JP2012246680A - Energy absorption type precast member - Google Patents

Energy absorption type precast member Download PDF

Info

Publication number
JP2012246680A
JP2012246680A JP2011119535A JP2011119535A JP2012246680A JP 2012246680 A JP2012246680 A JP 2012246680A JP 2011119535 A JP2011119535 A JP 2011119535A JP 2011119535 A JP2011119535 A JP 2011119535A JP 2012246680 A JP2012246680 A JP 2012246680A
Authority
JP
Japan
Prior art keywords
main
viscoelastic material
shear deformation
negative
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011119535A
Other languages
Japanese (ja)
Other versions
JP5685144B2 (en
Inventor
Takeyoshi Korenaga
健好 是永
Shinichi Takezaki
真一 竹崎
Tsutomu Komuro
努 小室
Shinichiro Kawamoto
慎一郎 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2011119535A priority Critical patent/JP5685144B2/en
Publication of JP2012246680A publication Critical patent/JP2012246680A/en
Application granted granted Critical
Publication of JP5685144B2 publication Critical patent/JP5685144B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a precast member which holds sufficient rigidity and bearing force against stationary load and earthquake load acting on a building as a main structural member and which has a vibration control function with high attenuation effect based on a new principle.SOLUTION: When a main reinforcement is tensioned by a pretension system so that prestress is introduced to concrete and negative shear deformation is previously generated due to the compressive strain of the main reinforcement and earthquake load is applied, a viscoelastic material applied or attached to the main reinforcement at a member end part generates positive and negative shear deformation repeatedly larger than the negative shear deformation so as to absorb energy. Thus an energy absorption type precast concrete member is obtained.

Description

本発明は、地震荷重による建物の揺れを低減させ、耐震性を向上させることができるエネルギー吸収型プレキャスト部材に関するものである。   The present invention relates to an energy-absorbing precast member that can reduce shaking of a building due to an earthquake load and improve earthquake resistance.

阪神大震災以後、地震荷重による建物の揺れを低減させ、耐震性を向上させる目的で、高層建物を中心に制振装置の導入が普及してきている。近年、制振技術の発展・普及は目覚しいものがあり、多種・多様な工法が提案されている。   Since the Great Hanshin Earthquake, the introduction of vibration control devices has been widespread mainly in high-rise buildings with the aim of reducing the shaking of buildings due to seismic loads and improving earthquake resistance. In recent years, the development and popularization of vibration control technology has been remarkable, and various and diverse methods have been proposed.

制振工法は一般的に、柱や梁の主要構造とは別に、装置として建物に組み込む事例が多いが、装置を取付けたことによって、建物の機能性が損なわれる場合があり、その設置場所が平面的・立面的に限定される場合もある。   In general, the vibration control method is often incorporated into buildings as a device separately from the main structure of pillars and beams, but the functionality of the building may be impaired by the installation of the device. In some cases, it may be limited in a plane or elevation.

それらの問題を解決する方法として、柱や梁部材そのものに制振効果を付与させる工法や柱や梁部材そのものに装置を内蔵する工法がある。
比較的簡易な工法として、鉄筋コンクリート部材端部の主筋に粘弾性材料を予め塗布し、地震時に部材が変形する際に、部材端部主筋に塗布された粘弾性材料がせん断変形することによって、部材に制振効果、すなわち減衰効果を持たせる工法がある(例えば、特許文献1、特許文献2)。
As a method for solving these problems, there are a method for imparting a damping effect to the column or beam member itself, and a method for incorporating a device in the column or beam member itself.
As a relatively simple construction method, viscoelastic material is pre-applied to the main reinforcement at the end of the reinforced concrete member, and when the member is deformed during an earthquake, the viscoelastic material applied to the main end of the member is subjected to shear deformation. There is a construction method that gives a damping effect, that is, a damping effect (for example, Patent Document 1 and Patent Document 2).

これらの工法に使用する粘弾性材料には、図1の粘弾性材料のせん断応力−せん断ひずみ特性に示すように、正負繰返しのせん断変形を受けた時に、その履歴面積が大きく減衰効果が期待できる高減衰ゴムや同じような力学的特性を持つ樹脂系の材料、例えばアクリル系樹脂、アスファルト系樹脂、シリコン系樹脂等が用いられている。
粘弾性材料は、圧縮・引張の繰返し変形を受けるよりも、図1のようなせん断変形を生じさせる方が減衰効果は大きく、各種制振工法における適用事例において同材料のせん断変形による減衰効果を期待している。
なお、正のみのせん断変形を受けた時は、履歴面積は同図の右上の破線に示すように極めて小さいものに留まる。
As shown in the shear stress-shear strain characteristics of the viscoelastic material of FIG. 1, the viscoelastic material used in these construction methods has a large hysteresis area and can be expected to have a damping effect when subjected to repeated positive and negative shear deformation. High damping rubber and resin-based materials having similar mechanical characteristics, such as acrylic resin, asphalt resin, silicon resin, and the like are used.
The viscoelastic material has a greater damping effect when it undergoes shear deformation as shown in Fig. 1 than when it undergoes repeated compression and tension deformation. Are expected.
When subjected to only positive shear deformation, the history area remains extremely small as shown by the broken line in the upper right of the figure.

