JP2012251489A - Supercharge-assist method for internal combustion engine and the internal combustion engine - Google Patents

Supercharge-assist method for internal combustion engine and the internal combustion engine Download PDF

Info

Publication number
JP2012251489A
JP2012251489A JP2011125061A JP2011125061A JP2012251489A JP 2012251489 A JP2012251489 A JP 2012251489A JP 2011125061 A JP2011125061 A JP 2011125061A JP 2011125061 A JP2011125061 A JP 2011125061A JP 2012251489 A JP2012251489 A JP 2012251489A
Authority
JP
Japan
Prior art keywords
gas
supercharging
internal combustion
combustion engine
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011125061A
Other languages
Japanese (ja)
Other versions
JP5824881B2 (en
Inventor
Yoshio Sekiyama
惠夫 関山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2011125061A priority Critical patent/JP5824881B2/en
Publication of JP2012251489A publication Critical patent/JP2012251489A/en
Application granted granted Critical
Publication of JP5824881B2 publication Critical patent/JP5824881B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Supercharger (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a supercharge-assist method for an internal combustion engine capable of reducing a consumption amount of gas in an accumulated gas container for use in supercharge-assist, by detecting an intake pressure and by starting the control of supercharge-assist using the compressed gas for the supercharge, immediately before reaching a smoke limit, in the internal combustion engine using the gas stored in the accumulated gas container for the supercharge-assist, and to provide the internal combustion engine.SOLUTION: In a transient state of this internal combustion engine 1, 1A, the supercharge-assist for shutting off EGR gas Ge and intake A by an operation of an EGR valve 21 and a flow path switching operation of a flow path switching device 30 to supply gas C in an accumulated gas container to an intake passage 12 is performed, only when a pressure Pt in the accumulated gas container 27 is equal to or more than a preset lower limit pressure PL and when a supply target fuel amount Qt calculated on the basis of a measured engine rotation speed Ne and accelerator opening Ac exceeds a non-supercharge maximum fuel amount (zero boost) Q0 in which the supercharge for the same engine rotation speed Ne is not performed.

Description

本発明は、内燃機関の過渡状態のときに、蓄ガス容器に蓄圧されたガスをシリンダ内に供給してEGR率を高めることができる内燃機関の過給補助方法及び内燃機関に関する。   The present invention relates to a supercharging assist method for an internal combustion engine and an internal combustion engine that can increase the EGR rate by supplying gas stored in a gas storage container into a cylinder in a transient state of the internal combustion engine.

ディーゼルエンジン等の内燃機関の排気ガス中のNOx(窒素酸化物)を低減するEGR(排気再循環)においては、過給システムを備えた内燃機関では、高圧EGR方式と低圧EGR方式とがある。この高圧EGR方式では、例えば、図9に示すように、高圧EGRシステムを備えた内燃機関1Xでは、ターボ式過給機14よりもエンジン本体11側にEGR通路17が設けられており、エンジン本体11の排気マニホールド11bから吸気マニホールド11aにEGR通路17経由でEGRガスGeを還流している。また、低圧EGR方式では、例えば、図10に示すように、低圧EGRシステムを備えた内燃機関1Yでは、ターボ式過給機14よりもエンジン本体11とは反対側にEGR通路17が設けられており、タービン14bの下流側からコンプレッサ14aの上流側にEGR通路17経由でEGRガスGeを還流している。   In EGR (exhaust gas recirculation) for reducing NOx (nitrogen oxide) in exhaust gas of an internal combustion engine such as a diesel engine, there are a high pressure EGR method and a low pressure EGR method in an internal combustion engine equipped with a supercharging system. In this high pressure EGR system, for example, as shown in FIG. 9, in an internal combustion engine 1X equipped with a high pressure EGR system, an EGR passage 17 is provided closer to the engine body 11 than the turbocharger 14, and the engine body The EGR gas Ge is recirculated from the 11 exhaust manifolds 11 b to the intake manifold 11 a via the EGR passage 17. Further, in the low pressure EGR system, for example, as shown in FIG. 10, in the internal combustion engine 1Y provided with the low pressure EGR system, an EGR passage 17 is provided on the opposite side of the engine body 11 from the turbocharger 14. The EGR gas Ge is recirculated from the downstream side of the turbine 14b to the upstream side of the compressor 14a via the EGR passage 17.

これらのいずれのEGR方式でも、EGRガス量の制御には、MAF制御方式が一般的に使用されている。このMAF制御方式では、EGR無しでエンジンのシリンダ内に吸入される新気量(空気量)をMoとし、EGRを行うことでシリンダ内に吸入される新気量をMeとすると、還流されるEGRガス量のMegrがMegr=Mo−Meとなるので、これに基づいて、EGR弁21の弁開度により新気量Meを制御することで、EGRガス量Megrを制御している。   In any of these EGR systems, the MAF control system is generally used to control the amount of EGR gas. In this MAF control method, if the amount of fresh air (air amount) sucked into the cylinder of the engine without EGR is Mo and the amount of fresh air sucked into the cylinder by performing EGR is Me, it is recirculated. Since the EGR gas amount Megr is Megr = Mo−Me, the EGR gas amount Megr is controlled by controlling the fresh air amount Me based on the valve opening degree of the EGR valve 21 based on this.

つまり、エンジンの回転速度Neと燃料負荷Qをパラメータにして、各エンジンの運転状態に対する新気量Meを予め設定して作成した新気量Meのデータマップを基に、実際のエンジン運転時の回転速度Neと燃料負荷Qから目標の新気量Metを算出して、実際の新気量Meをこの目標の新気量Metになるように制御することで、EGRガス量Megrを制御している。   That is, based on the data map of the fresh air amount Me created by setting the fresh air amount Me for each engine operating state in advance using the engine rotational speed Ne and the fuel load Q as parameters, the actual engine operating time is determined. The target fresh air amount Met is calculated from the rotational speed Ne and the fuel load Q, and the actual fresh air amount Me is controlled to become the target fresh air amount Met, thereby controlling the EGR gas amount Megr. Yes.

しかしながら、ターボ式過給機を使用する場合には排気ガスのエネルギー(エンタルピ)を用いて過給を行うため、ターボ式過給機の応答遅れ(ターボラグ)を無くすことは不可能であり、このMAF制御方式では、このターボラグに起因する次のような問題がある。ターボラグにより負荷が急激に増加する過渡状態では、過給圧が定常運転時に設定した圧力まで上昇しないため、エンジンの吸入空気量が低下する。つまり、ターボ式過給機付きエンジンでも無過給エンジンと同程度の吸気量となってしまう。   However, when a turbocharger is used, the exhaust gas energy (enthalpy) is used for supercharging, so it is impossible to eliminate the response delay (turbo lag) of the turbocharger. The MAF control method has the following problems due to the turbo lag. In a transient state in which the load suddenly increases due to the turbo lag, the boost pressure does not increase to the pressure set during steady operation, so the intake air amount of the engine decreases. In other words, even an engine with a turbo-type supercharger has the same intake air amount as a non-supercharged engine.

従って、定常運転条件で設定した目標のEGR量に達成することができず、図11に示すように、急激な過渡運転を行う際にNOxの排出量が増加する。また、煤の発生量を制限するために、過給圧があるレベルより上がらない場合には煤が増加しない領域内に燃料の投入量が抑えられるというスモークリミット制御が行われる。その結果、図12及び図13に示すように、燃料噴射量Qと空気量(Mo、Me)が共に点線で示されるように抑えられ、加速時のパワーが抑えられてしまうという問題がある。そのために、加速時等の負荷が急激に増加する過渡状態のときには、NOx排出量の増加や燃費の悪化が発生する。   Therefore, the target EGR amount set under the steady operation condition cannot be achieved, and as shown in FIG. 11, the NOx emission amount increases when performing a rapid transient operation. Further, in order to limit the amount of soot generated, smoke limit control is performed in which the amount of fuel input is suppressed in a region where the soot does not increase when the supercharging pressure does not rise above a certain level. As a result, as shown in FIGS. 12 and 13, both the fuel injection amount Q and the air amount (Mo, Me) are suppressed as indicated by the dotted lines, and there is a problem that the power during acceleration is suppressed. For this reason, in a transient state where the load suddenly increases during acceleration or the like, an increase in NOx emissions and a deterioration in fuel consumption occur.

一方、エンジンのクランクシャフト等によって、過給機を直接駆動して過給を行う機械式過給装置を使用する場合では、過給の応答遅れをなくす事ができるが、エンジンの回転速度が決まると燃料量の多少に関わらず、過給量が決まるために、また、駆動に要する仕事量が大きいために、燃費が悪化するという問題がある。   On the other hand, in the case of using a mechanical supercharger that performs supercharging by directly driving the supercharger by an engine crankshaft or the like, the delay in the supercharging response can be eliminated, but the engine speed is determined. However, there is a problem that fuel efficiency deteriorates because the amount of supercharging is determined regardless of the amount of fuel and the amount of work required for driving is large.

この対策として、近年では、図14に示すような蓄ガス供給システムを備えた内燃機関1Zが研究されており、この蓄ガス供給システムでは、内燃機関1Zから排出される排気ガスGの一部Gpを空気Aaと混合した混合ガスCを容積型コンプレッサ(排気圧縮器)25で圧縮して高圧化し、この高圧化した混合ガスCを蓄ガス容器(圧力容器)27内に溜め込み、過渡時に放出電磁弁36を開弁して混合ガスCを調圧弁29経由で吸気弁(吸気スロットル)35の下流の吸気通路12に放出し、これにより、内燃機関1Zのシリンダ内への吸気量を過給機付きエンジン並みに増加させると共に、EGRの効果によるNOxの低減を図り、ターボラグの問題を解消している過給制御装置が提案されている(例えば、特許文献1参照)。   As a countermeasure, in recent years, an internal combustion engine 1Z having a storage gas supply system as shown in FIG. 14 has been studied, and in this storage gas supply system, a part Gp of the exhaust gas G discharged from the internal combustion engine 1Z. The mixed gas C mixed with air Aa is compressed by a positive displacement compressor (exhaust compressor) 25 to increase the pressure, and the increased mixed gas C is stored in a gas storage container (pressure container) 27 to release electromagnetic waves in a transient state. The valve 36 is opened and the mixed gas C is discharged to the intake passage 12 downstream of the intake valve (intake throttle) 35 via the pressure regulating valve 29, whereby the amount of intake air into the cylinder of the internal combustion engine 1Z is supercharged. There has been proposed a supercharging control device that increases the same level as an attached engine, reduces NOx by the effect of EGR, and solves the problem of turbo lag (see, for example, Patent Document 1).

この蓄ガス供給システムを採用した場合は、過渡時に加圧された混合ガスCをエンジン1Zの吸気通路12内に放出することで過給圧を上げて、シリンダ内への空気量を増加させることができるので燃料量も増やすことができる。その結果、加速性能が向上し、煤の排出も抑えることができる。また、過給圧は排気マニホールド11bの内圧よりも高くなるので、内燃機関1Zのポンピング損失が低下し燃費の向上を図ることができる。   When this storage gas supply system is adopted, the supercharging pressure is increased by releasing the gas mixture C pressurized during the transition into the intake passage 12 of the engine 1Z, thereby increasing the amount of air into the cylinder. Can increase the amount of fuel. As a result, acceleration performance is improved and soot discharge can be suppressed. Further, since the supercharging pressure is higher than the internal pressure of the exhaust manifold 11b, the pumping loss of the internal combustion engine 1Z is reduced, and the fuel efficiency can be improved.

