JP2012245604A - Breakage inspection method and device for small-diameter tool - Google Patents

Breakage inspection method and device for small-diameter tool Download PDF

Info

Publication number
JP2012245604A
JP2012245604A JP2011121774A JP2011121774A JP2012245604A JP 2012245604 A JP2012245604 A JP 2012245604A JP 2011121774 A JP2011121774 A JP 2011121774A JP 2011121774 A JP2011121774 A JP 2011121774A JP 2012245604 A JP2012245604 A JP 2012245604A
Authority
JP
Japan
Prior art keywords
air
inspection
tool
flow rate
breakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011121774A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Shimamatsu
克好 島松
Shinichi Nakajima
信一 中島
Shinichi Kishuku
慎一 木宿
Akio Nishikawa
昭男 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Original Assignee
Sumitomo Electric Hardmetal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp filed Critical Sumitomo Electric Hardmetal Corp
Priority to JP2011121774A priority Critical patent/JP2012245604A/en
Publication of JP2012245604A publication Critical patent/JP2012245604A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To precisely detect whether or not such a small-diameter tool as that smaller than 0.5 mm in diameter is broken by a non-contacting inspection method that hardly causes the breakage of the tool even in an environment in which mist such as that of cutting oil is spattered.SOLUTION: An injection nozzle 1 and a receiving nozzle 2 are opposed to each other. A certain amount of air is jetted in vain from the injection nozzle 1 before installing a tool 10 in an inspection section A. Then, a flow volume threshold is set based on an air volume Q1 taken into the receiving nozzle 2 at this time. The flow volume threshold is set desirably at each inspection. Thereafter, the tool 10 is inserted into the inspection section A, and in this state, a certain volume of air is jetted again from the injection nozzle 1. Then, the air volume Q2 jetted at this time is compared with the flow volume threshold, thereby deciding whether or not an inspection target tool is broken.

Description

この発明は、細径ドリルなどの棒状小径工具について、折損の有無を、工具を傷めることなく精度良く検査することを可能にした折損検査方法と折損検査装置に関する。   The present invention relates to a breakage inspection method and a breakage inspection apparatus that enable a rod-shaped small diameter tool such as a small diameter drill to be accurately inspected for the presence or absence of breakage without damaging the tool.

例えば、マイクロドリルやミニチュアドリルと称されているような細径ドリルは、使用中に折損しやすく、その折損によって製品の加工不良が発生する。このため、加工機にセットした状態で折損の有無を検査することが行なわれている。   For example, a small-diameter drill called a micro drill or a miniature drill is easily broken during use, and the breakage causes a processing defect of the product. For this reason, inspecting the presence or absence of breakage in the state set in the processing machine is performed.

その細径ドリルに代表される棒状工具用の折損検査装置として、下記特許文献1,2に示されるものなどが知られている。   As a breakage inspection apparatus for a rod-shaped tool typified by the small-diameter drill, those shown in Patent Documents 1 and 2 below are known.

特許文献1の工具装着装置に採用されている検査装置は、光電式センサを用いたものであって、投・受光部間の光路が工具によって遮られるか否かを受光部による受光量の変化から確認して工具の折損の有無を判断する。   The inspection apparatus employed in the tool mounting apparatus of Patent Document 1 uses a photoelectric sensor, and changes in the amount of light received by the light receiving unit as to whether or not the light path between the light projecting and light receiving units is blocked by the tool. Check to see if the tool is broken.

また、特許文献2の刃具折損検出装置は、タッチセンサを用いたものであって、工具がセンサに接触したか否かを接触時に起こさせる流路内圧力の変動を検知して検出する。   In addition, the blade breakage detection apparatus of Patent Document 2 uses a touch sensor, and detects and detects a change in the pressure in the flow path that causes whether or not the tool is in contact with the sensor.

特開昭62−94210号公報JP-A-62-94210 特開2000−33535号公報JP 2000-33535 A

近年、工具の小径化が進んで、直径が0.5mmにも満たない極細ドリルなども実用化されている。その極細ドリルなどの折損の有無を、タッチセンサを用いた装置を使用して検査すると、測定時の圧力で工具が損傷する虞がある。   In recent years, the diameter of tools has been reduced, and ultrafine drills having a diameter of less than 0.5 mm have been put into practical use. When the presence or absence of breakage of the ultrafine drill or the like is inspected using a device using a touch sensor, the tool may be damaged by the pressure at the time of measurement.

また、光電式センサを使用した検査装置は、工具を損傷させる心配はないが、ドリル加工などでは切削油やクーラント液が利用されることが多く、検査の時間を短縮するために検査装置を工作機械の内部に組み込むと、検査が否応なしに切削油やクーラント液が飛散する環境下で行われることになって検査精度の保証が難しくなる。   In addition, inspection devices using photoelectric sensors do not have to worry about damaging the tool, but cutting oil and coolant are often used for drilling, etc., and the inspection device is operated to shorten the inspection time. If incorporated in the machine, the inspection will be carried out in an environment in which cutting oil or coolant liquid scatters unavoidably, making it difficult to guarantee the inspection accuracy.

光電式センサは、切削油などが付着すると感度が鈍り、それによって、検査の精度が低下する。この発明で言う折損には、先端の僅かな欠損も含まれ、そのような折損は特に、判断を誤って見落とす可能性が高い。   The sensitivity of the photoelectric sensor decreases when the cutting oil or the like adheres, thereby reducing the accuracy of inspection. The breakage referred to in the present invention includes a slight defect at the tip, and such a breakage is particularly likely to be mistakenly overlooked.

