JP2012247280A - Image inspection device and image forming apparatus - Google Patents

Image inspection device and image forming apparatus Download PDF

Info

Publication number
JP2012247280A
JP2012247280A JP2011118657A JP2011118657A JP2012247280A JP 2012247280 A JP2012247280 A JP 2012247280A JP 2011118657 A JP2011118657 A JP 2011118657A JP 2011118657 A JP2011118657 A JP 2011118657A JP 2012247280 A JP2012247280 A JP 2012247280A
Authority
JP
Japan
Prior art keywords
image
light
inspection
illumination
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011118657A
Other languages
Japanese (ja)
Inventor
Fumihiro Nakashige
文宏 中重
Hitoshi Ito
仁志 伊藤
Keiji Kojima
啓嗣 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2011118657A priority Critical patent/JP2012247280A/en
Publication of JP2012247280A publication Critical patent/JP2012247280A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive image inspection device and image forming apparatus for highly accurately inspecting concentration distribution and glossiness distribution in the overall area of an object to be measured.SOLUTION: The image inspection device is configured to simultaneously light an illumination device 14 for glassiness and an illumination device 15 for concentration, and to make a paper feeding device 13 convey an output image. Also, the image inspection device includes: an image pickup element line 11a for receiving only the regular reflection rays of light of invisible rays of light from the surface of the image of an object 22 to be inspected, and for outputting glossiness distribution on the basis of the light quantity; and an image pickup element line 11b for receiving only the distributed reflection rays of light of visible rays of light reflected after transmitted inside the image of the object 22 to be inspected, and for outputting concentration distribution on the basis of the light quantity. Thus, it is possible to simultaneously inspect the glossiness distribution and concentration distribution of the whole area of the object to be inspected.

Description

本発明は、被検査対象物の画像を検査する画像検査装置、及びこれを備えた画像形成装置に関するものである。   The present invention relates to an image inspection apparatus that inspects an image of an object to be inspected, and an image forming apparatus including the image inspection apparatus.

電子写真方式の画像形成装置では、形成されたトナー像が熱定着器によって紙上で溶かされて固着するため、そのトナー像の光沢度はトナー付着量に応じて上がる。ところが、正確なトナーの付着量分布で画像を形成できたとしても、上記熱定着器の不具合などにより、トナー像の定着状態が不均一になってスジ状に定着状態が変化する場合がある。このような場合、画像を形成するトナーの濃度分布はほとんど変化が無いが、斜めから観察するとスジ状に変化が見られ、いわゆる定着スジと呼ばれる画像不良と判断される。そこで、この定着スジを検出するため被検査対象物の光沢分布を検出する。また、電子写真方式の画像形成装置をデジタル印刷機として活用する場合、透明トナーを用いたことでの出力画像への光沢形成や、高光沢用紙を用いての画像形成などが試みられ、光沢に関わる画像品質への要求も高まっている。   In the electrophotographic image forming apparatus, the formed toner image is melted and fixed on the paper by the heat fixing device, so that the glossiness of the toner image increases in accordance with the toner adhesion amount. However, even if an image can be formed with an accurate toner adhesion amount distribution, the fixing state of the toner image may become non-uniform and the fixing state may change in a streak shape due to a defect of the heat fixing device. In such a case, the density distribution of the toner that forms the image has almost no change, but when observed from an oblique direction, a change is seen in a streak shape, and it is determined that the image is called a fixing streak. Therefore, the gloss distribution of the object to be inspected is detected in order to detect this fixing stripe. Also, when an electrophotographic image forming apparatus is used as a digital printing machine, it is attempted to form gloss on an output image by using transparent toner, or to form an image using high gloss paper. There is a growing demand for image quality.

出力画像を検査する検査装置として、電子写真方式の画像形成装置から出力された画像をオンデマンドに検査でき、かつ出力画像の全域を濃度分布のみならず光沢分布まで検査できる画像検査装置が望まれている。濃度分布の計測は、JISの光学分野(JIS Z 8722−2000「色の測定方法―反射及び透過物体色」)に記載されているように、照明光を所定の角度で被検査対象物に照射させる。各色のトナーで形成された被検査対象物上の画像内に透過した照射光は各色のトナーにおいて一部吸収され、その残りの照射光が拡散反射し、この拡散反射光の光量を計測することで行われる。また、光沢分布の計測は、JISの光学分野(JIS Z 8741−1997「鏡面光沢度測定方法」)にて詳しく記載されているように、照明光を一定の角度で被検査対象物に照射させ、被検査対象物から正反射した出射光の光量を計測することで行われる。この場合、照射光の入射角度と反射光の出射角度とは一致しておりその角度は被検査対象物に応じて設定される。   As an inspection apparatus for inspecting an output image, an image inspection apparatus capable of inspecting an image output from an electrophotographic image forming apparatus on demand, and capable of inspecting not only the density distribution but also the gloss distribution of the entire output image is desired. ing. As described in the JIS optical field (JIS Z 8722-2000 “Color Measurement Method—Reflection and Transmission Object Color”), the density distribution is measured by irradiating the object to be inspected at a predetermined angle with illumination light. Let The irradiation light transmitted in the image on the object to be inspected formed with the toner of each color is partially absorbed by the toner of each color, the remaining irradiation light is diffusely reflected, and the amount of the diffuse reflection light is measured. Done in In addition, the gloss distribution is measured by irradiating the object to be inspected with a certain angle of illumination light as described in detail in the optical field of JIS (JIS Z 8741-1997 “Specular Gloss Measurement Method”). This is done by measuring the amount of outgoing light regularly reflected from the object to be inspected. In this case, the incident angle of the irradiation light and the emission angle of the reflected light coincide with each other, and the angle is set according to the object to be inspected.

出力画像の光沢分布を計測する方法として特許文献1に記載されたものが知られ、出力画像の光沢分布及び濃度分布をそれぞれ計測する方法として特許文献2に記載されたものが知られている。上記特許文献1の方法では、被検査対象物に対して所定の入射角度から平行照明光を照射して、被検査対象物から正反射する方向に配置された2次元撮像の撮像部によって画像の2次元光沢分布を取得するものである。しかし、上記特許文献1では、2次元の撮像部では所定の領域の局所的な光沢分布しか取得できない。   A method described in Patent Document 1 is known as a method for measuring the gloss distribution of an output image, and a method described in Patent Document 2 is known as a method for measuring the gloss distribution and density distribution of an output image. In the method of the above-mentioned patent document 1, parallel illumination light is irradiated from a predetermined incident angle to an object to be inspected, and an image is captured by a two-dimensional image pickup unit arranged in a direction in which the object is regularly reflected from the object to be inspected. A two-dimensional gloss distribution is acquired. However, in Patent Document 1, the two-dimensional imaging unit can acquire only a local gloss distribution in a predetermined area.

上記特許文献2の方法は、1つの光沢分布検査用照明手段である反射用線状光源、2つの濃度分布検査用照明手段である拡散反射用線状光源、ハーフミラー、及び光学読取手段であるラインセンサカメラを用いる。反射用線状光源から照射された照射光はハーフミラーで反射されて被検査対象物に照射され、被検査対象物から反射されてくる反射光はハーフミラーを通過してラインセンサカメラに受光される。一方、各拡散反射用線状光源から照射された照射光は先ず被検査対象物に照射され、被検査対象物から反射されてくる反射光はハーフミラーを通過してラインセンサカメラに受光される。そして、反射用線状光源と各拡散反射用線状光源とを交互に点灯させて被検査対象物を一方向に走査する。これにより、ラインセンサカメラで被検査対象物からの反射光を一次元に受光して出力画像全域の光沢分布及び濃度分布をそれぞれ取得することができる。   The method of Patent Document 2 is a reflective linear light source as one gloss distribution inspection illumination means, a diffuse reflection linear light source as a density distribution inspection illumination means, a half mirror, and an optical reading means. A line sensor camera is used. The irradiation light emitted from the reflecting linear light source is reflected by the half mirror and applied to the object to be inspected, and the reflected light reflected from the object to be inspected passes through the half mirror and is received by the line sensor camera. The On the other hand, the irradiation light emitted from each diffuse reflection linear light source is first applied to the inspection object, and the reflected light reflected from the inspection object passes through the half mirror and is received by the line sensor camera. . Then, the object to be inspected is scanned in one direction by alternately turning on the reflecting linear light source and each of the diffuse reflecting linear light sources. As a result, the line sensor camera can receive the reflected light from the object to be inspected one-dimensionally and acquire the gloss distribution and density distribution of the entire output image.

しかしながら、上記特許文献2の方法では、ハーフミラーを用いたことでラインセンサカメラに到達した各反射光の光量は照射光の光量に比して非常に減少することになる。このため、ラインセンサカメラの出力信号の電圧値が低くなり正確な検査結果を得ることができないという問題があった。また、上記特許文献2の方法のように、濃度画像と光沢画像を一ライン毎順次読み取って高解像度で画像読取を行うため、高い動作クロックのラインセンサカメラが必要となって高コストとなる。更に、反射用線状光源と各拡散反射用線状光源とをラインセンサカメラの動作クロックと同期して交互に点灯させる、いわゆる順次点滅を行っており、この順次点滅の制御が必要となり更なる高コストとなる。また、被検査対象物は副走査方向に一定の速度で搬送されて一ライン毎順次読み取る処理となっているので、先行した読取ポイントと後続の読取ポイントは同一とならない。このため、濃度画像と光沢画像の読取ポイントは完全に同一ではなく、副走査方向に1/2画素分ずれる。これにより、この1/2画素分のずれを修正するための画像処理が必要となり高速処理に不利となる。   However, in the method of Patent Document 2, the amount of each reflected light reaching the line sensor camera by using the half mirror is greatly reduced compared to the amount of irradiated light. For this reason, there has been a problem that the voltage value of the output signal of the line sensor camera becomes low and an accurate inspection result cannot be obtained. In addition, as in the method of the above-mentioned Patent Document 2, a density image and a glossy image are sequentially read line by line and image reading is performed with high resolution, so that a line sensor camera with a high operation clock is required and the cost is high. Furthermore, so-called sequential blinking is performed in which the linear light source for reflection and each linear light source for diffuse reflection are alternately turned on in synchronization with the operation clock of the line sensor camera. High cost. In addition, since the inspection object is conveyed at a constant speed in the sub-scanning direction and sequentially read line by line, the preceding reading point and the subsequent reading point are not the same. For this reason, the reading points of the density image and the glossy image are not completely the same, and are shifted by 1/2 pixel in the sub-scanning direction. As a result, image processing for correcting the deviation of 1/2 pixel is necessary, which is disadvantageous for high-speed processing.

本出願人は、特願2010−96931号(以下先願という)において、光沢分布検査用照明手段である光沢用照明装置と、濃度分布検査用照明手段である濃度用照明装置と、撮像素子とを設けている画像検査装置を提案している。この先願の画像検査装置では、光沢用照明装置から照射された照射光が被検査対象物から直接に正反射してくる位置に撮像素子を配置し、配置した撮像素子によって光沢用照明装置から照射された照明光に対する正反射光と濃度用照明装置から照射された照明光に対する拡散反射光とに基づいて取得した光沢分布及び濃度分布を検査する。濃度用照明装置から照射された照明光は被検査対象物の画像から拡散反射されるため撮像素子の位置は任意でよい。この先願の画像検査装置によれば、上記特許文献2のハーフミラーを用いることなく、十分な光量の正反射光や拡散反射光に基づいて1ライン(1次元)の光沢分布及び濃度分布の各計測を行い、搬送装置によって出力画像を搬送させることにより被検査対象物の全域において光沢分布及び濃度分布を高精度で検査できる。   In Japanese Patent Application No. 2010-96931 (hereinafter referred to as the prior application), the applicant of the present application is a gloss illumination device that is a gloss distribution inspection illumination device, a density illumination device that is a density distribution inspection illumination device, and an imaging device. Has proposed an image inspection apparatus provided. In the image inspection apparatus of this prior application, an image sensor is disposed at a position where the irradiation light irradiated from the gloss illumination device is directly regularly reflected from the object to be inspected, and irradiation is performed from the gloss illumination device by the arranged image sensor. The gloss distribution and density distribution acquired based on the specularly reflected light with respect to the illumination light and the diffusely reflected light with respect to the illumination light irradiated from the density illumination device are inspected. Since the illumination light emitted from the concentration illumination device is diffusely reflected from the image of the object to be inspected, the position of the imaging element may be arbitrary. According to the image inspection apparatus of the prior application, each line of one line (one-dimensional) gloss distribution and density distribution based on a sufficient amount of regular reflection light or diffuse reflection light without using the half mirror of Patent Document 2 is used. Gloss distribution and density distribution can be inspected with high accuracy over the entire area of the object to be inspected by measuring and transporting the output image by the transport device.

しかしながら、上記先願の画像検査装置では、光沢用照明装置を点灯し、濃度用照明装置を消灯させて1ラインの読取領域に光沢用照明光を照射することで撮像素子によって読取領域からの正反射光の光量を取得する。そして、取得した正反射光の光量に基づいて読取領域の光沢分布を計測している。次に、光沢用照明装置を消灯し、濃度用照明装置を点灯させて1ラインの読取領域に濃度用照明光を照射することで撮像素子によって読取領域からの拡散反射光の光量を取得する。そして、取得した拡散反射光の光量に基づいて読取領域の濃度分布を計測している。つまり、先願の画像検査装置でも、撮像素子の動作クロックに合わせて光沢用照明装置と濃度用照明装置とを順次、点灯と消灯との制御を行う制御装置が必要となり、装置の高コスト化となる。また、光沢分布と濃度分布の取得画像位置が搬送方向で1動作クロック分ずれてしまい、濃度画像と光沢画像の読取ポイントは完全に同一ではなく副走査方向に1/2画素分ずれる。このため、このずれを補正するための画像処理を行う画像処理装置が必要となり、装置の高コスト化となる。更に、濃度分布と光沢分布の両方の搬送方向における読取解像度を確保するために、各分布読取毎の動作クロックが必要となりその結果2倍の動作クロックで読み取らなければならず、高価な撮像素子が必要となる。このように、先願の画像検査装置でも、上記特許文献2の課題の一部である、装置の高コスト化を解決できていなかった。   However, in the image inspection apparatus of the prior application, the gloss illumination device is turned on, the density illumination device is turned off, and the illumination light is applied to the 1-line reading area, so that the image sensor corrects the normal from the reading area. Get the amount of reflected light. Then, the gloss distribution of the reading region is measured based on the acquired amount of the regular reflection light. Next, the illumination device for gloss is turned off, the illumination device for concentration is turned on, and the illumination light for concentration is irradiated to the reading region of one line, whereby the amount of diffuse reflected light from the reading region is acquired by the imaging device. Then, the density distribution of the reading region is measured based on the acquired amount of diffuse reflected light. That is, even in the image inspection apparatus of the prior application, it is necessary to have a control device that sequentially controls the lighting device for lighting and the lighting device for density in accordance with the operation clock of the image sensor, thereby increasing the cost of the device. It becomes. Further, the acquired image positions of the gloss distribution and the density distribution are shifted by one operation clock in the transport direction, and the reading points of the density image and the gloss image are not completely the same, but are shifted by 1/2 pixel in the sub-scanning direction. For this reason, an image processing apparatus that performs image processing for correcting this deviation is required, which increases the cost of the apparatus. Furthermore, in order to ensure the reading resolution in the conveyance direction of both the density distribution and the gloss distribution, an operation clock is required for each distribution reading, and as a result, the image must be read with twice the operation clock, and an expensive image sensor is required. Necessary. Thus, even the image inspection apparatus of the prior application has not been able to solve the high cost of the apparatus, which is a part of the problem of Patent Document 2.

本発明は以上の問題点に鑑みなされたものであり、その目的は、被計測対象物の全域において濃度分布及び光沢分布を高精度で検査可能でありながら、低コストな画像検査装置及び画像形成装置を提供することである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a low-cost image inspection apparatus and image formation while being able to inspect the density distribution and the gloss distribution over the entire area of the measurement target with high accuracy. Is to provide a device.

上記目的を達成するために、請求項1の発明は、画像が形成された被検査対象物に対して濃度分布検査用照明光を照射する濃度分布検査用照明手段と、前記被検査対象物に対して光沢分布検査前照明光を照射する光沢分布検査用照明手段と、記被検査対象物から反射されてくる拡散反射光及び正反射光を受光する光学読取手段と、を有し、前記光学読取手段の受光した前記拡散反射光の光量及び前記正反射光の光量に基づいて取得した前記被検査対象物上の画像の濃度分布及び光沢分布を検査する画像検査装置において、前記濃度分布検査用照明手段は可視光である前記濃度分布検査用照明光を照射し、前記光沢分布用照明手段は不可視光である前記光沢分布検査用照明光を照射し、前記光学読取手段は、前記濃度分布検査用照明手段と前記光沢分布用照明手段とを同時に点灯し、前記被検査対象物上の画像内部に透過した後に画像形成物で拡散反射された可視光の前記拡散反射光のみを受光して前記拡散反射光の光量に基づいて濃度分布を出力する第1の光学読取手段と、前記被検査対象物上の画像の表面から正反射された不可視光の前記正反射光のみを受光して前記正反射光の光量に基づいて光沢分布を出力する第2の光学読取手段とを有することを特徴とするものである。
また、請求項2の発明は、請求項1記載の画像検査装置において、前記第1の光学読取手段は前記可視光の拡散反射光に感度を有する撮像素子をライン状に配列する撮像素子ラインを具備し、前記第1の光学読取手段は前記可視光のRGBのそれぞれに感度を有する撮像素子をライン状に配列するRGB毎の各撮像素子ラインを具備することを特徴とするものである。
更に、請求項3の発明は、請求項2記載の画像検査装置において、前記可視光は白色光であることを特徴とするものである。
また、請求項4の発明は、請求項1〜3のいずれか1項に記載の画像検査装置において、前記光沢分布用照明手段と前記被検査対象物との間に、かつ前記被検査対象物と前記第2の光学読取手段との間に、それぞれ偏光フィルタを設け、前記光沢分布用照明手段から照射された不可視光の前記光沢分布検査用照明光のうち前記被検査対象物の表面で反射した光成分のみが前記第2の光学読取手段に受光するように前記各偏光フィルタの偏光角度を設定することを特徴とするものである。
更に、請求項5の発明は、請求項1〜4のいずれか1項に記載の画像検査装置を搭載し、該画像検査装置によって記録媒体に形成された画像を検査し、検査結果に基づいて画像形成を制御することを特徴とするものである。
To achieve the above object, the invention of claim 1 is directed to a concentration distribution inspection illumination means for irradiating a concentration distribution inspection illumination light to an inspection target object on which an image is formed, and to the inspection target object. And an optical reading means for receiving diffusely reflected light and specularly reflected light reflected from the object to be inspected, and illumination means for irradiating gloss distribution pre-inspection illumination light, In the image inspection apparatus for inspecting the density distribution and the gloss distribution of the image on the inspection object acquired based on the light amount of the diffusely reflected light and the light amount of the regular reflected light received by the reading unit, The illumination means irradiates the illumination light for density distribution inspection that is visible light, the illumination means for gloss distribution irradiates illumination light for gloss distribution inspection that is invisible light, and the optical reading means performs the density distribution inspection. Lighting means and said The light distribution illumination means is turned on at the same time, and only the diffuse reflected light of the visible light diffused and reflected by the image forming object after passing through the image on the inspection object is received and the amount of the diffuse reflected light is received. And a first optical reading unit that outputs a density distribution based on the image, and receives only the specularly reflected light of the invisible light that is specularly reflected from the surface of the image on the object to be inspected to obtain a light quantity of the specularly reflected light. And a second optical reading means for outputting a gloss distribution based on the second optical reading means.
According to a second aspect of the present invention, in the image inspection apparatus according to the first aspect, the first optical reading unit includes an image sensor line in which image sensors having sensitivity to the diffuse reflected light of the visible light are arranged in a line. And the first optical reading means includes image pickup element lines for each of RGB, in which image pickup elements having sensitivity to RGB of the visible light are arranged in a line.
The invention of claim 3 is the image inspection apparatus according to claim 2, wherein the visible light is white light.
According to a fourth aspect of the present invention, there is provided the image inspection apparatus according to any one of the first to third aspects, wherein the object to be inspected is provided between the illumination means for gloss distribution and the object to be inspected. A polarizing filter is provided between each of the second optical reading unit and the second optical reading unit, and reflected from the surface of the inspection object of the invisible light for inspecting the gloss distribution irradiated from the gloss distribution illumination unit. The polarization angle of each polarizing filter is set so that only the light component received is received by the second optical reading means.
Further, the invention according to claim 5 is equipped with the image inspection apparatus according to any one of claims 1 to 4, inspecting an image formed on the recording medium by the image inspection apparatus, and based on the inspection result. The image forming is controlled.

