記第1出口側流路との間を遮断すると共に前記第2入口側流路と前記第1出口側流路との間を連通することを特徴とする請求項1記載の流路切替弁。   The inlet-side channel is formed by a first inlet-side channel and a second inlet-side channel, and the outlet-side channel is formed by a first outlet-side channel. Communicating between the inlet-side channel and the first outlet-side channel and blocking between the second inlet-side channel and the first outlet-side channel. The first inlet-side flow path and the first outlet-side flow path are blocked, and the second inlet-side flow path and the first outlet-side flow path are communicated with each other. Flow path switching valve. 前記入口側流路を第1入口側流路と第2入口側流路と第3入口側流路で形成すると共に、前記出口側流路を第1出口側流路で形成し、第1流路切替で、前記第1入口側流路と前記第1出口側流路との間と前記第3入口側流路と前記第1出口側流路の間を連通すると共に前記第2入口側流路と前記第1出口側流路との間を遮断し、第2流路切替で、前記第1入口側流路と前記第1出口側流路との間と前記第3入口側流路と前記第1出口側流路の間を遮断すると共に前記第2入口側流路と前記第1出口側流路との間を連通することを特徴とする請求項1記載の流路切替弁。   The inlet side channel is formed by a first inlet side channel, a second inlet side channel, and a third inlet side channel, and the outlet side channel is formed by a first outlet side channel. In the path switching, the second inlet side flow is communicated between the first inlet side flow path and the first outlet side flow path, and between the third inlet side flow path and the first outlet side flow path. Between the first inlet side flow path and the first outlet side flow path, and by switching the second flow path, The flow path switching valve according to claim 1, wherein the first outlet side flow path is blocked and the second inlet side flow path and the first outlet side flow path are communicated. 前記入口側流路を第1入口側流路と第2入口側流路と第3入口側流路で形成すると共に、前記出口側流路を第1出口側流路と第2出口側流路で形成し、第1流路切替で、前記第1入口側流路と前記第1出口側流路との間と前記第3入口側流路と前記第2出口側流路の間を連通すると共に前記第2入口側流路と前記第1出口側流路との間を遮断し、第2流路切替で、前記第1入口側流路と前記第1出口側流路との間と前記第3入口側流路と前記第2出口側流路の間を遮断すると共に前記第2入口側流路と前記第1出口側流路との間を連通することを特徴とする請求項1記載の流路切替弁。   The inlet side channel is formed by a first inlet side channel, a second inlet side channel, and a third inlet side channel, and the outlet side channel is a first outlet side channel and a second outlet side channel. In the first flow path switching, the first inlet side flow path and the first outlet side flow path are communicated with each other, and the third inlet side flow path and the second outlet side flow path are communicated with each other. And between the second inlet side channel and the first outlet side channel, and by switching the second channel, between the first inlet side channel and the first outlet side channel, and 2. The third inlet side flow path and the second outlet side flow path are blocked, and the second inlet side flow path and the first outlet side flow path are communicated with each other. Flow path switching valve. 内燃機関の排気ガスの一部をシリンダ内に再循環するためのEGR通路と、
内燃機関の排気ガスの一部と空気とこれらの混合ガスのいずれかのガスを圧縮するガス圧縮装置と、
該ガス圧縮装置で圧縮された前記ガスを貯蓄する蓄ガス容器と、
該蓄ガス容器と吸気系通路を接続する蓄ガス供給通路を備えた内燃機関において、 請求項2〜4のいずれか1項に記載の流路切替弁の前記第1入口側流路に前記吸気系通路の上流側を接続し、前記第2入口側流路に前記蓄ガス供給通路を接続し、前記第1出口側流路に前記吸気系通路の下流側を接続して、前記流路切替弁を介して前記吸気系通路と前記蓄ガス供給通路とを接続し、
内燃機関が過渡運転でないときは、前記吸気系通路の新気と前記EGRガス通路のEGRガスを前記吸気系通路に供給し、内燃機関が過渡運転であるときは、前記蓄ガス供給通路の前記ガスを前記吸気系通路に一時的に供給することを特徴とする内燃機関。
An EGR passage for recirculating a portion of the exhaust gas of the internal combustion engine into the cylinder;
A gas compression device for compressing a part of the exhaust gas of the internal combustion engine, air, and any of these mixed gases;
A gas storage container for storing the gas compressed by the gas compression device;