この発明は、小径工具の折損の有無を、切削油などのミストが飛散する環境下においても、工具を破損させる心配の無い非接触式検査によって正確に検出できるようにすることを課題としている。   An object of the present invention is to make it possible to accurately detect the presence or absence of breakage of a small-diameter tool by non-contact inspection without fear of damaging the tool even in an environment where mist such as cutting oil scatters.

上記の課題を解決するため、この発明においては、エアーを噴射する噴射ノズルと噴射したエアーを取り込む受けノズルを、検査部を間に挟んで対向させ、前記検査部に工具を導入する前に前記噴射ノズルから一定量のエアーを空打ち状態で噴射し、このときに前記受けノズルに取り込まれるエアー量Q1に基づいて流量閾値を設定し、
その後、前記検査部に工具を挿入し、この状態で、前記噴射ノズルから再度一定量のエアーを噴射し、このときに前記受けノズルに取り込まれるエアー量Q2を前記流量閾値と比較して検査対象工具の折損の有無を判断し、上記エアーの空打ちによる流量閾値の設定を毎回の検査、もしくは数回おきの検査において実施する小径工具の折損検査方法を提供する。
In order to solve the above-described problems, in the present invention, the injection nozzle for injecting air and the receiving nozzle for taking in the injected air are opposed to each other with the inspection portion interposed therebetween, and before the tool is introduced into the inspection portion, A fixed amount of air is injected from the injection nozzle in an idle state, and at this time, a flow rate threshold is set based on the amount of air Q1 taken into the receiving nozzle,
Thereafter, a tool is inserted into the inspection section, and in this state, a fixed amount of air is again injected from the injection nozzle, and the air amount Q2 taken into the receiving nozzle at this time is compared with the flow rate threshold value to be inspected. The present invention provides a breakage inspection method for a small-diameter tool that determines whether or not a tool is broken and sets the flow rate threshold value by air blow in each inspection or every several inspections.

流量閾値は、エアーの空打ちで計測されるエアー量Q1(これは変数)に一定の係数を掛けて求めることができる。その流量閾値の算出に利用する係数は、噴射されたエアーが正常な工具によって遮られる割合をN%として{1−(N/100)}の式で求まる数値に公差を加算した値以上、1以下に設定する。ここで言う公差は、例えば、Nの+10%〜−10%程度で十分である。その他、流量閾値は、エアー量Q1に対して常に一定量小さい値としても構わない。   The flow rate threshold value can be obtained by multiplying an air amount Q1 (this is a variable) measured by air blanking by a certain coefficient. The coefficient used for the calculation of the flow rate threshold is not less than a value obtained by adding a tolerance to a numerical value obtained by the expression {1- (N / 100)}, where N% is a ratio at which the injected air is blocked by a normal tool. Set as follows. The tolerance mentioned here is, for example, about + 10% to −10% of N. In addition, the flow rate threshold value may be a value always smaller by a certain amount than the air amount Q1.

かかる検査方法は、エアーの空打ちによる流量閾値の設定を毎回の検査で実施すると好ましい。   In such an inspection method, it is preferable to set the flow rate threshold value by air blanking in every inspection.

この発明は、上記の方法を実行する折損検査装置も併せて提供する。その折損検査装置
は、検査部に向けてエアーを噴射する噴射ノズルと、噴射したエアーを対向位置で取り込む受けノズルと、前記噴射ノズルにエアーを供給するエアー源及び供給エアー量を制御する流量制御弁と、前記受けノズルに取り込まれたエアー量を測定する流量センサと、装置の動作を制御する制御装置と、演算・判定装置を備えている。
The present invention also provides a breakage inspection apparatus for executing the above method. The breakage inspection device includes an injection nozzle that injects air toward the inspection unit, a receiving nozzle that takes in the injected air at a facing position, an air source that supplies air to the injection nozzle, and a flow rate control that controls the amount of air supplied A valve, a flow sensor for measuring the amount of air taken into the receiving nozzle, a control device for controlling the operation of the device, and a calculation / determination device are provided.

そして、前記検査部に工具が無い状態でエアー噴射を実行して前記流量センサでエアー量(流量)Q1を計測し、前記演算・判定装置が計測されたエアー量Q1に一定の係数をかけて流量閾値を設定し、その流量閾値と前記検査部に工具が導入された状態でエアー噴射がなされたときに前記流量センサによって計測されるエアー量Q2を比較して工具折損の有無を判定し、上記エアーの空打ちによる流量閾値の設定が毎回の検査、もしくは数回おきの検査において実施されるように構成されている。また、計測したエアー量Q1と1回前のエアー量とを比較し、その差が予め定めた所定値よりも大きいと判断した場合は、測定環境に大きな変化が生じていると考えられるため、機器の点検を行うようにしてもよい。   Then, air injection is performed in the state where there is no tool in the inspection unit, the air amount (flow rate) Q1 is measured by the flow rate sensor, and the arithmetic / determination device multiplies the measured air amount Q1 by a certain coefficient. A flow rate threshold is set, and the presence or absence of tool breakage is determined by comparing the flow rate threshold with the air amount Q2 measured by the flow rate sensor when air injection is performed in a state where the tool is introduced into the inspection unit. The setting of the flow rate threshold value by the air blow is performed in every inspection or every several inspections. In addition, when the measured air amount Q1 is compared with the previous air amount and it is determined that the difference is larger than a predetermined value, it is considered that a large change has occurred in the measurement environment. You may make it check an apparatus.

この折損検査装置は、受けノズルのエアー導入側の端面を凸形曲面で形成したものや、前記受けノズルと前記流量センサとの間に、噴射エアーに混入しているミストを捕集するミストフィルタを設置したものが好ましい。   This breakage inspection apparatus includes a receiving nozzle having an end surface on the air introduction side formed as a convex curved surface, and a mist filter that collects mist mixed in the jet air between the receiving nozzle and the flow rate sensor. What installed this is preferable.

なお、エアー量Q1,Q2は、エアー圧P1,P2に置き換えることができる。すなわち、エアーを噴射する噴射ノズルと噴射されたエアーの圧力を検出する圧力検出部を、検査部を間に挟んで対向配置し、前記検査部に工具を導入する前に、前記噴射ノズルから一定圧のエアーを空打ちして噴出させ、このときに前記圧力検出部によって検出されるエアー圧P1に基づいて圧力閾値を設定し、
その後、前記検査部に工具を挿入し、この状態で、前記噴射ノズルから再度一定圧のエアーを噴出させ、このときに前記圧力検出部によって検出されるエアー圧P2を前記圧力閾値と比較して検査対象工具の折損の有無を判断する方法でも、小径工具の折損の有無を、工具を圧力センサに接触させずに正確に検出することができる。この発明は、かかる検査方法も併せて提供する。
The air amounts Q1 and Q2 can be replaced with air pressures P1 and P2. That is, an injection nozzle that injects air and a pressure detection unit that detects the pressure of the injected air are arranged opposite to each other with an inspection unit interposed therebetween, and before introducing a tool to the inspection unit, the injection nozzle is fixed from the injection nozzle. Pressure air is blown and ejected, and at this time, a pressure threshold is set based on the air pressure P1 detected by the pressure detector,
Thereafter, a tool is inserted into the inspection unit, and in this state, air of a constant pressure is again ejected from the injection nozzle, and the air pressure P2 detected by the pressure detection unit at this time is compared with the pressure threshold value. Even in the method for determining whether or not the inspection target tool is broken, the presence or absence of breakage of the small-diameter tool can be accurately detected without bringing the tool into contact with the pressure sensor. The present invention also provides such an inspection method.

流量を圧力に置き換えたこの検査方法も、エアーの空打ちによる圧力閾値の設定を毎回の検査、もしくは数回おきの検査において実施する。この場合の圧力閾値も、空打ちで測定されるエアー圧P1に一定の係数を掛けて求めることができる。   In this inspection method in which the flow rate is replaced with pressure, the setting of the pressure threshold value by air blanking is performed every inspection or every several inspections. The pressure threshold value in this case can also be obtained by multiplying the air pressure P1 measured by idle driving by a certain coefficient.

この発明の検査方法および検査装置は、検査に先立って一定量(又は一定圧)のエアーを空打ちし、そのときのエアー量Q1(又はエアー圧P1)に基づいて閾値を設定するので、使用環境や経時的要因による測定精度の低下が起こらない。   The inspection method and the inspection apparatus of the present invention are used because a predetermined amount (or constant pressure) of air is blown prior to inspection and a threshold is set based on the air amount Q1 (or air pressure P1) at that time. Measurement accuracy does not deteriorate due to environmental factors and time-dependent factors.

例えば、ミストの付着などが原因で流路抵抗が増加して流量センサに流れるエアー量が検査を行なう度に減少したり、付着物の経時的増加で圧力センサの感度が鈍ったりしても、検査直前の閾値設定により補正がなされて測定結果を狂わせる因子(ここではそれを誤差要因という)が排除され、これにより、工具折損の有無の判断が正確になされる。   For example, even if the flow resistance increases due to mist adhesion etc. and the amount of air flowing to the flow sensor decreases every time the inspection is performed, or the sensitivity of the pressure sensor decreases due to the increase in deposits over time, A factor (which is referred to as an error factor here) that corrects the measurement result by correcting the threshold value immediately before the inspection is eliminated, thereby accurately determining whether or not the tool is broken.

受けノズルと流量センサとの間に、ミストフィルタを設置した検査装置は特に、ミストや異物の捕集によりフィルタが目詰まりして流路抵抗が次第に増加するが、それによる測定流量の減少が起こっても測定精度が維持され、工具折損の早期発見につながる。   In particular, inspection devices with a mist filter installed between the receiving nozzle and the flow sensor clog the filter due to the collection of mist and foreign matter, and the flow resistance gradually increases, but this causes a decrease in the measured flow rate. However, measurement accuracy is maintained, leading to early detection of tool breakage.

折損の原因を早期に突き止めて取り除くことで、同じ原因によって工具が連鎖的に欠損することを防止することもできる。   By identifying and removing the cause of breakage at an early stage, it is possible to prevent the tool from being lost in a chain due to the same cause.

流量や圧力の閾値は、空打ちで計測されるエアー量Q1やエアー圧P1に所定の係数を乗じて求めることができる。この時に使用する係数は、1以下、かつ、上式{1−(N/100)}で求まる値に公差を加えた値よりも大きな数値を選択する。   The threshold values of the flow rate and pressure can be obtained by multiplying the air amount Q1 and air pressure P1 measured by idle driving by a predetermined coefficient. As a coefficient used at this time, a numerical value that is 1 or less and larger than a value obtained by adding a tolerance to a value obtained by the above equation {1- (N / 100)} is selected.

その係数が{1−(N/100)}の式で求まる数値に公差を加えた値に近ければ、工具先端の一部が僅かに欠損しているときにも測定されるエアー量Q2が閾値を上回るため、工具欠損を見落とすことなく検出することができる。また、{1−(N/100)}の式で求まる数値に公差を加えた値を閾値の下限となすことで、正常な工具が折損品と誤認されることを防止することができる。   If the coefficient is close to a value obtained by adding a tolerance to the numerical value obtained by the expression {1- (N / 100)}, the air amount Q2 measured even when a part of the tool tip is slightly missing is a threshold value. Therefore, it is possible to detect without missing a tool. Moreover, it is possible to prevent a normal tool from being mistaken for a broken product by setting a value obtained by adding a tolerance to a numerical value obtained by the expression {1- (N / 100)} as a lower limit of the threshold value.

なお、閾値の設定は、毎回行なうに越したことはないが、今回の検査で測定されたエアー量Q1(エアー圧P1)が前回の検査で測定されたエアー量Q1(エアー圧P1)と比較して大きく変動していなければ、前回検査から今回検査までの間での誤差要因の増加は少ないと考えてよいので、このようなときには、閾値の変更を数回おきの検査において行ってもよく、これでも発明の目的が達成される。   Although the threshold setting is not limited to every time, the air amount Q1 (air pressure P1) measured in the current inspection is compared with the air amount Q1 (air pressure P1) measured in the previous inspection. If it does not fluctuate greatly, the increase in the error factor between the previous test and the current test may be considered to be small. In such a case, the threshold may be changed every several times. This still achieves the object of the invention.

閾値の設定を毎回行なうものは、常時最適閾値に基づく判定がなされるため、折損検出の遅延による加工不良の増加を抑制することができる。   In the case where the threshold value is set every time, the determination based on the optimum threshold value is always performed, so that an increase in machining defects due to breakage detection delay can be suppressed.

また、この発明の折損検査装置で、受けノズルのエアー導入側の端面を凸形曲面で形成
したものは、受けノズルのエアー導入口にミストや異物が侵入し難く、さらに、エアー導入口の近傍に付着したミストや異物の吹流しも良好になされ、メンテナンスの手間の増加が抑えられる。
Further, in the breakage inspection apparatus according to the present invention, when the end surface on the air introduction side of the receiving nozzle is formed with a convex curved surface, it is difficult for mist and foreign matter to enter the air introduction port of the receiving nozzle, and in the vicinity of the air introduction port. The mist and foreign matter adhering to the air can be well blown, and an increase in maintenance labor can be suppressed.

この発明の折損検査装置のシステム構成図System configuration diagram of breakage inspection apparatus of the present invention 検査装置の要部の一例の詳細構造を示す図The figure which shows the detailed structure of an example of the principal part of an inspection apparatus 折損検出の原理図Principle of breakage detection 検査対象工具の一例を示す図The figure which shows an example of the inspection object tool エアー量Q1と閾値と折損工具、非折損工具検査時のエアー量Q2の関係を示す模式図Schematic diagram showing the relationship between the air amount Q1, the threshold value, and the air amount Q2 at the time of inspection of broken tools and non-breaking tools

以下、この発明の小径工具の折損検査方法と折損検査装置の実施の形態を、添付図面の図1〜図5に基づいて説明する。   Embodiments of a breakage inspection method and a breakage inspection apparatus for a small diameter tool according to the present invention will be described below with reference to FIGS. 1 to 5 of the accompanying drawings.

図1は、折損検査装置の全体構成の概略を示している。この折損検査装置は、検査部Aを間に挟んで対向させた噴射ノズル1及び受けノズル2と、エアー源3と、その供給されるエアーの量を制御する流量制御弁(電磁弁)4を有する。   FIG. 1 shows an outline of the overall configuration of the breakage inspection apparatus. This breakage inspection apparatus includes an injection nozzle 1 and a receiving nozzle 2 that are opposed to each other with an inspection unit A interposed therebetween, an air source 3, and a flow rate control valve (electromagnetic valve) 4 that controls the amount of supplied air. Have.

また、受けノズル2によって取り込まれたエアーの量を計測する流量センサ5と、受けノズル2と流量センサ5との間に設置するミストフィルタ6と、流量センサ5による計測値を表示するモニタ7と、装置の動作を制御する制御装置8を有し、以上の要素を組み合わせて構成されている。   Further, a flow sensor 5 for measuring the amount of air taken in by the receiving nozzle 2, a mist filter 6 installed between the receiving nozzle 2 and the flow sensor 5, and a monitor 7 for displaying a measurement value by the flow sensor 5; The control device 8 controls the operation of the device, and is configured by combining the above elements.

流量制御弁4は、制御装置8から作動指令を受けて一定時間開弁し、エアー源3から供給されるエアーを噴射ノズル1に向けて一定量流す。   The flow rate control valve 4 receives an operation command from the control device 8 and opens for a certain time, and flows a certain amount of air supplied from the air source 3 toward the injection nozzle 1.

そのエアーを噴射ノズル1が受けノズル2に向けて噴射し、そのエアーが受けノズル2に取り込まれる。噴射ノズル1と受けノズル2間に設けられる検査部Aには検査対象の工具10(その工具の検査が必要な先端側)が挿入される。その工具によって噴射ノズル1と受けノズル2間のエアー流路が遮られ、それにより、受けノズル2に取り込まれるエアー量が変動し、その変動量で工具の折損の有無を判定する。   The air is injected by the injection nozzle 1 toward the receiving nozzle 2, and the air is taken into the receiving nozzle 2. A tool 10 to be inspected (a tip side that requires inspection of the tool) is inserted into an inspection portion A provided between the injection nozzle 1 and the receiving nozzle 2. The air flow path between the injection nozzle 1 and the receiving nozzle 2 is blocked by the tool, whereby the amount of air taken into the receiving nozzle 2 varies, and the presence or absence of breakage of the tool is determined based on the variation amount.

検査部Aに工具10を導入する前に噴射ノズル1から一定量のエアーが空打ち状態で噴射され、そのときに受けノズル2に取り込まれるエアー量が流量センサ5によって計測される。そして、そのエアー量Q1(図5参照)が基礎データとしてモニタ7に内蔵された演算・判定部9に入力される。   Before introducing the tool 10 to the inspection section A, a certain amount of air is ejected from the ejection nozzle 1 in an idle state, and the amount of air taken into the receiving nozzle 2 at that time is measured by the flow sensor 5. Then, the air amount Q1 (see FIG. 5) is input as basic data to the calculation / determination unit 9 incorporated in the monitor 7.

その演算・判定部9では、そのエアー量Q1に基づいて判定の基準となす流量閾値T(図5参照)が算出される。その流量閾値は、空打ちで計測されたエアー量Q1に一定の係数、具体的には、{1−(N/100)}の式で求まる数値に公差を加算して得られる値以上、1以下の係数(例えば0.9)を掛けて求められる。   The calculation / determination unit 9 calculates a flow rate threshold value T (see FIG. 5) that serves as a determination criterion based on the air amount Q1. The flow rate threshold value is equal to or greater than a value obtained by adding a tolerance to a constant coefficient in the air amount Q1 measured by idle driving, specifically, a numerical value obtained by the expression {1- (N / 100)}. It is obtained by multiplying the following coefficient (for example, 0.9).

その流量閾値Tを得た後に、図3に示すように、検査部Aに検査対象の工具10を挿入する。図3(a)は、折れていない正常な工具10が検査部Aに導入されて噴射ノズル1と受けノズル2間の流路が工具10によって遮られた状態を、また、図3(b)は、図4に示すように先端部10aの折れた工具10が検査部Aに導入された状態(工具10が流路を遮ぎっていない状態)をそれぞれ示している。   After obtaining the flow rate threshold T, the tool 10 to be inspected is inserted into the inspection part A as shown in FIG. FIG. 3A shows a state in which a normal tool 10 that is not bent is introduced into the inspection section A, and the flow path between the injection nozzle 1 and the receiving nozzle 2 is blocked by the tool 10, and FIG. FIG. 4 shows a state in which the tool 10 with the tip 10a broken is introduced into the inspection part A as shown in FIG. 4 (a state where the tool 10 does not block the flow path).

そして、工具10を所定位置まで導入したこの状態で、噴射ノズル1から再度一定量(空打ち時と同量)のエアーを噴射し、このときに受けノズル2に取り込まれるエアー量Q2がモニタ7内の演算・判定部において事前に設定した閾値Tと比較される。   Then, in this state where the tool 10 is introduced to a predetermined position, a certain amount of air (same amount as when idling) is again ejected from the ejection nozzle 1, and the air amount Q2 taken into the receiving nozzle 2 at this time is monitored 7 Is compared with a threshold value T set in advance in the calculation / determination unit.

そのエアー量Q2が閾値Tを上回っていれば(図5の中央のデータ参照)、演算・判定部9において工具に折損ありの判定が下され、エアー量Q2が閾値Tを下回っていれば(図5の右端のデータ)工具は折損なしと判定されてその結果がモニタ7に表示される。   If the air amount Q2 exceeds the threshold value T (see the center data in FIG. 5), the calculation / determination unit 9 determines that the tool is broken, and if the air amount Q2 is below the threshold value T ( Data on the right end of FIG. 5) The tool is determined not to be broken, and the result is displayed on the monitor 7.

例示の検査装置は、エアーの空打ちによる流量閾値Tの設定を毎回の検査で実施するようにしており、各回の検査において流量閾値を設定し直すことで、前回検査から今回検査までの間の条件変動が補正され、毎回の検査が適正な条件の下で行なわれて正確な検査がなされる。   The example inspection apparatus is configured to perform the setting of the flow rate threshold value T by air blown every time, and by resetting the flow rate threshold value in each inspection, the time between the previous inspection and the current inspection is set. Condition fluctuations are corrected, and each inspection is performed under appropriate conditions, and an accurate inspection is performed.

なお、前回検査と今回検査でのエアー量Q1の差が小さければ、前回検査での閾値をそのまま使用して今回の検査を行っても構わない。各回の検査で空打ちしたときのエアー量Q1が、前回閾値を変更したときのエアー量Q1に対して所定値以上減少したときに閾値を設定し直す方法でも、検査条件の経時的変動を補正することができる。   If the difference between the air amount Q1 in the previous inspection and the current inspection is small, the current inspection may be performed using the threshold value in the previous inspection as it is. Even if the air amount Q1 when the air is blown in each inspection is decreased by a predetermined value or more with respect to the air amount Q1 when the previous threshold value was changed, the threshold value is also reset to correct the temporal variation of the inspection conditions. can do.

図2は、この発明の検査装置の要部の好ましい構造の一例を表している。図に示すように、受けノズル2は、エアー導入側の端面2aを凸形曲面で形成してその凸形曲面の端面2aにエアー導入口2bを開口させている。   FIG. 2 shows an example of a preferable structure of the main part of the inspection apparatus of the present invention. As shown in the drawing, the receiving nozzle 2 has an air introduction side end face 2a formed in a convex curved surface, and an air introduction port 2b is opened in the convex curved end face 2a.

この構造によれば、エアー導入口2bにミストや異物が侵入し難く、エアー導入口2bの近傍に付着したミストや異物の吹流しも良好になされる。そのために、ミストや異物の付着、残留、取り込みが減少し、メンテナンスの手間の削減、ミストフィルタの交換時期延長などの効果を期待できる。   According to this structure, it is difficult for mist and foreign matter to enter the air introduction port 2b, and the mist and foreign matter adhering to the vicinity of the air introduction port 2b can be well blown. For this reason, adhesion, residual, and uptake of mist and foreign matters are reduced, and it is possible to expect effects such as reduction in maintenance labor and extension of replacement time of the mist filter.

なお、図2の検査装置の寸法諸元は、噴射ノズル1と受けノズル2の内径d=φ0.5mm、受けノズル2のエアー導入側端面2aの円弧半径R=20mm、噴射ノズル1と受けノズル2間の距離L=5mm、噴射ノズル1と受けノズル2に接続されたエアー配管の内径d1=φ1.5mm、ミストフィルタ濾過能力0.3μm、流量センサ5の測定能力:0〜0.5リットル/minに設定されている。   The dimensions of the inspection apparatus of FIG. 2 are as follows: the inner diameter d of the injection nozzle 1 and the receiving nozzle 2 is 0.5 mm, the arc radius R of the air introduction side end surface 2a of the receiving nozzle 2 is 20 mm, and the injection nozzle 1 and the receiving nozzle. 2 distance L = 5 mm, inner diameter d1 of the air pipe connected to the injection nozzle 1 and the receiving nozzle 2 = φ1.5 mm, mist filter filtration capacity 0.3 μm, measurement capacity of the flow sensor 5: 0 to 0.5 liters / Min.

この装置の噴射ノズル1から噴射されるエアーは、10°程度の広がり角をもって前進して受けノズル2のエアー導入側の端面2aに衝突する。   The air jetted from the jet nozzle 1 of this apparatus moves forward with a spread angle of about 10 ° and collides with the end face 2a of the receiving nozzle 2 on the air introduction side.

なお、図1、図2の装置は、エアー量の変動状況を調べて工具欠損の有無を判断するが、エアー量の変動状況を調べることに代えてエアー圧の変動状況を調べる方法でも、工具欠損の有無を従来法に見られる問題を生じさせずに検査することができる。   The apparatus shown in FIGS. 1 and 2 determines the presence or absence of a tool deficiency by checking the fluctuation state of the air amount. Instead of checking the fluctuation state of the air amount, the method of checking the fluctuation state of the air pressure can be used. The presence or absence of defects can be inspected without causing the problems seen in conventional methods.

図1の検査装置の流量制御弁4を圧力制御弁に、流量センサ5を圧力検出部に置き換え、受けノズル2を省いてその位置に圧力検出部(圧力センサ)を配置し、噴射ノズル1から噴射する一定のエアー圧を対向配置された圧力検出部に衝突させる。そして、噴射ノズル1からエアーを空打ちして噴射させたときのエアー圧を圧力検出部で測定し、測定されたエアー圧P1に一定の係数を掛けて圧力閾値を設定する。   1 is replaced with a pressure control valve, the flow sensor 5 is replaced with a pressure detection unit, the receiving nozzle 2 is omitted, and a pressure detection unit (pressure sensor) is disposed at that position. A constant air pressure to be injected is caused to collide with a pressure detection unit arranged oppositely. Then, the air pressure when air is blown and ejected from the injection nozzle 1 is measured by the pressure detection unit, and a pressure threshold is set by multiplying the measured air pressure P1 by a certain coefficient.

その後、検査部Aに工具を挿入し、噴射ノズル1から再度一定圧のエアーを噴出させてこのときに圧力検出部によって検出されるエアー圧P2を前記圧力閾値と比較する。この方法も、毎回の検査や数回おきの検査毎に閾値を設定することで、誤差要因が取り込まれる前に設定された閾値が補正されるため、小径工具の折損の有無を、工具を圧力センサに接触させずに正確に検出することができる。   Thereafter, a tool is inserted into the inspection part A, air of a constant pressure is again ejected from the injection nozzle 1, and the air pressure P2 detected by the pressure detection part at this time is compared with the pressure threshold value. This method also corrects the threshold value set before the error factor is taken in by setting a threshold value for every inspection or every several inspections. It is possible to accurately detect without contacting the sensor.

図2の仕様の検査装置を、加工機のワーク搬送装置に組み付けた。そして、検査部Aに工具10が導入されていないときの流量センサ5による流量検出量が0.4リットル/minになるように装置を調整した。   The inspection device having the specifications shown in FIG. 2 was assembled to the workpiece transfer device of the processing machine. Then, the apparatus was adjusted so that the flow rate detected by the flow rate sensor 5 when the tool 10 was not introduced into the inspection unit A was 0.4 liter / min.

また、この検査装置の検査部Aに直径0.1mmの工具(ドリル)10を導入し、工具が無いときと同一条件で噴射ノズル1からエアーを噴射した。そのときに流量センサ5によって計測される流量は、0.3リットル/minであった。
そして、さらに、工具無しでの測定流量0.4リットル/minを基礎データとしてこれに0.1を係数として掛け、初期検査での閾値を設定した。2回目以降の検査での閾値の設定にも、上記0.1が空打ちで測定される流量Q1に掛ける係数として利用される。
Further, a tool (drill) 10 having a diameter of 0.1 mm was introduced into the inspection section A of this inspection apparatus, and air was injected from the injection nozzle 1 under the same conditions as when no tool was present. At that time, the flow rate measured by the flow rate sensor 5 was 0.3 liter / min.
Further, a measurement flow rate of 0.4 liter / min without a tool was used as basic data, and this was multiplied by 0.1 as a coefficient to set a threshold value in the initial inspection. The above 0.1 is also used as a coefficient to be multiplied by the flow rate Q1 measured by idle driving in setting the threshold value in the second and subsequent inspections.

この検査装置を使用して直径が0.1mmの工具の折損の有無を検査した。その結果、工具の先端が0.4mmの長さ欠けているものも折損として安定して検出することができた。   Using this inspection device, a tool having a diameter of 0.1 mm was inspected for breakage. As a result, it was possible to stably detect a tool with a tip lacking 0.4 mm in length as a breakage.

この発明の検査方法と検査装置の評価のために、1ヶ月間の工具の折損数を目視検査による場合と比較した。目視検査は、オペレータが定期的に加工機を点検し、工具の折損状況を、工具顕微鏡を使用して調べる。その検査は全数検査であるが、微細径の工具の僅か0.4〜0.5mm程度の欠損は目視検査では発見し難しいことから、発見が遅れて1ヶ月間に数百本単位で工具折損が生じることがあった。   In order to evaluate the inspection method and the inspection apparatus according to the present invention, the number of tool breaks during one month was compared with the case of visual inspection. In the visual inspection, the operator periodically checks the processing machine and checks the breakage status of the tool using a tool microscope. The inspection is 100% inspection, but it is difficult to detect defects of only about 0.4 to 0.5mm in a small diameter tool by visual inspection. Sometimes occurred.

これに対し、この発明の検査方法では、折損の早期発見がなされ、工具折損を目視検査で発生する数の1割以下、少ないときには数本程度に抑えることができた。   On the other hand, in the inspection method of the present invention, breakage was detected at an early stage, and tool breakage could be suppressed to 10% or less of the number generated by visual inspection, and to a few when it was small.

また、そのために、加工機の無人稼動が行えるようになり、生産性の向上に対して多大な恩恵がもたらされた。   For this reason, the processing machine can be operated unattended, which has greatly improved productivity.

1 噴射ノズル
2 受けノズル
2a エアー導入側端面
2b エアー導入口
3 エアー源
4 流量制御弁
5 流量センサ
6 ミストフィルタ
7 モニタ
8 制御装置
9 演算・判定部
10 工具
10a 先端部
A 検査部
Q1 空打ちでの測定エアー量
Q2 工具検査時の測定エアー量
P1 空打ちでの測定エアー圧
P2 工具検査時の測定エアー圧
T 閾値
DESCRIPTION OF SYMBOLS 1 Injection nozzle 2 Receiving nozzle 2a Air introduction side end surface 2b Air introduction port 3 Air source 4 Flow rate control valve 5 Flow rate sensor 6 Mist filter 7 Monitor 8 Control device 9 Calculation / determination part 10 Tool 10a Tip A Inspection part Q1 Measured air amount Q2 Measured air amount P1 during tool inspection Measured air pressure P2 when blanking Measured air pressure T during tool inspection Threshold

Claims (6)

エアーを噴射する噴射ノズル(1)と噴射したエアーを取り込む受けノズル(2)を検査部(A)を間に挟んで対向させ、前記検査部(A)に工具を導入する前に、前記噴射ノズル(1)から一定量のエアーを空打ち状態で噴射し、このときに前記受けノズル(2)に取り込まれるエアー量Q1に基づいて流量閾値を設定し、
その後、前記検査部(A)に工具を挿入し、この状態で、前記噴射ノズル(1)から再度一定量のエアーを噴射し、このときに前記受けノズル(2)に取り込まれるエアー量Q2を前記流量閾値と比較して検査対象工具の折損の有無を判断し、
上記エアーの空打ちによる流量閾値の設定を毎回の検査、もしくは数回おきの検査において実施する小径工具の折損検査方法。
Before injecting the tool into the inspection section (A), the injection nozzle (1) for injecting air and the receiving nozzle (2) for taking in the injected air are opposed to each other with the inspection section (A) interposed therebetween. A fixed amount of air is ejected from the nozzle (1) in an idle state, and a flow rate threshold is set based on the amount of air Q1 taken into the receiving nozzle (2) at this time,
Thereafter, a tool is inserted into the inspection section (A), and in this state, a fixed amount of air is again injected from the injection nozzle (1), and at this time, the amount of air Q2 taken into the receiving nozzle (2) is set. Judge the presence or absence of breakage of the inspection target tool compared to the flow rate threshold,
A breakage inspection method for small-diameter tools, in which the flow rate threshold is set every time or every several inspections.
前記流量閾値を、前記エアー量Q1に一定の係数を掛けて求める請求項1に記載の小径工具の折損検査方法。   The breakage inspection method for a small-diameter tool according to claim 1, wherein the flow rate threshold value is obtained by multiplying the air amount Q1 by a constant coefficient. 検査部(A)に向けてエアーを噴射する噴射ノズル(1)と、噴射したエアーを対向位置で取り込む受けノズル(2)と、前記噴射ノズル(1)にエアーを供給するエアー源(3)及び供給エアー量を制御する流量制御弁(4)と、前記受けノズル(2)に取り込まれたエアー量を測定する流量センサ(5)と、装置の動作を制御する制御装置(8)と、演算・判定装置(9)を備え、
前記検査部(A)に工具が無い状態でエアー噴射を実行して前記流量センサ(5)でエアー量Q1を計測し、前記演算・判定装置(9)が計測されたエアー量Q1に一定の係数をかけて流量閾値を設定し、その流量閾値と前記検査部(A)に工具(10)が導入された状態でエアー噴射がなされたときに前記流量センサ(5)によって計測されるエアー量Q2を比較して工具折損の有無を判定し、
上記エアーの空打ちによる流量閾値の設定が毎回の検査、もしくは数回おきの検査において実施されるように構成された小径工具の折損検査装置。
An injection nozzle (1) that injects air toward the inspection section (A), a receiving nozzle (2) that takes in the injected air at an opposing position, and an air source (3) that supplies air to the injection nozzle (1) And a flow rate control valve (4) for controlling the amount of supplied air, a flow rate sensor (5) for measuring the amount of air taken into the receiving nozzle (2), a control device (8) for controlling the operation of the device, Computation / judgment device (9)
Air injection is performed in the state where there is no tool in the inspection section (A), the air amount Q1 is measured by the flow rate sensor (5), and the arithmetic / judgment device (9) is fixed to the measured air amount Q1. A flow rate threshold value is set by multiplying a coefficient, and the air amount measured by the flow rate sensor (5) when the air flow is injected with the flow rate threshold value and the tool (10) introduced into the inspection unit (A). Q2 is compared to determine the presence or absence of tool breakage,
A breakage inspection device for a small diameter tool configured such that the setting of a flow rate threshold value by air blow is performed in every inspection or every several inspections.
前記受けノズル(2)のエアー導入側の端面(2a)を、凸形曲面で形成した請求項3に記載の小径工具の折損検査装置。   The breakage inspection device for a small-diameter tool according to claim 3, wherein an end surface (2a) on the air introduction side of the receiving nozzle (2) is formed as a convex curved surface. 前記受けノズル(2)と前記流量センサ(5)との間に、噴射エアーに混入しているミストを捕集するミストフィルタ(6)を設置した請求項3又は4に記載の小径工具の折損検査装置。   The breakage of a small diameter tool according to claim 3 or 4, wherein a mist filter (6) for collecting mist mixed in the jet air is installed between the receiving nozzle (2) and the flow rate sensor (5). Inspection device. エアーを噴射する噴射ノズル(1)と噴射されたエアーの圧力を検出する圧力検出部を検査部(A)を間に挟んで対向配置し、前記検査部(A)に工具を導入する前に、前記噴射ノズル(1)から一定圧のエアーを空打ち状態で噴射し、このときに前記圧力検出部によって検出されるエアー圧P1に基づいて圧力閾値を設定し、
その後、前記検査部(A)に工具を挿入し、この状態で、前記噴射ノズル(1)から再度一定圧のエアーを噴射し、このときに前記圧力検出部によって検出されるエアー圧P2を前記圧力閾値と比較して検査対象工具の折損の有無を判断し、
上記エアーの空打ちによる圧力閾値の設定を毎回の検査、もしくは数回おきの検査において実施するする小径工具の折損検査方法。
Before injecting a tool into the inspection section (A), an injection nozzle (1) for injecting air and a pressure detection section for detecting the pressure of the injected air are arranged opposite to each other with the inspection section (A) in between. , Injecting a constant pressure of air from the injection nozzle (1) in an idle state, setting a pressure threshold based on the air pressure P1 detected by the pressure detection unit at this time,
Thereafter, a tool is inserted into the inspection part (A), and in this state, air of a constant pressure is again injected from the injection nozzle (1). At this time, the air pressure P2 detected by the pressure detection part is Judge the presence or absence of breakage of the tool to be inspected compared to the pressure threshold,
A breakage inspection method for a small-diameter tool in which the pressure threshold is set every time or every several inspections by air blow.
JP2011121774A 2011-05-31 2011-05-31 Breakage inspection method and device for small-diameter tool Withdrawn JP2012245604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011121774A JP2012245604A (en) 2011-05-31 2011-05-31 Breakage inspection method and device for small-diameter tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011121774A JP2012245604A (en) 2011-05-31 2011-05-31 Breakage inspection method and device for small-diameter tool

Publications (1)

Publication Number Publication Date
JP2012245604A true JP2012245604A (en) 2012-12-13

Family

ID=47466565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011121774A Withdrawn JP2012245604A (en) 2011-05-31 2011-05-31 Breakage inspection method and device for small-diameter tool

Country Status (1)

Country Link
JP (1) JP2012245604A (en)

Similar Documents

Publication Publication Date Title
JP4248328B2 (en) Sample dispensing apparatus and automatic analyzer using the same
EP1977215B1 (en) Contaminant analyzer for fuel
JP5015077B2 (en) Hydraulic oil contamination detection device
US9404779B2 (en) Position detecting device
JP2008539071A (en) System and method for monitoring the performance of an injector
CN104101498A (en) Real-time fault detection method and system of processing machine tool main shaft bearing
EP2312265B1 (en) Dimension measuring instrument for long material
CN106556439B (en) Entrained flow detection diagnostics
US6703831B1 (en) Dual eddy current probe for detecting geometrical differences especially as related to threaded apertures and studs
CN107064281B (en) Online dilution monitoring method for total hydrocarbons in waste gas
CN114757927A (en) Part surface burr detection method based on machine vision
CN101670561B (en) Online monitoring system and method of nozzle of high-pressure water-jet cutting machine
JP2012245604A (en) Breakage inspection method and device for small-diameter tool
JP2009192418A (en) Leakage detecting system for liquid feed pipe
CN106475644B (en) Discharging processing machine with the antirust agent Concentration Testing function comprising organic compound
US10442049B2 (en) System for detecting a partial or total obstruction of at least one internal pipe of a tool
US9159599B2 (en) Apparatus for chemically etching a workpiece
US11714434B2 (en) Gas safety device
KR20070062330A (en) A perforation inspection system of oil hole
KR102051380B1 (en) On­line gas analysis system capable of monitoring abnormal state
JP2006198674A (en) Monitoring system and monitoring method for welding
KR100936342B1 (en) Automatic apparatus for inspection for finished goods
Snr Correlation of cutting force features with tool wear in a metal turning operation
KR102350312B1 (en) Machine condition monitoring system and method with oil sensors
KR20110048000A (en) Uncut flow change detector and dispensing system including the same

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130305