この混合ガスCを放出するタイミングである急加速の判断に関しては、エンジン回転速度の変化率、アクセル踏み込み量の変化率、燃料流量の変化率等を用いて、運転者の急加速の意思を判断する方法がある。   Regarding the determination of rapid acceleration, which is the timing of releasing the mixed gas C, the driver's intention of rapid acceleration is determined using the rate of change of the engine speed, the rate of change of the accelerator depression amount, the rate of change of the fuel flow rate, etc. There is a way to do it.

しかしながら、このエンジン回転速度等の変化率で判断する方法では、図3に示すような、一般にゼロブーストQと呼ばれ、無過給エンジンでの燃料量に相当する無過給最大燃料量Q0までは、ターボ式過給機のタイムラグにより過給の遅れが発生しても問題を生じない領域があるにもかかわらず、この無過給最大燃料量Q0以下の領域RAであっても、蓄ガス供給による過給補助を行うことになる。   However, in the method of judging based on the rate of change of the engine speed or the like, as shown in FIG. 3, it is generally called zero boost Q, up to a non-supercharged maximum fuel amount Q0 corresponding to the fuel amount in the non-supercharged engine. Even if there is a region where there is no problem even if a delay in supercharging occurs due to the time lag of the turbocharger, even if this region RA is below the maximum amount of unsupercharged fuel Q0, Supercharging assistance by supply will be performed.

一方、蓄ガス容器内のガスの貯蔵量は限られているので、蓄圧されたガスを多量に消費すると、再度、蓄圧するまでの時間が必要になり、過給補助装置の使用頻度が制限されたり、蓄圧のための仕事が増加して燃費の向上の効果が減少したりするという問題がある。   On the other hand, since the amount of gas stored in the gas storage container is limited, if a large amount of stored gas is consumed, it takes time to store the pressure again, and the frequency of use of the supercharging assist device is limited. There is a problem that the work for accumulating pressure increases and the effect of improving fuel efficiency decreases.

特開2011−21558号公報JP 2011-21558 A

本発明は、上記の状況を鑑みてなされたものであり、その目的は、ガス圧縮装置を用いて、内燃機関の排気ガスの一部と空気とこれらの混合ガスのいずれかのガスを蓄ガス容器に溜め込み、負荷が急激に増加する過渡状態のときに前記ガスをシリンダ内に一時的に供給して過渡状態のNOxの排出を抑制するとともに加速性能を向上させる内燃機関において、吸気圧を検出して、蓄圧されたガスを過給に用いる過給補助の制御を、スモークリミットにかかる直前に開始することにより、過給補助に用いる蓄ガス容器内のガスの消費量を少なくすることができる内燃機関の過給補助方法及び内燃機関を提供することにある。   The present invention has been made in view of the above situation, and an object of the present invention is to store a part of exhaust gas of an internal combustion engine, air, and any of these mixed gases using a gas compression device. Detects intake pressure in an internal combustion engine that accumulates in a vessel and temporarily supplies the gas into the cylinder in a transient state where the load increases suddenly to suppress NOx emission in the transient state and improve acceleration performance Then, by starting the supercharging assistance control using the accumulated gas for supercharging immediately before the smoke limit is applied, it is possible to reduce the consumption of gas in the gas storage container used for supercharging assistance. An object of the present invention is to provide a supercharging assist method for an internal combustion engine and an internal combustion engine.

上記の目的を達成するための本発明の内燃機関の過給補助方法は、内燃機関の排気ガスの一部をシリンダ内に再循環するためのEGR通路と、内燃機関の排気ガスの一部と空気とこれらの混合ガスのいずれかのガスを圧縮するガス圧縮装置と、該ガス圧縮装置で圧縮された前記ガスを貯蓄する蓄ガス容器と、該蓄ガス容器と吸気系通路を流路切替装置を介して接続する蓄ガス供給通路を備えた内燃機関の過給補助方法において、内燃機関の過渡状態で、かつ、前記蓄ガス容器の内部の圧力が予め設定した下限圧力以上で、かつ、測定されたエンジン回転速度とアクセル開度から算出された供給目標燃料量が、同じエンジン回転速度に対しての過給を行わないときの無過給最大燃料量以上であるときのみ、EGR弁の操作と流路切替装置の流路切替操作により、EGRガスと吸気を遮断して蓄ガス容器の前記ガスを吸気通路に供給する過給補助を行うことを特徴とする方法である。   In order to achieve the above object, a supercharging assist method for an internal combustion engine according to the present invention comprises an EGR passage for recirculating a part of exhaust gas of the internal combustion engine into a cylinder, a part of exhaust gas of the internal combustion engine, A gas compression device for compressing air and any of these mixed gases, a gas storage container for storing the gas compressed by the gas compression device, and a flow path switching device between the gas storage container and the intake system passage In the supercharging assist method for an internal combustion engine provided with a storage gas supply passage connected via the internal combustion engine, in a transient state of the internal combustion engine, and the pressure inside the storage gas container is equal to or higher than a preset lower limit pressure and measured The EGR valve is operated only when the supply target fuel amount calculated from the determined engine speed and accelerator opening is equal to or greater than the maximum non-supercharged fuel amount when supercharging is not performed for the same engine speed. And the channel of the channel switching device The replacement operation, a method characterized by performing supercharging assisting to supply the gas in the gas storage vessel into the intake passage by blocking air intake and EGR gas.

この方法によれば、内燃機関を搭載した車両の急加速時や発進時等の内燃機関の運転状態が過渡状態のときにおいて、ターボラグに起因する加速性能の低下を最小限に防止し、排気ガス中の粒子状物質(PM)と窒素酸化物(NOx)の低減を図ることができる蓄圧されたガスによる過給補助において、過給補助が必要なときにのみ過給補助を行うので、過給補助用の蓄ガス容器に貯蔵しているガスの消費を最小限にすることができる。また、これにより、過給補助の制限が少なくなると共に、再度蓄圧するまでの時間や仕事量を減少でき、燃費を向上できる。   According to this method, when the operating state of the internal combustion engine such as when suddenly accelerating or starting a vehicle equipped with the internal combustion engine is in a transient state, the deterioration of the acceleration performance due to the turbo lag is minimized, and the exhaust gas is prevented. In supercharging assistance with accumulated gas that can reduce particulate matter (PM) and nitrogen oxides (NOx), supercharging assistance is performed only when supercharging assistance is required. The consumption of the gas stored in the auxiliary gas storage container can be minimized. In addition, this makes it possible to reduce the restriction on supercharging assistance, reduce the time until the pressure is accumulated again, and the amount of work, thereby improving fuel efficiency.

上記の内燃機関の過給補助方法において、吸気圧が、前記無過給最大燃料量の燃料を燃焼できる吸気量を供給できる無過給最大吸気圧、又は、該無過給最大吸気圧より低く設定された過給補助開始吸気圧になってから、前記過給補助を行うと、過給補助が必要な供給目標燃料量であっても、吸気圧が、無過給最大吸気圧以上の吸気圧が必要になるぎりぎりまで過給補助を開始しないことにより、つまり、加速時や発進時の過渡時にスモークリミットで燃料噴射量が絞られそうになった時に過給補助を行うことにより、過給補助用の蓄ガス容器内のガスの消費を最小限にすることができ、蓄圧されたガスの節約を図ることができる。   In the above-described supercharging assist method for an internal combustion engine, the intake pressure is lower than the unsupercharged maximum intake pressure that can supply the intake amount capable of burning the fuel of the unsupercharged maximum fuel amount, or lower than the unsupercharged maximum intake pressure. If the supercharging assistance is performed after the set supercharging assistance start intake pressure is reached, the intake pressure is higher than the maximum non-supercharging intake pressure even if the supply target fuel amount requires supercharging assistance. Supercharging by not starting supercharging assistance until the pressure is required, that is, by supercharging assistance when the fuel injection amount is about to be throttled at the smoke limit during acceleration or starting transition The consumption of gas in the auxiliary gas storage container can be minimized, and the stored gas can be saved.

その上、この過給補助方法を採用すると、ターボ式過給機が万一故障して吸気圧が上昇しなくなっても、即ち、吸気圧が無過給最大吸気圧以上にならなくても、通常の過給無しの燃料量が無過給最大燃料量より小さい範囲内のEGR及び吸気方法には影響を及ぼさないので、そのまま内燃機関の運転を継続することができる。   In addition, if this supercharging assistance method is adopted, even if the turbocharger breaks down and the intake pressure does not increase, that is, even if the intake pressure does not exceed the maximum non-supercharged intake pressure, Since the normal amount of fuel without supercharging does not affect EGR and the intake method within a range smaller than the maximum amount of unsupercharged fuel, the operation of the internal combustion engine can be continued as it is.

上記の内燃機関の過給補助方法において、前記過給補助の際に、前記吸気圧が前記過給補助開始吸気圧になるまでは、燃料供給量を前記無過給最大燃料量とし、前記吸気圧が前記過給補助開始吸気圧を超えて、過給補助が開始されたときから、燃料供給量を前記供給目標燃料量とすると、過給補助開始までの間の空気不足における過剰な燃料供給を回避できて、スモークの発生を防止できると共に、トルクを発生させない無駄な燃料の消費を回避でき燃費を向上できる。   In the above-described supercharging assistance method for an internal combustion engine, when the supercharging assistance is performed, the fuel supply amount is set to the non-supercharging maximum fuel amount until the intake pressure becomes the supercharging assistance start intake pressure, and the intake pressure is increased. If the fuel supply amount is the supply target fuel amount from when the air pressure exceeds the supercharging assist start intake pressure and the supercharging assist is started, excessive fuel supply in the air shortage until the supercharging assist starts Thus, the generation of smoke can be prevented, and unnecessary fuel consumption that does not generate torque can be avoided to improve fuel efficiency.

そして、上記の目的を達成するための内燃機関は、上記の内燃機関の過給補助方法を実施できる内燃機関であり、内燃機関の排気ガスの一部をシリンダ内に再循環するためのEGR通路と、内燃機関の排気ガスの一部と空気とこれらの混合ガスのいずれかのガスを圧縮するガス圧縮装置と、該ガス圧縮装置で圧縮された前記ガスを貯蓄する蓄ガス容器と、該蓄ガス容器と吸気系通路を流路切替装置を介して接続する蓄ガス供給通路と、前記EGR通路の備えたEGR弁と前記流路切替装置を制御する制御装置を備えた内燃機関において、前記制御装置が、内燃機関の過渡状態で、かつ、前記蓄ガス容器の内部の圧力が予め設定した下限圧力以上で、かつ、測定されたエンジン回転速度とアクセル開度から算出された供給目標燃料量が、同じエンジン回転速度に対しての過給を行わないときの無過給最大燃料量以上であるときのみ、EGR弁の操作と流路切替装置の流路切替操作により、EGRガスと吸気を遮断して蓄ガス容器の前記ガスを吸気通路に供給する過給補助を行う制御をするように構成される。   An internal combustion engine for achieving the above object is an internal combustion engine capable of implementing the above-described supercharging assist method of the internal combustion engine, and an EGR passage for recirculating a part of the exhaust gas of the internal combustion engine into the cylinder. A gas compression device that compresses a part of the exhaust gas of the internal combustion engine, air, and any of these mixed gases, a gas storage container that stores the gas compressed by the gas compression device, and the storage An internal combustion engine comprising: a storage gas supply passage for connecting a gas container and an intake system passage through a flow passage switching device; an EGR valve provided in the EGR passage; and a control device for controlling the flow passage switching device. The apparatus is in a transient state of the internal combustion engine, the internal pressure of the gas storage container is equal to or higher than a preset lower limit pressure, and the supply target fuel amount calculated from the measured engine speed and accelerator opening is The same The EGR gas and the intake air are cut off by the operation of the EGR valve and the flow path switching operation of the flow path switching device only when the maximum amount of non-supercharged fuel when the supercharging with respect to the gin rotation speed is not performed. It is configured to perform supercharging assistance for supplying the gas in the gas storage container to the intake passage.