The internal combustion engine provided with the storage gas supply passage which connects this gas storage container and an intake system passage, The intake air to the 1st entrance side channel of the channel change valve according to any one of claims 2-4. The upstream side of the system passage is connected, the storage gas supply passage is connected to the second inlet-side passage, the downstream side of the intake system passage is connected to the first outlet-side passage, and the passage switching Connecting the intake system passage and the stored gas supply passage through a valve;
When the internal combustion engine is not in a transient operation, fresh air in the intake system passage and EGR gas in the EGR gas passage are supplied to the intake system passage. When the internal combustion engine is in a transient operation, the storage gas supply passage An internal combustion engine characterized by temporarily supplying gas to the intake system passage.
前記流路切替弁の前記ピストンの駆動用ガスとして、前記蓄ガス容器の前記ガスを用いることを特徴とする請求項5記載の内燃機関。   6. The internal combustion engine according to claim 5, wherein the gas in the gas storage container is used as a driving gas for the piston of the flow path switching valve. 内燃機関の排気系通路の排気ガスの一部と空気とこれらの混合ガスのいずれかのガスを圧縮して貯蓄すると共に、EGRでは、内燃機関が過渡運転でないときには、内燃機関の排気ガスの一部をEGR通路を経由してシリンダ内に再循環し、内燃機関が過渡運転であるときには、前記ガスを一時的に蓄ガス供給通路から吸気系通路に供給する内燃機関のEGR方法において、
請求項2〜4のいずれか1項に記載の流路切替弁を用いて、
内燃機関が過渡運転でないときには、前記流路切替弁の第1流路切替で、前記ガスを前記流路切替弁で遮断して、新気とEGRガスを前記吸気系通路に供給し、内燃機関が過渡運転であるときには、前記流路切替弁の第2流路切替で、新気とEGRガスを前記流路切替弁で遮断して、前記ガスのみを前記吸気系通路に一時的に供給することを特徴とする内燃機関のEGR方法。
A part of the exhaust gas in the exhaust system passage of the internal combustion engine, air, and any one of these mixed gases are compressed and stored. In EGR, when the internal combustion engine is not in a transient operation, one of the exhaust gases of the internal combustion engine is stored. In the EGR method for an internal combustion engine in which the gas is temporarily recirculated from the stored gas supply passage to the intake system passage when the internal combustion engine is in a transient operation by recirculating the part into the cylinder via the EGR passage,
Using the flow path switching valve according to any one of claims 2 to 4,
When the internal combustion engine is not in transient operation, the first flow path switching of the flow path switching valve shuts off the gas with the flow path switching valve, and supplies fresh air and EGR gas to the intake system passage. Is a transient operation, the second flow path switching of the flow path switching valve shuts off fresh air and EGR gas by the flow path switching valve, and temporarily supplies only the gas to the intake system passage. An EGR method for an internal combustion engine.
JP2011125434A 2011-06-03 2011-06-03 Flow path switching valve, internal combustion engine, and EGR method for internal combustion engine Expired - Fee Related JP5982739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011125434A JP5982739B2 (en) 2011-06-03 2011-06-03 Flow path switching valve, internal combustion engine, and EGR method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011125434A JP5982739B2 (en) 2011-06-03 2011-06-03 Flow path switching valve, internal combustion engine, and EGR method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2012251615A true JP2012251615A (en) 2012-12-20
JP5982739B2 JP5982739B2 (en) 2016-08-31

Family

ID=47524609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011125434A Expired - Fee Related JP5982739B2 (en) 2011-06-03 2011-06-03 Flow path switching valve, internal combustion engine, and EGR method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5982739B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104948295A (en) * 2015-05-26 2015-09-30 重庆长安汽车股份有限公司 Waste gas bypass valve of turbocharger
KR101661433B1 (en) * 2015-12-14 2016-10-10 한익수 Valve device
JP2019150788A (en) * 2018-03-05 2019-09-12 日本ソセー工業株式会社 Anti-dripping valve for nozzle
CN116447341A (en) * 2023-06-16 2023-07-18 西安彬林电子科技有限公司 PE pipeline remote pneumatic cut-off valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109223U (en) * 1976-02-16 1977-08-19
JPS5491824A (en) * 1977-12-28 1979-07-20 Hokusan Kk Automatic changeeover valve for feeding gas
US5163478A (en) * 1990-08-31 1992-11-17 Festo Kg Spool valve having improved sealing characteristics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109223U (en) * 1976-02-16 1977-08-19
JPS5491824A (en) * 1977-12-28 1979-07-20 Hokusan Kk Automatic changeeover valve for feeding gas
US5163478A (en) * 1990-08-31 1992-11-17 Festo Kg Spool valve having improved sealing characteristics

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104948295A (en) * 2015-05-26 2015-09-30 重庆长安汽车股份有限公司 Waste gas bypass valve of turbocharger
KR101661433B1 (en) * 2015-12-14 2016-10-10 한익수 Valve device
JP2019150788A (en) * 2018-03-05 2019-09-12 日本ソセー工業株式会社 Anti-dripping valve for nozzle
CN116447341A (en) * 2023-06-16 2023-07-18 西安彬林电子科技有限公司 PE pipeline remote pneumatic cut-off valve
CN116447341B (en) * 2023-06-16 2023-08-25 西安彬林电子科技有限公司 PE pipeline remote pneumatic cut-off valve

Also Published As

Publication number Publication date
JP5982739B2 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
US6945240B2 (en) Device and method for exhaust gas circulation of internal combustion engine
US6205785B1 (en) Exhaust gas recirculation system
CN103906901B (en) The air-changing control device of internal-combustion engine
CN104968925B (en) Internal combustion engine with booster
WO1998032962A1 (en) Exhaust gas recirculation device
US9732668B2 (en) Discharge valve and associated device
CN103807028A (en) Method and system for vacuum generation
US20160032871A1 (en) Low pressure exhaust gas recirculation module
JP5982739B2 (en) Flow path switching valve, internal combustion engine, and EGR method for internal combustion engine
JP6060492B2 (en) Internal combustion engine and control method thereof
JP3674254B2 (en) EGR device for supercharged engine
JP5845640B2 (en) Flow path switching valve and internal combustion engine provided with the same
JP5814008B2 (en) Accumulated EGR system
JP5923869B2 (en) Flow path switching valve
JP2009191667A (en) Supercharging device and supercharging engine system
JP5909954B2 (en) Supercharging assistance system for internal combustion engine, internal combustion engine, and supercharging assistance method for internal combustion engine
JP5742484B2 (en) Supercharging assist method for internal combustion engine and internal combustion engine
JP6339464B2 (en) Two-stage turbocharged engine
JP5957920B2 (en) Internal combustion engine and supercharging method for internal combustion engine
JP5811577B2 (en) Internal combustion engine and EGR method for internal combustion engine
JP5834505B2 (en) Supercharging assist method for internal combustion engine and internal combustion engine
JP5824881B2 (en) Supercharging assist method for internal combustion engine and internal combustion engine
JP5830946B2 (en) Supercharging assist method for internal combustion engine and internal combustion engine
JP5824882B2 (en) Gas storage method for internal combustion engine and internal combustion engine
US10890129B1 (en) High pressure loop exhaust gas recirculation and twin scroll turbocharger flow control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160718

R150 Certificate of patent or registration of utility model

Ref document number: 5982739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees