JP2012246157A - Method for producing synthetic silica glass and the synthetic silica glass - Google Patents

Method for producing synthetic silica glass and the synthetic silica glass Download PDF

Info

Publication number
JP2012246157A
JP2012246157A JP2011117713A JP2011117713A JP2012246157A JP 2012246157 A JP2012246157 A JP 2012246157A JP 2011117713 A JP2011117713 A JP 2011117713A JP 2011117713 A JP2011117713 A JP 2011117713A JP 2012246157 A JP2012246157 A JP 2012246157A
Authority
JP
Japan
Prior art keywords
silica glass
refractive index
synthetic silica
raw material
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011117713A
Other languages
Japanese (ja)
Other versions
JP5721538B2 (en
Inventor
Nao Chatani
直 茶谷
Yasuhiro Kimura
康宏 木村
Yuichi Miyagishi
裕一 宮岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2011117713A priority Critical patent/JP5721538B2/en
Publication of JP2012246157A publication Critical patent/JP2012246157A/en
Application granted granted Critical
Publication of JP5721538B2 publication Critical patent/JP5721538B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/11Doped silica-based glasses containing boron or halide containing chlorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/12Doped silica-based glasses containing boron or halide containing fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide synthetic silica glass in which the refractive index within a cross section can be equalized, and a method for producing the same.SOLUTION: The synthetic silica glass comprises at least 100 ppm F element and at least 1 ppm Cl element, provided that the Cl element content does not exceed -β/α (wherein α is the amount of change in the refractive index for 1 ppm Cl element; and β is the amount of change in the refractive index per 1 ppm F element ) times the F element content. The synthetic silica glass has a specific refractive index difference within the cross section of ≤0.01% when the refractive index (nd) of 1.45850 is used as a reference. The synthetic silica glass is obtained by doping a porous silica material with fluorine and vitrifying the same. Here, doping is preferably performed by placing the porous silica material in an atmosphere containing chlorine fluoride gas at a prescribed temperature.

Description

本発明は、合成シリカガラスの製造技術に関する。   The present invention relates to a technique for producing synthetic silica glass.

光ファイバ等の光学部材等の素材は、従来、以下のような方法で製造されている。まず、VAD(Vapor phase Axial Deposition)法で合成した多孔質シリカ原料をガラス化装置で脱水及び透明化して合成シリカガラスを作製し、又はCVD(Chemical Vapor Deposition)法で合成シリカガラスを作製し、次に、その合成シリカガラスを例えば酸水素火炎もしくは電気炉で加熱延伸することでガラスロッドを作製する。   A material such as an optical member such as an optical fiber is conventionally manufactured by the following method. First, a porous silica raw material synthesized by a VAD (Vapor Phase Axial Deposition) method is dehydrated and clarified by a vitrification apparatus to produce a synthetic silica glass, or a synthetic silica glass is produced by a CVD (Chemical Vapor Deposition) method, Next, the synthetic silica glass is heated and stretched with, for example, an oxyhydrogen flame or an electric furnace to produce a glass rod.

得られたガラスロッドに、さらにVAD法等によりシリカガラス粒子を堆積させて多孔質シリカ原料を形成し、ガラス化装置で脱水及び透明化を行うことで、プリフォームを作製する。   Silica glass particles are further deposited on the obtained glass rod by the VAD method or the like to form a porous silica raw material, and a preform is produced by dehydration and transparency using a vitrification apparatus.

多孔質シリカ原料を加熱処理する工程で、雰囲気中のフッ化塩素ガスの分圧を高くすると、プリフォームにドープされるフッ素の量が多くなり、負の比屈折率差を形成することができる。特許文献1〜4には、多孔質シリカ原料をSF、SiF、Si、Si等のフッ素ガス雰囲気に配置することで、フッ素をドープした具体例が開示されている。 If the partial pressure of chlorine fluoride gas in the atmosphere is increased in the step of heat-treating the porous silica raw material, the amount of fluorine doped into the preform increases and a negative relative refractive index difference can be formed. . Patent Documents 1 to 4 disclose specific examples in which fluorine is doped by disposing a porous silica raw material in a fluorine gas atmosphere such as SF 6 , SiF 4 , Si 2 F 6 , and Si 3 F 3 . .

特開2006−199517号公報JP 2006-199517 A 特開2002−114522号公報JP 2002-114522 A 特開2002−316831号公報JP 2002-316831 A 特開2008−189482号公報JP 2008-189482 A

しかし、特許文献2の方法では、塩素処理(脱水目的)後にフッ素処理を行うため、フッ素処理時に塩素がフッ素に置換され、塩素が屈折率分布に寄与しない。特許文献1、3及び4の方法では、原料に塩素を含むSiCl等を使用しても多孔質シリカ原料に含有される塩素は少なく、フッ素処理時に塩素がフッ素に置換され、塩素は屈折率分布に寄与しない。また、SiF等を使用するために高温処理が必要であり、これにより多孔質シリカ原料の収縮、つまり嵩密度の増加が発生し、均一なドープが困難になる。このため、多孔質シリカ原料の長軸方向においては加熱処理を制御することにより長軸方向の屈折率分布が均一となるが、断面方向においてはシリカガラスの比屈折率差が合成シリカガラスの断面内において不均一であるため、得られる合成シリカガラスロッド内の断面方向の屈折率が不均等になりやすいという問題がある。 However, in the method of Patent Document 2, since the fluorine treatment is performed after the chlorine treatment (for the purpose of dehydration), chlorine is replaced with fluorine during the fluorine treatment, and chlorine does not contribute to the refractive index distribution. In the methods of Patent Documents 1, 3 and 4, even if SiCl 4 containing chlorine is used as a raw material, the amount of chlorine contained in the porous silica raw material is small, and chlorine is replaced with fluorine during the fluorine treatment. Does not contribute to the distribution. Further, since high-temperature treatment is required in order to use SiF 4 or the like, shrinkage of the porous silica raw material, that is, increase in bulk density occurs, and uniform dope becomes difficult. For this reason, the refractive index distribution in the major axis direction becomes uniform by controlling the heat treatment in the major axis direction of the porous silica raw material, but the relative refractive index difference of the silica glass in the sectional direction is a cross section of the synthetic silica glass. Since the inside is non-uniform, there is a problem that the refractive index in the cross-sectional direction in the resulting synthetic silica glass rod tends to be non-uniform.

本発明は、以上の実情に鑑みてなされたものであり、合成シリカガラス内の屈折率を均等化できる合成シリカガラスの製造方法及び合成シリカガラスを提供することを目的とする。   This invention is made | formed in view of the above situation, and it aims at providing the manufacturing method of synthetic silica glass and synthetic silica glass which can equalize the refractive index in synthetic silica glass.

本発明者らは、多孔質シリカ原料を、フッ化塩素ガスを含む雰囲気に配置することで、形成される比屈折率差の大きさがシリカガラス内において均等化することを見出し、本発明を完成するに至った。具体的に、本発明は以下のものを提供する。   The present inventors have found that by arranging the porous silica raw material in an atmosphere containing chlorine fluoride gas, the magnitude of the relative refractive index difference formed is equalized in the silica glass. It came to be completed. Specifically, the present invention provides the following.

(1) 100ppm以上のF元素と、1ppm以上でありかつF元素の含有量の−β/α(式中、αはCl元素1ppmあたり変化する屈折率の値、βはF元素1ppmあたり変化する屈折率の値)倍以下であるCl元素とを含み、屈折率(nd)1.45850をリファレンスとしたときの断面内の比屈折率差が0.01%以下である合成シリカガラス。   (1) 100 ppm or more of the F element and 1 ppm or more and the content of the F element -β / α (where α is a refractive index value that changes per 1 ppm of the Cl element, and β changes per 1 ppm of the F element. Synthetic silica glass containing a Cl element that is less than or equal to (refractive index value) and having a relative refractive index difference in the cross section of 0.01% or less when the refractive index (nd) of 145850 is used as a reference.

(2) 多孔質シリカ原料にフッ素をドープし、透明化されてなり、
前記ドープは、前記多孔質シリカ原料を、フッ化塩素ガスを含む所定温度の雰囲気に配置することで行う(1)記載の合成シリカガラス。
(2) The porous silica raw material is doped with fluorine and made transparent,
The said dope is a synthetic silica glass as described in (1) performed by arrange | positioning the said porous silica raw material in the atmosphere of the predetermined temperature containing chlorine fluoride gas.

(3) 前記所定温度は800℃未満である(2)記載の合成シリカガラス。   (3) The synthetic silica glass according to (2), wherein the predetermined temperature is less than 800 ° C.

(4) 前記所定温度は前記フッ化塩素の沸点以上である(2)又は(3)記載の合成シリカガラス。   (4) The synthetic silica glass according to (2) or (3), wherein the predetermined temperature is equal to or higher than a boiling point of the chlorine fluoride.

(5) 前記多孔質シリカ原料は、0.2g/cm以上1.2g/cm以下の密度を有する(2)から(4)いずれか記載の合成シリカガラス。 (5) The synthetic silica glass according to any one of (2) to (4), wherein the porous silica raw material has a density of 0.2 g / cm 3 or more and 1.2 g / cm 3 or less.

(6) 前記フッ化塩素ガスの分圧が1.0気圧以下で製造される(2)から(5)いずれか記載の合成シリカガラス。   (6) The synthetic silica glass according to any one of (2) to (5), which is produced at a partial pressure of the chlorine fluoride gas of 1.0 atm or less.

(7) 前記フッ化塩素ガスの分圧を1.0気圧超4.0気圧以下の圧力へと加圧してなる(2)から(5)いずれか記載の合成シリカガラス。   (7) The synthetic silica glass according to any one of (2) to (5), wherein the partial pressure of the chlorine fluoride gas is increased to a pressure of more than 1.0 atm and 4.0 atm or less.

(8) 前記透明化を、ドーパントが実質的に存在しない雰囲気で行ってなる(2)から(7)いずれか記載の合成シリカガラス。   (8) The synthetic silica glass according to any one of (2) to (7), wherein the transparency is performed in an atmosphere substantially free of dopant.

(9) 多孔質シリカ原料にフッ素をドープし、透明化する合成シリカガラスの製造方法であって、
前記ドープは、前記多孔質シリカ原料を、フッ化塩素ガスを含む所定温度の雰囲気に配置することで行う製造方法。
(9) A method for producing a synthetic silica glass in which a porous silica raw material is doped with fluorine to be transparent,
The said dope is a manufacturing method performed by arrange | positioning the said porous silica raw material in the atmosphere of the predetermined temperature containing a chlorine fluoride gas.

(10) 前記所定温度は800℃未満である(9)記載の製造方法。   (10) The manufacturing method according to (9), wherein the predetermined temperature is less than 800 ° C.

(11) 前記所定温度は前記フッ化塩素の沸点以上である(9)又は(10)記載の製造方法。   (11) The manufacturing method according to (9) or (10), wherein the predetermined temperature is equal to or higher than a boiling point of the chlorine fluoride.

(12) 前記多孔質シリカ原料は、0.2g/cm以上1.2g/cm以下の密度を有する(9)から(11)いずれか記載の製造方法。 (12) The method according to any one of (9) to (11), wherein the porous silica raw material has a density of 0.2 g / cm 3 or more and 1.2 g / cm 3 or less.

(13) 前記フッ化塩素ガスの分圧を1.0気圧以下とする(9)から(12)いずれか記載の製造方法。   (13) The production method according to any one of (9) to (12), wherein a partial pressure of the chlorine fluoride gas is 1.0 atm or less.

(14) 前記フッ化塩素ガスの分圧を1.0気圧超4.0気圧以下の圧力へと加圧する工程をさらに有する(9)から(12)いずれか記載の製造方法。   (14) The production method according to any one of (9) to (12), further including a step of pressurizing the partial pressure of the chlorine fluoride gas to a pressure higher than 1.0 atm and lower than 4.0 atm.

(15) 前記透明化は、ドーパントが実質的に存在しない雰囲気で行う(9)から(14)いずれか記載の製造方法。   (15) The method according to any one of (9) to (14), wherein the transparency is performed in an atmosphere in which a dopant is not substantially present.

本発明によれば、多孔質シリカ原料を、フッ化塩素ガスを含む雰囲気に配置することで、形成される比屈折率差の大きさが断面内において均等化する。このようにして、1ppm以上でありかつF元素の含有量の−β/α(式中、αはCl元素1ppmあたり変化する屈折率の値、βはF元素1ppmあたり変化する屈折率の値)倍以下であるCl元素とを含み、屈折率(nd)1.45850をリファレンスとしたときの断面内の比屈折率差が0.01%以下である合成シリカガラスが得られ、断面内の屈折率の均等化を実現できる。   According to this invention, the magnitude | size of the relative refractive index difference formed is equalized in a cross section by arrange | positioning the porous silica raw material in the atmosphere containing chlorine fluoride gas. In this way, -β / α of 1 ppm or more and the content of F element (where α is a refractive index value that changes per 1 ppm of Cl element and β is a refractive index value that changes per 1 ppm of F element) And a synthetic silica glass having a relative refractive index difference in the cross section of 0.01% or less when a refractive index (nd) of 145850 is used as a reference. Rate equalization can be realized.

以下、本発明の実施形態を説明するが、これが本発明を限定するものではない。   Hereinafter, although embodiment of this invention is described, this does not limit this invention.

本発明に係る合成シリカガラスの製造方法は、多孔質シリカ原料にフッ素をドープし、透明化する工程を有する。フッ素がドープされることで負の比屈折率差が形成されるため、屈折率が小さい合成シリカガラスを得ることができる。ここでSF、SiF、Si、Si等の従来のフッ素含有ガスを用いると、形成される比屈折率差の大きさが合成シリカガラスの断面内において不均一であるため、得られる合成シリカガラスの断面内の屈折率が不均等になりやすい。 The method for producing a synthetic silica glass according to the present invention includes a step of doping a porous silica raw material with fluorine to make it transparent. Since a negative relative refractive index difference is formed by doping with fluorine, a synthetic silica glass having a small refractive index can be obtained. Here, when a conventional fluorine-containing gas such as SF 6 , SiF 4 , Si 2 F 6 , or Si 3 F 3 is used, the magnitude of the relative refractive index difference formed is not uniform in the cross section of the synthetic silica glass. Therefore, the refractive index in the cross section of the synthetic silica glass obtained tends to be uneven.

これに対し、本発明では、ドープを、フッ化塩素ガスを含む所定温度の雰囲気に多孔質シリカ原料を配置することで行う。これにより、形成される比屈折率差の大きさが断面内において均等化するため、断面内の屈折率を均等化できる合成シリカガラスを製造することができる。なお、本発明における「断面」とは、棒状である多孔質シリカ原料の長軸に略垂直な断面を指し、かかる断面内の全箇所は製造過程において互いに略同じ処理履歴を経る。   On the other hand, in this invention, dope is performed by arrange | positioning a porous silica raw material in the atmosphere of the predetermined temperature containing chlorine fluoride gas. Thereby, since the magnitude | size of the relative refractive index difference formed equalizes in a cross section, the synthetic silica glass which can equalize the refractive index in a cross section can be manufactured. The “cross section” in the present invention refers to a cross section that is substantially perpendicular to the long axis of the rod-shaped porous silica raw material, and all points in the cross section undergo substantially the same processing history in the manufacturing process.

その作用を、フッ化塩素ガスの一例であるClFを用いた場合を例示して説明する。雰囲気中のClFが多孔質シリカ原料表面のSiOHに接触すると、そのSiOHがSiOF、SiFもしくはSiCl、SiOClへと変化し、表面にフッ素もしくは塩素がドープされる。このとき、副産物としてHF及びHClが生成する。HFは多孔質シリカ原料内部のSi−O−Si結合を破壊し、そこへClFガスが供給されることによりSiF、SiOFの形でフッ素がドープされる。同様にClガスが供給されることによりSiClやSiOClの形で塩素がドープされる。多孔質シリカ原料の処理ガス接触はフッ素及び塩素に限らず同程度であり、特定量のフッ素がドープされる箇所には、特定量の塩素もドープされる。これにより、フッ素による負の比屈折率差の一部が、塩素による正の比屈折率差により相殺されるため、比屈折率差の大きさが断面内において均等化する。 The operation will be described by exemplifying a case where ClF 3 which is an example of chlorine fluoride gas is used. When ClF 3 in the atmosphere comes into contact with SiOH on the surface of the porous silica raw material, the SiOH changes to SiOF 3 , SiF or SiCl, and SiOCl, and the surface is doped with fluorine or chlorine. At this time, HF and HCl are generated as by-products. HF breaks Si—O—Si bonds in the porous silica raw material, and ClF 3 gas is supplied thereto, so that fluorine is doped in the form of SiF and SiOF. Similarly, chlorine is doped in the form of SiCl or SiOCl by supplying Cl gas. The treatment gas contact of the porous silica raw material is not limited to fluorine and chlorine, but is the same level, and a specific amount of chlorine is also doped at a location where a specific amount of fluorine is doped. Thereby, a part of the negative relative refractive index difference due to fluorine is offset by the positive relative refractive index difference due to chlorine, so that the magnitude of the relative refractive index difference is equalized in the cross section.

フッ化塩素ガスは、ClFに限らず、上記のような作用を呈するものであれば、特に限定されず、例えば、ClF、ClF等であってよく、1種又は2種以上を組み合わせて使用してよい。また、ドープ時の雰囲気は、フッ化塩素ガスに限らず他のガスを含んでよい。 The chlorine fluoride gas is not limited to ClF 3 and is not particularly limited as long as it exhibits the above-described action. For example, ClF, ClF 5 and the like may be used, and one or two or more kinds may be combined. May be used. Moreover, the atmosphere at the time of dope is not limited to chlorine fluoride gas, and may include other gases.

多孔質シリカ原料は、従来公知の方法、例えばVAD(Vapor phase Axial Deposition)法で合成したものであってよい。   The porous silica raw material may be synthesized by a conventionally known method, for example, a VAD (Vapor Phase Axial Deposition) method.

フッ化塩素ガスを含む雰囲気の所定温度は、過大であると、多孔質シリカ原料の密度が大きく増加し、多孔質シリカ原料内部へのドープが不充分になりやすい一方、過小であると、フッ化塩素の気体での供給量が少なくなり、ドープ効率が低下する。そこで、所定温度は、800℃未満であることが好ましく、より好ましくは500℃以下であり、フッ化塩素の沸点(例えば、ClFであれば11.75℃)以上であることが好ましい。フッ化塩素ガスは、SiF等の従来の処理ガスと比較して低温処理が可能であるため、多孔質シリカ原料の収縮が抑制される。これにより、嵩密度の増加を抑制され、均一ドープ、高濃度ドープが可能となる。また、HF及びHClがイオン化して多孔質シリカ原料内部へと侵入しやすい点で、雰囲気の所定温度は100℃以上であることが好ましく、より好ましくは200℃以上である。 If the predetermined temperature of the atmosphere containing chlorine fluoride gas is excessive, the density of the porous silica raw material increases greatly, and the dope into the porous silica raw material tends to be insufficient. The supply amount of chlorine chloride gas decreases, and the dope efficiency decreases. Therefore, the predetermined temperature is preferably less than 800 ° C., more preferably 500 ° C. or less, and preferably not less than the boiling point of chlorine fluoride (for example, 11.75 ° C. for ClF 3 ). Since chlorine fluoride gas can be processed at a lower temperature than conventional processing gases such as SiF 4 , shrinkage of the porous silica raw material is suppressed. Thereby, an increase in bulk density is suppressed, and uniform doping and high concentration doping are possible. In addition, the predetermined temperature of the atmosphere is preferably 100 ° C. or higher, more preferably 200 ° C. or higher, in that HF and HCl are easily ionized and penetrate into the porous silica raw material.

多孔質シリカ原料の密度は、過大であると、多孔質シリカ原料内部へのドープが不充分になりやすい点を考慮し、適宜設定されてよい。ただし、前述のように、本発明では、従来のガス(1000〜1200℃)に比べて低温でフッ素ドープが可能であるため、従来許容されるよりも高い密度の多孔質シリカ原料を使用することもできる。具体的に、多孔質シリカ原料の密度の下限は、0.2g/cmであることが好ましく、より好ましくは0.3g/cmであり、最も好ましくは0.4g/cmである。多孔質シリカ原料の密度の上限は、1.2g/cmであることが好ましく、より好ましくは1.1g/cmであり、最も好ましくは1.0g/cmである。なお、本明細書における多孔質シリカ原料の密度は、非接触式の形状測定装置を用いて多孔質シリカ原料の体積を測定し、その体積と重量から嵩密度を算出することで得られる。 If the density of the porous silica raw material is excessive, it may be appropriately set in consideration of the point that the dope into the porous silica raw material tends to be insufficient. However, as described above, in the present invention, it is possible to dope fluorine at a low temperature as compared with the conventional gas (1000 to 1200 ° C.). You can also. Specifically, the lower limit of the density of the porous silica raw material is preferably 0.2 g / cm 3 , more preferably 0.3 g / cm 3 , and most preferably 0.4 g / cm 3 . The upper limit of the density of the porous silica raw material is preferably 1.2 g / cm 3 , more preferably 1.1 g / cm 3 , and most preferably 1.0 g / cm 3 . In addition, the density of the porous silica raw material in this specification is obtained by measuring the volume of the porous silica raw material using a non-contact type shape measuring device and calculating the bulk density from the volume and weight.

ドープ時のフッ化塩素ガスの分圧は、高くなるにつれ、多孔質シリカ原料内部へのドープが促進される一方、過大であると、設備及びコストの観点で不利である。前述のように、本発明では、フッ化塩素ガスを用いることで多孔質シリカ原料内部へのドープが既に容易であるため、雰囲気を加圧する工程を行わなくてもよい。即ち、フッ化塩素ガスの分圧は1.0気圧以下であってよい。かかる態様では、加圧のための設備及びコストを削減することができる。ただし、フッ化塩素ガスの分圧を1.0気圧超4.0気圧以下の圧力へと加圧することは、簡便な加圧設備及び低コストで多孔質シリカ原料内部へのドープをより促進できる点で好ましい。かかる加圧時のフッ化塩素ガスの分圧の下限は、より好ましくは1.1気圧、最も好ましくは2.0気圧であり、上限は、より好ましくは4.0気圧、最も好ましくは3.0気圧である。   As the partial pressure of the chlorine fluoride gas at the time of doping increases, the doping into the porous silica raw material is promoted. On the other hand, if the partial pressure is excessive, it is disadvantageous in terms of equipment and cost. As described above, in the present invention, it is not necessary to perform the step of pressurizing the atmosphere because doping into the porous silica raw material is already easy by using chlorine fluoride gas. That is, the partial pressure of chlorine fluoride gas may be 1.0 atm or less. In this aspect, the equipment and cost for pressurization can be reduced. However, pressurizing the partial pressure of the chlorine fluoride gas to a pressure higher than 1.0 atm and lower than 4.0 atm can further promote the dope into the porous silica raw material with simple pressurization equipment and low cost. This is preferable. The lower limit of the partial pressure of the chlorine fluoride gas during pressurization is more preferably 1.1 atm, most preferably 2.0 atm, and the upper limit is more preferably 4.0 atm, most preferably 3. 0 atm.

次に、フッ素がドープされた多孔質シリカ原料を透明化する。これにより、屈折率が低下した透明な合成シリカガラスが得られる。透明化は、従来公知の条件に従ってよく、特に限定されないが、例えば、多孔質シリカ原料を約1000〜約1300℃で約1〜約20時間に亘り加熱し、さらに約1350〜約1600℃で加熱してよい。透明化の間、加圧をしてもよく、減圧をしてもよい。   Next, the porous silica raw material doped with fluorine is made transparent. Thereby, a transparent synthetic silica glass having a reduced refractive index is obtained. The transparency may be according to conventionally known conditions, and is not particularly limited. For example, the porous silica raw material is heated at about 1000 to about 1300 ° C. for about 1 to about 20 hours, and further heated at about 1350 to about 1600 ° C. You can do it. During the clarification, pressure may be applied or reduced pressure.

透明化は、ドープと同一雰囲気で行ってもよく、あるいは異なる雰囲気で行ってもよい。後者は、フッ素がドープされた多孔質シリカ原料を、予め形成しておいた雰囲気に移すだけで、透明化を開始できるので、製造時間を短縮できる点で好ましい。後者の場合、透明化時の雰囲気にはドーパントが実質的に存在しないことが一般的である。なお、ここでいう「実質的に存在しない」とは、全く存在しないのみならず、不可避的に存在する量(例えば、多孔質シリカ原料の表面から僅少量のドーパントが雰囲気へと逃避する)程度で存在することも包含する。   The transparency may be performed in the same atmosphere as the dope or in a different atmosphere. The latter is preferable in that the production time can be shortened because the transparent silica raw material doped with fluorine can be started by simply transferring it to a previously formed atmosphere. In the latter case, it is general that the dopant is not substantially present in the atmosphere at the time of transparency. Here, “substantially non-existing” is not only completely absent but also unavoidably present (for example, a small amount of dopant escapes from the surface of the porous silica raw material to the atmosphere). It is also included.

なお、ドープ及び透明化に用い得る装置は、従来周知であるため、その説明を省略する。   In addition, since the apparatus which can be used for dope and transparency is conventionally known, the description is abbreviate | omitted.

このようにして製造される合成シリカガラスは、光ファイバ、光学系装置のレンズ、ミラー、プリズム、窓部材等の光学部材として有用である。   The synthetic silica glass thus produced is useful as an optical member such as an optical fiber, a lens of an optical system device, a mirror, a prism, or a window member.

本発明の方法で製造される合成シリカガラスは、100ppm以上のF元素と、1ppm以上でありかつF元素の含有量の−β/α(式中、αはCl元素1ppmあたり変化する屈折率の値、βはF元素1ppmあたり変化する屈折率の値)倍以下であるCl元素とを含み、屈折率(nd)1.45850をリファレンスとしたときの断面内の比屈折率差が0.01%以下である。なお、F元素及びCl元素の量はイオンクロマトグラフ分析により測定され、合成シリカガラスの断面における平均値である。   The synthetic silica glass produced by the method of the present invention has an F element of 100 ppm or more, and a content of F element -β / α of 1 ppm or more (where α is a refractive index that changes per 1 ppm of Cl element). And β is a Cl element that is less than or equal to twice the value of the refractive index that changes per 1 ppm of the F element, and the relative refractive index difference in the cross section when the refractive index (nd) of 145850 is used as a reference is 0.01. % Or less. The amounts of the F element and the Cl element are measured by ion chromatographic analysis, and are average values in the cross section of the synthetic silica glass.

また、断面内の比屈折率差は、合成シリカガラスの断面における重心と、外周より内側に10mmの任意の1箇所とにおける比屈折率の差である。比屈折率は、次の式に基づいて算出される。
屈折率A = α×Cl元素量(ppm) + β×F元素量(ppm) + 1.45850
(式中、αはCl元素含有量1ppmの変化による屈折率変化量の値であり、Cl元素濃度と屈折率との関数を近似曲線とし、その曲線における傾き、即ちSi−Clの場合1.3×10−7であり、
βは、F元素含有量1ppmの変化による屈折率変化量の値、F元素濃度と屈折率との関数を近似曲線とし、その曲線における傾き、即ちSi−Fの場合−3.8×10−7である。)
比屈折率 =(1.45850−屈折率A) / 1.45850 × 100
Moreover, the relative refractive index difference in the cross section is a difference in relative refractive index between the center of gravity in the cross section of the synthetic silica glass and any one place 10 mm inward from the outer periphery. The relative refractive index is calculated based on the following formula.
Refractive index A = α × Cl element amount (ppm) + β × F element amount (ppm) +1.45850
(Where α is the value of the refractive index change due to the change in the Cl element content of 1 ppm, and the function of the Cl element concentration and the refractive index is used as an approximate curve. 3 × 10 −7 ,
β is the refractive index variation in the values due to changes in the F element content 1 ppm, and the approximate curve function of the F element concentration and the refractive index, the slope of the curve, that is, when the Si-F -3.8 × 10 - 7 . )
Specific refractive index = (1.45850-Refractive index A) / 1.45850 x 100

F元素の含有量は100ppm以上、より好ましくは1000ppm以上、最も好ましくは2000ppm以上であり、所望の屈折率変化の程度、Cl元素の量等に依存して適宜選択される。一方、Cl元素の含有量は検出限界である1ppm以上、より好ましくは10ppm以上、最も好ましくは20ppm以上であり、F元素の含有量に対して−β/α倍以下である。   The content of F element is 100 ppm or more, more preferably 1000 ppm or more, and most preferably 2000 ppm or more, and is appropriately selected depending on the desired degree of refractive index change, the amount of Cl element, and the like. On the other hand, the Cl element content is 1 ppm or more, more preferably 10 ppm or more, and most preferably 20 ppm or more, which is the detection limit, and is −β / α times or less than the F element content.

断面内の比屈折率差は、合成シリカガラスの屈折率(nd)1.45850に対し0.01%以下であることが好ましく、より好ましくは0.005%以下である。   The relative refractive index difference in the cross section is preferably 0.01% or less, more preferably 0.005% or less with respect to the refractive index (nd) of 145850 of the synthetic silica glass.

<実施例1>
VAD法で合成した密度0.5g/cmの多孔質シリカ原料の棒状体を公知のドープ装置のシリカガラス炉内に挿入した。シリカガラス炉内にはArガスを満たしておき、このシリカガラス炉内に、500℃に保ったClFガスを500sccm、560秒で供給し、0.3気圧(ClFガスの分圧)へと昇圧した。その後、シリカガラス炉内の条件を保ち4時間保持させた。その後、多孔質シリカ原料を1100〜1200℃に設定した別の炉内に挿入し、減圧下3〜10時間に亘って加熱し、その後1200〜1400℃に昇温し減圧下で10〜20時間に亘って加熱することで、透明化を行い、合成シリカガラスを得た。
<Example 1>
A rod-shaped body of porous silica raw material having a density of 0.5 g / cm 3 synthesized by the VAD method was inserted into a silica glass furnace of a known doping apparatus. The silica glass furnace is filled with Ar gas, and the ClF 3 gas maintained at 500 ° C. is supplied into the silica glass furnace at 500 sccm for 560 seconds to 0.3 atm (ClF 3 gas partial pressure). And boosted. Thereafter, the conditions in the silica glass furnace were maintained and held for 4 hours. Thereafter, the porous silica raw material was inserted into another furnace set at 1100 to 1200 ° C., heated under reduced pressure for 3 to 10 hours, then heated to 1200 to 1400 ° C. and then heated under reduced pressure for 10 to 20 hours. It was made transparent by heating over a period of time to obtain a synthetic silica glass.

<実施例2>
ドープ時の温度を500℃ではなく150℃にし、ClFガス分圧を0.3気圧ではなく0.25気圧にした点を除き、実施例1と同様の手順で合成シリカガラスを得た。
<Example 2>
A synthetic silica glass was obtained in the same procedure as in Example 1 except that the temperature at the time of dope was changed to 150 ° C. instead of 500 ° C., and the ClF 3 gas partial pressure was changed to 0.25 atm.

<実施例3>
ドープ時の温度を500℃ではなく800℃にし、ClFガス分圧を0.3気圧ではなく0.1気圧にした点を除き、実施例1と同様の手順で合成シリカガラスを得た。
<Example 3>
A synthetic silica glass was obtained in the same procedure as in Example 1 except that the temperature at the time of dope was changed to 800 ° C. instead of 500 ° C. and the ClF 3 gas partial pressure was changed to 0.1 atm instead of 0.3 atm.

<実施例4>
VAD法で合成した密度0.5g/cmの多孔質シリカ原料を公知のドープ装置のシリカガラス炉内に挿入した。シリカガラス炉内にはArガスを満たしておき、このシリカガラス炉内を20℃に保った状態で、Arガスと置換しながらClFガスを500sccm、550秒流して0.9気圧(ClFガスの分圧)まで昇圧した。その後、シリカガラス炉内の条件を保ち330時間保持させた。その後、多孔質シリカ原料を1100〜1200℃に設定した別の炉内に挿入し、減圧下3〜10時間に亘って加熱し、その後1200〜1400℃に昇温し減圧下で10〜20時間に亘って加熱することで透明化を行い、合成シリカガラスを得た。
<Example 4>
A porous silica raw material having a density of 0.5 g / cm 3 synthesized by the VAD method was inserted into a silica glass furnace of a known doping apparatus. The silica glass furnace was filled with Ar gas, and while the inside of the silica glass furnace was kept at 20 ° C., ClF 3 gas was flowed at 500 sccm for 550 seconds while being replaced with Ar gas, and 0.9 atm (ClF 3 (Partial pressure of gas). Thereafter, the conditions in the silica glass furnace were maintained and held for 330 hours. Thereafter, the porous silica raw material was inserted into another furnace set at 1100 to 1200 ° C., heated under reduced pressure for 3 to 10 hours, then heated to 1200 to 1400 ° C. and then heated under reduced pressure for 10 to 20 hours. The glass was made transparent by heating to obtain a synthetic silica glass.

(比較例1)
VAD法で合成した密度0.5g/cmの多孔質シリカ原料を公知のドープ装置のシリカガラス炉内に挿入した。シリカガラス炉内にはArガスを満たしておき、このシリカガラス炉内を500℃に保った状態で、Arガスと置換しながらSiFガスを500sccm、700秒流して0.3気圧(SiFガスの分圧)まで昇圧した。その後、シリカガラス炉内の条件を保ち4時間保持させた。その後、多孔質シリカ原料を1100〜1200℃に設定した別の炉内に挿入し、減圧下3〜10時間に亘って加熱し、その後1200〜1400℃に昇温し減圧下で10〜20時間に亘って加熱することで透明化を行い、合成シリカガラスを得た。
(Comparative Example 1)
A porous silica raw material having a density of 0.5 g / cm 3 synthesized by the VAD method was inserted into a silica glass furnace of a known doping apparatus. The silica glass furnace was filled with Ar gas, and while the silica glass furnace was maintained at 500 ° C., SiF 4 gas was allowed to flow at 500 sccm for 700 seconds while being replaced with Ar gas, and 0.3 atm (SiF 4 (Partial pressure of gas). Thereafter, the conditions in the silica glass furnace were maintained and held for 4 hours. Thereafter, the porous silica raw material was inserted into another furnace set at 1100 to 1200 ° C., heated under reduced pressure for 3 to 10 hours, then heated to 1200 to 1400 ° C. and then heated under reduced pressure for 10 to 20 hours. The glass was made transparent by heating to obtain a synthetic silica glass.

(比較例2)
VAD法で合成した密度0.3g/cmの多孔質シリカ原料を公知のドープ装置のシリカガラス炉内に挿入した。シリカガラス炉内には窒素ガスを満たしておき、このシリカガラス炉内を1200℃に保った状態で、窒素ガス雰囲気にClガスを700sccm流し、8時間保持した。その後、シリカガラス炉内を1000℃に保った状態で、窒素ガス及び塩素ガス雰囲気に、SiFガスを500sccm流し、4時間保持した。その後、多孔質シリカ原料を1100〜1200℃に設定した別の炉内に挿入し、減圧下3〜10時間に亘って加熱し、その後1200〜1400℃に昇温し減圧下で10〜20時間に亘って加熱することで透明化を行い、合成シリカガラスを得た。
(Comparative Example 2)
A porous silica raw material having a density of 0.3 g / cm 3 synthesized by the VAD method was inserted into a silica glass furnace of a known doping apparatus. The silica glass furnace was filled with nitrogen gas, and while the silica glass furnace was maintained at 1200 ° C., 700 sccm of Cl 2 gas was allowed to flow in a nitrogen gas atmosphere and held for 8 hours. Thereafter, with the inside of the silica glass furnace maintained at 1000 ° C., 500 sccm of SiF 4 gas was allowed to flow in a nitrogen gas and chlorine gas atmosphere and held for 4 hours. Thereafter, the porous silica raw material was inserted into another furnace set at 1100 to 1200 ° C., heated under reduced pressure for 3 to 10 hours, then heated to 1200 to 1400 ° C. and then heated under reduced pressure for 10 to 20 hours. The glass was made transparent by heating to obtain a synthetic silica glass.

[評価]
実施例1〜4及び比較例1〜2で得た合成シリカガラスについて、屈折率(nd)1.45850をリファレンスとしたときの断面の比屈折率差をデジタル精密屈折計によって測定した。また、F元素及びCl元素の含有量をイオンクロマトグラフ分析によって測定した。この結果を表1に示す。
[Evaluation]
About the synthetic silica glass obtained in Examples 1-4 and Comparative Examples 1-2, the relative refractive index difference of the cross section when using refractive index (nd) 1.45850 as a reference was measured with a digital precision refractometer. Further, the contents of F element and Cl element were measured by ion chromatography analysis. The results are shown in Table 1.

Figure 2012246157
Figure 2012246157

Claims (15)

100ppm以上のF元素と、1ppm以上でありかつF元素の含有量の−β/α(式中、αはCl元素1ppmあたり変化する屈折率の値、βはF元素1ppmあたり変化する屈折率の値)倍以下であるCl元素とを含み、屈折率(nd)1.45850をリファレンスとしたときの断面内の比屈折率差が0.01%以下である合成シリカガラス。   F element of 100 ppm or more and -β / α of the content of F element that is 1 ppm or more (where α is a refractive index value that changes per 1 ppm of Cl element, β is a refractive index that changes per 1 ppm of F element) Value) Synthetic silica glass containing a Cl element that is not more than double and having a relative refractive index difference in the cross section of 0.01% or less when the refractive index (nd) is 1.45850 as a reference. 多孔質シリカ原料にフッ素をドープし、透明化されてなり、
前記ドープは、前記多孔質シリカ原料を、フッ化塩素ガスを含む所定温度の雰囲気に配置することで行う請求項1記載の合成シリカガラス。
Porous silica raw material is doped with fluorine and made transparent,
The synthetic silica glass according to claim 1, wherein the dope is performed by placing the porous silica raw material in an atmosphere having a predetermined temperature containing chlorine fluoride gas.
前記所定温度は800℃未満である請求項2記載の合成シリカガラス。   The synthetic silica glass according to claim 2, wherein the predetermined temperature is less than 800 ° C. 前記所定温度は前記フッ化塩素の沸点以上である請求項2又は3記載の合成シリカガラス。   The synthetic silica glass according to claim 2 or 3, wherein the predetermined temperature is equal to or higher than a boiling point of the chlorine fluoride. 前記多孔質シリカ原料は、0.2g/cm以上1.2g/cm以下の密度を有する請求項2から4いずれか記載の合成シリカガラス。 5. The synthetic silica glass according to claim 2, wherein the porous silica material has a density of 0.2 g / cm 3 or more and 1.2 g / cm 3 or less. 前記フッ化塩素ガスの分圧が1.0気圧以下で製造される請求項2から5いずれか記載の合成シリカガラス。   The synthetic silica glass according to any one of claims 2 to 5, which is produced at a partial pressure of the chlorine fluoride gas of 1.0 atm or less. 前記フッ化塩素ガスの分圧を1.0気圧超4.0気圧以下の圧力へと加圧してなる請求項2から5いずれか記載の合成シリカガラス。   The synthetic silica glass according to any one of claims 2 to 5, wherein the partial pressure of the chlorine fluoride gas is increased to a pressure higher than 1.0 atm and not higher than 4.0 atm. 前記透明化を、ドーパントが実質的に存在しない雰囲気で行ってなる請求項2から7いずれか記載の合成シリカガラス。   The synthetic silica glass according to any one of claims 2 to 7, wherein the transparency is performed in an atmosphere substantially free of dopant. 多孔質シリカ原料にフッ素をドープし、透明化する合成シリカガラスの製造方法であって、
前記ドープは、前記多孔質シリカ原料を、フッ化塩素ガスを含む所定温度の雰囲気に配置することで行う製造方法。
A method for producing synthetic silica glass in which a porous silica raw material is doped with fluorine to be transparent,
The said dope is a manufacturing method performed by arrange | positioning the said porous silica raw material in the atmosphere of the predetermined temperature containing a chlorine fluoride gas.
前記所定温度は800℃未満である請求項9記載の製造方法。   The manufacturing method according to claim 9, wherein the predetermined temperature is less than 800 ° C. 前記所定温度は前記フッ化塩素の沸点以上である請求項9又は10記載の製造方法。   The manufacturing method according to claim 9 or 10, wherein the predetermined temperature is equal to or higher than a boiling point of the chlorine fluoride. 前記多孔質シリカ原料は、0.2g/cm以上1.2g/cm以下の密度を有する請求項9から11いずれか記載の製造方法。 The method according to claim 9, wherein the porous silica raw material has a density of 0.2 g / cm 3 or more and 1.2 g / cm 3 or less. 前記フッ化塩素ガスの分圧を1.0気圧以下とする請求項9から12いずれか記載の製造方法。   The manufacturing method according to any one of claims 9 to 12, wherein a partial pressure of the chlorine fluoride gas is 1.0 atm or less. 前記フッ化塩素ガスの分圧を1.0気圧超4.0気圧以下の圧力へと加圧する工程をさらに有する請求項9から12いずれか記載の製造方法。   The manufacturing method according to any one of claims 9 to 12, further comprising a step of pressurizing the partial pressure of the chlorine fluoride gas to a pressure of more than 1.0 atm to 4.0 atm or less. 前記透明化は、ドーパントが実質的に存在しない雰囲気で行う請求項9から14いずれか記載の製造方法。   The said transparentization is a manufacturing method in any one of Claim 9 to 14 performed in the atmosphere which a dopant does not exist substantially.
JP2011117713A 2011-05-26 2011-05-26 Method for producing synthetic silica glass and synthetic silica glass Active JP5721538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011117713A JP5721538B2 (en) 2011-05-26 2011-05-26 Method for producing synthetic silica glass and synthetic silica glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011117713A JP5721538B2 (en) 2011-05-26 2011-05-26 Method for producing synthetic silica glass and synthetic silica glass

Publications (2)

Publication Number Publication Date
JP2012246157A true JP2012246157A (en) 2012-12-13
JP5721538B2 JP5721538B2 (en) 2015-05-20

Family

ID=47467001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011117713A Active JP5721538B2 (en) 2011-05-26 2011-05-26 Method for producing synthetic silica glass and synthetic silica glass

Country Status (1)

Country Link
JP (1) JP5721538B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114057387A (en) * 2020-08-06 2022-02-18 贺利氏石英玻璃有限两合公司 Method for producing fluorinated quartz glass
JP2022031249A (en) * 2020-08-06 2022-02-18 ヘレウス・クアルツグラース・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディット・ゲゼルシャフト Alternative fluorination agent for manufacturing fluorinated quartz glass

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291439A (en) * 1985-10-18 1987-04-25 Sumitomo Electric Ind Ltd Production of fluorine-added transparent quartz glass body
JPS63176325A (en) * 1987-01-12 1988-07-20 Sumitomo Electric Ind Ltd Production of glass preform for optical fiber
JPH038743A (en) * 1989-06-06 1991-01-16 Shin Etsu Chem Co Ltd Optical fiber preform and preparation thereof
JP2001019450A (en) * 1998-10-28 2001-01-23 Asahi Glass Co Ltd Synthetic quartz glass and its production
JP2002012441A (en) * 2000-06-27 2002-01-15 Sumitomo Metal Ind Ltd Synthetic quartz glass and its manufacturing method
JP2003146680A (en) * 2001-11-07 2003-05-21 Sumitomo Electric Ind Ltd Method of manufacturing optical fiber
JP2004244272A (en) * 2003-02-14 2004-09-02 Fujikura Ltd Quartz glass preform and manufacturing method of quartz glass preform
JP2004345903A (en) * 2003-05-22 2004-12-09 Fujikura Ltd Method for manufacturing quartz glass, quartz glass, optic component and optical fiber
JP2006199517A (en) * 2005-01-18 2006-08-03 Furukawa Electric Co Ltd:The Method of manufacturing optical fiber preform

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291439A (en) * 1985-10-18 1987-04-25 Sumitomo Electric Ind Ltd Production of fluorine-added transparent quartz glass body
JPS63176325A (en) * 1987-01-12 1988-07-20 Sumitomo Electric Ind Ltd Production of glass preform for optical fiber
JPH038743A (en) * 1989-06-06 1991-01-16 Shin Etsu Chem Co Ltd Optical fiber preform and preparation thereof
JP2001019450A (en) * 1998-10-28 2001-01-23 Asahi Glass Co Ltd Synthetic quartz glass and its production
JP2002012441A (en) * 2000-06-27 2002-01-15 Sumitomo Metal Ind Ltd Synthetic quartz glass and its manufacturing method
JP2003146680A (en) * 2001-11-07 2003-05-21 Sumitomo Electric Ind Ltd Method of manufacturing optical fiber
JP2004244272A (en) * 2003-02-14 2004-09-02 Fujikura Ltd Quartz glass preform and manufacturing method of quartz glass preform
JP2004345903A (en) * 2003-05-22 2004-12-09 Fujikura Ltd Method for manufacturing quartz glass, quartz glass, optic component and optical fiber
JP2006199517A (en) * 2005-01-18 2006-08-03 Furukawa Electric Co Ltd:The Method of manufacturing optical fiber preform

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114057387A (en) * 2020-08-06 2022-02-18 贺利氏石英玻璃有限两合公司 Method for producing fluorinated quartz glass
JP2022031249A (en) * 2020-08-06 2022-02-18 ヘレウス・クアルツグラース・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディット・ゲゼルシャフト Alternative fluorination agent for manufacturing fluorinated quartz glass
CN114057390A (en) * 2020-08-06 2022-02-18 贺利氏石英玻璃有限两合公司 Alternative fluorinating agent for producing fluorinated quartz glass
JP7264950B2 (en) 2020-08-06 2023-04-25 ヘレウス・クアルツグラース・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディット・ゲゼルシャフト Alternative fluorinating agents for the production of fluorinated quartz glass
CN114057390B (en) * 2020-08-06 2023-12-22 贺利氏石英玻璃有限两合公司 Substitute fluorinating agent for producing fluoridized quartz glass
CN114057387B (en) * 2020-08-06 2023-12-22 贺利氏石英玻璃有限两合公司 Method for producing fluorided quartz glass
US11884571B2 (en) 2020-08-06 2024-01-30 Heraeus Quarzglas Gmbh & Co. Kg Alternative fluorinating agents for the production of fluorinated quartz glass

Also Published As

Publication number Publication date
JP5721538B2 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
JP5394734B2 (en) Cage made of quartz glass for processing semiconductor wafers and method of manufacturing the cage
US10884184B2 (en) Bromine-doped optical fiber
JP5202959B2 (en) High refractive index uniform fused silica glass and method for producing the same
CN110187433B (en) Optical fiber and method for manufacturing optical fiber preform
JP6185560B2 (en) Method for manufacturing a cylindrical part made of synthetic quartz glass containing fluorine
US20170022094A1 (en) Optical fiber with low loss and nanoscale structurally homogeneous core
KR20140086831A (en) Optical fiber and silica glass preform for optical fiber
JP2017536324A (en) Method for producing a halogen-doped optical element
JP6068571B2 (en) Method for producing doped quartz glass
CN108700704B (en) Optical fiber
US20200049881A1 (en) Halogen co-doped optical fibers
US7975507B2 (en) Process for producing synthetic quartz glass and synthetic quartz glass for optical member
JP5721538B2 (en) Method for producing synthetic silica glass and synthetic silica glass
JP2015535795A (en) Fluorination of soot bodies using hydrogen
US9593034B2 (en) Method for producing iron-doped silica glass
CN112805252A (en) Method for manufacturing halogen-doped silica preform for optical fiber
KR20050065398A (en) Method of manufacturing fluorine doped silica glass article, and method of manufacturing optical fiber preform and optical fiber using the method, and optical fiber made by such method
CN106604899B (en) Optical fiber preform, optical fiber and method for manufacturing optical fiber
US20070077438A1 (en) Soot layer formation for solution doping of glass preforms
JP2011225438A (en) Method for manufacturing synthetic quartz glass
JP5619397B2 (en) Optical fiber preform manufacturing method
JP2002047013A (en) Method of manufacturing glass article
US11072560B2 (en) Neutralizing gas system for furnace
JP2017043512A (en) Optical fiber preform manufacturing method, optical fiber manufacturing method, and lens manufacturing method
JP2003192364A (en) Synthetic quartz glass substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150324

R150 Certificate of patent or registration of utility model

Ref document number: 5721538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250