JP2010085388A - Method and apparatus for inspecting printed matter - Google Patents

Method and apparatus for inspecting printed matter Download PDF

Info

Publication number
JP2010085388A
JP2010085388A JP2009051978A JP2009051978A JP2010085388A JP 2010085388 A JP2010085388 A JP 2010085388A JP 2009051978 A JP2009051978 A JP 2009051978A JP 2009051978 A JP2009051978 A JP 2009051978A JP 2010085388 A JP2010085388 A JP 2010085388A
Authority
JP
Japan
Prior art keywords
printed matter
printed
imaging
irradiating
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009051978A
Other languages
Japanese (ja)
Inventor
Shinji Okaya
真治 岡谷
Mitsuyuki Mihashi
光幸 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2009051978A priority Critical patent/JP2010085388A/en
Publication of JP2010085388A publication Critical patent/JP2010085388A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inking, Control Or Cleaning Of Printing Machines (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging method suitable for inspecting color printed matter with a high degree of accuracy regardless of differences in photosensitivity among models of camera or differences among individual ones and to provide an inspection apparatus capable of inspection with high reliability in real time. <P>SOLUTION: An inspection method includes: a first illuminating step of irradiating a first surface of printed matter with white light; a second illuminating step of irradiating the first surface of the printed matter with light in at least one predetermined type of wavelength band; a third illuminating step of irradiating a second surface of the printed matter with white light; an imaging step of taking images of the first surface of the printed matter either in synchronization with the conveyance of the printed matter or at predetermined time intervals; and an image-processing and defect-determining step of determining the presence of defects in the printed matter by using the image data on the first surface of the printed matter as obtained in the imaging step. An inspection apparatus is also provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は印刷物の検査方法及び検査装置に関するものであり、特にカラー印刷物の欠陥検査方法及びその検査装置に関する。 The present invention relates to a printed matter inspection method and inspection apparatus, and more particularly, to a color printed matter defect inspection method and inspection apparatus.

印刷物で、カラーで構成されたものとして、例えば、グラビア印刷機がある。以下、グラビア印刷機を例に挙げて説明することとする。 For example, there is a gravure printing machine as a printed material composed of colors. Hereinafter, a gravure printing machine will be described as an example.

一般に、グラビア印刷機では、原反に印刷して得られる帯状の印刷物を搬送し、検査装置が有するラインセンサカメラ等の撮像手段でその印刷物の絵柄を撮像し、その際に得られる画像データに基づいて、外観検査を実施している。このような印刷物の検査装置では、カラーの印刷物を高精度に検査を実施するため、主にカラーカメラが用いられている。 In general, in a gravure printing machine, a belt-like printed material obtained by printing on an original fabric is conveyed, an image of the printed material is imaged by an imaging means such as a line sensor camera included in an inspection apparatus, and image data obtained at that time is obtained. Based on this, visual inspection is conducted. In such a printed matter inspection apparatus, a color camera is mainly used in order to inspect a color printed matter with high accuracy.

一般的なカラーカメラは、赤(以下R)、緑(以下G)、青(以下B)の三種類の受光素子等により撮像された画像を、合成してカラー画像を形成している。カラーのラインセンサカメラには、R、G、B波長に感度を持つ受光素子が平行して配列されている3ライン方式と、カメラ内部にプリズム等の分光手段を配置させることで、受光した光をR、G、B波長に分解し、分解した波長別に受光素子が配列されている3CCD方式(または3板式)という、二種類の方式が用いられている。 A general color camera forms a color image by combining images captured by three types of light receiving elements such as red (hereinafter R), green (hereinafter G), and blue (hereinafter B). The color line sensor camera has a three-line system in which light receiving elements having sensitivity to R, G, and B wavelengths are arranged in parallel, and a light beam received by arranging a spectroscopic means such as a prism inside the camera. Are divided into R, G, and B wavelengths, and two types of methods are used, namely a 3CCD system (or a 3-plate system) in which light receiving elements are arranged according to the decomposed wavelengths.

また、グラビア印刷機では、原反として紙だけではなく、透明プラスチックフィルム、アルミ蒸着などの特殊品を含め、複数種類の原反を同一の印刷機で印刷することが行われている。そのため、従来の印刷物の検査装置用の照明装置では、検査する印刷物の原反が切り換わる毎に、照明装置が有している乱反射、正反射、透過等の光源の中から、必要な光源を選択し、適切な光量調整を実施し、各種印刷物の検査に対応していた。 Moreover, in a gravure printing machine, not only paper but also a plurality of types of original fabrics including a special product such as a transparent plastic film and aluminum vapor deposition are printed by the same printer. For this reason, in the conventional illumination device for a printed matter inspection device, a necessary light source is selected from light sources such as irregular reflection, regular reflection, and transmission that the illumination device has every time the original of the printed matter to be inspected is switched. It was selected, and appropriate light intensity adjustment was performed to support inspection of various printed materials.

CCDカメラ等で印刷物を撮像し、画像処理を用いてその印刷物を検査する方法として、例えば特許文献1が提案されている。
特許文献1に記載の技術よって、確かに複数種類の原反を一つの検査装置にて検査できるが、主に白色光を照射する蛍光灯を照明として使用していることにより、欠陥の色によっては欠陥の検出力が微妙に異なることが問題となっていた。また、カメラの受光感度の機種差及び個体差等によっても欠陥の検出力が微妙に異なることも問題となっていた。
For example, Patent Document 1 has been proposed as a method for imaging a printed matter using a CCD camera or the like and inspecting the printed matter using image processing.
With the technology described in Patent Document 1, it is possible to inspect a plurality of types of original fabrics with a single inspection device, but by using a fluorescent lamp that mainly emits white light as illumination, depending on the color of the defect However, the problem is that the detection power of defects is slightly different. In addition, there has been a problem that the detection power of defects is slightly different depending on the difference in model of the light receiving sensitivity of the camera and individual differences.

特許第3808937号公報Japanese Patent No. 3808937

本発明は、上記問題点に鑑み考案されたもので、カメラ受光感度の機種差及び個体差等によらず、カラーで構成された印刷物を高精度に検査するのに好適な撮像方法を提供すると共に、リアルタイムに高い信頼性の下で検査を行なうことが可能な検査装置を提供することを目的としている。 The present invention has been devised in view of the above-described problems, and provides an imaging method suitable for inspecting a printed matter composed of colors with high accuracy regardless of differences in camera light receiving sensitivity between models and individual differences. At the same time, it is an object to provide an inspection apparatus capable of performing an inspection in real time with high reliability.

上記の目的を達成するため請求項1の発明では、
表面、または裏面、またはその両面に印刷が施された印刷物の表面に白色光を照射する第1の照明段階と、
前記印刷物表面に少なくとも1種類以上の所定の波長域の光を照射する第2の照明段階と、
前記印刷物裏面に白色光を照射する第3の照明段階と、
前記印刷物を、搬送と同期を取るかまたは所定時間間隔で、前記印刷物表面を撮像する撮像段階と、
前記撮像段階にて得られた前記印刷物の表面の画像データを用いて、前記印刷物に存在する欠陥を判定する画像処理・欠陥判定段階と、
を有することを特徴とする印刷物の検査方法、
としたものである。
In order to achieve the above object, the invention of claim 1
A first illumination stage that irradiates the surface of the printed matter with the front surface, the back surface, or both sides thereof printed with white light;
A second illumination step of irradiating at least one type of light in a predetermined wavelength range on the printed surface;
A third illumination stage for irradiating the printed back with white light;
An imaging step of imaging the printed material surface in synchronization with conveyance or at a predetermined time interval;
Using the image data of the surface of the printed matter obtained in the imaging step, image processing / defect determining step for judging defects present in the printed matter;
A method for inspecting printed matter, comprising:
It is what.

また、請求項2の発明では、
表面、または裏面、またはその両面に印刷が施された印刷物の表面に白色光を照射する第1の照明手段と、
前記印刷物表面に少なくとも1種類以上の所定の波長域の光を照射する第2の照明手段と、
前記印刷物裏面に白色光を照射する第3の照明手段と、
前記印刷物を、搬送と同期を取るかまたは所定時間間隔で、前記印刷物表面を撮像する撮像手段と、
前記撮像手段における撮像にて得られた前記印刷物の表面の画像データを用いて、前記印刷物に存在する欠陥を判定する画像処理・欠陥判定手段と、
を有することを特徴とする印刷物の検査装置、
としたものである。
In the invention of claim 2,
A first illuminating means for irradiating the front surface, the back surface, or the surface of the printed material printed on both sides thereof with white light;
A second illuminating means for irradiating the surface of the printed matter with at least one kind of light in a predetermined wavelength range;
A third illuminating means for irradiating the printed back with white light;
Imaging means for imaging the surface of the printed matter in synchronization with conveyance or at a predetermined time interval,
Image processing / defect determination means for determining defects present in the printed matter, using image data of the surface of the printed matter obtained by imaging in the imaging means,
An inspection apparatus for printed matter, comprising:
It is what.

また、請求項3の発明では、
表面、または裏面、またはその両面に印刷が施された印刷物の表面に白色光を照射する第1の照明段階と、
前記印刷物表面に少なくとも1種類以上の所定の波長域の光を照射し、その波長域が500nm前後、又は600nm前後、又はその両方の波長域を主として含む第2の照明段階と、
前記印刷物裏面に白色光を照射する第3の照明段階と、
前記印刷物を、搬送と同期を取るかまたは所定時間間隔で、前記印刷物表面を撮像する撮像段階と、
前記撮像段階にて得られた前記印刷物の表面の画像データを用いて、前記印刷物に存在する欠陥を判定する画像処理・欠陥判定段階と、
を有することを特徴とする印刷物の検査方法、
としたものである。
In the invention of claim 3,
A first illumination stage that irradiates the surface of the printed matter with the front surface, the back surface, or both sides thereof printed with white light;
Irradiating at least one kind of light in a predetermined wavelength range on the surface of the printed matter, the second illumination stage mainly including the wavelength range of around 500 nm, around 600 nm, or both;
A third illumination stage for irradiating the printed back with white light;
An imaging step of imaging the printed material surface in synchronization with conveyance or at a predetermined time interval;
Using the image data of the surface of the printed matter obtained in the imaging step, image processing / defect determining step for judging defects present in the printed matter;
A method for inspecting printed matter, comprising:
It is what.

また、請求項4の発明では、
表面、または裏面、またはその両面に印刷が施された印刷物の表面に白色光を照射する第1の照明段階と、
前記印刷物表面に少なくとも1種類以上の所定の波長域の光を照射し、その波長域が500nm前後、又は600nm前後、又はその両方の波長域を主として含む第2の照明段階と、
前記印刷物裏面に白色光を照射する第3の照明段階と、
前記印刷物を、搬送と同期を取るかまたは所定時間間隔で、前記印刷物表面を撮像する撮像段階と、
前記撮像段階にて得られた前記印刷物の表面の画像データを用いて、前記印刷物に存在する欠陥を判定する画像処理・欠陥判定段階と、
を有することを特徴とする印刷物の検査装置、
としたものである。
In the invention of claim 4,
A first illumination stage that irradiates the surface of the printed matter with the front surface, the back surface, or both sides thereof printed with white light;
Irradiating at least one kind of light in a predetermined wavelength range on the surface of the printed matter, the second illumination stage mainly including the wavelength range of around 500 nm, around 600 nm, or both;
A third illumination stage for irradiating the printed back with white light;
An imaging step of imaging the printed material surface in synchronization with conveyance or at a predetermined time interval;
Using the image data of the surface of the printed matter obtained in the imaging step, image processing / defect determining step for judging defects present in the printed matter;
An inspection apparatus for printed matter, comprising:
It is what.

上記のように、本発明によってカメラ受光感度の機種差及び個体差等によらず、カラーで構成された印刷物を高精度に検査するのに好適な撮像方法を提供すると共に、リアルタイムに高い信頼性の下で検査を行なうことが可能な検査装置の提供を可能としている。 As described above, according to the present invention, an imaging method suitable for inspecting a printed matter composed of color with high accuracy is provided regardless of the difference in model and individual difference in camera light reception sensitivity, and high reliability in real time. It is possible to provide an inspection apparatus capable of performing an inspection under

本発明に係る検査装置の主要部の構成を示す概略構成図。The schematic block diagram which shows the structure of the principal part of the inspection apparatus which concerns on this invention. 本発明の撮像及び照明手段を示す断面図。Sectional drawing which shows the imaging and illumination means of this invention. モノクロカメラの分光感度の一例を示す図。The figure which shows an example of the spectral sensitivity of a monochrome camera. カラーカメラの分光感度の一例を示す図。The figure which shows an example of the spectral sensitivity of a color camera. 蛍光灯の分光強度の一例を示す図。The figure which shows an example of the spectral intensity of a fluorescent lamp. 比視感度曲線を示す図。The figure which shows a specific visibility curve. 本発明の検査装置の全体概略動作を示すフローチャート。The flowchart which shows the whole schematic operation | movement of the test | inspection apparatus of this invention.

以下、図面を参照してこの発明に係る印刷物の検査方法及び装置の実施形態を説明する。図1は、本発明の印刷物の検査装置を示す構成概略図である。 Embodiments of a printed matter inspection method and apparatus according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a printed matter inspection apparatus according to the present invention.

本発明の検査装置は、印刷機が印刷物10を所定速度で移動し、印刷機の速度と同期を取り、且つ印刷物10の表面を撮像する撮像段階を実現する撮像手段30と、印刷物10の表面に白色光及び白色光以外を照射する照明段階を実現する反射照明手段20と、印刷物10の裏面に白色光を照射する照明段階を実現する透過照明手段21と、撮像手段30により印刷物10の表面を撮像して得られた画像データを用いて、印刷物10に存在する欠陥部を抽出、自動判定する制御・画像処理段階を実現する制御・画像処理手段40とから構成されている。 The inspection apparatus of the present invention includes an imaging unit 30 that realizes an imaging stage in which the printing machine moves the printed material 10 at a predetermined speed, synchronizes with the speed of the printing machine, and images the surface of the printed material 10, and the surface of the printed material 10. Reflective illumination means 20 for realizing an illumination stage for irradiating white light and light other than white light, transmission illumination means 21 for realizing an illumination stage for irradiating the back surface of the printed matter 10 with white light, and the surface of the printed matter 10 by the imaging means 30 Control / image processing means 40 that realizes a control / image processing stage that extracts and automatically determines a defective portion existing in the printed material 10 using image data obtained by imaging the image.

印刷物10は所定速度で被撮像領域を移動している。この際、印刷機に取り付けた印刷物10の移動量を高精度に計測するユニットから単位距離毎の信号を得て、その信号を場合によっては、分周分配して制御・画像処理手段40にこの信号を送ることによって、印刷機の速度変動の影響を受けないように走査撮像を行なう。撮像手段30の分解能の範囲内で印刷機の搬送速度を一定と見なすことができる場合は、トリガー信号による撮像開始、及び一定時間間隔の撮像のみで画像を得る方法も考えられるが、前述のように常に印刷機の搬送速度と同期を取った撮像の方が確実である。 The printed material 10 moves in the imaged area at a predetermined speed. At this time, a signal for each unit distance is obtained from a unit that measures the amount of movement of the printed matter 10 attached to the printing machine with high accuracy, and the signal may be divided and distributed to the control / image processing means 40 in some cases. By sending a signal, scanning imaging is performed so as not to be affected by the speed fluctuation of the printing press. When the conveyance speed of the printing press can be regarded as constant within the range of the resolution of the image pickup means 30, a method of obtaining an image only by starting image pickup by a trigger signal and image pickup at a constant time interval is also conceivable. However, it is always more reliable to take images that are synchronized with the conveyance speed of the printing press.

また、印刷機の速度変動以外にも印刷物10の原反がプラスチックフィルムなどの伸縮が発生しやすい原反を使用する可能性がある。印刷物10の原反に伸縮が発生した場合、印刷機の速度と同期を取った撮像を実施しても、画像に影響を与えてしまう可能性がある。よって、印刷機の搬送速度以外にも、印刷物10の伸縮の影響を考慮した計測が必要となる。一般的には、印刷物10にその一部を接触させた計測方法を採用することで、伸縮などの影響を軽減させていることが多い。 In addition to the speed fluctuation of the printing press, there is a possibility that the original fabric of the printed material 10 is an original fabric that tends to expand and contract, such as a plastic film. When the original fabric of the printed matter 10 is expanded or contracted, there is a possibility that the image will be affected even if imaging is performed in synchronization with the speed of the printing press. Therefore, in addition to the conveyance speed of the printing press, measurement in consideration of the expansion and contraction of the printed material 10 is necessary. Generally, the influence of expansion and contraction is often reduced by adopting a measurement method in which a part of the printed product 10 is brought into contact.

図2は、本発明の請求項1及び請求項3に係る反射照明手段20と透過照明手段21について、実施形態を示す模式図である。 FIG. 2 is a schematic diagram showing an embodiment of the reflective illumination means 20 and the transmission illumination means 21 according to claims 1 and 3 of the present invention.

撮像手段30には撮像用のレンズ32が取り付けられており、その垂直方向に撮像対象である印刷物10が配置されている。グラビア印刷機では、印刷物10はロール状にて製造されるため、搬送速度は一定速度である場合が多い。その場合には撮像対象が、常に撮像手段30の下を通過することになるので、撮像手段30は主にラインセンサを選択することが多いが、印刷機の種類、特に搬送の形態によってはエリアカメラを選択しても構わない。また、撮像手段30の配置は、印刷物10に対して垂直に配置しているが、ラインセンサカメラの場合、適切な画像が得られる照明系を実現でき、且つラインセンサの横並び方向において各画素間で同じ距離にある印刷物10を撮像可能であれば、図2において例えばθ傾けた方向(印刷物10に対して90°以外の角度の方向)に配置しても構わない。 An imaging lens 32 is attached to the imaging means 30, and the printed material 10 to be imaged is arranged in the vertical direction. In the gravure printing machine, since the printed material 10 is manufactured in a roll shape, the conveyance speed is often a constant speed. In this case, since the imaging target always passes under the imaging means 30, the imaging means 30 mainly selects a line sensor in many cases, but the area depends on the type of printing press, particularly the form of conveyance. You can select the camera. Further, although the image pickup means 30 is arranged perpendicular to the printed material 10, in the case of a line sensor camera, an illumination system that can obtain an appropriate image can be realized, and each pixel is arranged in the horizontal direction of the line sensor. 2 may be arranged in a direction inclined by θ in FIG. 2 (direction of an angle other than 90 ° with respect to the printed material 10), for example, as long as the printed material 10 at the same distance can be imaged.

反射照明手段20は、印刷物10と撮像手段30の間に配置され、印刷物10の表面に白色光を照射する第1の照明手段22と、白色光以外を照射する第2の照明手段23を備えている。反射照明手段20の種類には、適切な処理を行なえる画像が得られる光量を確保できるのであれば何を使用しても構わないが、撮像手段30にラインセンサを採用する場合、ライン状に照射可能な照明系が適している。具体的には、蛍光灯や伝送ライト、LED照明等を選択使用する。また反射照明手段20は、乱反射、正反射、またはその両方、または両方を配置させつつ印刷物10の原反によってそのうちいずれかを選択する、という配置が考えられるが、印刷機の種類(印刷方式)や原反によってどの配置を選択しても構わない。また、撮像手段30に最適な光量を受光させるため、白色光を照射する第1の照明手段22と、白色光以外を照射する第2の照明手段23をそれぞれ二個以上配置しても構わない。また、反射照明手段20に蛍光灯を採用した場合には、反射照明手段20周辺に反射部材を配置させ、光量を増加させても構わない。 The reflective illumination unit 20 includes a first illumination unit 22 that is disposed between the printed material 10 and the imaging unit 30 and that irradiates the surface of the printed material 10 with white light, and a second illumination unit 23 that irradiates light other than white light. ing. Any type of the reflective illumination means 20 may be used as long as the amount of light capable of obtaining an image that can be appropriately processed can be ensured. However, when a line sensor is used for the imaging means 30, a linear shape is used. An illumination system capable of irradiation is suitable. Specifically, a fluorescent lamp, a transmission light, an LED illumination or the like is selectively used. Further, the reflection illumination means 20 may be arranged to select one of them depending on the original fabric of the printed matter 10 while arranging irregular reflection, regular reflection, or both, or both, but the type of printing machine (printing method) Any arrangement may be selected depending on the material. Further, in order for the imaging unit 30 to receive an optimal amount of light, two or more first illumination units 22 that emit white light and two or more second illumination units 23 that emit light other than white light may be arranged. . In addition, when a fluorescent lamp is employed for the reflective illumination unit 20, a reflective member may be disposed around the reflective illumination unit 20 to increase the amount of light.

反射照明手段20には撮像用のスリット31が設けられている。具体的には撮像手段30に受光する光量に影響が無ければ、空隙であっても、ガラスや透明アクリルのような透明部材がはめ込まれていてもどちらでも構わない。 The reflective illumination means 20 is provided with an imaging slit 31. Specifically, as long as there is no influence on the amount of light received by the image pickup means 30, it may be either a gap or a transparent member such as glass or transparent acrylic.

透過照明手段21は、撮像手段30と透過照明手段21の間に、印刷物10が配置されるような位置関係にて配置され、印刷物10の裏面に白色光を照射する第3の照明手段24を備えている。透過照明手段21の種類には、適切な処理を行なえる画像が得られる光量を確保できるのであれば何を使用しても構わないが、撮像手段30にラインセンサを採用する場合、ライン状に照射可能な照明系が適している。具体的には、蛍光灯や伝送ライト、LED照明等を選択使用する。また透過照明手段20は、最大の光量が確保できる方法として、撮像手段30に対して直線的に配置させる方法が考えられるが、欠陥の検出に支障が出ない光量が確保できるのであれば、直線的な配置である必要はない。また、印刷機の種類(印刷方式)や原反によって、特に透過性が低い原反を使用する場合などは、透過照明手段21を採用しなくても構わない。但し、どのような原反が搬送されるか未確定な印刷機に取り付ける場合などには、透過照明手段21をONとOFFを切り替え可能な形態であることが適している。また、撮像手段30に最適な光量を受光させるため、白色光を照射する第3の照明手段24をそれぞれ二個以上配置しても構わない。また、透過照明手段20に蛍光灯を採用した場合には、透過照明手段20周辺に反射部材を配置させ、光量を増加させても構わない。 The transmitted illumination means 21 is arranged between the imaging means 30 and the transmitted illumination means 21 in such a positional relationship that the printed product 10 is arranged, and a third illumination unit 24 that irradiates the back surface of the printed product 10 with white light. I have. Any kind of transmitted illumination means 21 may be used as long as the amount of light capable of obtaining an image that can be appropriately processed can be secured. However, when a line sensor is used for the image pickup means 30, a linear shape is used. An illumination system capable of irradiation is suitable. Specifically, a fluorescent lamp, a transmission light, an LED illumination or the like is selectively used. In addition, as a method for ensuring the maximum light amount, the transmitted illumination unit 20 can be arranged linearly with respect to the imaging unit 30. It is not necessary to have a typical arrangement. In addition, the transmission illumination means 21 may not be used when using a raw material with particularly low transparency depending on the type of printing press (printing method) and the raw material. However, it is suitable that the transmission illumination means 21 can be switched between ON and OFF, for example, when it is attached to a printing press where it is uncertain what kind of fabric will be conveyed. Further, two or more third illumination means 24 for irradiating white light may be disposed in order to cause the imaging means 30 to receive an optimal amount of light. In addition, when a fluorescent lamp is used for the transmission illumination unit 20, a reflection member may be disposed around the transmission illumination unit 20 to increase the amount of light.

図3はモノクロのラインセンサ(以下モノクロカメラ)の分光感度の一例である。図3のようにモノクロカメラは明るさの情報を、一種類の素子の感度に頼っている。カラーの印刷物10をモノクロカメラで撮像する場合、異なる色の組み合わせでも出力される階調値に差がない場合がある。一方カラーカメラの場合、R、G、Bそれぞれに感度を持つ三種類の素子によって光を受光するので、カラーの印刷物10を撮像しても、出力される結果画像にR、G、B別の印刷物10の情報を反映できるため、モノクロカメラよりもカラーの印刷物10の撮像には適している。 FIG. 3 shows an example of the spectral sensitivity of a monochrome line sensor (hereinafter referred to as a monochrome camera). As shown in FIG. 3, the monochrome camera relies on the sensitivity of one type of element for brightness information. When the color printed matter 10 is imaged with a monochrome camera, there is a case where there is no difference in output gradation values even when different colors are combined. On the other hand, in the case of a color camera, light is received by three types of elements having sensitivity to R, G, and B, respectively. Since the information of the printed matter 10 can be reflected, it is more suitable for imaging the colored printed matter 10 than a monochrome camera.

図4はカラーのラインセンサ(以下カラーカメラ)のR、G、B別の分光感度の一例である。R、G、Bの相対比率は、できるだけ人間の目の感度(視感度)の比率に近いことが好ましいが、現状では素子自体に依存する点が多く、完全に一致させることは難しい。図4のカラーカメラではRが最も高く、Bが最も低い割合になっている。 FIG. 4 is an example of spectral sensitivities for R, G, and B of a color line sensor (hereinafter referred to as a color camera). The relative ratio of R, G, and B is preferably as close as possible to the ratio of human eye sensitivity (visual sensitivity), but at present, there are many points depending on the element itself, and it is difficult to make them completely coincide. In the color camera of FIG. 4, R is the highest and B is the lowest.

そのため、カラーカメラでは素子間の誤差を調整するためのホワイトバランス調整機能を有しているものが多い。これは白色の物体の撮像結果を基に素子間の誤差を調整するものである。このような調整を実施すると、白色の撮像結果には素子間の誤差を無くすことができる。しかし、実際の補正は、結果の出力を各波長別に全体的に増減させているに過ぎず、その増減が大きいほどノイズ成分が多くなることや、微小な明るさの違いを感知できなくなるなどの影響がでることは避けられない。それによってR、G、Bの検出力に差が出ることや、微妙な明るさの違いを持つ欠陥の検出できなくなる、などの弊害を引き起こすことが考えられる。 Therefore, many color cameras have a white balance adjustment function for adjusting an error between elements. This adjusts the error between elements based on the imaging result of a white object. When such adjustment is performed, an error between elements can be eliminated from the white imaging result. However, the actual correction only increases or decreases the resulting output for each wavelength as a whole. The larger the increase or decrease, the more the noise component, the less sensitive the brightness difference, etc. It is inevitable that there will be an impact. This may cause adverse effects such as differences in the detection powers of R, G, and B, and the inability to detect defects having subtle brightness differences.

図5は白色蛍光灯の分光強度の一例である。白色光を照射する白色照明は、蛍光灯やLED等の種類によってそれぞれ独自の分光特性を持っているが、基本的にR、G、B全てに分光強度を持っていることには違いはない。それは蛍光灯以外の白色光を照射する照明にも共通して該当する。白色照明の光強度を調整することは可能であるが、それは全体的な光強度を増減させているのであって、R、G、Bの光強度を個別に増減させることはできない。以上より、白色照明のみで反射の光学系を構成すると、仮にカメラの分光感度のばらつきが発生した場合には光学系でそのばらつきを吸収することは難しい。 FIG. 5 is an example of the spectral intensity of a white fluorescent lamp. White illumination that emits white light has its own spectral characteristics depending on the type of fluorescent lamp, LED, etc., but basically there is no difference in having R, G, and B spectral intensity. . This also applies to illumination that emits white light other than fluorescent lamps. Although it is possible to adjust the light intensity of the white illumination, it increases or decreases the overall light intensity, and the R, G, and B light intensity cannot be increased or decreased individually. As described above, when a reflection optical system is configured with only white illumination, if a variation in the spectral sensitivity of the camera occurs, it is difficult to absorb the variation with the optical system.

そこで、本発明の請求項1〜2では第2の照明手段23を配置し、この第2の照明手段23で白色光以外の1種類以上の所定の波長域の光を照射することによって、カメラの分光感度のばらつきを照明光の分光強度で調整可能にしている。このような第2の照明手段23としては、カメラの撮像素子に合わせ、R、G、Bを単色で発光可能な照明や、RとGを同時に発光可能な照明やイエローなどの色を発光可能な照明などを用いることができる。使用するカメラの分光感度の相対比率を視感度に合うように、照明を選択することが可能であれば、どのような組み合わせを用いても構わない。また第2の照明手段23を二つ以上配置して、それぞれが別々の波長の組み合わせでも構わない。 Accordingly, in the first and second aspects of the present invention, the second illuminating unit 23 is arranged, and the second illuminating unit 23 irradiates one or more kinds of light in a predetermined wavelength region other than the white light, thereby providing a camera. Variation of the spectral sensitivity of the light can be adjusted by the spectral intensity of the illumination light. Such second illumination means 23 can emit light such as R, G, and B that emit light in a single color, illumination that can emit R and G at the same time, or yellow, etc., in accordance with the image sensor of the camera. Can be used. Any combination may be used as long as the illumination can be selected so that the relative ratio of the spectral sensitivity of the camera to be used matches the visibility. Two or more second illumination means 23 may be arranged, and each may be a combination of different wavelengths.

図6は人間の目が最も強く感じる波長555nmの光を基準とし、他の波長の明るさを感じる度合いを比率にて表現したもので、多数の人の視感度を平均化し国際照明委員会(CIE) が合意した、標準比視感度(比視感度)曲線を示したものである。 Fig. 6 is based on the light with a wavelength of 555 nm that the human eye feels most strongly, and expresses the degree of feeling of brightness at other wavelengths as a ratio. It shows the standard relative luminous sensitivity (specific luminous sensitivity) curve agreed by CIE).

図6のように人間の目の感度をR、G、Bの撮像素子で再現する場合、図4のようなカラーカメラを使用すると、各波長の境界部分である500nm及び600nm付近の感度が人間の目と比較して弱くなる傾向にあることが分かる。これまでも欠陥が黄色(600nm付近を含む)の場合、欠陥の検出力が弱いということは問題となっていた。これは、この波長域におけるカラーカメラと人間の目の感度差によるもので、目視で検出可能な欠陥なのに、カラーカメラで撮像した画像から検出することができない、ということである。 When the sensitivity of the human eye is reproduced by an R, G, B image sensor as shown in FIG. 6, if a color camera as shown in FIG. 4 is used, the sensitivity around 500 nm and 600 nm, which is the boundary between the wavelengths, is human. It can be seen that it tends to be weaker than the eyes. So far, when the defect is yellow (including around 600 nm), the defect detection ability is weak. This is due to the difference in sensitivity between the color camera and the human eye in this wavelength range, and although it is a defect that can be detected visually, it cannot be detected from an image captured by the color camera.

そこで、本発明の請求項3〜4では照明光全体のR、G、Bの強度のバランスがカメラの分光感度に合うように第2の照明手段23の波長領域を設定するだけではなく、カラーカメラと人間の目の感度差を埋めるために500nm前後、又は600nm前後、又はその両方の波長域を主として含む照明を、第2の照明手段23とした。両方の波長域を主として含む場合、R、G、Bの強度のバランスを独自に調整できないことも考えられるため、500nm前後と600nm前後を別々に二種類準備することが望ましい。また、指定の波長域を主として含む照明の実現方法として、指定の波長域のみ発光可能な照明手段が望ましいが、指定以外の波長域を特殊フィルタなどによって除外するか、指定の波長域以外の強度が指定の波長域に比べて十分に小さければ、その実現方法については特にこだわらない。 Therefore, in claims 3 to 4 of the present invention, not only the wavelength region of the second illumination means 23 is set so that the balance of the intensity of R, G, and B of the entire illumination light matches the spectral sensitivity of the camera, but also the color. Illumination mainly including wavelength ranges of around 500 nm, around 600 nm, or both in order to fill the sensitivity difference between the camera and the human eye was used as the second illumination means 23. When both wavelength ranges are mainly included, it is considered that the balance of the intensity of R, G, and B cannot be adjusted independently. Therefore, it is desirable to prepare two types of around 500 nm and around 600 nm separately. In addition, as a method for realizing illumination mainly including the specified wavelength range, it is desirable to use illumination means that can emit light only in the specified wavelength range. However, the wavelength range other than the specified wavelength range can be excluded by a special filter or the intensity other than the specified wavelength range can be used. If is sufficiently smaller than the specified wavelength range, the realization method is not particularly concerned.

R、G、Bのカメラ感度のばらつきを合わせることやカラーカメラと人間の目の感度差を埋めることが可能であり、且つ適切な処理を行なえる画像が得られる光量を確保できるのであれば、第2の照明手段23のみで反射照明手段20を構成しても構わない。但し、実際の印刷物10の検査装置では、高速で搬送されていることが多く、求める明るさを確保することは、第1の照明手段22である白色光抜きでは難しい。このような現状から、本実施形態では反射照明手段20は、二種類の照明手段22、23を備えたものとしている。 If it is possible to match the variations in camera sensitivity of R, G, and B, fill the sensitivity difference between the color camera and the human eye, and secure a sufficient amount of light to obtain an image that can be processed appropriately, The reflective illumination unit 20 may be configured by only the second illumination unit 23. However, the actual inspection apparatus for printed matter 10 is often conveyed at high speed, and it is difficult to secure the required brightness without white light as the first illumination means 22. From such a current situation, in the present embodiment, the reflection illumination unit 20 includes two types of illumination units 22 and 23.

図7は、この制御・画像処理手段40の全体動作を示したフローチャートである。印刷物10が所定の搬送速度にて移動し、印刷機の搬送速度及び印刷物の伸縮と同期を取り、印刷物10の表面を撮像手段30により撮像する(ステップS1)。 FIG. 7 is a flowchart showing the overall operation of the control / image processing means 40. The printed material 10 moves at a predetermined conveying speed, synchronizes with the conveying speed of the printing press and the expansion and contraction of the printed material, and the surface of the printed material 10 is imaged by the imaging means 30 (step S1).

この画像データは、制御・画像処理手段40に送出され、この画像データから印刷物の情報を抽出する(ステップS2)。更に、抽出された情報を用いて欠陥検出・判定処理が実行される(ステップS3)。この欠陥検出・判定処理は、全ての印刷物10に対して実行され、この後全体動作は完了する(ステップS4,YES)。 This image data is sent to the control / image processing means 40, and information on the printed matter is extracted from this image data (step S2). Further, defect detection / determination processing is executed using the extracted information (step S3). This defect detection / determination process is executed for all the printed materials 10, and then the entire operation is completed (step S4, YES).

上記不良検出・判定処理(ステップS3)では、得られた画像に対して二値化、多値化処理を施して不良部位を抽出するか、予め基準となる画像をマスターデータとして保持しておき、得られた画像データとのパターンマッチングや差分処理などの画像処理を施すことで各種印刷物10の不良を検出することができる。 In the defect detection / determination process (step S3), the obtained image is binarized and multi-valued to extract a defective part, or a reference image is held in advance as master data. By performing image processing such as pattern matching with the obtained image data and difference processing, defects of various printed materials 10 can be detected.

以上より、本実施形態の照明手段を用い、カメラ感度のばらつきを合わせることで、ノイズ成分を削減させ微小な明るさの違いを捉えやすくし、また、カラーカメラと人間の目の感度差を埋めることで、欠陥の検出力が弱いとされていた500nmや600nm近辺の欠陥の検出力を向上させることができるようになる。よって、カメラ受光感度の機種差及び個体差等によらず、カラーで構成された印刷物を高精度に検査することができるようになる。 As described above, by using the illumination means of this embodiment and matching variations in camera sensitivity, it is possible to reduce noise components and easily capture minute differences in brightness, and to fill in sensitivity differences between color cameras and human eyes. Thus, it becomes possible to improve the detection power of defects near 500 nm and 600 nm, which has been considered to have a weak detection power of defects. Therefore, it becomes possible to inspect a printed matter composed of colors with high accuracy regardless of the difference in camera light receiving sensitivity between models and individual differences.

10・・印刷物
20・・反射照明手段
21・・透過照明手段
22・・第1の照明手段
23・・第2の照明手段
24・・第3の照明手段
30・・撮像手段
31・・撮像用のスリット
32・・撮像用のレンズ
40・・制御・画像処理手段
10 .. Printed material 20 .. Reflective illumination means 21 .. Transmitted illumination means 22... First illumination means 23 .. 2nd illumination means 24 .. 3rd illumination means 30. Slit 32 ··· lens 40 for imaging · · control and image processing means

Claims (4)

表面、または裏面、またはその両面に印刷が施された印刷物の表面に白色光を照射する第1の照明段階と、
前記印刷物表面に少なくとも1種類以上の所定の波長域の光を照射する第2の照明段階と、
前記印刷物裏面に白色光を照射する第3の照明段階と、
前記印刷物を、搬送と同期を取るかまたは所定時間間隔で、前記印刷物表面を撮像する撮像段階と、
前記撮像段階にて得られた前記印刷物の表面の画像データを用いて、前記印刷物に存在する欠陥を判定する画像処理・欠陥判定段階と、
を有することを特徴とする印刷物の検査方法。
A first illumination stage that irradiates the surface of the printed matter with the front surface, the back surface, or both sides thereof printed with white light;
A second illumination step of irradiating at least one type of light in a predetermined wavelength range on the printed surface;
A third illumination stage for irradiating the printed back with white light;
An imaging step of imaging the printed material surface in synchronization with conveyance or at a predetermined time interval;
Using the image data of the surface of the printed matter obtained in the imaging step, image processing / defect determining step for judging defects present in the printed matter;
A method for inspecting printed matter, comprising:
表面、または裏面、またはその両面に印刷が施された印刷物の表面に白色光を照射する第1の照明手段と、
前記印刷物表面に少なくとも1種類以上の所定の波長域の光を照射する第2の照明手段と、
前記印刷物裏面に白色光を照射する第3の照明手段と、
前記印刷物を、搬送と同期を取るかまたは所定時間間隔で、前記印刷物表面を撮像する撮像手段と、
前記撮像手段における撮像にて得られた前記印刷物の表面の画像データを用いて、前記印刷物に存在する欠陥を判定する画像処理・欠陥判定手段と、
を有することを特徴とする印刷物の検査装置。
A first illuminating means for irradiating the front surface, the back surface, or the surface of the printed material printed on both sides thereof with white light;
A second illuminating means for irradiating the surface of the printed matter with at least one kind of light in a predetermined wavelength range;
A third illuminating means for irradiating the printed back with white light;
Imaging means for imaging the surface of the printed matter in synchronization with conveyance or at a predetermined time interval,
Image processing / defect determination means for determining defects present in the printed matter, using image data of the surface of the printed matter obtained by imaging in the imaging means,
An inspection apparatus for printed matter, comprising:
表面、または裏面、またはその両面に印刷が施された印刷物の表面に白色光を照射する第1の照明段階と、
前記印刷物表面に少なくとも1種類以上の所定の波長域の光を照射し、その波長域が500nm前後、又は600nm前後、又はその両方の波長域を主として含む第2の照明段階と、
前記印刷物裏面に白色光を照射する第3の照明段階と、
前記印刷物を、搬送と同期を取るかまたは所定時間間隔で、前記印刷物表面を撮像する撮像段階と、
前記撮像段階にて得られた前記印刷物の表面の画像データを用いて、前記印刷物に存在する欠陥を判定する画像処理・欠陥判定段階と、
を有することを特徴とする印刷物の検査方法。
A first illumination stage that irradiates the surface of the printed matter with the front surface, the back surface, or both sides thereof printed with white light;
Irradiating at least one kind of light in a predetermined wavelength range on the surface of the printed matter, the second illumination stage mainly including the wavelength range of around 500 nm, around 600 nm, or both;
A third illumination stage for irradiating the printed back with white light;
An imaging step of imaging the printed material surface in synchronization with conveyance or at a predetermined time interval;
Using the image data of the surface of the printed matter obtained in the imaging step, image processing / defect determining step for judging defects present in the printed matter;
A method for inspecting printed matter, comprising:
表面、または裏面、またはその両面に印刷が施された印刷物の表面に白色光を照射する第1の照明手段と、
前記印刷物表面に少なくとも1種類以上の所定の波長域の光を照射し、その波長域が500nm前後、又は600nm前後、又はその両方の波長域を主として含む第2の照明段階と、
前記印刷物裏面に白色光を照射する第3の照明手段と、
前記印刷物を、搬送と同期を取るかまたは所定時間間隔で、前記印刷物表面を撮像する撮像手段と、
前記撮像手段における撮像にて得られた前記印刷物の表面の画像データを用いて、前記印刷物に存在する欠陥を判定する画像処理・欠陥判定手段と、
を有することを特徴とする印刷物の検査装置。
A first illuminating means for irradiating the front surface, the back surface, or the surface of the printed material printed on both sides thereof with white light;
Irradiating at least one kind of light in a predetermined wavelength range on the surface of the printed matter, the second illumination stage mainly including the wavelength range of around 500 nm, around 600 nm, or both;
A third illuminating means for irradiating the printed back with white light;
Imaging means for imaging the surface of the printed matter in synchronization with conveyance or at a predetermined time interval,
Image processing / defect determination means for determining defects present in the printed matter, using image data of the surface of the printed matter obtained by imaging in the imaging means,
An inspection apparatus for printed matter, comprising:
JP2009051978A 2008-09-04 2009-03-05 Method and apparatus for inspecting printed matter Pending JP2010085388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009051978A JP2010085388A (en) 2008-09-04 2009-03-05 Method and apparatus for inspecting printed matter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008226785 2008-09-04
JP2009051978A JP2010085388A (en) 2008-09-04 2009-03-05 Method and apparatus for inspecting printed matter

Publications (1)

Publication Number Publication Date
JP2010085388A true JP2010085388A (en) 2010-04-15

Family

ID=42249473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009051978A Pending JP2010085388A (en) 2008-09-04 2009-03-05 Method and apparatus for inspecting printed matter

Country Status (1)

Country Link
JP (1) JP2010085388A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089156A (en) * 2012-10-31 2014-05-15 Toyota Motor Corp Visual inspection method
JP2015131391A (en) * 2014-01-09 2015-07-23 セーレン株式会社 Printer and printing method
JP2019128286A (en) * 2018-01-25 2019-08-01 ダックエンジニアリング株式会社 Printed matter inspection method and printed matter inspection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089156A (en) * 2012-10-31 2014-05-15 Toyota Motor Corp Visual inspection method
JP2015131391A (en) * 2014-01-09 2015-07-23 セーレン株式会社 Printer and printing method
JP2019128286A (en) * 2018-01-25 2019-08-01 ダックエンジニアリング株式会社 Printed matter inspection method and printed matter inspection device
JP7081785B2 (en) 2018-01-25 2022-06-07 ダックエンジニアリング株式会社 Printed matter inspection method and printed matter inspection equipment

Similar Documents

Publication Publication Date Title
CN108445007B (en) Detection method and detection device based on image fusion
JP6629455B2 (en) Appearance inspection equipment, lighting equipment, photography lighting equipment
US8587844B2 (en) Image inspecting apparatus, image inspecting method, and image forming apparatus
JP7262260B2 (en) Defect inspection device and defect inspection method
JP5424659B2 (en) Inspection device for inspection object
TWI553307B (en) Transparent substrate for visual inspection device and appearance inspection method
AU2006333500A1 (en) Apparatus and methods for inspecting a composite structure for defects
JP2009115613A (en) Foreign matter inspecting apparatus
JP5068731B2 (en) Surface flaw inspection apparatus, surface flaw inspection method and program
JP2001242091A (en) Device and method for inspecting surface
JP5776949B2 (en) Inspection method
JP2016197065A (en) Grain quality discrimination device, and receiving method of light from grain in device
KR101203210B1 (en) Apparatus for inspecting defects
US10444162B2 (en) Method of testing an object and apparatus for performing the same
JP2007327896A (en) Inspection device
JP5890953B2 (en) Inspection device
JP5424660B2 (en) Inspection device for inspection object
JP2010085388A (en) Method and apparatus for inspecting printed matter
JP2009156872A6 (en) Inspection device for inspection object
TW201629474A (en) Inspection device
WO2014104375A1 (en) Inspection device
JP2000009440A (en) Method and device for measuring 3-dimensional object
JP7136064B2 (en) Apparatus for inspecting surface of object to be inspected and method for inspecting surface of object to be inspected
JP2013044635A (en) Defect detecting device
JP2018132355A (en) Inspection method for screen printing plate