図2は、部材端部の主筋に粘弾性材料を塗布した工法における部材の変形状態を示したものである。
部材引張側に位置する主筋に引張力が生じると、主筋は梁端面及び柱側面から抜け出す。主筋の総抜け出し量は、粘弾性材料塗布域における主筋の伸び量(Sa)と主筋の梁からの抜け出し量(Sb)と主筋の柱側面からの抜け出し量(Sc)の総和(Sa+Sb+Sc)である。
FIG. 2 shows a deformed state of the member in the construction method in which a viscoelastic material is applied to the main muscle of the member end.
When a tensile force is generated in the main bar located on the member pulling side, the main bar comes out of the beam end surface and the column side surface. The total amount of withdrawal of the main bars is the sum of the amount of extension (Sa) of the main bars in the viscoelastic material application area, the amount of withdrawal of the main bars from the beam (Sb), and the amount of withdrawal of the main bars from the column side surface (Sc) (Sa + Sb + Sc).

上記したように、部材引張側に位置する主筋に引張力が生じた状態で、粘弾性材料にせん断変形が生じ、部材変形の大きさに応じて粘弾性材料の変形も大きくなる。
しかし、主筋が圧縮側になった場合には、部材端部ではコンクリートが圧縮応力を負担し、粘弾性材料にはコンクリートと同様に圧縮応力のみが生じ、せん断応力は生じない。
つまり、この図2に示した工法の減衰効果は、主筋が引張側になる場合にのみ粘弾性材料にせん断変形が生じることとなるから、同材料の片方向(正または負のみ)のせん断変形による減衰効果に限定される。
このため、図1で示したような粘弾性材料特有の正負繰返しせん断変形を受けたときの履歴面積が大きい高減衰効果は期待できないことになる。
As described above, in a state in which a tensile force is generated in the main muscle located on the member tension side, shear deformation occurs in the viscoelastic material, and the deformation of the viscoelastic material increases according to the size of the member deformation.
However, when the main bar is on the compression side, the concrete bears a compressive stress at the end of the member, and only the compressive stress is generated in the viscoelastic material as in the concrete, and no shear stress is generated.
In other words, the damping effect of the construction method shown in FIG. 2 is that shear deformation occurs in the viscoelastic material only when the main bar is on the tension side, so one-way shearing (positive or negative only) of the same material. It is limited to the damping effect by.
For this reason, a high damping effect with a large hysteresis area when subjected to positive and negative repeated shear deformation unique to the viscoelastic material as shown in FIG. 1 cannot be expected.

そこで例えば、上記した特許文献1に記載された発明(特開平11-350593号)では、片方向のみに生じるせん断変形をより大きくする目的で、部材端部を回転し易くなるよう半剛接合構造を採用している。
すなわち、この従来発明は図3に示すように、部材端部にスリットを設けてスリット部にも粘弾性材料または柔らかい樹脂材料などからなる緩衝材を塗布し、それによって部材を回転し易くして、粘弾性材料の片方向のせん断変形をより大きくさせる工夫がなされている。同種の他発明においても、部材端面に緩衝材を塗布して部材端部を回転し易くする工夫がなされている事例が多い。
Therefore, for example, in the invention described in the above-mentioned Patent Document 1 (Japanese Patent Laid-Open No. 11-350593), a semi-rigid joint structure is provided so that the end of the member can be easily rotated for the purpose of increasing the shear deformation occurring only in one direction. Is adopted.
That is, as shown in FIG. 3, this conventional invention is provided with a slit at the end of the member, and a buffer material made of a viscoelastic material or a soft resin material is applied to the slit, thereby facilitating the rotation of the member. The invention has been devised to increase the shear deformation in one direction of the viscoelastic material. In other inventions of the same type, there are many examples in which a cushioning material is applied to the end face of the member to make it easier to rotate the end of the member.

しかし、この種の発明の大きな問題点は、制振効果を持たせた部材は、粘弾性材料に大きなせん断変形を付与させるために部材端部が半剛接合になっており、建物に作用する常時荷重や地震荷重に対する部材としての剛性が小さくなるとともに、その曲げ耐力も小さくなる。すなわち、部材そのものが主として制振装置として機能してしまうこととなり、部材が地震荷重や建物の常時荷重に対して抵抗するという主要構造部材としての本来的機能・役割を完全には果たすことができなくなる。
この機能縮減は、柱・梁架構にとっては致命的といっても過言ではない。
However, a major problem of this kind of invention is that the member having a vibration damping effect has a semi-rigid joint at the end of the member in order to impart a large shear deformation to the viscoelastic material and acts on the building. The rigidity as a member against a constant load or an earthquake load is reduced, and the bending strength is also reduced. In other words, the member itself will mainly function as a vibration control device, and the original function and role as a main structural member in which the member resists seismic loads and building constant loads can be fully fulfilled. Disappear.
It is no exaggeration to say that this functional reduction is fatal for pillars and beams.

特開平11-350593号公報JP 11-350593 A 特開平09-317054号公報JP 09-317054 A

本発明は、上述した種々の課題を解決するためになされたもので、建物に作用する常時荷重や地震荷重に対して主要構造部材としての十分な剛性・耐力を保持し、それに加えて新規の原理に基づく高減衰効果のある制振機能を持たせたプレキャスト部材を提供することを目的とする。   The present invention has been made in order to solve the above-described various problems, and maintains sufficient rigidity and proof strength as a main structural member against a constant load or seismic load acting on a building. An object of the present invention is to provide a precast member having a damping function having a high damping effect based on the principle.

新規原理の根幹は、建物に地震荷重が作用する際、部材端部の主筋に塗布されたまたは取付けられた粘弾性材料に合理的かつ効率的に正負繰返しのせん断変形を生じさせる点にある。   The basis of the new principle is that when a seismic load is applied to the building, the viscoelastic material applied to or attached to the main bar at the end of the member is rationally and efficiently subjected to repeated positive and negative shear deformation.

請求項1に係る発明は、部材端部の主筋に塗布または取付けられた粘弾性材料が、前記主筋のめり込みにより予め負のせん断変形が生じていて、地震荷重を受けたとき、前記負のせん断変形よりも大きい正負繰返しのせん断変形を生じてエネルギーを吸収するエネルギー吸収型プレキャストコンクリート部材とした。   In the invention according to claim 1, the viscoelastic material applied or attached to the main bar at the end of the member has been subjected to a negative shear deformation in advance due to the penetration of the main bar and is subjected to an earthquake load. An energy-absorbing precast concrete member that absorbs energy by generating larger positive and negative shear deformation than the above.

請求項2に係る発明は、プレテンション方式にて主筋を緊張してコンクリートにプレストレスを導入することにより予め負のせん断変形を生じさせることを特徴としている。   The invention according to claim 2 is characterized in that negative shear deformation is caused in advance by tensioning the main reinforcement by the pre-tension method and introducing pre-stress into the concrete.

請求項3に係る発明は、粘弾性材料を、正負繰返しのせん断変形を受けたときに、その履歴面積が大きく減衰効果が期待できる高減衰ゴムや同じような力学的特性を持つ樹脂系の材料としたことを特徴としている。   The invention according to claim 3 is a viscoelastic material, a high-damping rubber that has a large hysteresis area and can be expected to have a damping effect when subjected to positive and negative shear deformation, and a resin-based material having similar mechanical characteristics. It is characterized by that.

請求項4に係る発明は、粘弾性材料の部材内部側に粘弾性材料より粘弾性の小さい材料からなる緩衝域が形成されていることを特徴としている。   The invention according to claim 4 is characterized in that a buffer region made of a material having a smaller viscoelasticity than that of the viscoelastic material is formed inside the member of the viscoelastic material.

請求項5に係る発明は、部材端部の下端主筋および上端主筋の間に、主筋よりも細径のひび割れ制御鉄筋を主筋とは別に配筋することにより、粘弾性材料取付け位置付近のひび割れを制御し、部材端部からの主筋の抜け出し量を大きくすることを特徴としている。   According to the fifth aspect of the present invention, a crack control reinforcing bar having a diameter smaller than that of the main reinforcing bar is arranged between the lower main reinforcing bar and the upper main reinforcing bar separately from the main reinforcing bar, so that cracks in the vicinity of the viscoelastic material mounting position are prevented. It is characterized by controlling and increasing the amount of the main bar coming out from the end of the member.

請求項6に係る発明は、主筋に粘弾性材料を塗布または取付けた状態でプレテンション方式のプレストレスを付与し、主筋の緊張力を保持した状態で主筋以外の鉄筋を組立て、型枠を設置してコンクリートを打設し、コンクリートを養生して所定の圧縮強度に達したとき主筋の緊張力を徐々に低減し徐荷してエネルギー吸収型プレキャストコンクリート部材を製造する方法とした。   In the invention according to claim 6, prestressing prestress is applied in a state where a viscoelastic material is applied to or attached to the main muscle, a reinforcing bar other than the main muscle is assembled in a state where the tension of the main muscle is maintained, and the form is installed. Then, the concrete was placed, and when the concrete was cured and reached a predetermined compressive strength, the tension of the main reinforcement was gradually reduced and gradually loaded to produce an energy absorbing precast concrete member.

請求項1に係る発明によれば、柱や梁などの主要構造部材の他に、建物の機能性を阻害する制振装置を付加的に設置することなく、十分な剛性と耐力を有する主要構造部材でありながら、これと二律背反的な高いエネルギー吸収性能、すなわち高減衰性能をも併せ持たせることにより、柱や梁のみで構築された耐震性の優れた建物骨組を構築することができる。   According to the invention according to claim 1, in addition to the main structural members such as columns and beams, the main structure having sufficient rigidity and proof stress without additionally installing a vibration damping device that impedes the functionality of the building. Although it is a member, it is possible to construct a building frame with excellent seismic resistance that is constructed of only columns and beams by having a high energy absorption performance, that is, a high damping performance, which is contradictory to this.

請求項2に係る発明によれば、プレテンション方式にて主筋を緊張してコンクリートにプレストレスを導入するというごく普通に用いられている技術手段によって予め負のせん断変形を生じさせることができる。
予め負のせん断変形を生じさせるものとしては、主筋を部材端面からめり込ませればよいものであるから、他にポストテンション方式のように、コンクリート内にスパイラルシースを配置しておき、このシース内に鉄筋を挿入し、梁端部域に粘弾性材料を取付けた後、この鉄筋に引張力を与える手法も有効である。
According to the second aspect of the present invention, negative shear deformation can be caused in advance by a commonly used technical means of tensioning the main bars and introducing prestress into the concrete by the pretension method.
In order to cause negative shear deformation in advance, it is only necessary to squeeze the main bar from the end face of the member, so a spiral sheath is placed in the concrete as in the post-tension method. It is also effective to insert a reinforcing bar inside and attach a viscoelastic material to the beam end region, and then apply a tensile force to the reinforcing bar.

請求項3に係る発明によれば、粘弾性材料として市販の高減衰ゴムや同じような力学的特性を持つ樹脂系の材料を部材端部の主筋に塗布または取付けるという簡単手段にて、地震荷重に対して大きな減衰効果を期待することができる。   According to the invention of claim 3, the seismic load can be obtained by a simple means of applying or attaching a commercially available high-damping rubber or a resin-based material having similar mechanical properties to the main bar of the member end as a viscoelastic material. A large damping effect can be expected.

請求項4に係る発明によれば、粘弾性材料の部材内部側に、粘弾性材料より粘弾性の小さい材料からなる緩衝域を形成したので、粘弾性材料に負のせん断変形が生じた際、主筋引張時と同様に、せん断変形が一様な分布となり、高減衰効果をより効率的に付与することができる。   According to the invention according to claim 4, since the buffer region made of a material having a smaller viscoelasticity than the viscoelastic material is formed on the inside of the member of the viscoelastic material, when negative shear deformation occurs in the viscoelastic material, As with the main reinforcement, the shear deformation has a uniform distribution, and a high damping effect can be imparted more efficiently.

請求項5に係る発明によれば、細径のひび割れ制御鉄筋を主筋とは別に配筋して、粘弾性材料取付け位置付近のひび割れを制御することにより、部材端部からの主筋の抜け出し量を長くして粘弾性材料の正負繰返し変形も大きくすることが可能となり、高い減衰効果を保持することができる。   According to the fifth aspect of the invention, by arranging a crack control reinforcing bar having a small diameter separately from the main reinforcing bar and controlling the crack in the vicinity of the viscoelastic material mounting position, the amount of the main reinforcing bar protruding from the end of the member can be reduced. By increasing the length, the positive and negative cyclic deformation of the viscoelastic material can be increased, and a high damping effect can be maintained.

請求項6に係る発明によれば、主筋に粘弾性材料を塗布または取付けた状態でプレテンション方式のプレストレスを付与するという簡単な工程を実施することによって予め負のせん断変形を生じさせ、柱や梁などの主要構造部材の他に、建物の機能性を阻害する制振装置を付加的に設置する工程を省き、主要構造部材の剛性と耐力を損なうことなく高減衰性能を付与することができ、柱や梁のみで構築された耐震性の優れた建物骨組を構築することができる。   According to the invention of claim 6, negative shear deformation is caused in advance by performing a simple process of applying pre-stressing prestress in a state in which a viscoelastic material is applied to or attached to the main muscles. In addition to main structural members such as beams and beams, it is possible to omit the process of additionally installing a vibration damping device that impedes the functionality of the building, and to provide high damping performance without impairing the rigidity and proof strength of the main structural members It is possible to build a building frame with excellent earthquake resistance that is constructed with only columns and beams.

図1は、本発明のエネルギー吸収型プレキャストコンクリートの主筋に塗布された粘弾性材料のせん断応力−せん断ひずみ特性を示す図である。FIG. 1 is a diagram showing shear stress-shear strain characteristics of a viscoelastic material applied to the main reinforcement of the energy absorbing precast concrete of the present invention. 図2は、本発明の部材端部の主筋に粘弾性材料を塗布した制振部材の変形状態を示す図である。FIG. 2 is a diagram showing a deformed state of the vibration damping member in which a viscoelastic material is applied to the main muscles of the member end portion of the present invention. 図3は、従来発明の部材端部の半剛接合例を示した図である。FIG. 3 is a view showing an example of semi-rigid joining at the end of a member according to the conventional invention. 図4は、本発明のプレキャストコンクリート梁の製造手順を示す図である。FIG. 4 is a diagram showing a manufacturing procedure of the precast concrete beam of the present invention. 図5は、本発明のプレキャストコンクリート梁の地震時における梁および粘弾性材料の変形状態を示す図である。FIG. 5 is a diagram showing the deformation state of the beam and the viscoelastic material during the earthquake of the precast concrete beam of the present invention. 図6は、主筋の引張力減退による粘弾性材料の負のせん断変形増大を示す図である。FIG. 6 is a diagram showing an increase in negative shear deformation of a viscoelastic material due to a decrease in tensile force of the main muscle. 図7は、粘弾性材料取付け域における梁内部側に緩衝材を設けた例を示す図である。FIG. 7 is a view showing an example in which a buffer material is provided on the beam inner side in the viscoelastic material attachment region. 図8は、ひび割れ制御鉄筋を設けた例を示す図である。FIG. 8 is a diagram illustrating an example in which crack control reinforcing bars are provided. 図9は、割裂補強を施した例を示す図である。FIG. 9 is a diagram illustrating an example in which split reinforcement is applied.

≪実施形態1≫
先ず、本発明のプレキャストコンクリート部材の製造方法について、図4を参照して説明する。
本発明のプレキャストコンクリート部材の代表例であるプレキャスト梁の製造方法の大きな特徴は、プレキャスト梁に使用する主筋に、粘弾性材料を塗布または取付けた状態で予め引張力を付与することにある。
その方法は、プレストレストコンクリート構造で既に普及しているプレテンション方式のプレストレス導入方法である。緊張材はこの場合プレキャスト梁の主筋となる。
Embodiment 1
First, the manufacturing method of the precast concrete member of this invention is demonstrated with reference to FIG.
A major feature of the method for producing a precast beam, which is a representative example of the precast concrete member of the present invention, is that a tensile force is applied in advance to a main bar used for the precast beam in a state where a viscoelastic material is applied or attached.
This method is a pre-tension type pre-stress introduction method that is already widely used in pre-stressed concrete structures. The tendon is in this case the main bar of the precast beam.

<手順1>
プレキャスト梁に使用する主筋に、梁端部に相当する箇所に予め粘弾性材料を取付ける。その取付け方は、高減衰ゴムなどの既製品を主筋の所定位置に巻きつける方法や、図4上段に示すように粘弾性材料にせん断応力を有効に伝達させるために、リブ付きのスパイラルシースを用いて主筋との間に液状の粘弾性材料を充填し、その後加熱養生などを行い一体化させる方法が考えられる。
上記の状態で、主筋にプレストレスを導入し、その後の作業は、一般のプレテンション方式の作業工程と同様に、主筋の緊張力を保持した状態で、主筋以外の鉄筋組立て、型枠設置、コンクリート打設の手順で作業を行う。
<Procedure 1>
A viscoelastic material is previously attached to a main bar used for the precast beam at a position corresponding to the beam end. The installation method includes a method of winding a ready-made product such as high damping rubber around a predetermined position of the main bar, and a spiral sheath with ribs to effectively transmit shear stress to the viscoelastic material as shown in the upper part of FIG. A method may be considered in which a liquid viscoelastic material is filled between the main muscles and then integrated by heat curing.
In the above state, prestress is introduced into the main muscle, and the subsequent work is performed in the same manner as the general pre-tension system work process, with the tension of the main muscle held, rebar assembly other than the main muscle, formwork installation, Work in the concrete placing procedure.

<手順2>
コンクリートの圧縮強度が所定の強度に達したことを確認した後、主筋の緊張力を徐々に低減し除荷することによって、プレテンション方式による緊張力導入が完了する。
プレテンション方式による緊張力導入が完了した時点では、粘弾性材料は、主筋が梁内部にめり込むことにより、図4中段に示すようなせん断変形状態となる。プレテンション方式では、梁両端部付近での主筋とコンクリートの付着作用によりプレキャスト部材にプレストレスが導入される原理となっている。
同図下段に緊張力導入時における主筋の引張力分布を示しているが、粘弾性材料はコンクリートに比べて柔らかいものの、同材料を取付けた領域にも、僅かに引張力Aが残存することになる。
<Procedure 2>
After confirming that the compressive strength of the concrete has reached a predetermined strength, the tension force introduction by the pre-tension method is completed by gradually reducing and unloading the tension force of the main muscle.
When the introduction of the tension force by the pre-tension method is completed, the viscoelastic material is in a state of shear deformation as shown in the middle stage of FIG. The pre-tension method is based on the principle that pre-stress is introduced into the pre-cast member due to the adhesion between the main reinforcement and concrete near both ends of the beam.
The lower part of the figure shows the distribution of the tensile force of the main bar when tension is introduced. Although the viscoelastic material is softer than concrete, the tensile force A remains slightly in the region where the material is attached. Become.

手順1〜2によりプレキャスト工場で製造されたプレキャスト梁において、梁両端から突出した主筋は、現場で柱と一体化することになる。このとき、例えば同主筋を柱内で定着させるために一般的なプレート・ナット方式の定着具を取付けるのが簡易である。   In the precast beam manufactured in the precast factory according to procedures 1 and 2, the main bars protruding from both ends of the beam are integrated with the column on the site. At this time, for example, it is easy to attach a general plate / nut type fixing tool in order to fix the main reinforcement in the column.

図5に、以上のような手順で構築された柱・梁接合部の状況、ならびに地震荷重を受けた時の梁部材の変形状態を示す。
同図では、(a)が工事完了時、(b)と(c)が地震荷重を受けた変形状態を示し、(b)は梁下端主筋が引張時、(c)は梁下端主筋が圧縮時の状態を示す。
図5の(a)の状態では、図4の手順2で説明したように、主筋のプレストレスに基づくめり込みにより粘弾性材料には既にせん断変形(負の変形)が生じている。
FIG. 5 shows the state of the column / beam joint constructed by the procedure as described above, and the deformation state of the beam member when subjected to an earthquake load.
In this figure, (a) shows the deformation state when the work is completed, (b) and (c) show the deformed state subjected to the seismic load, (b) shows when the beam bottom main bar is tensioned, and (c) shows that the beam bottom main bar is compressed. Indicates the state of the hour.
In the state of FIG. 5 (a), as described in the procedure 2 of FIG. 4, shear deformation (negative deformation) has already occurred in the viscoelastic material due to the indentation based on the prestress of the main muscle.

次に、該当する主筋に引張力が生じると図5(b)の状態となり、粘弾性材料には逆向きのせん断変形(正の変形)が生じることになる。その状態から主筋の引張力が除荷されると、初期状態、すなわち負のせん断変形が粘弾性材料に生じた状態に戻ることになるが、その時のせん断変形は、初期状態より更に大きい負の変形が生じる。   Next, when a tensile force is generated in the corresponding main reinforcement, the state shown in FIG. 5B is obtained, and a reverse shear deformation (positive deformation) occurs in the viscoelastic material. When the tensile force of the main muscle is unloaded from that state, it returns to the initial state, i.e., the state in which negative shear deformation has occurred in the viscoelastic material, but the shear deformation at that time is more negative than the initial state. Deformation occurs.

この理由は、主筋を緊張したプレテンション方式の梁に関する既往の研究によれば、図6に示すように、主筋が引張力を受けた際、プレテンション定着域で主筋とコンクリートの付着劣化が生じ、その影響で引張力が除荷されると定着域での残存する主筋引張力が低下し、定着域も梁内部へ広がる現象が生じるためである。言い換えれば、梁製造時に元々付与されていた引張力が減退したことにより、主筋が初期状態よりさらにめり込み、その結果、粘弾性材料の負のせん断変形がより大きくなることを意味する。   The reason for this is that, as shown in FIG. 6, when the main bar is subjected to a tensile force, adhesion deterioration between the main bar and the concrete occurs in the pre-tension anchoring area, as shown in FIG. This is because if the tensile force is unloaded under the influence, the remaining main bar tensile force in the anchoring area is reduced, and the anchoring area also spreads into the beam. In other words, it means that the tensile force originally applied at the time of beam manufacture is reduced, so that the main bar is further indented from the initial state, and as a result, the negative shear deformation of the viscoelastic material becomes larger.

地震荷重によって梁端部の主筋に生じる引張力が0の状態から、 梁の曲げ応力に見合う引張力が0の状態(除荷状態)と変化する過程で、粘弾性材料に正負繰返しのせん断変形が生じ、同じ部材変形を受けても、片方向のみのせん断変形を受ける上記特許文献1,2に記載された従来発明より、かなり大きな高減衰効果が効率的に得られることになる(図1参照)。この現象が本発明で提案する新しい原理であり、従来発明と大きく異なる点である。   Repeated positive and negative shear deformation of the viscoelastic material in the process of changing the tensile force generated in the main bar at the beam end due to the seismic load from 0 to the state corresponding to the bending stress of the beam (unloading state). Even if the same member deformation occurs, a considerably high attenuation effect can be obtained more efficiently than the conventional invention described in Patent Documents 1 and 2 that receive shear deformation in only one direction (FIG. 1). reference). This phenomenon is a new principle proposed in the present invention, which is a point greatly different from the conventional invention.

図5(c)の状態では、下端の主筋は圧縮側となり、上記した従来発明と同じ状態ではあるが、上端主筋の粘弾性材料は、下端主筋引張時と同様な原理で、正負繰返しのせん断変形が生じることになり、部材全体としては常に粘弾性材料による高減衰効果が付与されることになる。
したがって、本発明では、地震荷重を受けて梁の変形が増大すると、粘弾性材料が常に正負繰返しのせん断変形を受け、合理的かつ効率的に減衰効果が得られる。また、梁端部の主筋に粘弾性材料を取付け、かつ主筋に予め引張力(緊張)を付与するのみで減衰効果が得られるため、梁部材は常時荷重および地震荷重のどちらに対しても十分な剛性と曲げ耐力を有する主要構造部材としての役目も十分に果たす。
In the state of FIG. 5 (c), the lower main bar is on the compression side and is in the same state as the above-described conventional invention. However, the viscoelastic material of the upper main bar is sheared with positive and negative cycles on the same principle as when the lower main bar is pulled. Deformation will occur, and the entire member will always be given a high damping effect by the viscoelastic material.
Therefore, in the present invention, when the deformation of the beam increases due to the seismic load, the viscoelastic material always undergoes positive and negative repeated shear deformation, and a damping effect can be obtained reasonably and efficiently. In addition, since a damping effect can be obtained simply by attaching a viscoelastic material to the main bar at the end of the beam and applying a tensile force (tension) to the main bar in advance, the beam member is sufficient for both constant loads and seismic loads. It also fulfills the role of a main structural member having a high rigidity and bending strength.

≪実施形態2≫
粘弾性材料は主筋引張時においては、同材料の取付け域で、図2や図5で示したように、同材料にほぼ一様に正のせん断変形が生じる。
一方、初期状態(工事完了時)および主筋の引張力が除荷された状態では、梁が取り付く柱フェイス面(梁端面)で主筋のめり込みによる負のせん断変形状態となるが、図7(a)に示すように梁内部側位置では同材料に圧縮応力が働いている状態となり、主筋引張時のように一様なせん断変形は生じていない。
<< Embodiment 2 >>
As shown in FIG. 2 and FIG. 5, the viscoelastic material undergoes almost uniform positive shear deformation in the attachment region of the same material when the main bar is pulled, as shown in FIGS.
On the other hand, in the initial state (when construction is completed) and the state in which the main bar's tensile force is unloaded, the column face surface (beam end surface) to which the beam is attached is in a negative shear deformation state due to the main bar indentation. As shown in Fig. 5, the compressive stress is applied to the same material at the position inside the beam, and uniform shear deformation does not occur as in the case of pulling the main bar.

そこで、粘弾性材料を取付けている領域の梁内部側(梁端部の反対側)に、図7(b)に示すような緩衝域を設ける。緩衝域には、粘弾性材料より更に柔らかいグリースやアスファルトなどが好適である。この構成を採用することにより、粘弾性材料に負のせん断変形が生じた際、主筋引張時と同様に、せん断変形が一様な分布となり、高減衰効果をより効率的に付与することができる。   Therefore, a buffer region as shown in FIG. 7B is provided on the beam inner side of the region where the viscoelastic material is attached (opposite the beam end). For the buffer region, grease or asphalt that is softer than the viscoelastic material is suitable. By adopting this configuration, when negative shear deformation occurs in the viscoelastic material, the shear deformation becomes a uniform distribution in the same manner as when the main muscle is pulled, and a high damping effect can be more efficiently imparted. .

≪実施形態3≫
本発明は、部材端部では鉄筋コンクリート構造、部材中央部ではプレストレストコンクリート構造となる。したがって、部材全体が鉄筋コンクリート構造のものに比べて、部材中央部にはプレストレスが導入されているためほとんどひび割れは発生せず、ひび割れは端部に集中するので、粘弾性材料の正負繰返し変形も大きくなる長所を有している。
その効果を更に高めるために、図8に示すように、比較的細径のひび割れ制御鉄筋を部材端部の下端主筋および上端主筋の間に主筋とは別に配筋することにより、粘弾性材料取付け位置付近のひび割れを制御し、これにより部材端部から主筋が抜け出す長さを長くすることができる。
<< Embodiment 3 >>
The present invention has a reinforced concrete structure at the end of the member and a prestressed concrete structure at the center of the member. Therefore, compared to the reinforced concrete structure as a whole, prestress is introduced in the center of the member, so almost no cracks occur, and the cracks concentrate on the edges, so that positive and negative cyclic deformation of the viscoelastic material is also possible. Has the advantage of becoming larger.
In order to further enhance the effect, as shown in FIG. 8, a relatively thin crack control reinforcing bar is arranged between the lower main bar and the upper main bar at the end of the member separately from the main bar, thereby attaching a viscoelastic material. By controlling the cracks near the position, it is possible to lengthen the length of the main bars coming out from the end of the member.

≪実施形態4≫
本発明において、主筋に高強度鉄筋(SD490〜SD685)および高強度コンクリート60N/mm2以上を使うことにより、大地震においても主筋を降伏させない設計とすれば、大地震時によるエネルギー吸収は材料の塑性化に伴う履歴減衰によらず、粘弾性材料の高減衰効果に期待するため、地震終了後は主筋が降伏しておらず、残留ひび割れを小さくでき、損傷の極めて少ない合理的な鉄筋コンクリート造の骨組を設計できる。
<< Embodiment 4 >>
In the present invention, by using high-strength reinforcing bars (SD490 to SD685) and high-strength concrete of 60 N / mm 2 or more as the main bars, if the main bars are designed not to yield even in a large earthquake, the energy absorption during a large earthquake Regardless of the hysteretic damping that accompanies plasticization, the main reinforcement is not yielded after the earthquake, and residual cracks can be reduced after the earthquake. You can design a skeleton.

≪その他の実施形態≫
<柱>
これまで梁部材を対象としたものについて説明してきたが、柱部材についても同様な効果を期待することができる。
本発明を使用制限の厳しいピロティー形式の下部柱に適用すれば、別途制振装置などを設けることなく、意匠性・機能性の高い建物を構築することができる。
<< Other Embodiments >>
<Pillar>
So far, the beam member has been described, but the same effect can be expected for the column member.
If the present invention is applied to a piloty-type lower pillar with severe use restrictions, a building with high design and functionality can be constructed without providing a separate vibration control device or the like.

<長スパン梁>
従来技術として、高強度鉄筋を緊張材としたプレテンション方式のプレキャスト・プレストレストコンクリート梁がある。この梁では、緊張材となる高強度鉄筋の強度が高い場合(SD590以上)や、主筋のかぶり厚さが小さいと、プレテンション方式の緊張力導入時に、梁端部で主筋に沿ったコンクリートの割裂破壊が生じることがある。
その対策として、図9に示すような発明(特許第4326518号)が提案されている。この発明は、同図に示すように、割裂破壊の起点となる梁端部の主筋にアンボンド域を設け、かつその付近の主筋周りにスパイラル筋を補強する工法である。
しかしながらこの発明は、大梁として用いるとエネルギー吸収能が期待できないという問題があるが、このアンボンド域に、本発明における主筋のめり込みにより予め負のせん断変形が生じていて、地震荷重を受けたとき、負のせん断変形よりも大きい正負繰返しのせん断変形を生じる粘弾性材料を取付けることにより、同梁に高減衰効果を付与することもできる。
<Long span beam>
As a conventional technique, there is a pre-tensioned pre-stressed concrete beam using a high-strength reinforcing bar as a tension material. In this beam, if the strength of the high-strength reinforcing bar used as a tension material is high (SD590 or higher), or if the cover thickness of the main bar is small, when the pretension type tension is introduced, the concrete along the main bar at the end of the beam Split fracture may occur.
As a countermeasure, an invention as shown in FIG. 9 (Japanese Patent No. 4326518) has been proposed. As shown in the figure, the present invention is a construction method in which an unbonded region is provided in the main reinforcement at the beam end portion that is the starting point of split fracture, and the spiral reinforcement is reinforced around the main reinforcement in the vicinity thereof.
However, this invention has a problem that energy absorption ability cannot be expected when used as a girder, but in this unbonded area, negative shear deformation has occurred in advance due to penetration of the main reinforcement in the present invention, and when subjected to an earthquake load, it is negative. A high damping effect can be imparted to the beam by attaching a viscoelastic material that generates a shear deformation with a greater positive and negative cycle than the shear deformation.

Claims (6)

部材端部の主筋に塗布または取付けられた粘弾性材料が、前記主筋のめり込みにより予め負のせん断変形が生じていて、地震荷重を受けたとき、前記負のせん断変形よりも大きい正負繰返しのせん断変形を生じるエネルギー吸収型プレキャストコンクリート部材。   When the viscoelastic material applied to or attached to the main bar at the end of the member is subjected to a negative shear deformation in advance due to the penetration of the main bar and is subjected to an earthquake load, the shear deformation is greater than the negative shear deformation. Energy absorbing precast concrete member that produces 部材端部の主筋に塗布または取付けられた粘弾性材料が、プレテンション方式にて主筋が緊張されてコンクリートにプレストレスが導入され、前記主筋のめり込みにより予め負のせん断変形が生じていて、地震荷重を受けたとき、前記負のせん断変形よりも大きい正負繰返しのせん断変形を生じてエネルギーを吸収するエネルギー吸収型プレキャストコンクリート部材。   The viscoelastic material applied or attached to the main bar at the end of the member is prestressed in the pretension system and prestress is introduced into the concrete, and negative shear deformation has occurred in advance due to the penetration of the main bar. An energy-absorbing precast concrete member that absorbs energy by generating a positive and negative cyclic shear deformation larger than the negative shear deformation when receiving. 前記粘弾性材料は、正負繰返しのせん断変形を受けたときに、その履歴面積が大きく減衰効果が期待できる高減衰ゴムや同じような力学的特性を持つ樹脂系の材料であることを特徴とする請求項1乃至請求項2のいずれかに記載されたエネルギー吸収型プレキャストコンクリート部材。   The viscoelastic material is a high-damping rubber or a resin-based material having a similar mechanical characteristic that has a large hysteresis area and can be expected to have a damping effect when subjected to repeated positive and negative shear deformations. The energy absorption type precast concrete member according to any one of claims 1 to 2. 前記主筋に塗布または取付けられた粘弾性材料の部材内部側には、前記粘弾性材料より粘弾性の小さい材料からなる緩衝域が形成されていることを特徴とする請求項1乃至請求項3のいずれかに記載されたエネルギー吸収型プレキャストコンクリート部材。   The buffer region made of a material having a smaller viscoelasticity than the viscoelastic material is formed on the inside of the member of the viscoelastic material applied or attached to the main muscle. The energy absorption type precast concrete member described in any one. 部材端部の下端主筋および上端主筋の間に、主筋よりも細径のひび割れ制御鉄筋を主筋とは別に配筋することにより、粘弾性材料取付け位置付近のひび割れを制御し、部材端部からの主筋の抜け出し量を大きくすることを特徴とする請求項1乃至請求項4のいずれかに記載されたエネルギー吸収型プレキャストコンクリート部材。   By placing a crack control reinforcing bar with a smaller diameter than the main reinforcing bar between the lower and upper main reinforcing bars at the end of the member, the cracks near the attachment position of the viscoelastic material can be controlled. The energy absorption type precast concrete member according to any one of claims 1 to 4, wherein an amount of the main reinforcement is increased. 主筋に粘弾性材料を塗布または取付けた状態でプレテンション方式のプレストレスを付与し、主筋の緊張力を保持した状態で主筋以外の鉄筋を組立て型枠を設置してコンクリートを打設し、コンクリートを養生して所定の圧縮強度に達したとき主筋の緊張力を徐々に低減し徐荷するエネルギー吸収型プレキャストコンクリート部材の製造方法。   Prestressing prestress is applied with viscoelastic material applied to or attached to the main reinforcement, and reinforcing bars other than the main reinforcement are assembled, a formwork is installed, and concrete is placed, while maintaining the tension of the main reinforcement. A method for producing an energy-absorbing precast concrete member in which the tension of the main muscle is gradually reduced and the load is gradually reduced when a predetermined compressive strength is reached.
JP2011119535A 2011-05-27 2011-05-27 Energy absorbing precast member Expired - Fee Related JP5685144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011119535A JP5685144B2 (en) 2011-05-27 2011-05-27 Energy absorbing precast member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011119535A JP5685144B2 (en) 2011-05-27 2011-05-27 Energy absorbing precast member

Publications (2)

Publication Number Publication Date
JP2012246680A true JP2012246680A (en) 2012-12-13
JP5685144B2 JP5685144B2 (en) 2015-03-18

Family

ID=47467388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011119535A Expired - Fee Related JP5685144B2 (en) 2011-05-27 2011-05-27 Energy absorbing precast member

Country Status (1)

Country Link
JP (1) JP5685144B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013496A (en) * 2001-07-02 2003-01-15 Kurosawa Construction Co Ltd Prestressed concrete structure
JP2007040052A (en) * 2005-08-05 2007-02-15 Kajima Corp Steel for unbonded prestressed concrete, its manufacturing method and structure
JP2009155878A (en) * 2007-12-26 2009-07-16 Taisei Corp Precast prestressed concrete member
JP2009185488A (en) * 2008-02-05 2009-08-20 Taisei Corp Precast concrete beam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013496A (en) * 2001-07-02 2003-01-15 Kurosawa Construction Co Ltd Prestressed concrete structure
JP2007040052A (en) * 2005-08-05 2007-02-15 Kajima Corp Steel for unbonded prestressed concrete, its manufacturing method and structure
JP2009155878A (en) * 2007-12-26 2009-07-16 Taisei Corp Precast prestressed concrete member
JP2009185488A (en) * 2008-02-05 2009-08-20 Taisei Corp Precast concrete beam

Also Published As

Publication number Publication date
JP5685144B2 (en) 2015-03-18

Similar Documents

Publication Publication Date Title
US9534411B2 (en) Earthquake resisting design method on the basis of PC binding articulation construction method
JP4274487B2 (en) Pipe seismic structure and pipe seismic reinforcement method
JP4647714B1 (en) Buildings using walled columns with seismic prestressing
JP2009256885A (en) Exposed column base structure
JP5398419B2 (en) Structural damper
JP2014077248A (en) Seismic strengthening structure and seismic strengthening method
Singhal et al. Anchorage behaviour of headed bars as connection system for precast reinforced concrete structural components
JP2016102323A (en) Design method of prestress concrete girder
JP5779119B2 (en) Composite beam and frame with composite beam
JP5279356B2 (en) Plastic hinge structure of concrete member and concrete member
JP5026830B2 (en) Reinforced concrete block wall
JP5685144B2 (en) Energy absorbing precast member
JP4326518B2 (en) Pre-tension member
JP2011169070A (en) Building using perpendicular vibration control pc structural member to which vibration control prestress has been applied
JP5571613B2 (en) Method for reinforcing concrete members
JP3910976B2 (en) Concrete member and method for reinforcing concrete member
JP2011202471A (en) Structural member
JP4947469B2 (en) Precast prestressed reinforced concrete beam and method for producing precast prestressed reinforced concrete beam
JP3865620B2 (en) Material end fixing structure of reinforced concrete structures
JP2008038559A (en) Vibration control wall
JP2002004418A (en) Construction method and structure for self-base- isolation of rc type structure
JP2006083545A (en) PCaPC FRAMING
JP5211258B1 (en) Buildings using steel columns with seismic prestressing
JP2006249916A (en) Structure and manufacturing method of structure
JP5778062B2 (en) Seismic and damping material installation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150116

R150 Certificate of patent or registration of utility model

Ref document number: 5685144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees