JP2012247100A - Air conditioner control system - Google Patents

Air conditioner control system Download PDF

Info

Publication number
JP2012247100A
JP2012247100A JP2011117826A JP2011117826A JP2012247100A JP 2012247100 A JP2012247100 A JP 2012247100A JP 2011117826 A JP2011117826 A JP 2011117826A JP 2011117826 A JP2011117826 A JP 2011117826A JP 2012247100 A JP2012247100 A JP 2012247100A
Authority
JP
Japan
Prior art keywords
air
air conditioner
conditioning
capacity
operating frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011117826A
Other languages
Japanese (ja)
Other versions
JP5750308B2 (en
Inventor
Shinji Nakamura
慎二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Building Solutions Corp
Original Assignee
Mitsubishi Electric Building Techno Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Building Techno Service Co Ltd filed Critical Mitsubishi Electric Building Techno Service Co Ltd
Priority to JP2011117826A priority Critical patent/JP5750308B2/en
Publication of JP2012247100A publication Critical patent/JP2012247100A/en
Application granted granted Critical
Publication of JP5750308B2 publication Critical patent/JP5750308B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a desired energy saving effect, while maintaining the comfort of an air conditioned space, in an air conditioner control system.SOLUTION: A control device 40 connected to a plurality of air conditioners 22, 24, 26 is constituted by including a maximum efficiency operation portion 42 which operates basically each of the air conditioners 22, 24, 26 under the maximum efficiency condition, an air conditioning determination portion 44 which compares the room temperature of each air conditioning zone 12, 14, 16 and set air conditioning temperatures, a capability adjusting portion 46 which performs the adjustment of increasing or decreasing the cooling and heating capability of each of the air conditioners 22, 24, 26, an operation condition restoration portion 48 which returns the capability again to the operation condition before the capability adjustment after elapsing a suitable predetermined time after performing the capability adjustment, and an optimum operation portion 50 which operates the air conditioners 22, 24, 26 under the optimum operation condition, when the upper limit value of consumable electric power is defined.

Description

本発明は、空調機制御システムに係り、特に省エネルギ制御を行う空調機制御システムに関する。   The present invention relates to an air conditioner control system, and more particularly to an air conditioner control system that performs energy saving control.

空調機の電力消費を抑制するために、省エネルギ制御が行われる。空調機の電力消費を抑えると、冷房能力あるいは暖房能力が低下することがある。そこで、空調機のエネルギ効率と冷暖房能力の関係が問題となる。空調機のエネルギ効率を示すものとして、成績係数(Coefficient Of Performance:COP)が知られている。空調機のCOPとは、空調機に入力されたエネルギによって、どれだけの冷暖房エネルギを出力できるかを数値で示したものである。例えば、空調機が1kWの電力消費で1kWの冷暖房能力を発揮すると、COP=(冷暖房能力)÷(消費電力)=1である。発揮する冷暖房能力が0.5kWであると、COP=0.5となる。   Energy saving control is performed to suppress power consumption of the air conditioner. If the power consumption of the air conditioner is reduced, the cooling capacity or heating capacity may be reduced. Therefore, the relationship between the energy efficiency of the air conditioner and the cooling / heating capacity becomes a problem. Coefficient of performance (COP) is known as an indication of the energy efficiency of an air conditioner. The COP of the air conditioner is a numerical value indicating how much heating / cooling energy can be output by the energy input to the air conditioner. For example, if the air conditioner exhibits 1 kW air conditioning capacity with 1 kW power consumption, COP = (air conditioning capacity) / (power consumption) = 1. When the cooling / heating capacity to be exhibited is 0.5 kW, COP = 0.5.

例えば、特許文献1には、空気調和機において、インバータによる圧縮機の運転周波数と成績係数COPとの関係を示す効率曲線が、特定の運転周波数で最大値を有する上側に凸の曲線となることが一般的であると述べられている。これに対し、インバータによる圧縮機の運転周波数と冷暖房能力との関係を示す能力曲線は、運転周波数が増大するほど増加する単純増加曲線となると述べられている。   For example, in Patent Document 1, in an air conditioner, an efficiency curve indicating a relationship between an operating frequency of a compressor using an inverter and a coefficient of performance COP is an upward convex curve having a maximum value at a specific operating frequency. Is said to be common. On the other hand, it is stated that the capacity curve indicating the relationship between the operation frequency of the compressor by the inverter and the cooling / heating capacity is a simple increase curve that increases as the operation frequency increases.

特開平11−118263号公報JP 11-118263 A

空調機について省エネルギ制御が行われると、一般的に居室等の空調空間の快適性が低下する。また、空調機のオン・オフパターンによっては、例えば圧縮機の運転効率が低下し、思ったほどの省エネルギ効果が得られないことがある。   When energy saving control is performed on an air conditioner, the comfort of an air-conditioned space such as a living room is generally lowered. Further, depending on the on / off pattern of the air conditioner, for example, the operating efficiency of the compressor may be lowered, and the energy saving effect as expected may not be obtained.

本発明の目的は、空調空間の快適性を維持しながら、所望の省エネルギ効果を得ることができる空調機制御システムを提供することである。   An object of the present invention is to provide an air conditioner control system capable of obtaining a desired energy saving effect while maintaining the comfort of an air conditioned space.

本発明に係る空調機制御システムは、インバータを有し、運転周波数と効率の関係が特定の運転周波数で効率最大値を示す効率曲線特性と、運転周波数と空調能力との関係が運転周波数の増大と共に増加する能力曲線特性とを有する空調機と、空調機について、省エネルギ制御を行う制御装置と、を備え、制御装置は、省エネルギ制御時間帯において、効率曲線特性の効率最大値を示す特定の運転周波数で空調機を運転させる最大効率運転部と、空調空間における空調設定条件と、実際の空調状態との間の差である空調状態偏差を検出し、検出された空調状態偏差が予め定めた閾値偏差を超えるか否かを判断する空調状態判断部と、空調状態偏差が閾値偏差を超えると判断されるときに、空調機の空調能力が不足していると判断し、空調機の運転周波数を特定の運転周波数から予め定めた増加条件に従って増加させる能力調整部と、を含むことを特徴とする。   The air conditioner control system according to the present invention has an inverter, and the relationship between the operation frequency and the air conditioning capability is an increase in the operation frequency, and the efficiency curve characteristic in which the relationship between the operation frequency and the efficiency shows a maximum efficiency value at a specific operation frequency. An air conditioner having a capacity curve characteristic that increases with the control unit, and a control device that performs energy saving control for the air conditioner, and the control device specifies a maximum efficiency curve characteristic efficiency value during the energy saving control time period. The air-conditioning state deviation, which is the difference between the maximum-efficiency operation unit that operates the air-conditioner at the operating frequency of the air-conditioning, the air-conditioning setting conditions in the air-conditioned space, and the actual air-conditioning state is detected, and the detected air-conditioning state deviation is predetermined An air conditioning state determination unit that determines whether or not the threshold deviation is exceeded, and when it is determined that the air conditioning state deviation exceeds the threshold deviation, the air conditioning capacity of the air conditioner is determined to be insufficient. A capacity regulating unit to increase according to a predetermined increase condition from rolling frequency specific operating frequency, characterized in that it comprises a.

また、本発明に係る空調機制御システムにおいて、制御装置は、能力調整を行った後、予め定めた経過時間の後、再び最大効率運転の状態に戻す運転状態復帰部を含むことが好ましい。   In the air conditioner control system according to the present invention, it is preferable that the control device includes an operation state returning unit that returns the state of maximum efficiency operation again after a predetermined elapsed time after performing the capacity adjustment.

また、本発明に係る空調機制御システムにおいて、空調制御対象空間を複数に分けた複数の空調ゾーンのそれぞれに配置された複数の空調機を備え、制御装置は、複数の空調ゾーンの全体について予め定められた消費可能な電力上限値を守るために、各空調ゾーンに配置された空調機について、それぞれの特定運転周波数の近傍において予め定められた最適運転周波数で、それぞれの空調機を運転する最適運転部を含み、空調状態判断部は、各空調ゾーンにおける空調設定条件と、実際の空調状態との間の差である空調状態偏差を検出し、検出された空調状態偏差が予め定めた閾値偏差を超えるか否かを各空調ゾーンごとに判断し、能力調整部は、空調状態偏差が閾値偏差を超えると判断される空調ゾーンについて、その空調ゾーンに配置された空調機の空調能力が不足していると判断し、当該空調機の運転周波数を最適運転周波数から予め定めた増加条件に従って増加させ、当該空調機以外の他の空調機の中から、予め定めた能力調整組合せに従って定められる空調機の運転周波数を最適運転周波数から予め定めた低減条件に従って低減させる処理を行うことが好ましい。   Further, the air conditioner control system according to the present invention includes a plurality of air conditioners arranged in each of a plurality of air conditioning zones into which a plurality of air conditioning control target spaces are divided. Optimum operation of each air conditioner at an optimum operating frequency set in the vicinity of each specific operating frequency for the air conditioners arranged in each air conditioning zone in order to observe the set upper limit of power that can be consumed The air conditioning state determination unit includes an operation unit, detects an air conditioning state deviation that is a difference between the air conditioning setting condition in each air conditioning zone and the actual air conditioning state, and the detected air conditioning state deviation is a predetermined threshold deviation. For each air conditioning zone, the capacity adjustment unit arranges the air conditioning zone for which it is determined that the air conditioning state deviation exceeds the threshold deviation in that air conditioning zone. It is determined that the air conditioning capacity of the air conditioner is insufficient, and the operating frequency of the air conditioner is increased from the optimum operating frequency according to a predetermined increase condition, and is determined in advance from other air conditioners other than the air conditioner. It is preferable to perform a process of reducing the operating frequency of the air conditioner determined according to the capacity adjustment combination according to a predetermined reduction condition from the optimal operating frequency.

また、本発明に係る空調機制御システムにおいて、制御装置は、各空調機の空調ゾーンに対する空調負荷の余力特性に基づいて、能力調整組合せを予め定めて記憶する記憶部を含むことが好ましい。   Moreover, in the air conditioner control system according to the present invention, the control device preferably includes a storage unit that predetermines and stores the capacity adjustment combination based on the remaining capacity characteristic of the air conditioning load for the air conditioning zone of each air conditioner.

また、本発明に係る空調機制御システムにおいて、制御装置は、各空調機の余力特性を学習によって更新する余力特性学習部を含み、記憶部は、更新された各空調機の余力特性に基づいて能力調整組合せを更新することが好ましい。   In the air conditioner control system according to the present invention, the control device includes a remaining power characteristic learning unit that updates the remaining power characteristics of each air conditioner by learning, and the storage unit is based on the updated remaining power characteristics of each air conditioner. It is preferable to update the capability adjustment combination.

上記構成により、空調機制御システムは、省エネルギ制御時間帯において、効率曲線特性の効率最大値を示す特定の運転周波数で空調機を運転させる。そして、空調設定条件と実際の空調状態との間の差である空調状態偏差が予め定めた閾値偏差を超えると判断されるときは、空調機の空調能力が不足していると判断して、空調機の運転周波数を特定の運転周波数から予め定めた増加条件に従って増加させる。これにより、効率最大条件の下の運転を基本的状態とし、その状態で空調状態偏差が大きいときは、空調機の運転周波数を増加させて、空調機の冷暖房能力を高める。空調機の運転周波数を増加させると冷暖房能力は増大し、運転周波数を低減すると冷暖房能力も低減する。これにより、効率最大運転を基本として、省エネルギ制御を行いながら、空調空間の快適性を維持することができる。   With the above configuration, the air conditioner control system operates the air conditioner at a specific operation frequency indicating the maximum efficiency value of the efficiency curve characteristic in the energy saving control time zone. And when it is determined that the air conditioning state deviation, which is the difference between the air conditioning setting condition and the actual air conditioning state, exceeds a predetermined threshold deviation, it is determined that the air conditioning capacity of the air conditioner is insufficient, The operation frequency of the air conditioner is increased from a specific operation frequency according to a predetermined increase condition. As a result, the operation under the maximum efficiency condition is set to the basic state, and when the air conditioning state deviation is large in that state, the operation frequency of the air conditioner is increased to increase the air conditioning capability of the air conditioner. Increasing the operating frequency of the air conditioner increases the cooling / heating capacity, and decreasing the operating frequency also decreases the cooling / heating capacity. Thereby, the comfort of the air-conditioned space can be maintained while performing energy saving control based on the maximum efficiency operation.

また、空調機制御システムにおいて、能力調整を行った後、予め定めた経過時間の後、再び最大効率運転の状態に戻すので、効率最大運転を基本として、省エネルギ制御を行いながら、空調空間の快適性を維持することができる。   Also, in the air conditioner control system, after adjusting the capacity, after a predetermined elapsed time, it returns to the state of maximum efficiency operation again, so while performing energy saving control based on the maximum efficiency operation, Comfort can be maintained.

また、空調機制御システムにおいて、空調制御対象空間を複数に分けた複数の空調ゾーンのそれぞれに配置された複数の空調機を備えるときは、予め定められた電力上限値を守るために、各空調ゾーンに配置された空調機について、それぞれの特定運転周波数の近傍において予め定められた最適運転周波数で、それぞれの空調機を運転する。そして、各空調ゾーンにおける空調設定条件と、実際の空調状態との間の差である空調状態偏差が予め定めた閾値偏差を超えると判断されるときは、その空調ゾーンに配置された空調機の空調能力が不足していると判断し、当該空調機の運転周波数を最適運転周波数から予め定めた増加条件に従って増加させる。そして、当該空調機以外の他の空調機の中から、予め定めた能力調整組合せに従って定められる空調機の運転周波数を最適運転周波数から予め定めた低減条件に従って低減させる。これにより、電力上限値を守りながら、空調空間の快適性を維持することができる。   In addition, when the air conditioner control system includes a plurality of air conditioners arranged in each of a plurality of air conditioning zones that are divided into a plurality of air conditioning control target spaces, each air conditioner is protected in order to maintain a predetermined power upper limit value. About the air conditioner arrange | positioned in a zone, each air conditioner is drive | operated by the optimal operation frequency predetermined in the vicinity of each specific operation frequency. When it is determined that the air-conditioning state deviation, which is the difference between the air-conditioning setting condition in each air-conditioning zone and the actual air-conditioning state, exceeds a predetermined threshold deviation, the air-conditioner arranged in that air-conditioning zone It is determined that the air conditioning capacity is insufficient, and the operation frequency of the air conditioner is increased from the optimum operation frequency according to a predetermined increase condition. Then, the operation frequency of the air conditioner determined according to the predetermined capacity adjustment combination is reduced from the other air conditioners other than the air conditioner according to the predetermined reduction condition from the optimum operation frequency. Thereby, the comfort of an air-conditioned space can be maintained, protecting an electric power upper limit.

また、空調機制御システムにおいて、各空調機の空調ゾーンに対する空調負荷の余力特性に基づいて、能力調整組合せを予め定めて記憶する。これにより、空調機の制御を適切なものとできる。   Further, in the air conditioner control system, the capacity adjustment combination is determined in advance and stored based on the remaining capacity characteristic of the air conditioning load for the air conditioning zone of each air conditioner. Thereby, control of an air conditioner can be made appropriate.

また、空調機制御システムにおいて、各空調機の余力特性を学習によって更新する。そして更新された各空調機の余力特性に基づいて能力調整組合せが更新される。これによって、空調機の制御を常に最適なものとできる。   In the air conditioner control system, the remaining power characteristics of each air conditioner are updated by learning. Then, the capacity adjustment combination is updated based on the updated capacity characteristics of each air conditioner. As a result, the control of the air conditioner can always be optimized.

本発明に係る実施の形態の空調機制御システムの構成を説明する図である。It is a figure explaining the structure of the air-conditioner control system of embodiment which concerns on this invention. 空調機の効率曲線特性と能力曲線特性を説明する図である。It is a figure explaining the efficiency curve characteristic and capacity curve characteristic of an air conditioner. 別の空調機の効率曲線特性と能力曲線特性を示す図である。It is a figure which shows the efficiency curve characteristic and capacity curve characteristic of another air conditioner. 他の空調機の効率曲線特性と能力曲線特性を示す図である。It is a figure which shows the efficiency curve characteristic and capacity curve characteristic of another air conditioner. 本発明に係る実施の形態の空調機制御システムにおいて用いられる能力調整組合せの例を説明する図である。It is a figure explaining the example of the capability adjustment combination used in the air conditioner control system of embodiment which concerns on this invention. 本発明に係る実施の形態における空調機制御手順を示すフローチャートである。It is a flowchart which shows the air-conditioner control procedure in embodiment which concerns on this invention. 本発明に係る実施の形態において、電力上限値が定められている場合の空調機制御手順を示すフローチャートである。In embodiment concerning this invention, it is a flowchart which shows the air-conditioner control procedure in case the electric power upper limit is defined.

以下に図面を用いて本発明に係る実施の形態につき、詳細に説明する。以下では、空調機制御システムの対象となる空調制御空間を3つの空調ゾーンに区分したものについて述べるが、これは説明のための例示に過ぎず、空調ゾーンの数は3以外でも構わない。例えば、1つであってもよく、2つであってもよく、4以上であってもよい。また、3つの空調ゾーンが東西に並ぶものとし、中央の空調ゾーンが最も広い空間として説明するが、これらも例示であって、配置、空間の広さはこれ以外であっても構わない。例えば、各階に分けられた空調ゾーンであってもよく、異なる複数の建物のそれぞれを別々の空調ゾーンとしてもよい。各空調ゾーンにそれぞれ1つの空調機が配置されるものとするが、2つ以上の空調機が配置されるものとしてもよい。   Embodiments according to the present invention will be described below in detail with reference to the drawings. In the following, the air conditioning control space that is the target of the air conditioner control system will be described as being divided into three air conditioning zones. However, this is merely an example for explanation, and the number of air conditioning zones may be other than three. For example, there may be one, two, or four or more. In addition, it is assumed that the three air-conditioning zones are arranged in the east and west, and the central air-conditioning zone is described as the widest space, but these are also examples, and the arrangement and the size of the space may be other than this. For example, it may be an air-conditioning zone divided into each floor, and each of a plurality of different buildings may be a separate air-conditioning zone. One air conditioner is arranged in each air conditioning zone, but two or more air conditioners may be arranged.

以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。また、本文中の説明においては、必要に応じそれ以前に述べた符号を用いるものとする。   Below, the same code | symbol is attached | subjected to the same element in all the drawings, and the overlapping description is abbreviate | omitted. In the description in the text, the symbols described before are used as necessary.

図1は、空調機制御システム10の構成を説明する図である。この空調機制御システム10は、1つの空調制御空間としての建物を西側から東側に3つの空調ゾーン12,14,16として分け、それぞれの空調ゾーン12,14,16に、空調機22,24,26と、室温検出器32,34,36を配置して、3つの空調ゾーン12,14,16の快適性を維持しながら、空調機22,24,26の省エネルギ制御を行なう機能を有するシステムである。   FIG. 1 is a diagram illustrating the configuration of the air conditioner control system 10. This air conditioner control system 10 divides a building as one air conditioning control space into three air conditioning zones 12, 14, 16 from the west side to the east side, and the air conditioners 22, 24, 26 and room temperature detectors 32, 34, and 36, and a system having a function of performing energy saving control of the air conditioners 22, 24, and 26 while maintaining the comfort of the three air conditioning zones 12, 14, and 16. It is.

空調ゾーン12,14,16は、建物の1つの広い空間を空調機22,24,26のそれぞれの管轄として単に区分したものである。空調ゾーン12,14,16の間に仕切り壁等があるわけではない。もっとも、仕切壁があって、空調ゾーン12,14,16がそれぞれ居室となっていても構わない。空調ゾーン12,14,16は、建物の西側から東側に向かって並んでいるので、これを空調ゾーンW,C,Eと呼ぶことで、各空調ゾーン間の配置関係がよく分かる。そこで、以下では、空調ゾーン12,14,16を場合によって、空調ゾーンW,C,Eと呼ぶことにする。   The air conditioning zones 12, 14, and 16 simply divide one wide space of a building as the respective jurisdiction of the air conditioners 22, 24, and 26. There is no partition wall or the like between the air conditioning zones 12, 14, and 16. However, there may be a partition wall, and the air-conditioning zones 12, 14, and 16 may each be a living room. Since the air-conditioning zones 12, 14, and 16 are arranged from the west side to the east side of the building, the arrangement relationship between the air-conditioning zones can be well understood by referring to the air-conditioning zones W, C, and E. Therefore, hereinafter, the air-conditioning zones 12, 14, and 16 will be referred to as air-conditioning zones W, C, and E, depending on circumstances.

空調ゾーンWとされる西側の空調ゾーン12は西日の影響等により、外気の影響を最も受けやすく、空調ゾーンCとして示される中央の空調ゾーン14は、空間の大きさも大きく、また中央に配置されることから外気の影響を最も受けにくく、空調ゾーンEとして示される東側の空調ゾーン16は、西側の空調ゾーン12ほどではないがある程度外気の影響を受ける。このように、空調ゾーン12,14,16は、空調を行う際の空調負荷の特性がそれぞれ異なる3つの空調空間の例として示されている。   The air conditioning zone 12 on the west side, which is designated as the air conditioning zone W, is most susceptible to the influence of outside air due to the influence of the western sun, etc. The air conditioning zone 14 shown as the air conditioning zone C has a large space and is arranged in the center. Therefore, the air conditioning zone 16 on the east side, which is indicated as the air conditioning zone E, is not affected as much as the air conditioning zone 12 on the west side, but is affected to some extent by the outside air. Thus, the air-conditioning zones 12, 14, and 16 are shown as examples of three air-conditioned spaces that have different air-conditioning load characteristics when air-conditioning is performed.

空調機22,24,26は、空調ゾーン12,14,16にそれぞれ設けられ、蒸発器と、圧縮器と、凝集器と、減圧弁とを備える循環型の冷暖房装置である。圧縮機には、インバータが含まれる。空調機22,24,26は、空調ゾーンW,C,Eの空調負荷の相違に応じて選択された仕様を有し、それぞれの冷暖房特性は異なっている。空調機22,24,26は、後述する制御装置40によって、その動作が制御される。   The air conditioners 22, 24, and 26 are provided in the air conditioning zones 12, 14, and 16, respectively, and are circulation type air conditioners that include an evaporator, a compressor, an aggregator, and a pressure reducing valve. The compressor includes an inverter. The air conditioners 22, 24, and 26 have specifications that are selected according to the difference in the air conditioning load between the air conditioning zones W, C, and E, and have different air conditioning characteristics. The operations of the air conditioners 22, 24, and 26 are controlled by a control device 40 described later.

なお、空調機22,24,26においては、空調対象空間に設置される室内機と、主に大気と熱交換を行うために室外に設置される室外機によって構成されるものも含まれる。この場合、圧縮機は室外機に搭載される。また、このような構成の空調機において、1台もしくは、複数台の室外機に対して、複数台の室内機をもって空調機を構成するいわゆるビル用マルチエアコンも含む。この場合、空調機22を構成する全ての室内機が空調ゾーン12に、空調機24を構成する全ての室内機が空調ゾーン14に、空調機26を構成する全ての室内機が空調ゾーン16に設置され、それぞれのゾーンの空調を行うこととなる。   Note that the air conditioners 22, 24, and 26 include an indoor unit installed in the air-conditioning target space and an outdoor unit installed mainly outdoors to exchange heat with the atmosphere. In this case, the compressor is mounted on the outdoor unit. In addition, the air conditioner having such a configuration includes a so-called multi-air conditioner for a building in which the air conditioner is configured with a plurality of indoor units with respect to one or a plurality of outdoor units. In this case, all indoor units constituting the air conditioner 22 are in the air conditioning zone 12, all indoor units constituting the air conditioner 24 are in the air conditioning zone 14, and all indoor units constituting the air conditioner 26 are in the air conditioning zone 16. It will be installed and air-conditioned in each zone.

室温検出器32,34,36は、空調ゾーン12,14,16のそれぞれの適当な場所に設置される温度センサである。室温検出器32,34,36の検出データは、適当な信号線を介して、制御装置40に伝送される。   The room temperature detectors 32, 34, and 36 are temperature sensors installed at appropriate locations in the air conditioning zones 12, 14, and 16, respectively. The detection data of the room temperature detectors 32, 34, and 36 is transmitted to the control device 40 via an appropriate signal line.

なお、室温検出器は、空調機の制御を行うために空調機に接続されたセンサであってもよく、この場合、空調機の制御信号線を介して、制御装置40に室内温度が伝送されることになる。また、1つのゾーンに複数の室内機が設置される場合は、代表室内機の温度を制御装置40に伝送してもよく、また、平均の温度を制御装置40に伝送してもよい。さらに、制御装置40にて、代表室内機の温度を選択してもよく、平均温度を演算してもかまわない。   The room temperature detector may be a sensor connected to the air conditioner to control the air conditioner. In this case, the room temperature is transmitted to the control device 40 via the control signal line of the air conditioner. Will be. Further, when a plurality of indoor units are installed in one zone, the temperature of the representative indoor unit may be transmitted to the control device 40, and the average temperature may be transmitted to the control device 40. Further, the control device 40 may select the temperature of the representative indoor unit, or may calculate the average temperature.

制御装置40は、3台の空調機22,24,26と、3つの室温検出器32,34,36に接続され、3台の空調機22,24,26の動作を全体として制御する機能を有する。かかる制御装置40は、空調制御に適したコンピュータで構成することができる。   The control device 40 is connected to the three air conditioners 22, 24, 26 and the three room temperature detectors 32, 34, 36, and has a function of controlling the operations of the three air conditioners 22, 24, 26 as a whole. Have. Such a control device 40 can be composed of a computer suitable for air conditioning control.

制御装置40は、3台の空調機22,24,26をそれぞれの最大効率の条件の下で基本的に運転する最大効率運転部42と、各空調ゾーン12,14,16の室温と設定空調温度とを比較する空調状態判断部44と、各空調機22,24,26の冷暖房能力を増加または低減する調整を行う能力調整部46と、能力調整を行った後に適当な所定時間経過後に再び能力調整前の運転状態に戻す運転状態復帰部48と、消費可能な電力上限値が定められているときに、最大効率条件の近傍である最適運転条件の下で3台の空調機22,24,26を運転する最適運転部50と、空調機22,24,26が配置される空調ゾーンW,C,Eの空調負荷についての余力特性を学習する余力特性学習部52を含んで構成される。   The control device 40 basically operates the three air conditioners 22, 24, and 26 under the conditions of the maximum efficiency, the room temperature of each air conditioning zone 12, 14, and 16 and the set air conditioning. The air conditioning state determination unit 44 that compares the temperature, the capacity adjustment unit 46 that performs adjustment to increase or decrease the cooling / heating capacity of each of the air conditioners 22, 24, and 26, and again after an appropriate predetermined time after performing the capacity adjustment The three air conditioners 22 and 24 under the optimum operating condition that is in the vicinity of the maximum efficiency condition when the operating state return unit 48 that returns to the operating state before the capacity adjustment and the upper limit of power that can be consumed are determined. , 26, and a surplus power characteristic learning unit 52 that learns the surplus power characteristics of the air conditioning loads in the air conditioning zones W, C, E in which the air conditioners 22, 24, 26 are disposed. .

かかる機能はソフトウェアを実行することで実現でき、具体的には空調機制御プログラムを実行することで実現できる。かかる機能の一部をハードウェアで実現するものとしてもよい。   Such a function can be realized by executing software, specifically, by executing an air conditioner control program. Some of these functions may be realized by hardware.

制御装置40に接続される記憶部60は、空調管理プログラム等を格納する機能を有する記憶装置である。また、記憶部60は、各空調機22,24,26について、それぞれの効率曲線特性と能力曲線特性の組合せ62,64,66を記憶し、また、能力調整を行うときの能力調整組合せ68を記憶する機能を有する。   The storage unit 60 connected to the control device 40 is a storage device having a function of storing an air conditioning management program and the like. In addition, the storage unit 60 stores, for each air conditioner 22, 24, 26, a combination 62, 64, 66 of efficiency curve characteristics and capacity curve characteristics, and a capacity adjustment combination 68 for performing capacity adjustment. It has a function to memorize.

図2から図4は、各空調機22,24,26について、効率曲線特性と能力曲線特性の組合せ62,64,66の例を説明する図である。効率曲線特性と能力曲線特性は、空調機22,24,26ごとに相違するが、基本的な曲線の傾向は同じであるので、以下では、図2に示される空調機22に代表させて説明を続ける。   2 to 4 are diagrams illustrating examples of combinations 62, 64, and 66 of efficiency curve characteristics and capacity curve characteristics for each of the air conditioners 22, 24, and 26. FIG. Although the efficiency curve characteristic and the capacity curve characteristic are different for each of the air conditioners 22, 24, and 26, the basic curve tendency is the same, so that the following description will be made representatively of the air conditioner 22 shown in FIG. Continue.

空調機22についての効率曲線特性は、横軸に空調機22の運転周波数をとり、縦軸に空調機22の成績係数COPを取ったものである。空調機22には圧縮機が含まれ、圧縮機にはインバータが用いられるので、運転周波数は、このインバータの動作周波数に相当することになる。効率曲線特性は、図2に示されるように、運転周波数がゼロから増大するとCOPが増大し、特定の運転周波数f22で最大値をとり、特定の運転周波数f22を超えるとCOPは減少する。このように、効率曲線特性は、特定の運転周波数f22で最大値を有する上側に凸の曲線となる。 The efficiency curve characteristics for the air conditioner 22 are obtained by taking the operating frequency of the air conditioner 22 on the horizontal axis and the coefficient of performance COP of the air conditioner 22 on the vertical axis. Since the air conditioner 22 includes a compressor and an inverter is used for the compressor, the operating frequency corresponds to the operating frequency of the inverter. Efficiency curve characteristics, as shown in FIG. 2, COP increases when the operating frequency increases from zero, a maximum value at a particular operating frequency f 22, COP is reduced when exceeding a certain operation frequency f 22 . Thus, the efficiency curve characteristics is a convex curve upward with a maximum at a particular operating frequency f 22.

空調機22についての能力曲線特性は、横軸に空調機22の運転周波数をとり、縦軸に空調機22の冷暖房能力を取ったものである。冷暖房能力とは、空調機22が冷房機能を発揮しているときはその冷房能力、暖房機能を発揮しているときはその暖房能力のことである。能力曲線特性は、図2に示されるように、運転周波数が増大するほど増加する単純増加曲線となる。   The capacity curve characteristics of the air conditioner 22 are obtained by taking the operating frequency of the air conditioner 22 on the horizontal axis and the air conditioning capacity of the air conditioner 22 on the vertical axis. The air conditioning capacity is the cooling capacity when the air conditioner 22 exhibits the cooling function, and the heating capacity when the air conditioning function is exerted. As shown in FIG. 2, the capacity curve characteristic is a simple increase curve that increases as the operation frequency increases.

図3は、空調機24に対する効率曲線特性と能力曲線特性の組合せ64で、ここでは、特定の運転周波数がf24で示されている。図4は、空調機26に対する効率曲線特性と能力曲線特性の組合せ66で、ここでは、特定の運転周波数がf26で示されている。このように、空調機ごとに特定の運転周波数は異なるが、一般的には、空調機の最大動作周波数のおよそ60%程度の周波数が効率最大となる特定の運転周波数となる。 Figure 3 is a combination 64 of the efficiency curve characteristic and capacity curve characteristics for the air conditioner 24, wherein the particular operating frequency is indicated by f 24. Figure 4 is a combination 66 of the efficiency curve characteristic and capacity curve characteristics for the air conditioner 26, wherein the particular operating frequency is indicated by f 26. Thus, although the specific operating frequency differs for each air conditioner, generally, a frequency of about 60% of the maximum operating frequency of the air conditioner is the specific operating frequency at which the efficiency is maximum.

このように、空調機22,24,26は、それぞれの特定の運転周波数f22,f24,f26で運転するときに最大効率となるので、省エネルギ運転となる。図2から図4に示されるように、最大効率となる特定の運転周波数f22,f24,f26のときに冷暖房能力が最大となるわけではない。特定の運転周波数f22,f24,f26から運転周波数を増加すると、冷暖房能力が増大し、逆に、特定の運転周波数f22,f24,f26から運転周波数を低減すると、冷暖房能力も低下する。 As described above, the air conditioners 22 , 24 , and 26 have maximum efficiency when operated at their specific operating frequencies f 22 , f 24 , and f 26 , and thus are energy saving. As shown in FIGS. 2 to 4, the cooling / heating capacity is not maximized at specific operating frequencies f 22 , f 24 , and f 26 at which the maximum efficiency is achieved. When the operating frequency is increased from the specific operating frequencies f 22 , f 24 , and f 26 , the cooling / heating capacity increases. Conversely, when the operating frequency is decreased from the specific operating frequencies f 22 , f 24 , and f 26 , the cooling / heating capacity is also increased. descend.

したがって、最大効率の条件で空調機22,24,26を運転しているときに、空調機22,24,26のいずれかの空調機の冷暖房能力が不足していると判断されるときは、その空調機の運転周波数を増大すればよい。そのような能力調整を能力増加調整と呼ぶことができる。ところが、運転周波数を特定の運転周波数f22,f24,f26から変更すると、その空調機は最大効率で運転していないことになるので、電力消費が増加することが生じる。電力消費を抑制するには、冷暖房能力を低下させればよく、具体的にはその空調機の運転周波数を低減すればよい。そのような能力調整を能力低減調整と呼ぶことができる。 Therefore, when operating the air conditioners 22, 24, 26 under the condition of maximum efficiency, when it is determined that the air conditioning capacity of any of the air conditioners 22, 24, 26 is insufficient, What is necessary is just to increase the operating frequency of the air conditioner. Such capability adjustment can be referred to as capability increase adjustment. However, when the operating frequency is changed from the specific operating frequencies f 22 , f 24 , and f 26 , the air conditioner is not operating at the maximum efficiency, which increases power consumption. In order to suppress power consumption, it is only necessary to reduce the cooling / heating capacity. Specifically, the operating frequency of the air conditioner may be reduced. Such capability adjustment can be referred to as capability reduction adjustment.

最大効率運転を行っていて、空調空間の温度が設定温度と差が生じてくると、その空調空間の快適性が損なわれる。そこで、空調機22,24,26の運転周波数を特定の運転周波数f22,f24,f26から変更して空調機22,24,26の冷暖房能力を増加させる。すなわち、当該空調機の能力増加調整が行われる。そのようにすると、能力増加調整を行った空調機の電力消費が増加するので、省エネルギ制御時間帯の間では、他の空調機の電力消費を低減することが好ましい。とくに、電力会社の契約等で、電力消費の上限値が予め定められているときには、他の空調機の電力消費を抑制して、複数の空調機全体の電力消費値が電力上限値を超えないようにする必要になる。すなわち、当該空調機以外の空調機の能力低減調整を行う必要が生じる。 When maximum efficiency operation is performed and the temperature of the air-conditioned space differs from the set temperature, the comfort of the air-conditioned space is impaired. Therefore, the operation frequency of the air conditioners 22 , 24 , 26 is changed from the specific operation frequencies f 22 , f 24 , f 26 to increase the cooling / heating capacity of the air conditioners 22 , 24 , 26 . That is, the capacity increase adjustment of the air conditioner is performed. If it does so, since the power consumption of the air conditioner which performed capacity increase adjustment will increase, it is preferable to reduce the power consumption of another air conditioner during an energy saving control time slot | zone. In particular, when an upper limit value of power consumption is determined in advance by a contract of an electric power company, etc., the power consumption of other air conditioners is suppressed, and the power consumption values of a plurality of air conditioners as a whole do not exceed the power upper limit value. It will be necessary to do so. That is, it is necessary to adjust the capacity reduction of air conditioners other than the air conditioner.

このように、省エネルギ制御時間帯においては、1つの空調機の能力増加調整を行うと、他の空調機の能力低減調整を行うことになる。場合によっては、快適性を維持するために複数台の空調機の能力増加調整を行う必要が生じ、逆に、電力消費値を電力上限値以下とするために複数台の空調機の能力低減調整を行う必要が生じることがある。   Thus, in the energy saving control time zone, if the capacity increase adjustment of one air conditioner is performed, the capacity reduction adjustment of other air conditioners is performed. In some cases, it may be necessary to adjust the capacity increase of multiple air conditioners to maintain comfort, and conversely, the capacity reduction adjustment of multiple air conditioners to keep the power consumption value below the upper power limit. May need to be performed.

そのような場合に、1つの空調機の能力増加調整を行った場合に、他の空調機の中のどの空調機について能力低減調整を行うかの能力調整組合せを予め定め、これを記憶部60に記憶しておくことがよい。図5は、そのようにして予め定めた能力調整組合せ68の例を示す図である。   In such a case, when the capacity increase adjustment of one air conditioner is performed, a capacity adjustment combination for which capacity reduction adjustment is performed for which air conditioner among other air conditioners is determined in advance, and this is stored in the storage unit 60. It is good to remember. FIG. 5 is a diagram showing an example of the capability adjustment combination 68 determined in advance as described above.

図5は、縦軸に沿って能力増加調整を行なった空調ゾーンに配置される空調機として、3台の空調機22,24,26を並べ、横軸に沿って能力低減調整を行う空調ゾーンに配置される空調機として、3台の空調機22,24,26を並べたものである。例えば、空調ゾーンWの空調機22が冷暖房能力不足と判断されて能力増加調整が行われると、空調機22の運転周波数が効率最大の特定の運転周波数から増加させることとなって、電力消費が増大する。消費可能な電力上限値が定まっている場合には、他の空調機24,26の電力消費を低減する能力低減調整を行うことになる。図5によれば、そのような場合に、能力低減調整を行う第1優先順位が空調ゾーンCの空調機24、第2優先順位が空調ゾーンEの空調機26と予め定めてある。   FIG. 5 shows an air-conditioning zone in which three air conditioners 22, 24, and 26 are arranged as air conditioners arranged in the air-conditioning zone in which the capacity increase adjustment is performed along the vertical axis, and the capacity reduction adjustment is performed along the horizontal axis. Three air conditioners 22, 24, and 26 are arranged side by side as the air conditioners disposed in the. For example, if the air conditioner 22 in the air conditioning zone W is determined to have insufficient capacity for cooling and heating and the capacity increase adjustment is performed, the operating frequency of the air conditioner 22 is increased from the specific operating frequency with the maximum efficiency, and the power consumption is reduced. Increase. When the upper limit of power that can be consumed is determined, the ability reduction adjustment for reducing the power consumption of the other air conditioners 24 and 26 is performed. According to FIG. 5, in such a case, the first priority for performing capacity reduction adjustment is predetermined as the air conditioner 24 in the air conditioning zone C, and the second priority is determined as the air conditioner 26 in the air conditioning zone E.

同様に、空調ゾーンCの空調機24について能力増加調整を行った場合は、能力低減調整を行う第1優先順位が空調ゾーンEの空調機26、第2優先順位が空調ゾーンWの空調機22と予め定められる。また、空調ゾーンEの空調機26について能力増加調整を行った場合は、能力低減調整を行う第1優先順位が空調ゾーンCの空調機24、第2優先順位が空調ゾーンWの空調機22と予め定められる。   Similarly, when the capacity increase adjustment is performed for the air conditioner 24 in the air conditioning zone C, the first priority order for performing the capacity reduction adjustment is the air conditioner 26 in the air conditioning zone E, and the second priority order is the air conditioner 22 in the air conditioning zone W. Is determined in advance. Further, when the capacity increase adjustment is performed for the air conditioner 26 in the air conditioning zone E, the first priority order for performing the capacity reduction adjustment is the air conditioner 24 in the air conditioning zone C, and the air conditioner 22 in the air conditioning zone W is the second priority order. Predetermined.

空調機の運転をローテーションすることは従来から行われていることであるが、図5における能力調整組合せは、各空調機22,24,26がそれぞれ配置される空調ゾーンW,C,Eに対する各空調機22,24,26の空調負荷の余力特性によって予め定められる。   Rotating the operation of the air conditioner is a conventional practice, but the capacity adjustment combination in FIG. 5 is for each of the air conditioning zones W, C, E where the air conditioners 22, 24, 26 are respectively arranged. It is determined in advance by the remaining power characteristic of the air conditioning load of the air conditioners 22, 24, and 26.

空調ゾーンに対する空調負荷の余力特性とは、所定の空調条件にしたときに、空調機がさらにどの程度の冷暖房負荷を余力として有しているかに関する特性である。端的に言えば、空調機が所定の空調を行うのに、余裕を持って運転しているか、能力一杯で運転しているかに関する特性である。   The remaining capacity characteristic of the air conditioning load with respect to the air conditioning zone is a characteristic related to how much cooling / heating load the air conditioner has as the remaining capacity when a predetermined air conditioning condition is set. In short, it is a characteristic relating to whether the air conditioner is operating with sufficient capacity or operating at full capacity to perform predetermined air conditioning.

余力特性は次のようにして評価することができる。すなわち、ある一定条件の運転を行っていて、設定温度と実際の温度との差である温度偏差が予め定めた閾値偏差となると、能力不足とされるが、この能力不足と判断される頻度の大小で余力特性が評価できる。すなわち、能力不足と判断される頻度が多い空調機は、その担当する空調ゾーンの空調負荷に対し、余力があまりないと考えられる。逆に、能力不足と判断される頻度が少ない空調機は、その担当する空調ゾーンの空調負荷に対し、余力が十分あると考えられる。一定条件の運転としては、例えば、最大効率運転等を用いることができる。   The remaining power characteristic can be evaluated as follows. In other words, when the operation is performed under a certain condition and the temperature deviation, which is the difference between the set temperature and the actual temperature, becomes a predetermined threshold deviation, the capacity is insufficient, but the frequency at which it is determined that the capacity is insufficient. The remaining power characteristics can be evaluated depending on the size. In other words, an air conditioner that is frequently judged to be insufficient in capacity is considered not to have much surplus capacity for the air conditioning load of its air conditioning zone. On the other hand, an air conditioner that is less frequently judged to be incapacitated is considered to have sufficient capacity for the air conditioning load of its air conditioning zone. As the operation under a certain condition, for example, a maximum efficiency operation or the like can be used.

余力特性に関し、その他の評価基準としては、ある一定条件の運転開始から能力不足と判断されるまでの運転時間の長短がある。すなわち、一定条件の運転開始から能力不足と判断されるまでの時間が短い空調機は、その担当する空調ゾーンの空調負荷に対し、余力があまりないと考えられる。逆に、一定条件の運転開始から能力不足と判断されるまでの時間が長い空調機は、その担当する空調ゾーンの空調負荷に対し、余力が十分あると考えられる。   Regarding the remaining power characteristics, other evaluation criteria include the length of operation time from the start of operation under a certain condition until it is determined that the capacity is insufficient. That is, it is considered that an air conditioner having a short time from the start of operation under a certain condition until it is determined that the capacity is insufficient has little remaining capacity for the air conditioning load of the air conditioning zone in charge. Conversely, an air conditioner that takes a long time from the start of operation under certain conditions until it is determined that the capacity is insufficient is considered to have sufficient capacity for the air conditioning load of the air conditioning zone in charge.

図1の例で説明すると、最も西側の空調ゾーンWは、外気温の影響を受けやすいので、空調機22が能力不足と判断される頻度が高いと考えられる。その観点から、空調機22は、空調負荷に対して余力が比較的に少ないと考えられる。中央の空調ゾーンCは、空間が比較的大きく、また、両隣が空調を行っている他の空調ゾーン12,16であるので、一定の室温に維持しやすいと考えられる。その観点から、空調機24が能力不足と判断される頻度が少なく、空調機24は、空調負荷に対して余力が比較的に多いと考えられる。東側の空調ゾーンEは、西側の空調ゾーンWほどではないが外気温の影響を受けるので、空調機26が能力不足と判断される頻度は、空調機22よりは少なく、空調機24よりは多いと考えられる。その観点から、空調機26の空調負荷に対する余力は、空調機22と空調機24の中間程度と考えられる。   In the example of FIG. 1, the air conditioning zone W on the west side is likely to be affected by the outside air temperature, so it is considered that the frequency with which the air conditioner 22 is determined to be insufficient in capacity is high. From this point of view, the air conditioner 22 is considered to have a relatively small remaining capacity with respect to the air conditioning load. The central air-conditioning zone C has a relatively large space, and the other air-conditioning zones 12 and 16 that perform air conditioning on both sides are considered to be easily maintained at a constant room temperature. From this point of view, the frequency with which the air conditioner 24 is determined to be insufficient in capacity is low, and it is considered that the air conditioner 24 has a relatively large remaining capacity with respect to the air conditioning load. The air conditioning zone E on the east side is not as much as the air conditioning zone W on the west side, but is affected by the outside air temperature. Therefore, the frequency of the air conditioner 26 being judged as insufficient in capacity is less than the air conditioner 22 and more often than the air conditioner 24. it is conceivable that. From this point of view, it is considered that the remaining capacity of the air conditioner 26 with respect to the air conditioning load is approximately between the air conditioner 22 and the air conditioner 24.

このように空調機によって余力特性が異なるので、図5では、能力低減調整が必要な場合の優先順位を、空調負荷に対する余力の大きい順に、空調ゾーンCの空調機24−空調ゾーンEの空調機26−空調ゾーンWの空調機22として、予め設定されている。   Thus, since the remaining power characteristics differ depending on the air conditioner, in FIG. 5, the priority in the case where the capacity reduction adjustment is necessary is prioritized in the descending order of the remaining capacity with respect to the air conditioning load. The air conditioner 22 in the 26-air conditioning zone W is set in advance.

なお、図5では、能力増加調整が必要な空調機を1台としてあるが、場合によっては、同時に2台の空調機の冷暖房能力が不足することが生じえる。その場合に、いずれの空調機の方を優先して能力増加調整を行うかについても、上記の余力特性に基づいて予め定めておくことができる。能力増加調整が必要な場合の優先順位は、余力の小さい順に、空調ゾーンWの空調機22−空調ゾーンEの空調機26−空調ゾーンCの空調機24とすることができる。   In FIG. 5, one air conditioner that needs to be adjusted for capacity increase is provided, but depending on the case, the air conditioning capacity of the two air conditioners may be insufficient at the same time. In that case, it can be determined in advance based on the above-mentioned remaining power characteristics as to which one of the air conditioners is to be prioritized for capacity increase adjustment. The priority in the case where the capacity increase adjustment is necessary can be set as the air conditioner 22 in the air conditioning zone W-the air conditioner 26 in the air conditioning zone E-the air conditioner 24 in the air conditioning zone C in ascending order of remaining power.

上記構成の作用について、図6、図7を用いてさらに説明する。図5は、一般的な省エネルギ制御における空調機制御手順を示すフローチャートである。図6は、消費可能な電力上限値が定まっている場合省エネルギ制御における空調機制御手順を示すフローチャートである。これらの各手順は、空調機制御プログラムの各処理手順にそれぞれ対応する。   The operation of the above configuration will be further described with reference to FIGS. FIG. 5 is a flowchart showing an air conditioner control procedure in general energy saving control. FIG. 6 is a flowchart showing an air conditioner control procedure in the energy saving control when a consumable power upper limit value is determined. Each of these procedures corresponds to each processing procedure of the air conditioner control program.

最初に図6を用いて、一般的な省エネルギ制御における空調機制御の手順を説明する。以下では、3台の空調機22,24,26についての制御手順を述べるが、空調機が複数台ある場合でも、個々の空調機について独立して実行することができる。   First, the procedure of air conditioner control in general energy saving control will be described with reference to FIG. In the following, the control procedure for the three air conditioners 22, 24, and 26 will be described. However, even when there are a plurality of air conditioners, they can be executed independently for each air conditioner.

各空調機22,24,26は、基本的には、最大効率の下で運転が行われる(S10)。すなわち、各空調機22,24,26は、それぞれ、効率曲線特性における特定の運転周波数f22,f24,f26で運転が行われる。特定の運転周波数は、各空調機22,24,26によって異なるので、制御装置40の最大効率運転部42は、記憶部60を参照して、それぞれの空調機22,24,26に対する特定の運転周波数f22,f24,f26を読み出し、その条件で各空調機22,24,26の運転制御を実行する。この運転状態は、最大効率運転状態であるので、省エネルギ制御に適したものである。 Each air conditioner 22, 24, 26 is basically operated under maximum efficiency (S10). That is, the air conditioners 22 , 24 , and 26 are operated at specific operating frequencies f 22 , f 24 , and f 26 in the efficiency curve characteristics, respectively. Since the specific operation frequency varies depending on the air conditioners 22, 24, and 26, the maximum efficiency operation unit 42 of the control device 40 refers to the storage unit 60 and performs specific operations for the respective air conditioners 22, 24, and 26. The frequencies f 22 , f 24 , and f 26 are read, and the operation control of each air conditioner 22 , 24 , and 26 is executed under the conditions. Since this operation state is a maximum efficiency operation state, it is suitable for energy saving control.

次に、適当な制御タイミングごとに、各空調ゾーンW,C,Eの室温と、設定温度とを比較して、その間の温度偏差Δθを求める。求めた温度偏差Δθを、予め定めた閾値温度偏差Δθ0と比較する(S12)。各空調ゾーンW,C,Eの室温は、室温検出器32,34,36によってそれぞれ取得することができる。したがって、S12の手順は、各空調機22,24,26について行われる。 Next, at each appropriate control timing, the room temperature of each air-conditioning zone W, C, E is compared with the set temperature, and a temperature deviation Δθ therebetween is obtained. The obtained temperature deviation Δθ is compared with a predetermined threshold temperature deviation Δθ 0 (S12). The room temperature of each air-conditioning zone W, C, E can be acquired by room temperature detectors 32, 34, 36, respectively. Therefore, the procedure of S12 is performed for each air conditioner 22, 24, 26.

設定温度は、ユーザが設定した温度でもよく、あるいは、省エネルギ制御の下でふさわしい室温として予め定めた推奨温度でもよい。閾値温度偏差Δθ0は、ユーザが快適性を損なうと感じる限度に基づいて予め設定される。例えば、Δθ0を2℃程度と設定することができる。 The set temperature may be a temperature set by the user, or may be a recommended temperature determined in advance as a room temperature suitable for energy saving control. The threshold temperature deviation Δθ 0 is set in advance based on a limit that the user feels impairing comfort. For example, Δθ 0 can be set to about 2 ° C.

S12の手順は、制御装置40の空調状態判断部44の機能によって実行される。なお、Δθ−Δθ0は、空調状態偏差に相当する。S12において、全部の空調機22,24,26について、ΔθがΔθ0を超えないと判断されると、全部の空調機22,24,26について、最大効率運転の下で快適性が維持できていることになる。 The procedure of S12 is executed by the function of the air conditioning state determination unit 44 of the control device 40. Note that Δθ−Δθ 0 corresponds to the air conditioning state deviation. If it is determined in S12 that Δθ does not exceed Δθ 0 for all the air conditioners 22, 24, and 26, the comfort can be maintained for all the air conditioners 22, 24, and 26 under the maximum efficiency operation. Will be.

このように、S12において、最大効率運転の下で快適性が維持できていると判断されると、省エネルギ制御について特に電力消費の上限値が設定されていない場合には、S10に戻って、最大効率運転を継続することができる。省エネルギ制御について、電力会社との契約等で、電力消費の上限値が設定されているときの手順は図7において後述する。   As described above, when it is determined in S12 that the comfort can be maintained under the maximum efficiency operation, when the upper limit value of the power consumption is not particularly set for the energy saving control, the process returns to S10. Maximum efficiency operation can be continued. Regarding energy saving control, a procedure when an upper limit value of power consumption is set by a contract with an electric power company or the like will be described later with reference to FIG.

S12で、少なくとも1台の空調機について、ΔθがΔθ0を超えると判断されると、その空調機は、能力不足と判断されて、S14に進む。例えば、能力不足とされたものが空調機22とすると、S14において、空調機22に対して、能力増加調整が行われる。具体的には、予め定めた増加条件に従って、空調機22の運転周波数を特定の運転周波数f22から増加させる制御を行う。予め定めた増加条件としては、Δθ−Δθ0=0とするための冷暖房負荷に対応する運転周波数とすることができる。すなわち、Δθ0=2℃とすれば、設定温度からの温度偏差Δθが2℃を超えている状態から温度偏差Δθを2℃以下とするように、冷暖房負荷を増加させる。S14の手順は、制御装置40の能力調整部46の機能によって実行される。 If it is determined in S12 that Δθ exceeds Δθ 0 for at least one air conditioner, the air conditioner is determined to be insufficient in capacity, and the process proceeds to S14. For example, if the air conditioner 22 is determined to be insufficient in capacity, the capacity increase adjustment is performed on the air conditioner 22 in S14. Specifically, control is performed to increase the operating frequency of the air conditioner 22 from the specific operating frequency f 22 in accordance with a predetermined increase condition. The predetermined increase condition may be an operating frequency corresponding to an air conditioning load for setting Δθ−Δθ 0 = 0. That is, if Δθ 0 = 2 ° C., the cooling / heating load is increased so that the temperature deviation Δθ is 2 ° C. or less from the state where the temperature deviation Δθ from the set temperature exceeds 2 ° C. The procedure of S14 is executed by the function of the capacity adjustment unit 46 of the control device 40.

能力不足とされた空調機22に対して能力増加調整が行われると、その能力調整が完了してから所定時間経過したか否かが判断される(S16)。所定時間としては、例えば30分から1時間程度とすることができる。所定時間経過すると、再びS10に戻り、空調機22は、能力調整前の運転状態である最大効率運転に復帰する。この手順は、制御装置40の運転状態復帰部48の機能によって実行される。   When the capacity increase adjustment is performed for the air conditioner 22 in which the capacity is insufficient, it is determined whether or not a predetermined time has elapsed since the capacity adjustment was completed (S16). The predetermined time can be, for example, about 30 minutes to 1 hour. When the predetermined time has elapsed, the process returns to S10 again, and the air conditioner 22 returns to the maximum efficiency operation that is the operation state before the capacity adjustment. This procedure is executed by the function of the operation state return unit 48 of the control device 40.

このようにして、最大効率運転を基本として、冷暖房能力が不足すると判断された空調機について一時的に能力増加調整を行うことで、空調空間の快適性を維持しながら、所望の省エネルギ効果を得ることができる。   In this way, on the basis of the maximum efficiency operation, by adjusting the capacity increase temporarily for the air conditioner that is determined to have insufficient air conditioning capacity, the desired energy saving effect can be achieved while maintaining the comfort of the air conditioning space. Obtainable.

次に、消費可能な電力最大値が定められている場合についての空調機制御の手順について図7を用いて説明する。電力最大値が設定されている場合には、各空調機22,24,26は、必ずしも最大効率で運転する必要がないが、省エネルギ性を考慮すると、できるだけ最大効率付近で運転することが好ましい。そこで、電力最大値を満たすように、予め、空調機22,24,26について最適運転条件を定めておく。最適運転条件は、運転周波数で定めることができる。   Next, the procedure of air conditioner control in the case where the maximum power that can be consumed is determined will be described with reference to FIG. When the maximum electric power value is set, each air conditioner 22, 24, and 26 is not necessarily operated at the maximum efficiency, but it is preferable to operate at the maximum efficiency as much as possible in consideration of energy saving. . Therefore, optimal operating conditions are determined in advance for the air conditioners 22, 24, and 26 so as to satisfy the maximum power value. The optimum operating condition can be determined by the operating frequency.

最適運転条件は最大効率条件に近づけるのが好ましいので、空調機22,24,26について、最適運転条件の運転周波数である最適運転周波数は、効率最大のときの特定の運転周波数f22,f24,f26のそれぞれの近傍に取られる。その組合せは1通りではなく、複数通りがありえる。 Since the optimum operating condition is preferably close to the maximum efficiency condition, for the air conditioners 22 , 24 , and 26 , the optimum operating frequency that is the operating frequency of the optimum operating condition is the specific operating frequency f 22 and f 24 when the efficiency is maximum. , F 26 in the vicinity. There may be a plurality of combinations instead of one.

そこで、電力上限値が定まっている場合には、空調機22,24,26の全体でその電力上限値を満たすように予め最適運転周波数の組合せを定め、それぞれの最適運転周波数で、各空調機22,24,26が運転される(S20)。この手順は、制御装置40の最適運転部50の機能によって実行される。   Therefore, when the power upper limit value is determined, combinations of optimum operating frequencies are determined in advance so as to satisfy the power upper limit values for the entire air conditioners 22, 24, and 26, and each air conditioner is operated at each optimum operating frequency. 22, 24 and 26 are operated (S20). This procedure is executed by the function of the optimum operation unit 50 of the control device 40.

次に、適当な制御タイミングごとに、各空調ゾーンW,C,Eの室温と、設定温度とを比較して、その間の温度偏差Δθを求める。求めた温度偏差Δθを、予め定めた閾値温度偏差Δθ0と比較する(S22)。この手順の内容は、図6で説明したS12と同じで、空調状態判断部44の機能によって実行される。 Next, at each appropriate control timing, the room temperature of each air-conditioning zone W, C, E is compared with the set temperature, and a temperature deviation Δθ therebetween is obtained. The obtained temperature deviation Δθ is compared with a predetermined threshold temperature deviation Δθ 0 (S22). The content of this procedure is the same as S12 described with reference to FIG. 6, and is executed by the function of the air conditioning state determination unit 44.

S22において、全部の空調機22,24,26について、ΔθがΔθ0を超えないと判断されると、全部の空調機22,24,26について、最適運転の下で快適性が維持できていることになる。このように、S22において、最適運転の下で快適性が維持できていると判断されれば、S20に戻って、最適効率運転を継続することができる。 If it is determined in S22 that Δθ does not exceed Δθ 0 for all the air conditioners 22, 24, 26, the comfort can be maintained under optimum operation for all the air conditioners 22, 24, 26. It will be. Thus, in S22, if it is determined that the comfort can be maintained under the optimum driving, the process returns to S20 and the optimum efficiency driving can be continued.

S22で、少なくとも1台の空調機について、ΔθがΔθ0を超えると判断されると、その空調機については能力増加調整を行うが、電力上限値の条件を守るために、他の空調機について能力低減調整を行うことになる。そこで、記憶部60から能力調整組合せ68が読み出される(S24)。そして、読み出された能力調整組合せに従って、能力増加調整と能力低減調整とが行われる(S26)。S24,S26の手順は、制御装置40の能力調整部46の機能によって実行される。 If it is determined in S22 that Δθ exceeds Δθ 0 for at least one air conditioner, the capacity increase adjustment is performed for the air conditioner. The capacity reduction adjustment will be performed. Therefore, the capacity adjustment combination 68 is read from the storage unit 60 (S24). Then, according to the read ability adjustment combination, the ability increase adjustment and the ability reduction adjustment are performed (S26). The procedures of S24 and S26 are executed by the function of the capacity adjustment unit 46 of the control device 40.

例えば、S22で、能力不足とされたものが空調機22とすると、S24において読み出された内容が図5の能力調整組合せ68の通りであるとすると、空調機22に能力増加調整が行われると共に、能力低減調整の第1優先順位である空調機24について能力低減調整が行われる。   For example, if the air conditioner 22 is determined to have insufficient capacity in S22, and the content read in S24 is as shown in the capacity adjustment combination 68 of FIG. At the same time, the capacity reduction adjustment is performed for the air conditioner 24 which is the first priority of the capacity reduction adjustment.

能力増加調整の内容は図6のS14で説明したものと同様である。すなわち、能力増加調整は、空調機22の運転周波数を最適運転周波数から予め定めた増加条件に従って増加させる。能力低減調整は、予め定めた低減条件に従って、空調機24の運転周波数を最適運転周波数から低減させる制御を行う。予め定めた低減条件としては、Δθ−Δθ0=±2℃とするための冷暖房負荷に対応する運転周波数とすることができる。この2℃は、Δθ0と同じ値である。すなわち、空調ゾーンCについて、現在の室温に維持するものとして、やや快適性を犠牲にして、電力消費を抑制する。 The content of the capacity increase adjustment is the same as that described in S14 of FIG. That is, the capacity increase adjustment increases the operating frequency of the air conditioner 22 from the optimal operating frequency according to a predetermined increase condition. The capacity reduction adjustment performs control for reducing the operating frequency of the air conditioner 24 from the optimum operating frequency in accordance with a predetermined reduction condition. The predetermined reduction condition may be an operating frequency corresponding to an air conditioning load for setting Δθ−Δθ 0 = ± 2 ° C. This 2 ° C. is the same value as Δθ 0 . That is, the air-conditioning zone C is maintained at the current room temperature, and power consumption is suppressed at the expense of comfort.

能力不足とされた空調機22に対して能力増加調整が行われ、これに対応して空調機24に対して能力低減調整が行われると、それらの能力調整が完了してから所定時間経過したか否かが判断される(S28)。この手順は図6のS16と同じ内容のものであり、所定時間経過すると、再びS20に戻り、空調機22,24は、能力調整前の運転状態である最適運転状態に復帰する。この手順は、制御装置40の運転状態復帰部48の機能によって実行される。   When the capacity increase adjustment is performed on the air conditioner 22 that has been determined to be insufficient, and the capacity reduction adjustment is performed on the air conditioner 24 correspondingly, a predetermined time has elapsed since the completion of the capacity adjustment. Is determined (S28). This procedure is the same as S16 in FIG. 6, and when a predetermined time has elapsed, the procedure returns to S20 again, and the air conditioners 22 and 24 return to the optimum operating state that is the operating state before the capacity adjustment. This procedure is executed by the function of the operation state return unit 48 of the control device 40.

図5の能力調整組合せ68は、各空調機22,24,26の空間ゾーンW,C,Eに対する空調負荷の余力特性に基づいて定められる。余力特性は、空間ゾーンW,C,Eの空調負荷が変われば変化する。例えば、一日の時間、季節、その空調空間にいる人の数、設備の状況によって変化する。余力特性は、上記のように、能力不足と判断される頻度の大小、または、ある一定条件の運転開始から能力不足と判断されるまでの運転時間の長短によって評価できる。したがって、図7のS22で肯定的判断が行われた回数、あるいは、S20の開始からS22の肯定的判断が行われるまでの時間で、各空調機22,24,26の余力特性が評価できる。   The capacity adjustment combination 68 of FIG. 5 is determined based on the remaining power characteristics of the air conditioning load for the space zones W, C, E of the air conditioners 22, 24, 26. The remaining power characteristics change if the air conditioning load of the space zones W, C, and E changes. For example, it varies depending on the time of the day, the season, the number of people in the air-conditioned space, and the state of the equipment. As described above, the surplus power characteristic can be evaluated based on the frequency of determining that the capacity is insufficient or the length of the operation time from the start of operation under a certain condition until it is determined that the capacity is insufficient. Therefore, the remaining power characteristics of the air conditioners 22, 24, and 26 can be evaluated by the number of times that the positive determination is made in S22 of FIG. 7 or the time from the start of S20 until the positive determination of S22 is made.

図7のS30は、S22で肯定的判断が行われた回数で余力特性を評価するものとして、S22で肯定的判断が出された都度、カウント数を更新する。そして、各空調機22,24,26において、予め定めた期間におけるカウント数を比較し、カウント数の少ない順序を余力のある順序とする余力特性学習を行う(S32)。そして、学習された余力順序の結果から、能力低減調整の優先順位を変更して、図5の能力調整組合せ68の更新を行う(S34)。このように学習によって、常に能力調整組合せ68が最新の状態とされる。S30、S32,S34の手順は、制御装置40の余力特性学習部52の機能によって実行される。   S30 in FIG. 7 updates the count number every time a positive determination is made in S22, assuming that the surplus power characteristic is evaluated based on the number of times that the positive determination is made in S22. Then, in each air conditioner 22, 24, 26, the number of counts in a predetermined period is compared, and the remaining power characteristic learning is performed in which the order with the smaller number of counts is the order with the remaining power (S32). Then, the priority order of ability reduction adjustment is changed based on the learned surplus power order result, and the ability adjustment combination 68 of FIG. 5 is updated (S34). In this way, the ability adjustment combination 68 is always brought to the latest state by learning. The procedures of S30, S32, and S34 are executed by the function of the remaining power characteristic learning unit 52 of the control device 40.

本発明に係る空調機制御システムは、空調機の省エネルギ制御に利用できる。   The air conditioner control system according to the present invention can be used for energy saving control of an air conditioner.

10 空調機制御システム、12,14,16 空調ゾーン、22,24,26 空調機、32,34,36 室温検出器、40 制御装置、42 最大効率運転部、44 空調状態判断部、46 能力調整部、48 運転状態復帰部、50 最適運転部、52 余力特性学習部、60 記憶部、62,64,66 効率曲線特性と能力曲線特性の組合せ、68 能力調整組合せ。   10 Air-conditioner control system, 12, 14, 16 Air-conditioning zone, 22, 24, 26 Air-conditioner, 32, 34, 36 Room temperature detector, 40 Control device, 42 Maximum efficiency operation part, 44 Air-conditioning state judgment part, 46 Capacity adjustment Part, 48 operation state return part, 50 optimum operation part, 52 remaining capacity characteristic learning part, 60 storage part, 62, 64, 66 combination of efficiency curve characteristic and capacity curve characteristic, 68 capacity adjustment combination.

Claims (5)

インバータを有し、運転周波数と効率の関係が特定の運転周波数で効率最大値を示す効率曲線特性と、運転周波数と空調能力との関係が運転周波数の増大と共に増加する能力曲線特性とを有する空調機と、
空調機について、省エネルギ制御を行う制御装置と、
を備え、
制御装置は、
省エネルギ制御時間帯において、効率曲線特性の効率最大値を示す特定の運転周波数で空調機を運転させる最大効率運転部と、
空調空間における空調設定条件と、実際の空調状態との間の差である空調状態偏差を検出し、検出された空調状態偏差が予め定めた閾値偏差を超えるか否かを判断する空調状態判断部と、
空調状態偏差が閾値偏差を超えると判断されるときに、空調機の空調能力が不足していると判断し、空調機の運転周波数を特定の運転周波数から予め定めた増加条件に従って増加させる能力調整部と、
を含むことを特徴とする空調機制御システム。
An air conditioner having an inverter and an efficiency curve characteristic in which the relationship between the operating frequency and the efficiency exhibits a maximum efficiency value at a specific operating frequency, and a capacity curve characteristic in which the relationship between the operating frequency and the air conditioning capacity increases as the operating frequency increases. Machine,
For air conditioners, a control device that performs energy saving control,
With
The control device
In the energy saving control time zone, a maximum efficiency operation unit that operates the air conditioner at a specific operation frequency indicating the maximum efficiency value of the efficiency curve characteristic;
An air-conditioning state determination unit that detects an air-conditioning state deviation that is a difference between an air-conditioning setting condition in an air-conditioned space and an actual air-conditioning state, and determines whether or not the detected air-conditioning state deviation exceeds a predetermined threshold deviation When,
When it is determined that the air conditioning state deviation exceeds the threshold deviation, it is determined that the air conditioning capacity of the air conditioner is insufficient, and the capacity adjustment that increases the operating frequency of the air conditioner from a specific operating frequency according to a predetermined increase condition And
An air conditioner control system comprising:
請求項1に記載の空調機制御システムにおいて、
制御装置は、
能力調整を行った後、予め定めた経過時間の後、再び最大効率運転の状態に戻す運転状態復帰部を含むことを特徴とする空調機制御システム。
In the air conditioner control system according to claim 1,
The control device
An air conditioner control system comprising an operation state return unit that returns the state of maximum efficiency operation again after a predetermined elapsed time after performing capacity adjustment.
請求項1に記載の空調機制御システムにおいて、
空調制御対象空間を複数に分けた複数の空調ゾーンのそれぞれに配置された複数の空調機を備え、
制御装置は、
複数の空調ゾーンの全体について予め定められた消費可能な電力上限値を守るために、各空調ゾーンに配置された空調機について、それぞれの特定運転周波数の近傍において予め定められた最適運転周波数で、それぞれの空調機を運転する最適運転部を含み、
空調状態判断部は、各空調ゾーンにおける空調設定条件と、実際の空調状態との間の差である空調状態偏差を検出し、検出された空調状態偏差が予め定めた閾値偏差を超えるか否かを各空調ゾーンごとに判断し、
能力調整部は、空調状態偏差が閾値偏差を超えると判断される空調ゾーンについて、その空調ゾーンに配置された空調機の空調能力が不足していると判断し、当該空調機の運転周波数を最適運転周波数から予め定めた増加条件に従って増加させ、当該空調機以外の他の空調機の中から、予め定めた能力調整組合せに従って定められる空調機の運転周波数を最適運転周波数から予め定めた低減条件に従って低減させる処理を行うことを特徴とする空調機制御システム。
In the air conditioner control system according to claim 1,
Provided with a plurality of air conditioners arranged in each of a plurality of air conditioning zones that divide the air conditioning control target space into a plurality,
The control device
In order to protect a predetermined power consumption upper limit predetermined for the entire plurality of air conditioning zones, for the air conditioners arranged in each air conditioning zone, at an optimal operation frequency predetermined in the vicinity of each specific operation frequency, Including an optimal operation section for operating each air conditioner,
The air-conditioning state determination unit detects an air-conditioning state deviation that is a difference between the air-conditioning setting condition in each air-conditioning zone and the actual air-conditioning state, and whether or not the detected air-conditioning state deviation exceeds a predetermined threshold deviation For each air-conditioning zone,
The capacity adjustment unit determines that the air-conditioning capacity of the air-conditioning unit located in that air-conditioning zone is insufficient for the air-conditioning zone in which the air-conditioning state deviation exceeds the threshold deviation, and optimizes the operating frequency of the air-conditioning unit The operating frequency is increased according to a predetermined increase condition from the operating frequency, and the operating frequency of the air conditioner determined according to the predetermined capacity adjustment combination from other air conditioners other than the air conditioner is determined according to the predetermined decreasing condition from the optimum operating frequency. An air conditioner control system that performs processing to reduce.
請求項3に記載の空調機制御システムにおいて、
制御装置は、
各空調機の空調ゾーンに対する空調負荷の余力特性に基づいて、能力調整組合せを予め定めて記憶する記憶部を含むことを特徴とする空調機制御システム。
In the air conditioner control system according to claim 3,
The control device
An air conditioner control system including a storage unit that predetermines and stores a capacity adjustment combination based on a remaining capacity characteristic of an air conditioning load for an air conditioning zone of each air conditioner.
請求項4に記載の空調機制御システムにおいて、
制御装置は、
各空調機の余力特性を学習によって更新する余力特性学習部を含み、
記憶部は、
更新された各空調機の余力特性に基づいて能力調整組合せを更新することを特徴とする空調機制御システム。
In the air conditioner control system according to claim 4,
The control device
Including a remaining power characteristic learning unit that updates the remaining power characteristics of each air conditioner by learning;
The storage unit
An air conditioner control system, wherein the capacity adjustment combination is updated based on the updated capacity characteristics of each air conditioner.
JP2011117826A 2011-05-26 2011-05-26 Air conditioner control system Active JP5750308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011117826A JP5750308B2 (en) 2011-05-26 2011-05-26 Air conditioner control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011117826A JP5750308B2 (en) 2011-05-26 2011-05-26 Air conditioner control system

Publications (2)

Publication Number Publication Date
JP2012247100A true JP2012247100A (en) 2012-12-13
JP5750308B2 JP5750308B2 (en) 2015-07-22

Family

ID=47467708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011117826A Active JP5750308B2 (en) 2011-05-26 2011-05-26 Air conditioner control system

Country Status (1)

Country Link
JP (1) JP5750308B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6073000B1 (en) * 2016-02-24 2017-02-01 三菱電機株式会社 Control device and control program
JP2018146229A (en) * 2018-05-28 2018-09-20 ダイキン工業株式会社 Air conditioner
WO2019176546A1 (en) * 2018-03-14 2019-09-19 株式会社 東芝 Air-conditioning control device, air-conditioning system, air-conditioning control method, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062918A (en) * 1992-06-22 1994-01-11 Fujitsu General Ltd Controller for air conditioner
JP2008020091A (en) * 2006-07-11 2008-01-31 Daikin Ind Ltd Air-conditioning control device, system, method and program
JP2010276287A (en) * 2009-05-28 2010-12-09 Sanyo Electric Co Ltd Air conditioning control device, program, and air conditioning system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062918A (en) * 1992-06-22 1994-01-11 Fujitsu General Ltd Controller for air conditioner
JP2008020091A (en) * 2006-07-11 2008-01-31 Daikin Ind Ltd Air-conditioning control device, system, method and program
JP2010276287A (en) * 2009-05-28 2010-12-09 Sanyo Electric Co Ltd Air conditioning control device, program, and air conditioning system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6073000B1 (en) * 2016-02-24 2017-02-01 三菱電機株式会社 Control device and control program
WO2017145301A1 (en) * 2016-02-24 2017-08-31 三菱電機株式会社 Control device and control program
GB2561495A (en) * 2016-02-24 2018-10-17 Mitsubishi Electric Corp Control device and control program
CN108700326A (en) * 2016-02-24 2018-10-23 三菱电机株式会社 Control device and control program
GB2561495B (en) * 2016-02-24 2019-03-27 Mitsubishi Electric Corp Control apparatus and control program for an air conditioning system
WO2019176546A1 (en) * 2018-03-14 2019-09-19 株式会社 東芝 Air-conditioning control device, air-conditioning system, air-conditioning control method, and program
JP2019158257A (en) * 2018-03-14 2019-09-19 株式会社東芝 Air conditioning control device, air conditioning system, air conditioning method, and program
CN111373206A (en) * 2018-03-14 2020-07-03 株式会社东芝 Air conditioning control device, air conditioning system, air conditioning control method, and program
CN111373206B (en) * 2018-03-14 2021-08-10 株式会社东芝 Air conditioning control device, air conditioning system, air conditioning control method, and program
JP7062475B2 (en) 2018-03-14 2022-05-06 株式会社東芝 Air conditioning control device, air conditioning system, air conditioning control method and program
US11466885B2 (en) 2018-03-14 2022-10-11 Kabushiki Kaisha Toshiba Air-conditioning control device, air-conditioning system, and air-conditioning control method
JP2018146229A (en) * 2018-05-28 2018-09-20 ダイキン工業株式会社 Air conditioner

Also Published As

Publication number Publication date
JP5750308B2 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
JP4905939B2 (en) Operation control method for air conditioning system
JP6808033B2 (en) Air conditioning system
KR101992139B1 (en) Air conditioner
JP6072221B2 (en) Air conditioning system
US20110093121A1 (en) Air-conditioning apparatus control device and refrigerating apparatus control device
JP5109732B2 (en) Air conditioning control system
JP5383899B2 (en) Air conditioning system
JP6370401B2 (en) Air conditioning management device and air conditioning system
CN107726567B (en) Control method and system of fresh air machine, fresh air machine and multi-split air conditioning system
US10788247B2 (en) Control mechanism for climate control unit with multiple stages
CA2798402A1 (en) Time-based setback recovery
JP5389618B2 (en) Air conditioner control system
JP4465303B2 (en) Group controller for air conditioner
JP5750308B2 (en) Air conditioner control system
JP5312286B2 (en) Air conditioner control device, refrigeration device control device
EP3677850B1 (en) Control method and apparatus for self-cleaning of air conditioner, and air conditioner
JP5584024B2 (en) Air conditioner group control device and air conditioning system
JP6328902B2 (en) Air conditioning system
JP2005300016A (en) Air conditioning system
JP2016003787A (en) Air conditioner
JP2014040978A (en) Air conditioner
JP5452284B2 (en) Air conditioning system
JPWO2014162509A1 (en) Air conditioner control system and air conditioner control method
CN114857755B (en) Control method of indoor unit, controller, indoor unit, air conditioner and storage medium
AU2015334400A1 (en) Air conditioning apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150518

R150 Certificate of patent or registration of utility model

Ref document number: 5750308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350