この構成によれば、過給補助が必要なときにのみ過給補助を行うので、過給補助用の蓄ガス容器に貯蔵しているガスの消費を最小限にすることができる。また、これにより、過給補助の制限が少なくなると共に、再度蓄圧するまでの時間や仕事量を減少でき、燃費を向上できる。   According to this configuration, since supercharging assistance is performed only when supercharging assistance is necessary, consumption of gas stored in the supercharging assistance gas storage container can be minimized. In addition, this makes it possible to reduce the restriction on supercharging assistance, reduce the time until the pressure is accumulated again, and the amount of work, thereby improving fuel efficiency.

上記の内燃機関において、前記制御装置が、吸気圧が、前記無過給最大燃料量の燃料を燃焼できる吸気量を供給できる無過給最大吸気圧、又は、該無過給最大吸気圧より低く設定された過給補助開始吸気圧になってから、前記過給補助を行う制御をするように構成する。この構成により、過給補助が必要な供給目標燃料量であっても、吸気圧が、無過給最大吸気圧以上の過給が必要になるぎりぎりまで過給補助を開始しないことにより、過給補助用の蓄ガス容器内のガスの消費を最小限にすることができる。これにより、蓄圧されたガスの節約を図ることができる。   In the above internal combustion engine, the control device is configured such that the intake pressure is lower than the maximum non-supercharged intake pressure capable of supplying an intake amount capable of combusting the fuel of the maximum non-supercharged fuel amount, or lower than the maximum non-supercharged intake pressure. The control is performed to perform the supercharging assistance after the set supercharging assistance start intake pressure is reached. With this configuration, even if the target fuel amount requires supercharging assistance, supercharging assistance is not started until the intake pressure reaches the limit where supercharging exceeding the maximum non-supercharging intake pressure is required. Consumption of gas in the auxiliary gas storage container can be minimized. Thereby, the saved gas can be saved.

その上、この構成によれば、ターボ式過給機が万一故障して吸気圧が上昇しなくなっても、すなわち、吸気圧が無過給最大吸気圧以上にならなくても、通常の過給無しの燃料量が最大燃料量より小さい範囲内のEGR及び吸気方法には影響を及ぼさないので、そのまま内燃機関の運転を継続することができる。   Moreover, according to this configuration, even if the turbocharger breaks down and the intake pressure does not rise, that is, even if the intake pressure does not exceed the maximum non-supercharged intake pressure, Since the fuel amount without supply does not affect the EGR and the intake method within the range smaller than the maximum fuel amount, the operation of the internal combustion engine can be continued as it is.

また、上記の内燃機関において、前記制御装置が、前記過給補助の際に、前記吸気圧が前記過給補助開始吸気圧になるまでは、燃料供給量を前記無過給最大燃料量とし、前記吸気圧が前記過給補助開始吸気圧を超えて、過給補助が開始されたときから、燃料供給量を前記供給目標燃料量とする制御をするように構成する。   In the internal combustion engine, when the supercharging assistance is performed, the control device sets the fuel supply amount to the non-supercharging maximum fuel amount until the intake pressure becomes the supercharging assistance start intake pressure, The control is performed so that the fuel supply amount is set as the supply target fuel amount from the time when the supercharging assistance is started when the intake pressure exceeds the supercharging assistance start intake pressure.

この構成によれば、過給補助開始までの間の空気不足における過剰な燃料供給を回避できて、スモークの発生を防止できると共に、トルクを発生させない無駄な燃料の消費を回避でき燃費を向上できる。   According to this configuration, it is possible to avoid excessive fuel supply due to shortage of air until the start of supercharging assistance, to prevent the generation of smoke, and to avoid unnecessary fuel consumption that does not generate torque and to improve fuel efficiency. .

本発明に係る内燃機関の過給補助方法及び内燃機関によれば、ガス圧縮装置を用いて、内燃機関の排気ガスの一部と空気とこれらの混合ガスのいずれかのガスを蓄ガス容器に溜め込み、負荷が急激に増加する過渡状態のときに前記ガスをシリンダ内に一時的に供給して過渡状態のNOxの排出を抑制するとともに加速性能を向上させる内燃機関において、吸気圧を検出して、蓄圧されたガスを過給に用いる過給補助の制御をスモークリミットにかかる直前に開始することで、過給補助に用いる蓄ガス容器内のガスの消費量を少なくすることができる。   According to the supercharging assistance method and the internal combustion engine of the internal combustion engine according to the present invention, a part of the exhaust gas of the internal combustion engine, air, and any one of these mixed gases are stored in the gas storage container using the gas compression device. In an internal combustion engine that suppresses transient NOx emission and improves acceleration performance by temporarily supplying the gas into the cylinder in a transient state where the load increases and the load suddenly increases, the intake pressure is detected. By starting the supercharging assistance control using the accumulated gas for supercharging immediately before the smoke limit is applied, the consumption of gas in the gas storage container used for supercharging assistance can be reduced.

本発明に係る第1の実施の形態の内燃機関の構成を示す図である。It is a figure showing composition of an internal-combustion engine of a 1st embodiment concerning the present invention. 本発明に係る第2の実施の形態の内燃機関の構成を示す図である。It is a figure which shows the structure of the internal combustion engine of 2nd Embodiment which concerns on this invention. 無過給時の燃料量特性と、過給時の燃料量特性を示す図である。It is a figure which shows the fuel amount characteristic at the time of non-supercharging, and the fuel amount characteristic at the time of supercharging. 本発明に係る実施の形態の内燃機関の過給補助方法の制御フローの一例を示す図である。It is a figure which shows an example of the control flow of the supercharging assistance method of the internal combustion engine of embodiment which concerns on this invention. 図4のステップS30の詳細を示す図である。It is a figure which shows the detail of step S30 of FIG. 蓄ガス用のガス圧縮装置の駆動を説明するための図である。It is a figure for demonstrating the drive of the gas compression apparatus for stored gas. 三方切替弁で構成された流路切替装置の構造を吸気ラインが連通された状態で示す図である。It is a figure which shows the structure of the flow-path switching apparatus comprised with the three-way switching valve in the state by which the intake line was connected. 三方切替弁で構成された流路切替装置の構造を蓄ガス供給ラインが連通された状態で示す図である。It is a figure which shows the structure of the flow-path switching apparatus comprised with the three-way switching valve in the state by which the stored gas supply line was connected. 従来技術の高圧EGR方式の内燃機関の構成を示す図である。It is a figure which shows the structure of the internal combustion engine of a high pressure EGR system of a prior art. 従来技術の低圧EGR方式の内燃機関の構成を示す図である。It is a figure which shows the structure of the low pressure EGR type internal combustion engine of a prior art. 車速の変化と瞬時NOx排出量の関係を示す図である。It is a figure which shows the relationship between the change of a vehicle speed, and instantaneous NOx discharge | emission amount. 全負荷における燃料噴射量の特性と過渡時の動きを示す図である。It is a figure which shows the characteristic of the fuel injection quantity in a full load, and the movement at the time of transition. 過渡時のターボ式過給機の応答遅れとEGRの関係を示す図である。It is a figure which shows the response delay of the turbo supercharger at the time of transition, and the relationship of EGR. 先行技術の内燃機関の構成を示す図である。It is a figure which shows the structure of the internal combustion engine of a prior art.

以下、本発明に係る実施の形態の内燃機関の過給補助方法及び内燃機関について、図面を参照しながら説明する。   Hereinafter, an internal combustion engine supercharging assist method and an internal combustion engine according to an embodiment of the present invention will be described with reference to the drawings.

図1に示すように、本発明に係る第1の実施の形態のエンジン(内燃機関)1は、エンジン本体11と吸気マニホールド11aに接続する吸気通路12と排気マニホールド11bに接続する排気通路13を有して構成される。この吸気マニホールド11aと吸気通路12とで吸気系通路を形成し、排気マニホールド11bと排気通路13とで排気系通路を形成する。   As shown in FIG. 1, an engine (internal combustion engine) 1 according to a first embodiment of the present invention includes an intake passage 12 connected to an engine body 11, an intake manifold 11a, and an exhaust passage 13 connected to an exhaust manifold 11b. It is configured. The intake manifold 11a and the intake passage 12 form an intake system passage, and the exhaust manifold 11b and the exhaust passage 13 form an exhaust system passage.

吸気通路12には、ターボ式過給機14のコンプレッサ14aが設けられ、排気通路13には、ターボ式過給機14のタービン14bと、ディーゼルパティキュレートフィルタ(DPF)装置15とNOx吸蔵還元型触媒等で形成されるNOx浄化触媒16が設けられている。   The intake passage 12 is provided with a compressor 14a of a turbocharger 14, and the exhaust passage 13 is provided with a turbine 14b of a turbocharger 14, a diesel particulate filter (DPF) device 15, and a NOx occlusion reduction type. A NOx purification catalyst 16 formed of a catalyst or the like is provided.

また、タービン14bの上流側の排気通路13からEGR通路17が分岐され、コンプレッサ14aの上流側の吸気通路12にEGR合流部18で合流している。このEGR通路17には上流側から、ディーゼルパティキュレートフィルタ(DPF)装置19とEGRクーラ20とEGR弁21が設けられている。   Further, an EGR passage 17 is branched from the exhaust passage 13 on the upstream side of the turbine 14b, and merges with the intake passage 12 on the upstream side of the compressor 14a at the EGR merging portion 18. The EGR passage 17 is provided with a diesel particulate filter (DPF) device 19, an EGR cooler 20, and an EGR valve 21 from the upstream side.

更に、NOx浄化触媒16の下流側の排気通路13から分岐して、排気ガス導入通路22が設けられている。この排気ガス導入通路22にはEGRクーラ23と三方弁24が設けられ、この排気ガス導入通路22は機械式の容積型過給機(往復動式が望ましい)等で形成されるガス圧縮装置25に接続されている。このガス圧縮装置25は、圧縮ガス供給通路26により圧力容器等で形成される蓄ガス容器27に接続されている。また、この蓄ガス容器27は蓄ガス供給通路28により吸気通路12と接続されている。この排気ガス導入通路22と圧縮ガス供給通路26と蓄ガス供給通路28で蓄圧ガス系通路を形成する。   Further, an exhaust gas introduction passage 22 is provided so as to branch from the exhaust passage 13 on the downstream side of the NOx purification catalyst 16. The exhaust gas introduction passage 22 is provided with an EGR cooler 23 and a three-way valve 24, and the exhaust gas introduction passage 22 is formed by a mechanical positive displacement turbocharger (preferably a reciprocating type) or the like. It is connected to the. The gas compression device 25 is connected to a gas storage container 27 formed of a pressure container or the like by a compressed gas supply passage 26. The gas storage container 27 is connected to the intake passage 12 by a stored gas supply passage 28. The exhaust gas introduction passage 22, the compressed gas supply passage 26 and the stored gas supply passage 28 form a pressure accumulation gas system passage.