本発明においては、画像形成装置によって形成された画像に照明光を照射すると、画像を構成する例えば多色トナーなどの画像成分の色と同じ照明光の色成分は当該画像成分に吸収され、吸収された残りの照明光の色成分は反射する。よって、被検査対象物上の画像の濃度は、照射光の一部が吸収され残りが反射してくる反射光である拡散反射光の光量から求められる。つまり、濃度が高い色の画像成分では当該色と同じ照明光の色成分を多く吸収するため、拡散反射光の光量は減る。逆に、濃度が低い色の画像成分では照明光の色成分の吸収が少なく拡散反射光の光量は多くなる。よって、各色の拡散反射光の光量を計測し、この光量に基づいて画像の濃度を計測することで、画像の濃度分布が得られる。このことから、被検査対象物に照射される濃度分布検査用照明光は、画像を構成する画像成分に吸収される光であり例えばRGBなどの各色成分を有する可視光となる。一方、被検査対象物上の画像の光沢分布は、画像の表面から正反射された正反射光の光量分布に相当する。そのため、被検査対象物に照射される光沢分布検査用照明光は、被検査対象物上の画像に反射する光であればよく、可視光又は不可視光のいずれでもよい。被検査対象物に可視光のみを照射して濃度分布と光沢分布を検査する場合画像の濃度に相当する光成分に光沢度に相当する光成分が混在してしまい正確に濃度分布を計測できない。これらにより、画像の濃度分布を計測するために被検査対象物に照射する濃度分布検査用照明光は可視光とし、光沢分布を計測するために被検査対象物に照射する光沢分布検査用照明光は不可視光とする。また、被検査対象物上の画像に同時に可視光及び不可視光を照射しても互いに光波長が異なり干渉しないため濃度分布及び光沢分布の各検査結果には影響しない。よって、濃度分布検査用照明手段及び光沢分布検査用照明手段を同時に点灯して被検査対象物の画像に同時に可視光及び不可視光を照射し、可視光によって濃度分布及び不可視光によって光沢分布を同時にそれぞれ計測することができる。これにより、順次に点灯と消灯との制御を行う必要がなくなり、同時に計測するため光沢分布と濃度分布の読取ポイントも同一となるので位置ずれを補正する画像処理を行う必要がなくなる。また、濃度分布と光沢分布の読取も同時であるために等倍の動作クロックの撮像素子でよい。よって、各照明装置の点灯と消灯の制御装置、画像処理装置及び高速出力の撮像素子が不要となり、低コスト化を図ることができる。   In the present invention, when illumination light is irradiated to an image formed by the image forming apparatus, the color component of the illumination light that is the same as the color of the image component such as multicolor toner constituting the image is absorbed by the image component and absorbed. The remaining color components of the illumination light are reflected. Therefore, the density of the image on the object to be inspected is obtained from the amount of diffusely reflected light that is reflected light in which part of the irradiated light is absorbed and the rest is reflected. That is, an image component having a high density absorbs much of the same color component of illumination light as that color, so that the amount of diffuse reflected light is reduced. On the other hand, in the image component with a low density, the color component of the illumination light is little absorbed and the amount of diffuse reflected light is large. Therefore, the density distribution of the image can be obtained by measuring the amount of diffuse reflected light of each color and measuring the density of the image based on the amount of light. From this, the illumination light for density distribution inspection irradiated on the object to be inspected is light absorbed by the image components constituting the image and becomes visible light having each color component such as RGB. On the other hand, the gloss distribution of the image on the object to be inspected corresponds to the light amount distribution of specularly reflected light that is specularly reflected from the surface of the image. For this reason, the illumination light for gloss distribution inspection irradiated on the object to be inspected may be light reflected on the image on the object to be inspected, and may be either visible light or invisible light. When inspecting the density distribution and gloss distribution by irradiating only the visible light to the object to be inspected, the light component corresponding to the density of the image is mixed with the light component corresponding to the density of the image, and the density distribution cannot be measured accurately. As a result, the illumination light for density distribution inspection that is irradiated on the object to be inspected to measure the density distribution of the image is visible light, and the illumination light for inspection of the gloss distribution to be irradiated on the object to be measured to measure the gloss distribution. Is invisible light. Further, even if visible light and invisible light are simultaneously irradiated on the image on the object to be inspected, the light wavelengths are different from each other and do not interfere with each other, so that the inspection results of the density distribution and the gloss distribution are not affected. Therefore, the illumination means for density distribution inspection and the illumination means for gloss distribution inspection are turned on at the same time to irradiate the image of the object to be inspected with visible light and invisible light at the same time. Each can be measured. This eliminates the need to sequentially control turning on and off, and since the reading points of the gloss distribution and density distribution are the same because measurement is performed at the same time, it is not necessary to perform image processing for correcting misalignment. Further, since the density distribution and the gloss distribution are simultaneously read, an image pickup device having an operation clock of the same magnification may be used. Therefore, the control device for turning on / off each illumination device, the image processing device, and the high-speed output image sensor are not required, and the cost can be reduced.

以上、本発明によれば、被計測対象物の全域において濃度分布及び光沢分布を高精度で検査可能でありながら、低コストな画像検査装置及び画像形成装置を提供できるという効果が得られる。   As described above, according to the present invention, it is possible to provide a low-cost image inspection apparatus and image forming apparatus while being able to inspect the density distribution and the gloss distribution with high accuracy over the entire area of the object to be measured.

本実施形態の画像検査装置を備えた画像形成装置の構成を示す概略図である。1 is a schematic diagram illustrating a configuration of an image forming apparatus including an image inspection apparatus according to an embodiment. 本実施形態の画像検査装置の構成を示す側面図である。It is a side view which shows the structure of the image inspection apparatus of this embodiment. 本実施形態の画像検査装置に用いる撮像素子の構成を示す正面図である。It is a front view which shows the structure of the image pick-up element used for the image inspection apparatus of this embodiment. 本実施形態の画像検査装置の変形例を示す側面図である。It is a side view which shows the modification of the image inspection apparatus of this embodiment.

以下、本発明を適用した画像形成装置の一実施形態について図面を参照して詳細に説明する。
図1は本実施形態の画像検査装置を備えた画像形成装置の構成を示す概略図である。同図に示す画像形成装置100は、本実施形態の画像検査装置10を搭載し、更に給紙カセット101a、101b、給紙ローラ102a、102b、コントローラ103、光走査光学系104、感光体105、中間転写体106、定着ローラ107及び排紙ローラ108を含んで構成されている。このような画像形成装置100において、給紙カセット101a、101bから給紙ローラ102a、102bにより搬送された画像担持媒体200上に、走査光学系104により感光体105に露光され、色材が付与されて現像された画像が中間転写体106上に、次いで中間転写体106から転写される。画像担持媒体200上に転写された画像は定着ローラ107により定着され、画像担持媒体200は排紙ローラ108により排紙される。後述する本実施形態の画像検査装置10は、定着ローラ107の後段に設置されている。
Hereinafter, an embodiment of an image forming apparatus to which the present invention is applied will be described in detail with reference to the drawings.
FIG. 1 is a schematic view showing a configuration of an image forming apparatus provided with the image inspection apparatus of the present embodiment. The image forming apparatus 100 shown in FIG. 1 includes the image inspection apparatus 10 according to the present embodiment, and further includes paper feed cassettes 101a and 101b, paper feed rollers 102a and 102b, a controller 103, an optical scanning optical system 104, a photoconductor 105, An intermediate transfer member 106, a fixing roller 107, and a paper discharge roller 108 are included. In such an image forming apparatus 100, the photosensitive member 105 is exposed to the image bearing medium 200 conveyed by the sheet feeding rollers 102a and 102b from the sheet feeding cassettes 101a and 101b by the scanning optical system 104, and a coloring material is applied. The developed image is transferred onto the intermediate transfer member 106 and then from the intermediate transfer member 106. The image transferred onto the image bearing medium 200 is fixed by the fixing roller 107, and the image bearing medium 200 is ejected by the ejection roller 108. An image inspection apparatus 10 according to the present embodiment, which will be described later, is installed at the subsequent stage of the fixing roller 107.

このような構成を有する画像形成装置100によれば、画像形成装置100の所定の位置である定着ローラ107の後段に設置された本実施形態の画像検査装置10により、画像形成された画像担持媒体200の光沢分布を高精度で検査でき、更に濃度分布も検査できる。そして、光沢分布や濃度分布の検査結果を画像形成部にフィードバックすることにより、画像担持媒体200上に高品質な画像を形成できる。   According to the image forming apparatus 100 having such a configuration, the image bearing medium on which an image is formed by the image inspection apparatus 10 of the present embodiment installed at the subsequent stage of the fixing roller 107 which is a predetermined position of the image forming apparatus 100. The 200 gloss distribution can be inspected with high accuracy, and the density distribution can also be inspected. A high-quality image can be formed on the image bearing medium 200 by feeding back the inspection result of the gloss distribution and the density distribution to the image forming unit.

図2は本実施形態の画像検査装置の構成を示す側面図である。同図に示す本実施形態の画像検査装置10は、撮像素子11、結像レンズ12、給紙装置13、光沢用照明装置14及び濃度用照明装置15を含んで構成されている。撮像素子11は、CCD方式やCMOS方式の撮像素子であり、特に1次元で読み取るタイプの撮像素子を用いる。結像レンズ12は、画像検査装置10にて光沢分布及び濃度分布を読み取る読取領域21からの反射光を撮像素子11に導く結像レンズである。給紙装置13は出力画像が形成されている被検査対象物22を1方向の図中矢印Aの搬送方向に移動させる。光沢用照明装置14は被検査対象物22の読取領域21を入射角度θで入射して照明し、その照明光14aはLEDアレイ照明などから照射された赤外光もしくは紫外光などの不可視光である。ここで、この不可視光は波長が360[nm]〜830[nm]の範囲外である光であり、また可視光は具体的にはRGBの各光を指し、波長が450[nm]〜750[nm]の光である。その光沢用照明装置14から出射される照明光14aは、読取領域21に入射される入射角度θと、撮像素子11と結像レンズ12とから定められる出射角度θとが正確に一致するように入射されている。光沢用照明装置14からの照明光14aは平行光ではなく、読取領域21に到達した出射光が正反射した場合、それぞれ結像レンズ21の瞳に向くよう指向されている。 FIG. 2 is a side view showing the configuration of the image inspection apparatus of the present embodiment. An image inspection apparatus 10 according to this embodiment shown in the figure includes an image sensor 11, an imaging lens 12, a paper feeding device 13, a gloss illumination device 14, and a density illumination device 15. The imaging element 11 is a CCD type or CMOS type imaging element, and in particular, an imaging element of a type that reads in one dimension is used. The imaging lens 12 is an imaging lens that guides reflected light from the reading region 21 from which the image inspection apparatus 10 reads the gloss distribution and density distribution to the image sensor 11. The sheet feeding device 13 moves the inspection object 22 on which the output image is formed in the conveyance direction indicated by arrow A in one direction. The gloss illumination device 14 illuminates the reading area 21 of the inspection object 22 with an incident angle θ 1 , and the illumination light 14 a is invisible light such as infrared light or ultraviolet light emitted from LED array illumination or the like. It is. Here, the invisible light is light having a wavelength outside the range of 360 [nm] to 830 [nm], and the visible light specifically refers to each light of RGB, and the wavelength is 450 [nm] to 750. [Nm] light. In the illumination light 14 a emitted from the gloss illumination device 14, the incident angle θ 1 incident on the reading region 21 and the emission angle θ 2 determined by the imaging element 11 and the imaging lens 12 exactly match. So that it is incident. The illumination light 14a from the gloss illumination device 14 is not parallel light but is directed toward the pupil of the imaging lens 21 when the emitted light that has reached the reading area 21 is regularly reflected.

物体の表面反射成分、すなわち光沢成分は光の波長に依存しないため、可視光又は不可視光の違いは生じない。それに対して、画像濃度成分、すなわち物体の内部に透過した後反射された光の成分は波長によってその吸収される割合が異なるので、可視光の濃度分布を取得したい場合は他波長光で置き換えることはできない。そこで、本実施形態によれば、濃度用照明装置15は読取領域21に対する入射角度と出射角度とが一致しない位置に設定され、被検査対象物22の読取領域21に所定の角度で入射する照明光15aを照射する。ここでの所定の角度は入射角度θ1と異なる角度であれば任意でよく、例えば90[deg]とすることもできる。濃度用照明装置15としては、例えば通常のキセノンランプ照明やLEDアレイ照明などの拡散照明装置を用いることができる。   Since the surface reflection component, that is, the gloss component of the object does not depend on the wavelength of light, a difference between visible light and invisible light does not occur. On the other hand, the image density component, that is, the component of the light reflected after being transmitted into the object, has a different ratio of absorption depending on the wavelength, so if you want to obtain the density distribution of visible light, replace it with other wavelength light. I can't. Therefore, according to the present embodiment, the concentration illumination device 15 is set at a position where the incident angle and the emission angle with respect to the reading area 21 do not coincide with each other, and is incident on the reading area 21 of the inspection object 22 at a predetermined angle. Irradiate light 15a. The predetermined angle here may be arbitrary as long as it is different from the incident angle θ1, and may be 90 [deg], for example. As the concentration illumination device 15, for example, a diffuse illumination device such as normal xenon lamp illumination or LED array illumination can be used.

そして、撮像素子11は、後述する図3に示すように、光沢用照明装置14の不可視光のみに感度を有する撮像素子ライン11aと、濃度用照明装置15の可視光のみに感度を有する撮像素子ライン11bとを備えている。光沢用照明装置14の設置位置から、不可視光のみに感度を有する撮像素子ライン11aは、出力画像の正反射光、すなわち光沢成分を主に検出することとなり、濃度用照明装置15の照明光の可視光には影響されない。一方、濃度用照明装置15の設置位置から、可視光のみに感度を有する撮像素子ライン11bは、出力画像の拡散反射光、すなわち画像濃度成分を主に検出することとなり、光沢用照明装置14の照明光には影響されない。   As shown in FIG. 3 to be described later, the image sensor 11 includes an image sensor line 11a that is sensitive only to the invisible light of the gloss illumination device 14, and an image sensor that is sensitive only to the visible light of the density illumination device 15. Line 11b. From the installation position of the gloss illumination device 14, the imaging element line 11 a having sensitivity only to invisible light mainly detects the specular reflection light of the output image, that is, the gloss component, and the illumination light of the concentration illumination device 15 is detected. Unaffected by visible light. On the other hand, the imaging element line 11b having sensitivity only to visible light from the installation position of the density illumination device 15 mainly detects diffuse reflection light of the output image, that is, the image density component. Unaffected by illumination light.

画像検査装置10における光沢分布及び濃度分布の各検査は以下のように行われる。すなわち、画像検査装置10は、光沢用照明装置14及び濃度用照明装置15を同時に点灯し、1ラインの読取領域21に照明光14a及び照明光15aを照射する。そして、撮像素子14で読取領域21からの正反射光14b及び拡散反射光15bの光量を取得する。そして、取得した正反射光14bの光量に基づいて読取領域21の光沢分布、かつ拡散反射光15bの光量に基づいて読取領域21の濃度分布をそれぞれ検査する。これで、1ライン(1次元)の光沢分布及び濃度分布の検査が終了する。このような検査を、給紙装置13によって被検査対象物22を順次送りながら撮像素子11によって撮影することで被計測画像全域の濃度画像及び光沢画像を取得する。光沢用照明装置14の照明光の波長は、まずは撮像素子11に感度があって、さらに画像機器や出力画像、これを取り扱う人に対する悪影響の無いものとする必要がある。一般に、CCDなどは近赤外光に感度を有し、また紫外光に比べて人への悪影響も小さいことから、波長が0.7[μm]〜2.5[μm]である近赤外光が望ましい。   Each inspection of the gloss distribution and the density distribution in the image inspection apparatus 10 is performed as follows. That is, the image inspection apparatus 10 simultaneously turns on the gloss illumination device 14 and the density illumination device 15 and irradiates the illumination light 14 a and the illumination light 15 a to the reading area 21 of one line. Then, the image sensor 14 acquires the light amounts of the regular reflection light 14 b and the diffuse reflection light 15 b from the reading region 21. Then, the gloss distribution of the reading region 21 and the density distribution of the reading region 21 are inspected based on the acquired light amount of the regular reflection light 14b and the diffused reflection light 15b, respectively. This completes the inspection of the gloss distribution and density distribution of one line (one dimension). Such an inspection is photographed by the image pickup device 11 while sequentially sending the inspection object 22 by the paper feeding device 13, thereby obtaining a density image and a gloss image of the entire image to be measured. The wavelength of the illumination light of the glossy illumination device 14 must first be sensitive to the image sensor 11 and further have no adverse effect on the image equipment, the output image, and the person handling the image device. In general, a CCD or the like has sensitivity to near-infrared light and has a smaller adverse effect on humans than ultraviolet light, so that the near-infrared wavelength is 0.7 [μm] to 2.5 [μm]. Light is desirable.

図3は本実施形態の画像検査装置に用いる撮像素子の構成を示す正面図である。同図において、撮像素子11は光沢用照明装置14の不可視光に感度を有する撮像素子ライン11aであって、その表面に不可視光をバンドパスしさらに可視光をカットするフィルタを形成している。撮像素子そのものに不可視光の感度があることが前提となる。また、撮像素子11は濃度用照明装置15の可視光に感度を有する撮像素子である撮像素子ライン11b−R、11b−G、11b−BがRGBの光(波長が450[nm]〜750[nm]の光)にそれぞれ感度を持つことで、出力画像のカラー画像の濃度分布を検出することができる。前述のRGB光に感度を有する撮像素子には、RGBのバンドパスフィルタが不可視光を通してしまう場合、これを通さないカットフィルタも併せて形成する必要がある。また、濃度用照明装置15が、白色光などの可視光、つまり不可視光を含まない光を照射させるようにする。このことで、濃度用照明装置15から照射され被検査対象物22から拡散反射光15bはRGBの撮像素子ライン11b−R、11b−G、11b−Bのみに検出される。そして、光沢用照明装置14が不可視光であって白色光を含まない光を照射させることで、光沢用照明装置14の照明光は不可視光用の撮像素子ライン11−aのみに検出されることになる。すなわち、両照明光を同時に照射しても、互いに影響することなく、出力画像を反射した照明光を各撮像素子ラインがそれぞれ検出することができる。   FIG. 3 is a front view showing the configuration of the image sensor used in the image inspection apparatus of the present embodiment. In the figure, an image pickup device 11 is an image pickup device line 11a that is sensitive to invisible light of the gloss illumination device 14, and a filter that band-passes invisible light and further cuts visible light is formed on the surface thereof. It is assumed that the imaging device itself has invisible light sensitivity. In addition, the image pickup device 11 is an image pickup device line 11b-R, 11b-G, 11b-B, which is an image pickup device having sensitivity to visible light of the density illumination device 15, and the RGB light (wavelength is 450 [nm] to 750 [ nm]), the density distribution of the color image of the output image can be detected. When the RGB band-pass filter passes invisible light, it is necessary to form a cut filter that does not pass through the imaging element having sensitivity to RGB light. Further, the concentration illumination device 15 emits visible light such as white light, that is, light that does not include invisible light. Thus, the diffuse reflected light 15b emitted from the density illumination device 15 and detected from the object 22 to be inspected is detected only in the RGB imaging element lines 11b-R, 11b-G, and 11b-B. And the illumination light of the glossy illumination device 14 is detected only by the imaging element line 11-a for invisible light by irradiating the illumination device 14 for glossy with light that is invisible light and does not contain white light. become. That is, even if both illumination lights are irradiated simultaneously, each image sensor line can detect the illumination light reflecting the output image without affecting each other.

図4は本実施形態の画像検査装置の変形例を示す側面図である。同図において、図2と同じ参照符号は同じ構成要素を示す。同図に示すように、光沢用照明装置14の射出側には偏光フィルタ31が設置され、また不可視光に感度を有する撮像素子ライン11aの前面にも偏光フィルタ32が設置されている。これらの偏光フィルタ31、32は、その偏光角度を一致させるように設定する。光沢用照明装置14から出射された照明光は不可視光であると同時に、偏光フィルタ31の作用によってある偏光角度のみの光成分となる。この照明光が被検査対象物22上のトナー付着部33に到達した場合、その表面で反射した表面反射光34の成分、すなわち光沢成分はその光の偏光角度が変わることがなく、撮像素子の直前の偏光フィルタ32も通過して撮像素子ライン11aによって検出される。一方、トナー付着部33の内部にまで到達した照明光の場合、内部透過反射光35である濃度成分の光はトナー付着部33の内部で偏光角度が変化する。そのため、内部透過反射光35は撮像素子11における撮像素子ライン11aの直前に設置された偏光フィルタ32によって排除されるので、濃度成分は検出されない。   FIG. 4 is a side view showing a modification of the image inspection apparatus of the present embodiment. In the figure, the same reference numerals as those in FIG. 2 denote the same components. As shown in the figure, a polarizing filter 31 is installed on the exit side of the glossy illumination device 14, and a polarizing filter 32 is also installed on the front surface of the image sensor line 11a having sensitivity to invisible light. These polarizing filters 31 and 32 are set so that their polarization angles coincide. The illumination light emitted from the gloss illumination device 14 is invisible light, and at the same time becomes a light component having only a certain polarization angle by the action of the polarization filter 31. When this illumination light reaches the toner adhering portion 33 on the object 22 to be inspected, the component of the surface reflected light 34 reflected on the surface, that is, the gloss component does not change the polarization angle of the light, and the imaging element The immediately preceding polarizing filter 32 also passes and is detected by the image sensor line 11a. On the other hand, in the case of the illumination light that reaches the inside of the toner attaching portion 33, the polarization angle of the light of the density component that is the internally transmitted reflected light 35 changes inside the toner attaching portion 33. For this reason, the internal transmitted / reflected light 35 is excluded by the polarization filter 32 installed immediately before the image sensor line 11a in the image sensor 11, so that the density component is not detected.

以上説明したように、実施形態によれば、図2に示すように、光沢用照明装置14と濃度用照明装置15とを同時に点灯させて給紙装置13によって出力画像を搬送させることにより、被検査対象物の全域の光沢分布に相当する光量及び濃度分布に相当する光量を同時に計測できる。特に、撮像素子の動作クロックに合わせて光沢用照明装置と濃度用照明装置とを順次、点灯と消灯との制御を行う必要があり、そのための制御装置が必要であった従来技術に対して、本実施形態では連続点灯で良いため、点滅制御や動作クロック同期制御など装置が不要となって安価となる。また、従来技術では、光沢分布と濃度分布の取得画像位置が搬送方向で1動作クロック分ずれてしまう。このため、これを補正するための画像処理が必要であったのに対して、本実施形態では同時読み取りであるので補正するための画像処理が不要となる。また、従来の方法では濃度分布と光沢分布の両方の搬送方向読み取り解像度を確保するために2倍の動作クロックで1撮像素子を読み取らなければならなかったが、本実施形態では同時読み取りであるため等倍の動作クロックでよく、撮像素子や動作回路をより安価にすることができる。   As described above, according to the embodiment, as shown in FIG. 2, the gloss illumination device 14 and the density illumination device 15 are turned on at the same time, and the output image is conveyed by the paper feed device 13. The amount of light corresponding to the gloss distribution over the entire area of the inspection object and the amount of light corresponding to the density distribution can be measured simultaneously. In particular, it is necessary to sequentially turn on and off the glossy illumination device and the concentration illumination device in accordance with the operation clock of the image sensor, and for the conventional technology that required a control device for that purpose, In this embodiment, since continuous lighting is sufficient, devices such as blinking control and operation clock synchronization control are not required, and the cost is reduced. Further, in the conventional technology, the acquired image positions of the gloss distribution and the density distribution are shifted by one operation clock in the transport direction. For this reason, image processing for correcting this is necessary, whereas in the present embodiment, since simultaneous reading is performed, image processing for correcting becomes unnecessary. Further, in the conventional method, one image sensor has to be read with twice the operation clock in order to ensure the reading resolution in the conveyance direction for both the density distribution and the gloss distribution. However, in the present embodiment, simultaneous reading is performed. The operation clock of the same magnification may be used, and the image sensor and the operation circuit can be made cheaper.

また、実施形態によれば、図3に示すように、光沢画像と画像濃度を完全に独立して同時に取得できるので、特にフルカラー画像の検査を高精度に実施できる。   In addition, according to the embodiment, as shown in FIG. 3, since the gloss image and the image density can be acquired completely independently and simultaneously, a full color image can be inspected particularly with high accuracy.

更に、実施形態によれば、図4に示すように、光沢画像の取得において、偏光フィルタ31、32によって正反射成分以外の照明光をカットできるので、画像濃度の影響は受けない。特に被検査画像の画像部内部に透過して反射された拡散反射光の影響を受けないため、より高品位に画像の光沢分布を検査できる。   Furthermore, according to the embodiment, as shown in FIG. 4, in the acquisition of the glossy image, illumination light other than the regular reflection component can be cut by the polarizing filters 31 and 32, so that it is not affected by the image density. In particular, the gloss distribution of the image can be inspected with higher quality because it is not affected by the diffuse reflected light that is transmitted and reflected inside the image portion of the image to be inspected.

10 画像検査装置
11 撮像素子
11a 撮像素子ライン
11b 撮像素子ライン
12 結像レンズ
13 給紙装置
14 光沢用照明装置
15 濃度用照明装置
21 読取領域
22 被検査対象物
31 偏光フィルタ
32 偏光フィルタ
33 トナー付着部
34 表面反射光
35 内部透過反射光
100 画像形成装置
DESCRIPTION OF SYMBOLS 10 Image inspection apparatus 11 Image pick-up element 11a Image pick-up element line 11b Image pick-up element line 12 Imaging lens 13 Paper feed apparatus 14 Glossy illumination apparatus 15 Density illumination apparatus 21 Reading area 22 Inspected object 31 Polarization filter 32 Polarization filter 33 Toner adhesion Part 34 surface reflected light 35 internally transmitted reflected light 100 image forming apparatus

特開2006−284550号公報JP 2006-284550 A 特開2000−123152号公報JP 2000-123152 A

Claims (5)

画像が形成された被検査対象物に対して濃度分布検査用照明光を照射する濃度分布検査用照明手段と、前記被検査対象物に対して光沢分布検査前照明光を照射する光沢分布検査用照明手段と、記被検査対象物から反射されてくる拡散反射光及び正反射光を受光する光学読取手段と、を有し、前記光学読取手段の受光した前記拡散反射光の光量及び前記正反射光の光量に基づいて取得した前記被検査対象物上の画像の濃度分布及び光沢分布を検査する画像検査装置において、
前記濃度分布検査用照明手段は可視光である前記濃度分布検査用照明光を照射し、
前記光沢分布用照明手段は不可視光である前記光沢分布検査用照明光を照射し、
前記光学読取手段は、前記濃度分布検査用照明手段と前記光沢分布用照明手段とを同時に点灯し、前記被検査対象物上の画像内部に透過した後に画像形成物で拡散反射された可視光の前記拡散反射光のみを受光して前記拡散反射光の光量に基づいて濃度分布を出力する第1の光学読取手段と、前記被検査対象物上の画像の表面から正反射された不可視光の前記正反射光のみを受光して前記正反射光の光量に基づいて光沢分布を出力する第2の光学読取手段とを有することを特徴とする画像検査装置。
Illumination means for density distribution inspection for irradiating the object to be inspected on which an image is formed with illumination light for density distribution inspection, and for gloss distribution inspection for irradiating the inspection object with illumination light before gloss distribution inspection Illumination means, and optical reading means for receiving diffuse reflection light and specular reflection light reflected from the object to be inspected, and the amount of the diffuse reflection light received by the optical reading means and the regular reflection In the image inspection apparatus for inspecting the density distribution and the gloss distribution of the image on the inspection object acquired based on the amount of light,
The illumination means for density distribution inspection irradiates the illumination light for density distribution inspection that is visible light,
The gloss distribution illumination means irradiates the gloss distribution inspection illumination light which is invisible light,
The optical reading unit simultaneously turns on the illumination device for density distribution inspection and the illumination device for gloss distribution and transmits visible light diffusely reflected by the image forming object after passing through the image on the inspection object. A first optical reading unit that receives only the diffusely reflected light and outputs a density distribution based on the amount of the diffusely reflected light; and the invisible light that is regularly reflected from the surface of the image on the inspection object. An image inspection apparatus comprising: a second optical reading unit that receives only regular reflection light and outputs a gloss distribution based on the amount of the regular reflection light.
請求項1記載の画像検査装置において、
前記第1の光学読取手段は前記可視光の拡散反射光に感度を有する撮像素子をライン状に配列する撮像素子ラインを具備し、前記第1の光学読取手段は前記可視光のRGBのそれぞれに感度を有する撮像素子をライン状に配列するRGB毎の各撮像素子ラインを具備することを特徴とする画像検査装置。
The image inspection apparatus according to claim 1,
The first optical reading means includes an imaging element line in which imaging elements having sensitivity to the diffuse reflection light of the visible light are arranged in a line, and the first optical reading means is provided for each of RGB of the visible light. An image inspection apparatus comprising image pickup element lines for each of RGB in which image pickup elements having sensitivity are arranged in a line.
請求項2記載の画像検査装置において、
前記可視光は白色光であることを特徴とする画像検査装置。
The image inspection apparatus according to claim 2,
The image inspection apparatus, wherein the visible light is white light.
請求項1〜3のいずれか1項に記載の画像検査装置において、
前記光沢分布用照明手段と前記被検査対象物との間に、かつ前記被検査対象物と前記第2の光学読取手段との間に、それぞれ偏光フィルタを設け、前記光沢分布用照明手段から照射された不可視光の前記光沢分布検査用照明光のうち前記被検査対象物の表面で反射した光成分のみが前記第2の光学読取手段に受光するように前記各偏光フィルタの偏光角度を設定することを特徴とする画像検査装置。
The image inspection apparatus according to any one of claims 1 to 3,
A polarizing filter is provided between the gloss distribution illumination unit and the inspection object and between the inspection object and the second optical reading unit, and irradiation is performed from the gloss distribution illumination unit. The polarization angle of each polarizing filter is set so that only the light component reflected from the surface of the inspection object among the illumination light for inspecting the gloss distribution of the invisible light received is received by the second optical reading means. An image inspection apparatus characterized by that.
請求項1〜4のいずれか1項に記載の画像検査装置を搭載し、該画像検査装置によって記録媒体に形成された画像を検査し、検査結果に基づいて画像形成を制御することを特徴とする画像形成装置。   An image inspection apparatus according to claim 1 is mounted, an image formed on a recording medium is inspected by the image inspection apparatus, and image formation is controlled based on the inspection result. Image forming apparatus.
JP2011118657A 2011-05-27 2011-05-27 Image inspection device and image forming apparatus Withdrawn JP2012247280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011118657A JP2012247280A (en) 2011-05-27 2011-05-27 Image inspection device and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011118657A JP2012247280A (en) 2011-05-27 2011-05-27 Image inspection device and image forming apparatus

Publications (1)

Publication Number Publication Date
JP2012247280A true JP2012247280A (en) 2012-12-13

Family

ID=47467859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011118657A Withdrawn JP2012247280A (en) 2011-05-27 2011-05-27 Image inspection device and image forming apparatus

Country Status (1)

Country Link
JP (1) JP2012247280A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202938A (en) * 2013-04-05 2014-10-27 キヤノン株式会社 Image forming apparatus and image forming method
WO2017217261A1 (en) * 2016-06-15 2017-12-21 シャープ株式会社 Spectrometry device
CN112073591A (en) * 2019-06-10 2020-12-11 柯尼卡美能达株式会社 Image inspection apparatus and image forming apparatus
CN112945084A (en) * 2019-12-10 2021-06-11 合肥欣奕华智能机器有限公司 Line scanning sensor, line scanning detection system and line scanning detection method
JP2021092433A (en) * 2019-12-10 2021-06-17 コニカミノルタ株式会社 Image formation apparatus and glossiness measuring method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202938A (en) * 2013-04-05 2014-10-27 キヤノン株式会社 Image forming apparatus and image forming method
WO2017217261A1 (en) * 2016-06-15 2017-12-21 シャープ株式会社 Spectrometry device
CN112073591A (en) * 2019-06-10 2020-12-11 柯尼卡美能达株式会社 Image inspection apparatus and image forming apparatus
JP2020201102A (en) * 2019-06-10 2020-12-17 コニカミノルタ株式会社 Image inspection device and image forming apparatus
US10999450B2 (en) 2019-06-10 2021-05-04 Konica Minolta, Inc. Image inspection apparatus and image forming apparatus using reading result of incident light reflected from target both via and not via light guide member
CN112945084A (en) * 2019-12-10 2021-06-11 合肥欣奕华智能机器有限公司 Line scanning sensor, line scanning detection system and line scanning detection method
JP2021092433A (en) * 2019-12-10 2021-06-17 コニカミノルタ株式会社 Image formation apparatus and glossiness measuring method
CN112945084B (en) * 2019-12-10 2023-01-24 合肥欣奕华智能机器股份有限公司 Line scanning sensor, line scanning detection system and line scanning detection method

Similar Documents

Publication Publication Date Title
JP5248164B2 (en) Measuring system for surface properties such as gloss or gloss difference
EP2397840B1 (en) Image inspecting apparatus, image inspecting method, image forming apparatus
US9838568B2 (en) Image reading apparatus and image forming system
US8368002B2 (en) In-line image sensor in combination with linear variable filter based spectrophotometer
JP2011209267A (en) Spectroscopic characteristics acquisition apparatus, image evaluating apparatus, and image forming apparatus
JP2004038879A (en) Image reader and image forming device
TW200806978A (en) Pattern inspection device
JP5720134B2 (en) Image inspection apparatus and image forming apparatus
JP2012247280A (en) Image inspection device and image forming apparatus
CN107707783B (en) Image formation system, image read-out and image forming apparatus
JP2010261861A (en) Spectral characteristics acquisition apparatus, image evaluation apparatus, and image forming apparatus
JP7367790B2 (en) image forming system
CN112073591A (en) Image inspection apparatus and image forming apparatus
JP2007327896A (en) Inspection device
JP2012154830A (en) Inspection method and inspection apparatus of printed matter
JP2006258663A (en) Surface flaw inspection device
WO2015079937A1 (en) Inspection device for sheet-shaped object
JP6011796B2 (en) Image forming apparatus
JP2010085388A (en) Method and apparatus for inspecting printed matter
US7447450B2 (en) Image forming device with a color detection apparatus
JP6070932B2 (en) Image inspection apparatus and image forming apparatus
JP2010190672A (en) Image evaluating apparatus and method, and image forming apparatus
JP2007309780A (en) Device and method for inspecting quality of printed matter
US11736626B2 (en) Reading device and image forming apparatus with foreign-object detection by comparing image from reading background with image from reading background and recording medium
JP6398374B2 (en) Image inspection apparatus and image forming apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805