図6に示すように、このガス圧縮装置25は、エンジン1を搭載した車両の車軸31から歯車32、33と、電磁クラッチ34を経由してガス圧縮装置25の駆動軸に動力を伝達する。この電磁クラッチ34をONにして接続することにより、ガス圧縮装置25を駆動して、排気ガス導入通路22からの排気ガスGの一部Gpと空気Aaとこれらの混合ガスのいずれかのガスCを、圧縮して高圧化して蓄ガス容器27に供給し、貯蔵する。   As shown in FIG. 6, the gas compression device 25 transmits power from an axle 31 of a vehicle on which the engine 1 is mounted to a drive shaft of the gas compression device 25 via gears 32 and 33 and an electromagnetic clutch 34. When the electromagnetic clutch 34 is turned on and connected, the gas compressor 25 is driven, and part of the exhaust gas G Gp from the exhaust gas introduction passage 22, the air Aa, and any one of these mixed gases C Is compressed and pressurized to be supplied to the gas storage container 27 and stored.

なお、図1に示すように、蓄ガス供給通路28には、調圧弁29が配置され、流路切替装置30に供給されるガスCの圧力を調整する。このとき、三方弁24で、排気ガスGの一部Gpの量と空気Aaの量を調整して、蓄ガス容器27で貯蔵されるガスCにおける酸素濃度を略一定に保つことが好ましく、これにより、EGRを行うときの制御を単純化することができる。   As shown in FIG. 1, a pressure regulating valve 29 is disposed in the stored gas supply passage 28 to adjust the pressure of the gas C supplied to the flow path switching device 30. At this time, the three-way valve 24 preferably adjusts the amount of part Gp of the exhaust gas G and the amount of air Aa to keep the oxygen concentration in the gas C stored in the gas storage container 27 substantially constant. Thus, the control when performing EGR can be simplified.

そして、上記の機器類の制御を行うために、エンジンコントロールユニット(ECU)と呼ばれるエンジン1の運転の全般を制御する制御装置40を設け、この制御装置40で蓄ガス容器27内の圧力Ptやエンジン回転速度Neやアクセル開度Ac等を検出して、その結果に基づいて電磁クラッチ34や三方弁24を制御して、蓄ガス容器27内のガスCの量(圧力)と排気ガスGpと空気Aaの混合比率を調整制御する。   In order to control the above devices, a control device 40 called an engine control unit (ECU) that controls the overall operation of the engine 1 is provided, and the control device 40 controls the pressure Pt in the gas storage container 27. The engine rotation speed Ne, the accelerator opening degree Ac, and the like are detected, and the electromagnetic clutch 34 and the three-way valve 24 are controlled based on the results, and the amount (pressure) of the gas C in the gas storage container 27 and the exhaust gas Gp The mixing ratio of air Aa is adjusted and controlled.

なお、図1に示すように、この蓄ガス容器27の内部の最大圧を調整する調整弁27aを、蓄ガス容器27に設けて、ガス圧縮装置25を駆動している時には、常に仕事が発生するように調整弁27aを調整する。なお、図1では、調整弁27aを蓄ガス容器27に設けているが、調整弁27aを蓄ガス容器27とガス圧縮装置25の間の圧縮ガス供給通路26に設けてもよい。   As shown in FIG. 1, when the gas storage device 27 is provided with an adjustment valve 27a for adjusting the maximum pressure inside the gas storage container 27 and the gas compression device 25 is driven, work always occurs. The adjustment valve 27a is adjusted as follows. In FIG. 1, the adjustment valve 27 a is provided in the gas storage container 27, but the adjustment valve 27 a may be provided in the compressed gas supply passage 26 between the gas storage container 27 and the gas compression device 25.

つまり、エンジン1は、排気ガスGの一部Geをシリンダ内に再循環するためのEGR通路17と、エンジン1の排気ガスGの一部Gpと空気Aaとこれらの混合ガスのいずれかのガスCを圧縮するガス圧縮装置25と、このガス圧縮装置25で圧縮されたガスCを貯蓄する蓄ガス容器27と、この蓄ガス容器27と吸気通路12を接続する蓄ガス供給通路28を備えて構成される。   That is, the engine 1 has an EGR passage 17 for recirculating a part Ge of the exhaust gas G into the cylinder, a part Gp of the exhaust gas G of the engine 1, the air Aa, and any one of these mixed gases. A gas compression device 25 that compresses C, a gas storage container 27 that stores the gas C compressed by the gas compression device 25, and a gas storage supply passage 28 that connects the gas storage container 27 and the intake passage 12 are provided. Composed.

そして、吸気通路12と蓄ガス供給通路28は流路切替装置30を介して接続される。この流路切替装置30をEGR通路17と吸気通路12との合流部であるEGR合流部18よりも下流側に配置すると、EGRガスGeをEGR弁21と流路切替装置30とで2段構えで遮断することができるようになるので好ましい。また、流路切替装置30は吸気通路12の下流側の通路側を開放したまま、蓄ガス供給通路28側と吸気通路12の上流側の通路側とを切り替えるように構成される。   The intake passage 12 and the stored gas supply passage 28 are connected via a flow path switching device 30. When the flow path switching device 30 is arranged downstream of the EGR merging portion 18, which is the merging portion of the EGR passage 17 and the intake passage 12, the EGR gas Ge is provided in two stages by the EGR valve 21 and the flow path switching device 30. It is preferable because it can be shut off with. The flow switching device 30 is configured to switch between the stored gas supply passage 28 side and the upstream passage side of the intake passage 12 while the downstream passage side of the intake passage 12 is open.

この流路切替装置30は、図7及び図8に示すような三方切替弁で構成することができる。また、図示しないが、吸気系通路12に設けた吸気弁と、蓄ガス供給通路28に設けた開閉弁で構成することもできる。つまり、三方切替弁の流路切替装置30を用いずに、吸気通路12を吸気弁(吸気スロットル)等で閉塞する方式の場合には、吸気弁(図示しない)の上流にEGR合流部18を設けて、EGRガスGeをEGR弁21と吸気弁(図示しない)とで2段構えで遮断するように構成するのが好ましい。   The flow path switching device 30 can be constituted by a three-way switching valve as shown in FIGS. In addition, although not shown, the intake valve provided in the intake system passage 12 and the opening / closing valve provided in the stored gas supply passage 28 may be used. That is, in the case of a system in which the intake passage 12 is closed by an intake valve (intake throttle) or the like without using the flow path switching device 30 of the three-way switching valve, the EGR merging portion 18 is provided upstream of the intake valve (not shown). It is preferable that the EGR gas Ge is provided to be shut off in two stages by the EGR valve 21 and an intake valve (not shown).

図7及び図8に示す流路切替装置30では、駆動用ガスApを入れてピストンの背面のガスAeを抜くことで、高速駆動用のシリンダ30aのロッド30bを移動させることにより、シャッター部30cを移動させて、図7に示すように、蓄ガス供給通路28側を閉じて、吸気通路12の上流側12aと下流側12bを連通させ、また、図8に示すように、吸気通路12の上流側12a側を閉じて、蓄ガス供給通路28と吸気通路12の下流側12bを連通させる。   In the flow path switching device 30 shown in FIGS. 7 and 8, the shutter 30c is moved by moving the rod 30b of the cylinder 30a for high-speed driving by inserting the driving gas Ap and extracting the gas Ae on the back surface of the piston. 7, the gas storage passage 28 side is closed, as shown in FIG. 7, and the upstream side 12a and the downstream side 12b of the intake passage 12 are communicated. Further, as shown in FIG. The upstream side 12 a side is closed, and the stored gas supply passage 28 and the downstream side 12 b of the intake passage 12 are communicated.

次に、本発明に係る第2の実施の形態のエンジン(内燃機関)1Aについて説明する。図2に示すように、この第2の実施の形態のエンジン1Aでは、EGR通路17がタービン14bの下流にあるNOx浄化触媒16の下流側の排気通路13から分岐している点が、EGR通路17がターボ式過給機14のタービン14bの上流側の排気通路13から分岐している第1の実施の形態と異なっている。その他の点は、第1の実施の形態と同じである。   Next, an engine (internal combustion engine) 1A according to a second embodiment of the present invention will be described. As shown in FIG. 2, in the engine 1A of the second embodiment, the EGR passage 17 is branched from the exhaust passage 13 downstream of the NOx purification catalyst 16 downstream of the turbine 14b. 17 is different from the first embodiment in which the turbocharger 14 branches from the exhaust passage 13 on the upstream side of the turbine 14b. Other points are the same as in the first embodiment.

つまり、EGR通路17に流入する排気ガスGeが、第1の実施の形態のエンジン1では、ターボ式過給機14のタービン14bを通過する前の排気ガスGの一部となっているのに対して、この第2の実施の形態のエンジン1Aでは、ターボ式過給機14のタービン14bを通過した後の排気ガスGの一部となっている。言い換えれば、第1の実施の形態のエンジン1では、高圧EGR方式が採用されており、第2の実施の形態のエンジン1Aでは低圧EGR方式が採用されている。   That is, the exhaust gas Ge flowing into the EGR passage 17 is a part of the exhaust gas G before passing through the turbine 14b of the turbocharger 14 in the engine 1 of the first embodiment. On the other hand, in the engine 1A of the second embodiment, it becomes a part of the exhaust gas G after passing through the turbine 14b of the turbocharger 14. In other words, the engine 1 of the first embodiment employs the high pressure EGR method, and the engine 1A of the second embodiment employs the low pressure EGR method.

次に、エンジン(内燃機関)1、1Aの制御装置40で行う、内燃機関の過給補助方法について説明する。この内燃機関の過給補助方法は、上記の構成のエンジン1、1Aで実施できる方法である。この内燃機関の過給補助方法は、エンジン1、1Aの排気通路(排気系通路)13の排気ガスGの一部Gpと空気Aaとこれらの混合ガスのいずれかのガスCを圧縮して貯蓄する。   Next, a supercharging assist method for the internal combustion engine performed by the control device 40 of the engine (internal combustion engine) 1 or 1A will be described. This supercharging assist method for an internal combustion engine is a method that can be implemented by the engine 1 or 1A having the above-described configuration. In this supercharging assist method for an internal combustion engine, a part of the exhaust gas G in the exhaust passage (exhaust system passage) 13 of the engines 1 and 1A, the air Aa, and any one of these mixed gases C are compressed and stored. To do.

それと共に、過給補助方法では、エンジン1、1Aの運転状態が過渡状態でないときには、エンジン1、1Aの排気ガスGの一部Geを、EGR通路17を経由してシリンダ内に再循環し、エンジン1、1Aが過渡状態であるときには、蓄ガス容器27に貯蔵されているガスCを一時的に吸気通路(吸気系通路)12に供給する過給補助を行う。この過給補助では、EGR通路17からのEGRガスGeと、吸気通路12からの新気Aとを流路切替装置30で遮断して、ガスCのみを、下流側の吸気通路12に供給する。   At the same time, in the supercharging assistance method, when the operating state of the engine 1, 1A is not a transient state, a part Ge of the exhaust gas G of the engine 1, 1A is recirculated into the cylinder via the EGR passage 17, When the engine 1, 1 </ b> A is in a transitional state, supercharging assistance for temporarily supplying the gas C stored in the gas storage container 27 to the intake passage (intake system passage) 12 is performed. In this supercharging assistance, the EGR gas Ge from the EGR passage 17 and the fresh air A from the intake passage 12 are blocked by the flow path switching device 30 and only the gas C is supplied to the downstream intake passage 12. .

また、この内燃機関の過給補助方法において、EGRガスGeと新気Aとの遮断、及びガスCの供給を、図7と図8で示すような三方切替弁で構成した流路切替装置30で行うか、あるいは、EGRガスGeと新気Aとの遮断、及びガスCの供給を、吸気通路(吸気系通路)12に設けた吸気弁(図示しない)と、蓄ガス供給通路28に設けた開閉弁(図示しない)で行う。   Further, in this supercharging assist method for an internal combustion engine, a flow path switching device 30 configured by a three-way switching valve as shown in FIGS. 7 and 8 for shutting off the EGR gas Ge and fresh air A and supplying the gas C. Or the EGR gas Ge and the fresh air A are shut off and the gas C is supplied to an intake valve (not shown) provided in the intake passage (intake system passage) 12 and to the stored gas supply passage 28. Open / close valve (not shown).

これらの制御においては制御装置40で、エンジン回転速度Ne、エンジン空気量(Mo、Me)、エンジン燃料量(燃料噴射量)Q、蓄ガス容器27の内部の圧力Pt等の検出値等に基づいて、調圧弁29とEGR弁21と流路切替装置30を制御する。   In these controls, the control device 40 is based on detected values such as the engine speed Ne, the engine air amount (Mo, Me), the engine fuel amount (fuel injection amount) Q, the pressure Pt inside the gas storage container 27, and the like. Thus, the pressure regulating valve 29, the EGR valve 21, and the flow path switching device 30 are controlled.

この過給補助方法では、過給補助を行う条件は、エンジン1、1Aを搭載した車両の加速時又は発進時などのエンジン1、1Aの運転状態が過渡状態であり、かつ、蓄ガス容器27の内圧Ptが予め設定した下限圧力PL以上(Pt≧PL)であり、かつ、測定されたエンジン回転速度Neとアクセル開度Acに基づく供給目標燃料量Qtが、無過給最大燃料量(ゼロブースト)Q0を超えるときのみ、過給補助を行う。   In this supercharging assistance method, the supercharging assistance is performed under the condition that the operating state of the engine 1, 1A such as when the vehicle equipped with the engine 1, 1A is accelerated or started is in a transient state, and the gas storage container 27 Is equal to or higher than a preset lower limit pressure PL (Pt ≧ PL), and the supply target fuel amount Qt based on the measured engine rotational speed Ne and the accelerator opening degree Ac is a non-supercharging maximum fuel amount (zero). Boost) Supercharge assistance is performed only when Q0 is exceeded.

この3つの過給補助開始の条件の一つである、エンジン1、1Aの運転状態が過渡状態であるか否かの判定は、エンジン回転速度Neの変化率ΔNe、アクセル開度(アクセル踏み込み量)Acの変化率ΔAc、燃料供給量Qinの変化率ΔQinで判定し、エンジン1、1Aの運転状態が過渡状態のときにのみ過給補助する。過渡状態で無ければターボラグの問題は生じないので過給補助は不要となるからである。   The determination of whether the operating state of the engine 1 or 1A is a transient state, which is one of the three conditions for starting supercharging assistance, is the change rate ΔNe of the engine rotational speed Ne, the accelerator opening (accelerator depression amount). ) Judgment is made based on the rate of change ΔAc of Ac and the rate of change ΔQin of the fuel supply amount Qin. This is because the turbo lag problem does not occur if it is not in a transient state, so supercharging assistance is unnecessary.

また、蓄ガス容器27に設けた圧力センサ51の検出値Ptと予め設定した下限圧力PLとを比較して、蓄ガス容器27の内圧Ptが下限圧力PL以上(Pt≧PL)の場合のみ過給補助するのは、蓄ガス容器27内の圧力Ptが下限圧力PL以上でなければ過給補助用のガスCが不足して十分な過給補助ができないからである。   Further, the detected value Pt of the pressure sensor 51 provided in the gas storage container 27 is compared with a preset lower limit pressure PL, and only when the internal pressure Pt of the gas storage container 27 is equal to or higher than the lower limit pressure PL (Pt ≧ PL). The reason why the supply is supplemented is that the supercharging assistance gas C is insufficient and sufficient supercharging assistance cannot be performed unless the pressure Pt in the gas storage container 27 is equal to or higher than the lower limit pressure PL.

更に、供給目標燃料量Qtが、無過給最大燃料量(ゼロブースト)Q0を超えている場合のみ過給補助を行う。即ち、図3に示す領域RB(無過給時のQ特性と過給時のQ特性の間の領域)の場合のみ過給補助を行う。この供給目標燃料量Qtは、過渡時にエンジン回転速度Neとアクセル開度Acで要求されるトルクを発生するための燃料量であり、計測されたエンジン回転速度Neとアクセル開度Acの値から供給燃料量算出用のマップデータ(Ne、Ac→Qt)を基に算出する。   Furthermore, supercharging assistance is performed only when the supply target fuel amount Qt exceeds the non-supercharging maximum fuel amount (zero boost) Q0. That is, supercharging assistance is performed only in the case of the region RB shown in FIG. 3 (region between the Q characteristic at the time of non-supercharging and the Q characteristic at the time of supercharging). The supply target fuel amount Qt is a fuel amount for generating torque required by the engine speed Ne and the accelerator opening degree Ac during a transition, and is supplied from the measured engine speed Ne and the accelerator opening degree Ac. Calculation is based on map data (Ne, Ac → Qt) for fuel amount calculation.

それと共に、エンジン回転速度Neにおける過給無しで燃焼できる無過給最大燃料量Q0を、無過給最大燃料量用のマップデータ(Ne→Q0)から算出する。この無過給最大燃料量Q0は無過給時のQ特性から求められる。この無過給最大燃料量Q0を燃焼できる無過給最大吸気量までは、ターボ式過給機14による過給無しで、また、過給補助をしないで吸気できる。これらの3つの条件を課することにより、過給補助が必要なときにのみ過給補助を行うことができる。   At the same time, the non-supercharged maximum fuel amount Q0 that can be burned without supercharging at the engine speed Ne is calculated from the map data (Ne → Q0) for the non-supercharged maximum fuel amount. This non-supercharging maximum fuel amount Q0 is obtained from the Q characteristic at the time of non-supercharging. Up to a non-supercharged maximum intake amount capable of burning the non-supercharged maximum fuel amount Q0, intake can be performed without supercharging by the turbo supercharger 14 and without supercharging assistance. By imposing these three conditions, supercharging assistance can be performed only when supercharging assistance is required.

そして、この過給補助の開始に関しては、吸気圧Pが、過給補助開始吸気圧P1を超えた(P≧P1)ときに開始する。この過給補助開始吸気圧P1は、無過給最大燃料量Q0に必要な空気量を供給するために必要な吸気圧である無過給最大吸気圧(ゼロブースト圧)P0に設定するか、または、この無過給最大吸気圧P0よりも少し低い値に設定する。この無過給最大吸気圧P0は、計測されたエンジン回転速度Neの値から無過給最大吸気圧P0用マップデータ(Ne→P0)を参照して算出する。   The supercharging assistance starts when the intake pressure P exceeds the supercharging assistance start intake pressure P1 (P ≧ P1). The supercharging assistance start intake pressure P1 is set to a non-supercharging maximum intake pressure (zero boost pressure) P0 that is an intake pressure necessary for supplying an air amount necessary for the non-supercharging maximum fuel amount Q0, Alternatively, it is set to a value slightly lower than this non-supercharging maximum intake pressure P0. This non-supercharging maximum intake pressure P0 is calculated by referring to the map data (Ne → P0) for non-supercharging maximum intake pressure P0 from the measured value of the engine speed Ne.

この吸気圧Pが無過給最大吸気圧P0以下(P<P0)では、過給及び過給補助が不要な領域であるので、過給が必要になるぎりぎりの過給補助開始吸気圧P1を吸気圧Pが超える(P≧P1)までは過給補助を開始しないように構成する。なお、ターボ式過給機14は稼動しているので、ターボラグのための時間遅れはあるが、吸気圧Pは過給補助開始吸気圧P1と無過給最大吸気圧P0を超える(P≧P1、P≧P0)ことになる。また、この過給補助を行っている期間の時間T0は、予め実験の結果等から設定しておく。こ時間T0は、例えば、1秒程度に設定される。   When the intake pressure P is equal to or less than the non-supercharging maximum intake pressure P0 (P <P0), supercharging and supercharging assistance are not necessary. The supercharging assistance is not started until the intake pressure P exceeds (P ≧ P1). Since the turbocharger 14 is operating, there is a time delay due to the turbo lag, but the intake pressure P exceeds the supercharge assist start intake pressure P1 and the non-supercharge maximum intake pressure P0 (P ≧ P1). , P ≧ P0). In addition, the time T0 of the period during which supercharging assistance is performed is set in advance from the results of experiments and the like. This time T0 is set to about 1 second, for example.

この過給補助が必要な供給目標燃料量Qtであっても、過給が必要になるぎりぎり(P≧P1)まで過給補助を開始しないことにより、蓄圧されたガスCの節約を図ることができる。これにより、過給補助用の蓄ガス容器(圧力容器)27内のガスCの消費を最小限にできる。   Even if it is the supply target fuel amount Qt that requires supercharging assistance, it is possible to save the accumulated gas C by not starting supercharging assistance until the limit (P ≧ P1) where supercharging is necessary. it can. Thereby, the consumption of the gas C in the supercharging assistance gas storage container (pressure vessel) 27 can be minimized.

また、ターボ式過給機14が故障して過給圧Pを上昇できなくなっても、即ち、吸気圧Pが無過給最大吸気圧P0を超える(P≧P0)状態にならなくても、厳密には、吸気圧Pが過給補助開始吸気圧P1を超える(P≧P1)状態にならなくても、通常の過給なしの供給目標燃料量Qtが最大燃料量Q0より小さい(Qt<Q0)範囲の制御には影響を及ぼさないので、そのまま内燃機関の運転が可能となる。この意味からも、無過給最大吸気圧P0と過給補助開始吸気圧P1は等しいか、異なっていても両者の差は小さい方が好ましい。   Further, even if the turbocharger 14 fails and the supercharging pressure P cannot be increased, that is, even if the intake pressure P does not exceed the non-supercharging maximum intake pressure P0 (P ≧ P0), Strictly speaking, even if the intake pressure P does not exceed the supercharging assist start intake pressure P1 (P ≧ P1), the normal supply target fuel amount Qt without supercharging is smaller than the maximum fuel amount Q0 (Qt < Since the Q0) range control is not affected, the internal combustion engine can be operated as it is. From this point of view, it is preferable that the maximum difference between the non-supercharging maximum intake pressure P0 and the supercharging assist start intake pressure P1 is the same or different even if they are different.

この過給補助に際しての燃料供給は、供給目標燃料量Qtが、無過給最大燃料量Q0を越える場合の燃料供給制御であり、供給目標燃料量Qtは無過給最大燃料量Q0より大きいけれど、吸気圧Pが過給補助開始吸気圧P1になるまでは、言い換えれば、過給補助が行われるまでは、燃料供給量Qinを無過給最大燃料量Q0以下に制限する。これにより、燃料供給量Qinがスモークリミット以内(図3の領域RA内)となるのでスモーク発生を回避できる。この時の発生トルクは要求トルクより低いが、ガスCの節約のために吸気圧Pの上昇を待つ。   The fuel supply at the time of supercharging assistance is fuel supply control when the supply target fuel amount Qt exceeds the non-supercharging maximum fuel amount Q0, although the supply target fuel amount Qt is larger than the non-supercharging maximum fuel amount Q0. Until the intake pressure P becomes the supercharging assistance start intake pressure P1, in other words, until the supercharging assistance is performed, the fuel supply amount Qin is limited to the non-supercharging maximum fuel amount Q0 or less. As a result, the fuel supply amount Qin is within the smoke limit (within the region RA in FIG. 3), so that smoke can be avoided. The generated torque at this time is lower than the required torque, but the intake pressure P is increased to save the gas C.

吸気圧Pが過給補助開始気圧P1を超えて、ガスCによる過給補助が開始されたときから、燃料供給量Qinを供給目標燃料量Qtとする。これにより、過給補助が開始された後では、燃料供給量Qinが無過給最大燃料量Q0より大きい供給目標燃料量Qtになってもスモーク発生を回避できる。この時の発生トルクは要求トルクとなる。   The fuel supply amount Qin is set as the supply target fuel amount Qt from when the intake pressure P exceeds the supercharging assistance start pressure P1 and supercharging assistance by the gas C is started. Thus, after the supercharging assistance is started, it is possible to avoid the occurrence of smoke even if the fuel supply amount Qin becomes the supply target fuel amount Qt that is larger than the non-supercharging maximum fuel amount Q0. The generated torque at this time is the required torque.

なお、ターボラグ中に行われる過給補助を停止してターボ式過給機14による過給に切り替えた後は、ターボ式過給機14のターボラグが解消した後となり十分な過給が行われているので、燃料供給量Qinを供給目標燃料量Qtにしてもスモーク発生を回避できる。この燃料供給量Qinを供給目標燃料量Qtにすることにより、発生トルクは要求トルクとなる。これにより、スモークの防止と共に、空気不足状態における過剰な燃料供給、即ち、トルクを発生させない無駄な燃料の消費を回避でき、燃費を向上できる。   Note that after the supercharging assistance performed during the turbo lag is stopped and the turbo supercharger 14 is switched to supercharging, the turbo lag of the turbo supercharger 14 is eliminated and sufficient supercharging is performed. Therefore, the occurrence of smoke can be avoided even if the fuel supply amount Qin is set to the supply target fuel amount Qt. By setting the fuel supply amount Qin to the supply target fuel amount Qt, the generated torque becomes the required torque. As a result, smoke can be prevented, excessive fuel supply in an air shortage state, that is, useless fuel consumption without generating torque can be avoided, and fuel consumption can be improved.

次に、上記の過給補助を行うための制御について、図4及び図5に例示する制御フローに基づいて説明する。この図4及び図5の制御フローは、エンジン1、1Aの運転開始と共に、上位の制御フローから呼ばれて、スタートし、ステップS11〜ステップS20、又は、ステップS11〜ステップS30を繰り返し実施し、エンジン1、1Aの運転停止により、割り込みが発生して、制御フローの途中からリターンに行き、上位の制御フローに戻って、この制御フローの実施が停止するものとして示してある。   Next, control for performing the above-described supercharging assistance will be described based on the control flow illustrated in FIGS. 4 and 5. The control flow of FIGS. 4 and 5 is called from the upper control flow together with the start of operation of the engines 1 and 1A, starts, and repeatedly executes step S11 to step S20 or step S11 to step S30. An interruption is generated by stopping the operation of the engines 1 and 1A, the return is performed from the middle of the control flow, the control flow is returned to the upper control flow, and the execution of this control flow is stopped.

図4の制御フローが呼ばれると、ステップS11で、この制御に必要なデータを入力及び算出する。これらのデータとしては、エンジン回転速度センサで計測されるエンジン回転速度Ne、アクセル開度センサで計測されるアクセル開度Ac、燃料流量センサで計測、またはエンジン回転速度Neとアクセル開度Acから算出される供給目標燃料量Qtがあり、また、通常エンジンに装着されているブーストセンサ(吸気圧力計)で計測された吸気圧P、蓄ガス容器27の内部の圧力(内圧)Pt等がある。   When the control flow of FIG. 4 is called, in step S11, data necessary for this control is input and calculated. As these data, the engine rotation speed Ne measured by the engine rotation speed sensor, the accelerator opening Ac measured by the accelerator opening sensor, the measurement by the fuel flow rate sensor, or calculated from the engine rotation speed Ne and the accelerator opening Ac. There are a target fuel amount Qt to be supplied, an intake pressure P measured by a boost sensor (intake pressure gauge) usually mounted on the engine, an internal pressure (internal pressure) Pt of the gas storage container 27, and the like.

次のステップS12では、予め設定されている判定用データを入力したり、ステップS11で入力したデータと予め設定されているマップデータを基に、各判定用データを算出したりする。この判定用データとしては、エンジン1、1Aの運転状態が過渡状態であるか否かを判定するための、エンジン回転速度Neの判定用変化率ΔNe0、アクセル開度Acの判定用変化率ΔAc0、燃料供給量Qinの判定用変化率ΔQin0、蓄ガス容器27の内圧Ptを判定するための下限圧力PL、無過給最大燃料量(ゼロブースト)Q0がある。   In the next step S12, preset determination data is input, or each determination data is calculated based on the data input in step S11 and preset map data. As the determination data, a determination change rate ΔNe0 of the engine rotation speed Ne and a determination change rate ΔAc0 of the accelerator opening Ac for determining whether or not the operating state of the engines 1 and 1A is in a transient state. There are a change rate ΔQin0 for determination of the fuel supply amount Qin, a lower limit pressure PL for determining the internal pressure Pt of the gas storage container 27, and a non-supercharging maximum fuel amount (zero boost) Q0.

次のステップS13では、エンジン1、1Aの運転状態が過渡状態であるか否かを判定する。この判定は、例えば、エンジン回転速度Neの変化率ΔNe、アクセル開度(アクセル踏み込み量)Acの変化率ΔAc、燃料供給量Qinの変化率ΔQinの一つ又は幾つかの組み合わせが各判定用変化率ΔNe0、ΔAc0、ΔQin0以上であるか否かで判定する。この判定で、過渡状態で無ければ(NO)、ステップS20に行き、過給補助無しの通常制御運転を行う。また、この判定で、過渡状態であれば(YES)、ステップS14に行く。   In the next step S13, it is determined whether or not the operating state of the engines 1 and 1A is in a transient state. In this determination, for example, one or several combinations of a change rate ΔNe of the engine speed Ne, a change rate ΔAc of the accelerator opening (accelerator depression amount) Ac, and a change rate ΔQin of the fuel supply amount Qin are changed for each determination. Judgment is made based on whether or not the rates are ΔNe0, ΔAc0, and ΔQin0. If it is determined in this determination that there is no transient state (NO), the process goes to step S20, and normal control operation without supercharging assistance is performed. If it is determined that the state is a transient state (YES), the process goes to step S14.

ステップS14では、蓄ガス容器27の内圧Ptの判定を行い、内圧Ptが下限圧力PLより小さい(Pt<PL)場合には(NO)、ステップS20に行き、過給補助無しの通常制御運転を行う。また、内圧Ptが下限圧力PL以上(Pt≧PL)の場合は(YES)、ステップS15に行く。   In step S14, the internal pressure Pt of the gas storage container 27 is determined. If the internal pressure Pt is smaller than the lower limit pressure PL (Pt <PL) (NO), the process goes to step S20 to perform normal control operation without supercharging assistance. Do. When the internal pressure Pt is equal to or higher than the lower limit pressure PL (Pt ≧ PL) (YES), the process goes to step S15.

ステップS15では、供給目標燃料量Qtの判定を行い、供給目標燃料量Qtが、無過給最大燃料量Q0以下の場合は(NO)は、ステップS20に行き、過給補助無しの通常制御運転を行う。また、供給目標燃料量Qtが、無過給最大燃料量Q0を越えている場合は(NO)は、ステップS30に行き、過給補助運転を行う。   In step S15, the supply target fuel amount Qt is determined. If the supply target fuel amount Qt is equal to or less than the non-supercharging maximum fuel amount Q0 (NO), the process goes to step S20, and normal control operation without supercharging assistance is performed. I do. When the supply target fuel amount Qt exceeds the non-supercharging maximum fuel amount Q0 (NO), the process goes to step S30 to perform the supercharging assist operation.

ステップS20の通常運転では、過給補助システムを備えていないエンジンにおける制御と同様な制御を所定の時間(ステップS11のエンジンの運転状態の判定のインターバルに関係する予め設定された時間)の間行い、ステップS11に戻る。   In the normal operation in step S20, the same control as that in the engine not provided with the supercharging assist system is performed for a predetermined time (a preset time related to the determination of the engine operating state in step S11). Return to step S11.

ステップS30の過給補助運転では、図5に示すように、ステップS31で、時々刻々の吸気圧Pを入力して、ステップS32で、吸気圧Pの判定を行い、吸気圧Pが過給補助開始吸気圧P1より小さい(P<P1)場合は(NO)、ステップS33に行き、燃料供給量Qinを時々刻々に計測されるエンジン回転速度Neとアクセル開度Acから算出される供給目標燃料量Qtではなく、時々刻々に計測されるエンジン回転速度Neから算出される無過給最大燃料量Q0に設定してシリンダ内への燃料噴射を所定の時間(吸気圧の判定のインターバルに関係する予め設定された時間)の間行い、ステップS31に戻る。また、この時点では、まだ、蓄ガス容器27からのガスCの供給は行わない。   In the supercharging assist operation in step S30, as shown in FIG. 5, the intake pressure P is input every moment in step S31, the intake pressure P is determined in step S32, and the intake pressure P is supercharged. If it is smaller than the starting intake pressure P1 (P <P1) (NO), go to step S33 and supply target fuel amount calculated from the engine rotation speed Ne and the accelerator opening degree Ac that are measured every moment of the fuel supply amount Qin. It is set not to Qt but to the non-supercharged maximum fuel amount Q0 calculated from the engine rotational speed Ne measured every moment, and fuel injection into the cylinder is performed for a predetermined period of time (in advance related to the intake pressure determination interval). For a set time), and the process returns to step S31. At this time, the supply of gas C from the gas storage container 27 is not yet performed.

そして、ステップS32で、吸気圧Pが過給補助開始吸気圧P1以上(P≧P1)の場合は(YES)、ステップS34で、EGR弁21を閉弁制御し、流路切替装置30を流路切替制御して、吸気通路12とEGR通路17を遮断すると共に、蓄ガス供給通路28と吸気通路12の下流側を連通して、予め設定された時間T0の間のみ蓄圧されたガスCの供給を行って過給補助を行う。このステップS34では、ステップS33で無過給最大燃料量Q0に制限されていた燃料供給量Qinの制限を解除し、燃料供給量Qinを時々刻々に計測されるエンジン回転速度Neとアクセル開度Acから算出される供給目標燃料量Qtに設定してシリンダ内への燃料噴射を行う。   In step S32, when the intake pressure P is equal to or higher than the supercharging assist start intake pressure P1 (P ≧ P1) (YES), the EGR valve 21 is controlled to be closed and the flow path switching device 30 is allowed to flow in step S34. The passage switching control is performed so that the intake passage 12 and the EGR passage 17 are shut off, and the storage gas supply passage 28 and the downstream side of the intake passage 12 are communicated with each other, so that the gas C accumulated only during a preset time T0 is supplied. Supply and provide supercharging assistance. In this step S34, the restriction on the fuel supply amount Qin, which was limited to the maximum amount of unsupercharged fuel Q0 in step S33, is released, and the engine rotation speed Ne and the accelerator opening degree Ac that are measured every moment. Is set to the supply target fuel amount Qt calculated from the above, and fuel is injected into the cylinder.

ステップS34の蓄圧されたガスCの供給が時間T0を経過しして停止されると、ステップS35に行き、燃料供給量Qinを時々刻々に計測されるエンジン回転速度Neとアクセル開度Acから算出される供給目標燃料量Qtに設定した状態で、言い換えれば、燃料供給量Qinを無過給最大燃料量Q0に制限していた状態を解除した状態で、予め設定した時間、ターボ式過給機14による過給を必要に応じて用いた状態での運転、言い換えれば、蓄圧されたガスCによる過給補助無しの運転を所定の時間(ステップS36の運転状態の判定のインターバルに関係する予め設定された時間)の間行い、ステップS36に行く。   When the supply of the accumulated gas C in step S34 is stopped after the time T0 has elapsed, the process goes to step S35, and the fuel supply amount Qin is calculated from the engine speed Ne and the accelerator opening degree Ac that are measured every moment. In a state where the target fuel amount Qt is set, in other words, in a state where the state where the fuel supply amount Qin is limited to the non-supercharged maximum fuel amount Q0 is released, for a preset time, the turbocharger The operation in a state where supercharging by 14 is used as necessary, in other words, the operation without supercharging assistance by the accumulated gas C is set in advance for a predetermined time (related to the operation state determination interval in step S36). ) And go to step S36.

ステップS36では、エンジン1、1Aの運転状態を判定し、運転状態が過渡状態のまま(YES)ではステップS35に戻り、運転状態が過渡状態でなくなった場合には(NO)、ステップS30を終了する。この判定は、ステップS13の判定と同様な判定基準で行われる。ステップS30を終了すると、ステップS11に戻る。   In step S36, the operating state of the engine 1, 1A is determined. If the operating state remains in a transient state (YES), the process returns to step S35. If the operating state is no longer in a transient state (NO), step S30 is terminated. To do. This determination is performed based on the same determination criteria as the determination in step S13. When step S30 ends, the process returns to step S11.

このステップS11〜ステップS20、又は、ステップS11〜ステップS30の繰り返しの実施により、上記の過給補助を行う制御を実施することができる。なお、エンジン1、1Aが運転停止された場合は、割り込みが発生して、フローの途中からリターンに行き、上位の制御フローに戻って、この制御フローの実施が停止する。   By repeating the steps S11 to S20 or the steps S11 to S30, it is possible to carry out the above-described supercharging assistance control. When the operation of the engine 1 or 1A is stopped, an interrupt is generated, the process goes to return from the middle of the flow, returns to the upper control flow, and the execution of this control flow is stopped.

上記の内燃機関の過給補助方法及びエンジン(内燃機関)1、1Aによれば、エンジン1、1Aを搭載した車両の急加速時や発進時等のエンジン1、1Aの運転状態が過渡状態のときにおいて、ターボ式過給機14のターボラグに起因する加速性能の低下を最小限に防止し、排気ガスG中の粒子状物質(PM)と窒素酸化物(NOx)の低減を図ることができる蓄圧されたガスCによる過給補助において、過給補助が必要なときにのみ過給補助を行うので、過給補助用の蓄ガス容器27に貯蔵しているガスCの消費を最小限にすることができる。また、これにより、ガスCの不足による過給補助の制限が少なくなると共に、再度蓄圧するまでの時間や仕事量を減少でき、燃費を向上できる。   According to the supercharging assistance method for the internal combustion engine and the engines (internal combustion engines) 1 and 1A, the operating state of the engine 1 and 1A at the time of sudden acceleration or start of the vehicle equipped with the engine 1 and 1A is in a transient state. Sometimes, the reduction in acceleration performance due to the turbo lag of the turbocharger 14 can be prevented to a minimum, and particulate matter (PM) and nitrogen oxides (NOx) in the exhaust gas G can be reduced. In supercharging assistance using the accumulated gas C, supercharging assistance is performed only when supercharging assistance is necessary, so that the consumption of the gas C stored in the supercharging assistance gas storage container 27 is minimized. be able to. In addition, this makes it possible to reduce the limitation of supercharging assistance due to the shortage of gas C, to reduce the time and work amount until accumulating again, and to improve fuel efficiency.

また、吸気圧Pが、過給補助開始吸気圧P1(無過給最大燃料量Q0の燃料を燃焼できる吸気量を供給できる無過給最大吸気圧P0又はこれより少し小さい値)になってから、過給補助を行うことにより、過給補助が必要な供給目標燃料量Qtであっても、吸気圧Pが、過給が必要になるぎりぎりの無過給最大吸気圧P0近傍までは過給補助を開始しないので、つまり、加速時や発進時の過渡状態のときにスモークリミットで燃料供給量Qinが絞られそうになってから過給補助を行うので、過給補助用の蓄ガス容器27内のガスCの消費を最小限にすることができ、蓄圧されたガスCの節約を図ることができる。   Also, after the intake pressure P becomes the supercharging assist start intake pressure P1 (the non-supercharged maximum intake pressure P0 that can supply the intake amount capable of burning the fuel of the non-supercharged maximum fuel amount Q0 or a value slightly smaller than this). By supercharging assistance, even if the target fuel amount Qt requires supercharging assistance, the supercharging is performed until the intake pressure P is close to the maximum non-supercharging maximum intake pressure P0 where supercharging is necessary. Since assistance is not started, that is, supercharging assistance is performed after the fuel supply amount Qin is likely to be throttled by the smoke limit in a transient state at the time of acceleration or starting, the gas storage container 27 for supercharging assistance. The consumption of the gas C can be minimized, and the accumulated gas C can be saved.

その上、この過給補助方法を採用することで、ターボ式過給機14が万一故障して、吸気圧Pが上昇しなくなっても、即ち、吸気圧Pが、無過給最大吸気圧Q0以上にならなくても、通常の過給無しの燃料供給量Qinが無過給最大燃料量Q0より小さい範囲内のEGR及び吸気方法には、上記の過給補助方法は影響を及ぼさないので、そのままエンジン1、1Aの運転を継続することができる。   In addition, by adopting this supercharging assistance method, even if the turbocharger 14 breaks down and the intake pressure P does not increase, that is, the intake pressure P becomes the maximum non-supercharged intake pressure. Even if the fuel supply amount Qin without normal supercharging is not greater than Q0, the above supercharging assistance method does not affect EGR and the intake method within the range where the normal fuel supply amount Qin without supercharging is smaller than the maximum non-supercharging fuel amount Q0. The operation of the engine 1, 1A can be continued as it is.

更に、過給補助の際に、吸気圧Pが過給補助開始圧力P1(≒無過給最大吸気圧P0)になるまでは、燃料供給量Qinを無過給最大燃料量Q0とし、吸気圧Pが過給補助開始圧力P1(≒無過給最大吸気圧P0)を超えて、過給補助が開始されたときから、燃料供給量Qinを供給目標燃料量Qtとすることにより、過給補助開始までの間の空気不足における過剰な燃料供給を回避できるので、スモークの発生を防止できると共に、トルクを発生させない無駄な燃料の消費を回避でき燃費を向上できる。   Further, during the supercharging assistance, the fuel supply amount Qin is set to the nonsupercharging maximum fuel amount Q0 until the intake pressure P reaches the supercharging assistance start pressure P1 (≈unsupercharged maximum intake pressure P0). Supercharging assistance is achieved by setting the fuel supply amount Qin as the supply target fuel amount Qt from when the supercharging assistance is started when P exceeds the supercharging assistance start pressure P1 (≈unsupercharged maximum intake pressure P0). Since excessive fuel supply due to shortage of air before the start can be avoided, the generation of smoke can be prevented, and consumption of useless fuel that does not generate torque can be avoided and fuel efficiency can be improved.

本発明の内燃機関の過給補助方法及び内燃機関は、蓄圧されたガスを用いる過給補助を行う内燃機関において、急加速時や発進時などの内燃機関の過渡状態において、過給補助用の蓄ガス容器内のガスの消費量を最小限にできると共に、ターボラグに起因する加速性能の低下を最小限に防止し、粒子状物質と窒素酸化物の低減と燃費向上が可能となる。   A supercharging assistance method and an internal combustion engine for an internal combustion engine according to the present invention are provided for supercharging assistance in an internal combustion engine that performs supercharging assistance using stored pressure gas in a transient state of the internal combustion engine such as during rapid acceleration or starting. The consumption of gas in the gas storage container can be minimized, the deterioration of acceleration performance due to the turbo lag can be prevented to a minimum, particulate matter and nitrogen oxides can be reduced, and fuel consumption can be improved.

従って、ガス圧縮装置を用いて、排気ガスの一部と新気とこれらの混合ガスのいずれかのガスを蓄ガス容器に溜め込み、負荷が急激に増加する過渡状態のときに前記ガスをシリンダ内に一時的に供給して過渡状態のNOxの排出を抑制するとともに加速性能を向上させる、トラックやバスや乗用車等に搭載する内燃機関の過給補助方法及び内燃機関で利用できる。   Therefore, a part of the exhaust gas, fresh air, and any of these mixed gases are stored in the gas storage container using a gas compression device, and the gas is stored in the cylinder in a transient state where the load increases rapidly. It can be used in a supercharging assist method for an internal combustion engine mounted on a truck, a bus, a passenger car, etc., and an internal combustion engine that can be temporarily supplied to the vehicle to suppress NOx emission in a transient state and improve acceleration performance.

1、1A、1X,1Y,1Z エンジン(内燃機関)
11 エンジン本体
11a 吸気マニホールド(吸気系通路)
11b 排気マニホールド(排気系通路)
12 吸気通路(吸気系通路)
13 排気通路(排気系通路)
14 ターボ式過給機
17 EGR通路
21 EGR弁
22 排気ガス導入通路
25 ガス圧縮装置
26 圧縮ガス供給通路
27 蓄ガス容器
28 蓄ガス供給通路
30 流路切替装置
31 車両の車軸
34 電磁クラッチ
35 吸気弁(吸気スロットル)
40 制御装置
51 圧力センサ
A 新気
Aa 空気
Ac アクセル開度
C ガス
G 排気ガス
Ge EGRガス
Gp 排気ガスの一部
Ne エンジン回転速度
P 吸気圧
P0 無過給最大吸気圧(ゼロブースト圧)
P1 過給補助開始吸気圧
Pt 蓄ガス容器の内圧
PL 下限圧力
Q0 無過給最大燃料量(ゼロブーストQ)
Qin 燃料供給量
Qt 供給目標燃料量
T0 過給補助を行っている時間
1, 1A, 1X, 1Y, 1Z engine (internal combustion engine)
11 Engine body 11a Intake manifold (intake system passage)
11b Exhaust manifold (exhaust system passage)
12 Intake passage (intake system passage)
13 Exhaust passage (exhaust system passage)
14 Turbocharger 17 EGR passage 21 EGR valve 22 Exhaust gas introduction passage 25 Gas compression device 26 Compressed gas supply passage 27 Gas storage container 28 Gas storage supply passage 30 Flow path switching device 31 Vehicle axle 34 Electromagnetic clutch 35 Intake valve (Intake throttle)
40 Control Device 51 Pressure Sensor A Fresh Air Aa Air Ac Accelerator Opening C Gas G Exhaust Gas Ge EGR Gas Gp Exhaust Gas Part Ne Engine Speed P Intake Pressure P0 Unsupercharged Maximum Intake Pressure (Zero Boost Pressure)
P1 Supercharging assistance start intake pressure Pt Internal pressure PL of gas storage container Lower limit pressure Q0 Maximum fuel amount without supercharging (zero boost Q)
Qin Fuel supply amount Qt Supply target fuel amount T0 Time during which supercharging assistance is performed

Claims (6)

内燃機関の排気ガスの一部をシリンダ内に再循環するためのEGR通路と、
内燃機関の排気ガスの一部と空気とこれらの混合ガスのいずれかのガスを圧縮するガス圧縮装置と、
該ガス圧縮装置で圧縮された前記ガスを貯蓄する蓄ガス容器と、
該蓄ガス容器と吸気系通路を流路切替装置を介して接続する蓄ガス供給通路を備えた内燃機関の過給補助方法において、
内燃機関の過渡状態で、かつ、前記蓄ガス容器の内部の圧力が予め設定した下限圧力以上で、かつ、測定されたエンジン回転速度とアクセル開度から算出された供給目標燃料量が、同じエンジン回転速度に対しての過給を行わないときの無過給最大燃料量以上であるときのみ、EGR弁の操作と流路切替装置の流路切替操作により、EGRガスと吸気を遮断して蓄ガス容器の前記ガスを吸気通路に供給する過給補助を行うことを特徴とする内燃機関の過給補助方法。
An EGR passage for recirculating a portion of the exhaust gas of the internal combustion engine into the cylinder;
A gas compression device for compressing a part of the exhaust gas of the internal combustion engine, air, and any of these mixed gases;
A gas storage container for storing the gas compressed by the gas compression device;
In the supercharging assist method for an internal combustion engine provided with a stored gas supply passage for connecting the gas storage container and the intake system passage through a flow switching device,
The engine is in a transient state of the internal combustion engine, the internal pressure of the gas storage container is equal to or higher than a preset lower limit pressure, and the supply target fuel amount calculated from the measured engine speed and accelerator opening is the same. The EGR gas and intake air are shut off and stored only by operating the EGR valve and the flow path switching operation of the flow path switching device only when the amount of fuel is equal to or greater than the maximum amount of unsupercharged fuel when supercharging is not performed for the rotational speed. A supercharging assistance method for an internal combustion engine, characterized by performing supercharging assistance for supplying the gas in a gas container to an intake passage.
吸気圧が、前記無過給最大燃料量の燃料を燃焼できる吸気量を供給できる無過給最大吸気圧、又は、該無過給最大吸気圧より低く設定された過給補助開始吸気圧になってから、前記過給補助を行うことを特徴とする請求項1記載の内燃機関の過給補助方法。   The intake pressure becomes the non-supercharged maximum intake pressure that can supply the intake amount capable of burning the non-supercharged maximum fuel amount, or the supercharging assist start intake pressure that is set lower than the non-supercharged maximum intake pressure. 2. The supercharging assistance method for an internal combustion engine according to claim 1, wherein the supercharging assistance is performed after a while. 前記過給補助の際に、前記吸気圧が前記過給補助開始吸気圧になるまでは、燃料供給量を前記無過給最大燃料量とし、前記吸気圧が前記過給補助開始吸気圧を超えて、過給補助が開始されたときから、燃料供給量を前記供給目標燃料量とすることを特徴とする請求項2記載の内燃機関の過給補助方法。   During the supercharging assistance, the fuel supply amount is set to the non-supercharging maximum fuel amount until the intake pressure becomes the supercharging assistance start intake pressure, and the intake pressure exceeds the supercharging assistance start intake pressure. 3. The supercharging assist method for an internal combustion engine according to claim 2, wherein the fuel supply amount is set to the supply target fuel amount after supercharging assistance is started. 内燃機関の排気ガスの一部をシリンダ内に再循環するためのEGR通路と、
内燃機関の排気ガスの一部と空気とこれらの混合ガスのいずれかのガスを圧縮するガス圧縮装置と、
該ガス圧縮装置で圧縮された前記ガスを貯蓄する蓄ガス容器と、
該蓄ガス容器と吸気系通路を流路切替装置を介して接続する蓄ガス供給通路と、
前記EGR通路の備えたEGR弁と前記流路切替装置を制御する制御装置を備えた内燃機関において、
前記制御装置が、内燃機関の過渡状態で、かつ、前記蓄ガス容器の内部の圧力が予め設定した下限圧力以上で、かつ、測定されたエンジン回転速度とアクセル開度から算出された供給目標燃料量が、同じエンジン回転速度に対しての過給を行わないときの無過給最大燃料量以上であるときのみ、EGR弁の操作と流路切替装置の流路切替操作により、EGRガスと吸気を遮断して蓄ガス容器の前記ガスを吸気通路に供給する過給補助を行う制御をすることを特徴とする内燃機関。
An EGR passage for recirculating a portion of the exhaust gas of the internal combustion engine into the cylinder;
A gas compression device for compressing a part of the exhaust gas of the internal combustion engine, air, and any of these mixed gases;
A gas storage container for storing the gas compressed by the gas compression device;
A storage gas supply passage connecting the gas storage container and the intake system passage through a flow switching device;
In an internal combustion engine including an EGR valve provided in the EGR passage and a control device for controlling the flow path switching device,
Supply target fuel calculated from the measured engine speed and accelerator opening when the control device is in a transient state of the internal combustion engine, and the pressure inside the gas storage container is equal to or higher than a preset lower limit pressure. Only when the amount is equal to or greater than the maximum amount of unsupercharged fuel when supercharging is not performed for the same engine speed, the EGR gas and the intake air are operated by the operation of the EGR valve and the channel switching operation of the channel switching device. An internal combustion engine that performs supercharging assistance that shuts off the gas and supplies the gas in the gas storage container to the intake passage.
前記制御装置が、吸気圧が、前記無過給最大燃料量の燃料を燃焼できる吸気量を供給できる無過給最大吸気圧、又は、該無過給最大吸気圧より低く設定された過給補助開始吸気圧になってから、前記過給補助を行う制御をすることを特徴とする請求項4記載の内燃機関。   The control device is configured to provide a non-supercharged maximum intake pressure capable of supplying an intake amount capable of burning the fuel of the non-supercharged maximum fuel amount, or a supercharging assist set to be lower than the non-supercharged maximum intake pressure. The internal combustion engine according to claim 4, wherein the supercharging assistance is controlled after the start intake pressure is reached. 前記制御装置が、前記過給補助の際に、前記吸気圧が前記過給補助開始吸気圧になるまでは、燃料供給量を前記無過給最大燃料量とし、前記吸気圧が前記過給補助開始吸気圧を超えて、過給補助が開始されたときから、燃料供給量を前記供給目標燃料量とする制御をすることを特徴とする請求項5記載の内燃機関。   When the supercharging assistance is performed, the control device sets the fuel supply amount to the non-supercharging maximum fuel amount until the intake pressure reaches the supercharging assistance start intake pressure, and the intake pressure serves as the supercharging assistance. 6. The internal combustion engine according to claim 5, wherein the control is performed so that the fuel supply amount is the supply target fuel amount from when the supercharging assistance is started beyond the start intake pressure.
JP2011125061A 2011-06-03 2011-06-03 Supercharging assist method for internal combustion engine and internal combustion engine Expired - Fee Related JP5824881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011125061A JP5824881B2 (en) 2011-06-03 2011-06-03 Supercharging assist method for internal combustion engine and internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011125061A JP5824881B2 (en) 2011-06-03 2011-06-03 Supercharging assist method for internal combustion engine and internal combustion engine

Publications (2)

Publication Number Publication Date
JP2012251489A true JP2012251489A (en) 2012-12-20
JP5824881B2 JP5824881B2 (en) 2015-12-02

Family

ID=47524520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011125061A Expired - Fee Related JP5824881B2 (en) 2011-06-03 2011-06-03 Supercharging assist method for internal combustion engine and internal combustion engine

Country Status (1)

Country Link
JP (1) JP5824881B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086810A (en) * 2013-10-31 2015-05-07 いすゞ自動車株式会社 Turbocharger auxiliary system of internal combustion engine and turbocharger auxiliary method of internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646338U (en) * 1987-07-02 1989-01-13
JPH02215930A (en) * 1989-02-16 1990-08-28 Riken Corp Supercharger for internal combustion engine
JP2004108268A (en) * 2002-09-19 2004-04-08 Mitsubishi Fuso Truck & Bus Corp Control device of internal combustion engine
JP2011021558A (en) * 2009-07-16 2011-02-03 Isuzu Motors Ltd Supercharge control method and supercharge control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646338U (en) * 1987-07-02 1989-01-13
JPH02215930A (en) * 1989-02-16 1990-08-28 Riken Corp Supercharger for internal combustion engine
JP2004108268A (en) * 2002-09-19 2004-04-08 Mitsubishi Fuso Truck & Bus Corp Control device of internal combustion engine
JP2011021558A (en) * 2009-07-16 2011-02-03 Isuzu Motors Ltd Supercharge control method and supercharge control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086810A (en) * 2013-10-31 2015-05-07 いすゞ自動車株式会社 Turbocharger auxiliary system of internal combustion engine and turbocharger auxiliary method of internal combustion engine

Also Published As

Publication number Publication date
JP5824881B2 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
CN102121437B (en) The system and method for air inlet is provided to engine in vehicle
EP2320051B1 (en) Emission control system for an engine having a two-stage turbocharger
US20120060498A1 (en) Warming Intake Air Using EGR Cooler in Dual-Throttle Boosted Engine System
KR100962160B1 (en) Boost pressure control
JP5169439B2 (en) Internal combustion engine control device and internal combustion engine control system
JP2006233898A (en) Egr device
US10760504B2 (en) Method for controlling an internal combustion engine
JP2015229993A (en) Internal combustion engine control device
JP6060492B2 (en) Internal combustion engine and control method thereof
JP2013057289A (en) Supercharging system of internal combustion engine
JP2011069305A (en) Internal combustion engine and method for controlling the same
JP3674254B2 (en) EGR device for supercharged engine
JP2008163794A (en) Exhaust gas recirculation device for internal combustion engine
KR101683495B1 (en) Engine system having turbo charger
JP4419860B2 (en) Combustion control system for compression ignition internal combustion engine
JP2016188607A (en) Internal combustion engine and supercharging method for the same
JP2011001877A (en) Internal combustion engine equipped with mechanical supercharger and supercharging method therefor
JP3807368B2 (en) Diesel engine control device
JP2009191667A (en) Supercharging device and supercharging engine system
JP5824881B2 (en) Supercharging assist method for internal combustion engine and internal combustion engine
JP5834505B2 (en) Supercharging assist method for internal combustion engine and internal combustion engine
JP2006299892A (en) Internal combustion engine with supercharger
JP5845640B2 (en) Flow path switching valve and internal combustion engine provided with the same
JP5742484B2 (en) Supercharging assist method for internal combustion engine and internal combustion engine
JP5830946B2 (en) Supercharging assist method for internal combustion engine and internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150928

R150 Certificate of patent or registration of utility model

Ref document number: 5824881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees